Divergence in Coxeter groups

Ignat Soroko

University of North Texas

ignat.soroko@unt.edu

Joint work with

Pallavi Dani, Louisiana State University
Yusra Naqvi, University College London
Anne Thomas, University of Sydney

BG–UToledo joint Geometry and Topology seminar
September 8, 2022
Geometry of groups

Let G be a finitely presented group: $G = \langle A \mid R \rangle$

$$1 \rightarrow \langle\langle R\rangle\rangle \rightarrow F(A) \rightarrow G \rightarrow 1$$
Geometry of groups

Let G be a finitely presented group: $G = \langle A \mid R \rangle$

$$1 \longrightarrow \langle \langle R \rangle \rangle \longrightarrow F(A) \longrightarrow G \longrightarrow 1$$

Geometric models:

- Cayley graph: $\text{Cay}^1_A(G)$:
 - \{vertices\} \longleftrightarrow G
 - \{directed edges\} \longleftrightarrow $G \times A$

- Cayley 2-complex: $\text{Cay}^2_{\langle A \mid R \rangle}(G)$
 - attach 2-cells to the Cayley graph $\text{Cay}^1_A(G)$ equivariantly
Geometry of groups

Let G be a finitely presented group: $G = \langle A \mid R \rangle$

$1 \longrightarrow \langle \langle R \rangle \rangle \longrightarrow F(A) \longrightarrow G \longrightarrow 1$

Geometric models:

- **Cayley graph**: $\text{Cay}_A^1(G)$:
 - \{vertices\} $\longleftrightarrow G$
 - \{directed edges\} $\longleftrightarrow G \times A$

- **Cayley 2-complex**: $\text{Cay}_{\langle A\mid R \rangle}^2(G)$
 - attach 2-cells to the Cayley graph $\text{Cay}_A^1(G)$ equivariantly

G acts on $\text{Cay}_A^1(G)$ and $\text{Cay}_{\langle A\mid R \rangle}^2(G)$ by isometries.
Examples:

\[\mathbb{Z} \times \mathbb{Z} = \langle a, b \mid [a, b] \rangle : \]

\[\text{Cay}^2_{\langle A, IR \rangle} = \mathbb{R}^2 \]
Examples:

\[\mathbb{Z} \times \mathbb{Z} = \langle a, b \mid [a, b] \rangle : \]

\[\mathbb{Z}_2 \star \mathbb{Z}_3 = \langle a \mid a^2 \rangle \star \langle b \mid b^3 \rangle : \]

\[\text{Cay}^2_{\langle A | R \rangle} = \mathbb{R}^2 \]
Divergence

Let

- X be a 1-ended geodesic metric space
- e basepoint,
- $S(e, r)$ sphere of radius r around e

The **divergence** of X is:

\[
div_X(r) = \sup_{x,y\in S(e,r)} \inf \text{(lengths of } r\text{-avoidant paths from } x \text{ to } y)\]

Examples

- \mathbb{R}^2: $div_{\mathbb{R}^2}(r) = \pi r$, linear
- \mathbb{H}^2: $div_{\mathbb{H}^2}(r) = \pi \sinh(r) \xrightarrow{r} \pi e^{r/2}$, exponential
Divergence

Let

- X be a 1-ended geodesic metric space
- e basepoint,
- $S(e, r)$ sphere of radius r around e

The **divergence** of X is:

$$\text{div}_X(r) = \sup_{x,y \in S(e,r)} \inf \text{(lengths of } r\text{-avoidant paths from } x \text{ to } y)$$

$$\text{div}_G(r) = \text{div}_{\text{Cay}^1_A(G)}(r) \quad \text{if} \quad \text{Cay}^1_A(G) \quad \text{is 1-ended}$$
Divergence

Let

- X be a 1-ended geodesic metric space
- e basepoint,
- $S(e, r)$ sphere of radius r around e

The **divergence** of X is:

$$\text{div}_X(r) = \sup_{x, y \in S(e, r)} \inf \text{(lengths of } r\text{-avoidant paths from } x \text{ to } y)$$

$$\text{div}_G(r) = \text{div}_{\text{Cay}_A^1(G)}(r) \quad \text{if } \text{Cay}_A^1(G) \text{ is 1-ended}$$

Up to equivalence \sim on functions, div_G does not depend on the choice of A.
Divergence

Let

- X be a 1-ended geodesic metric space
- e basepoint,
- $S(e, r)$ sphere of radius r around e

The **divergence** of X is:

$$\text{div}_X(r) = \sup_{x, y \in S(e, r)} \inf \text{(lengths of } r\text{-avoidant paths from } x \text{ to } y)$$

$$\text{div}_G(r) = \text{div}_{\text{Cay}_1^A(G)}(r) \quad \text{if } \text{Cay}_1^A(G) \text{ is 1-ended}$$

Up to equivalence \sim on functions, div_G does not depend on the choice of A.

