Property R_{∞} for Artin groups

Ignat Soroko

University of North Texas

ignat.soroko@unt.edu

Joint work with

Matthieu Calvez, IRISIB, Brussels, Belgium

Redbud Topology Conference March 31 – April 2, 2023

Property R_{∞}

Let *G* be a group, and $\varphi \in Aut(G)$. Consider an equivalence relation on *G*:

$$x \sim_{\varphi} y \iff x = g \cdot y \cdot \varphi(g)^{-1}$$
 for some $g \in G$

The equivalence class $[x]_{\varphi}$ of $x \in G$ is called **the Reidemeister class** of x.

The **Reidemeister number** $R(\varphi)$ of φ is the number of Reidemeister classes for all $x \in G$:

$$R(\varphi) = \operatorname{Card}\{ [x]_{\varphi} \mid x \in G \}$$

A group *G* has **property** \mathbf{R}_{∞} if for each automorphism $\varphi \in G$, we have

$$R(\varphi)=\infty.$$

Motivation from group theory

An old question in group theory:

Q: Does every infinite group have an infinite number of (usual) conjugacy classes? I.e. is $R(id_G) = \infty$ always? The answer is **no**:

- ▶ Higman–Neumann–Neumann (1949): an infinitely generated group with finite number of conjugacy classes, i.e. $R(id_G) < \infty$.
- ▶ **S. Ivanov (1994)**: a finitely generated group with $R(id_G) < \infty$.
- ▶ **D. Osin (2004)**: a finitely generated group with any two nontrivial elements conjugate, i.e. *R*(id_{*G*}) = 2.

Property R_{∞} , i.e. the infiniteness of $R(\varphi)$, is a generalization of this question from $\varphi = id_G$ to all automorphisms φ of G.

Motivation from fixed point theory

Let *X* be a compact connected polyhedron and $f: X \to X$ a self-map.

The **Nielsen number** N(f) of f is the number of *essential* fixed point *classes* of f. Properties of N(f):

- (lower bound) $0 \le N(f) \le \# \operatorname{Fix}(f)$
- (homotopy invariance) if $f \simeq h$ then N(f) = N(h)
- (bound realized) if X is a compact triangulable manifold of dim \geq 3, then $N(f) = \min\{\# \operatorname{Fix}(h) \mid h \simeq f\}$

The **Reidemeister number** $R(\varphi)$ is the number of fixed point classes of any map $f: X \to X$ with the induced homomorphism $f_* = \varphi$ on $\pi_1(X)$.

Always: $N(f) \leq R(f_*)$

Often: (nil-manifolds, Jiang spaces)

$$R(f_*) = \infty \implies N(f) = 0$$

Examples

Examples of R_{∞} groups:

- Gromov-hyperbolic (non-elementary), relatively hyperbolic groups
- Baumslag–Solitar groups (except for $\mathbb{Z} \times \mathbb{Z}$).
- Mapping class groups of surfaces (of big enough complexity)
- Weakly branch groups (Grigorchuk group, Gupta-Sidki group)
- Irreducible lattices in conn. s-simple Lie groups of real rank ≥ 2
- Free nilpotent group $N_{r,c}$ of rank r and class c iff $c \ge 2r$
- (2021) Pure Artin braid groups

Examples of groups **NOT** having property R_{∞} :

- free abelian groups
- free nilpotent group $N_{r,c}$ of rank r and nilpotency class c < 2r
- lamplighter groups $\mathbb{Z}_n \wr \mathbb{Z}$ if gcd(n, 6) = 1.

Attractive conjectures:

- [?] Felshtyn–Hill (1994): A fin. gen. torsion-free group with exponential growth has property R_{∞} . Disproved by Gonçalves–Wong (2003).
- [?] Felshtyn–Troitsky (2012): A fin. gen. residually finite non-amenable group has property R_{∞} . Claimed as proved, but a gap was found. Still open!
- [?] Felshtyn–Troitsky (2015): A fin. gen. residually finite group either has property R_{∞} or is solvable-by-finite.

Attractive conjectures:

- [?] Felshtyn–Hill (1994): A fin. gen. torsion-free group with exponential growth has property R_{∞} . Disproved by Gonçalves–Wong (2003).
- [?] Felshtyn–Troitsky (2012): A fin. gen. residually finite non-amenable group has property R_{∞} . Claimed as proved, but a gap was found. Still open!
- [?] Felshtyn–Troitsky (2015): A fin. gen. residually finite group either has property R_{∞} or is solvable-by-finite. BREAKING NEWS: Disproved by Troitsky on January 29, 2023.

Moral: Property R_{∞} is a subtle thing, and finding more groups having property R_{∞} poses a significant interest.

Question: Given your favorite class of groups, which groups of this class have property R_{∞} ?

Artin groups

- S finite set of generators
- $M = (m_{s,t})_{s,t \in S}$ a symmetric matrix of $\{1, 2, 3, \dots, \infty\}$; $m_{s,s} = 1$.

The **Artin group** corresponding to (S, M) is given by the presentation:

$$A = \left\langle S \mid \underbrace{stst\ldots}_{m_{s,t}} = \underbrace{tsts\ldots}_{m_{s,t}}, \quad \forall s, t \in S, \ m_{s,t} \neq \infty \right\rangle$$

Our results

Theorem (Calvez-Soroko (2022))

The following Artin groups and their pure subgroups have property R_{∞} :

Key idea: Realize these Artin groups as f.i. subgroups in m.c.g. of punctured surfaces, and use geometry of the curve complex.

More detail:

- 1. Realize groups in question as subgroups of finite index in mapping class groups of punctured surfaces (by works of Charney–Crisp and Soroko):
 - sphere with n + 2 punctures for types $A_n, B_n, \widetilde{A}_{n-1}, \widetilde{C}_{n-1}$;
 - · torus with 3 punctures for D_4 .
- 2. Using Ivanov–Korkmaz theorem observe that the same will hold for their groups of automorphisms.
- 3. Use the fact that mapping class groups act non-elementarily on the curve complex of the corresponding surface, which is a Gromov-hyperbolic space by results of Masur–Minsky.
- 4. After that a theorem of Delzant allows us to distinguish infinitely many twisted conjugacy classes.

References:

M. Calvez, I. Soroko, Property R_{∞} for some spherical and affine Artin-Tits groups. Journal of Group Theory 25, 6 (2022), 1045–1054.