Examples

- \mathbb{R}^2: $\text{div}_{\mathbb{R}^2}(r) = \pi r$, linear
- \mathbb{H}^2: $\text{div}_{\mathbb{H}^2}(r) = \pi \sinh(r) \sim \pi e^r/2$, exponential
Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.
Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.

CAT(0):
Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.

CAT(0):

Gromov’s expectation turned out to be false:

Q: Given your favorite class of groups, what spectrum of divergence functions does it have?
Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.

CAT(0):

- **X:**
 - p
 - q

- **\mathbb{R}^2:**
 - \overline{p}
 - \overline{q}

- $d_X(p, q) \leq d_{\mathbb{R}^2}(\overline{p}, \overline{q})$

Gromov’s expectation turned out to be **false**: Examples of CAT(0) groups:

- **Gersten (1994):** $\text{div}_G \sim r^2$

Q: Given your favorite class of groups, what spectrum of divergence functions does it have?

- $F\in \mathbb{R}^?; \\text{dxcp.gtedpzcf.gl}$
Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.

CAT(0): \[\text{div}_G \sim r^2 \]

Gromov’s expectation turned out to be false: Examples of CAT(0) groups:

- Gersten (1994): \(\text{div}_G \sim r^2 \)
- Macura (2002): \(\text{div}_G \sim r^3 \)
- (2013): \(\text{div}_G \sim r^d \) for arbitrary \(d > 1 \)
Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.

\[
\begin{aligned}
\text{CAT}(0): & \quad X: \quad \mathbb{R}^2: \\
& \quad d_x(p, q) \leq d_{\mathbb{R}^2}(\overline{p}, \overline{q})
\end{aligned}
\]

Gromov’s expectation turned out to be false: Examples of CAT(0) groups:

- Gersten (1994): \(\text{div}_G \sim r^2 \)
- Macura (2002): \(\text{div}_G \sim r^3 \)
- (2013): \(\text{div}_G \sim r^d \) for arbitrary \(d > 1 \)

Non-CAT(0) groups exhibit even wilder behavior:

- Brady–Tran (2021): \(\text{div}_G \sim r^\alpha \) for \(\alpha \) dense in \([2, \infty)\)
 \(\text{div}_G \sim r^d \log(r) \) for \(d \geq 2 \).
Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.

\[
\begin{align*}
\text{CAT(0):} & & \mathbb{R}^2: \\
& & \quad d_X(p, q) \leq d_{\mathbb{R}^2}(\bar{p}, \bar{q})
\end{align*}
\]

Gromov’s expectation turned out to be false: Examples of CAT(0) groups:

- Gersten (1994): \(\text{div}_G \sim r^2 \)
- Macura (2002): \(\text{div}_G \sim r^3 \)
- (2013): \(\text{div}_G \sim r^d \) for arbitrary \(d > 1 \)

Non-CAT(0) groups exhibit even wilder behavior:

- Brady–Tran (2021): \(\text{div}_G \sim r^\alpha \) for \(\alpha \) dense in \([2, \infty)\)
 \(\text{div}_G \sim r^d \log(r) \) for \(d \geq 2 \).

Q: Given your favorite class of groups, what spectrum of divergence functions does it have?
Coxeter groups

A Coxeter group W is given by:

- finite set S
- symmetric matrix $(m_{st})_{s,t \in S}$ such that:
 \[m_{ss} = 1, \quad m_{st} = m_{ts} \in \{2, 3, 4, \ldots, \infty\} \]

(W, S) is given by presentation:

\[W = \langle S \mid (st)^{m_{st}} = 1, \text{ for all } s, t \in S \rangle \]

$m_{st} = \infty$ means that st has infinite order.
Coxeter groups

A Coxeter group W is given by:

- finite set S
- symmetric matrix $(m_{st})_{s,t\in S}$ such that:
 $$m_{ss} = 1, m_{st} = m_{ts} \in \{2, 3, 4, \ldots, \infty\}$$

(W, S) is given by presentation:

$$W = \langle S \mid (st)^{m_{st}} = 1, \text{ for all } s, t \in S \rangle$$

$m_{st} = \infty$ means that st has infinite order.

Encoded by a Coxeter graph (a.k.a. Dynkin graph) with edges labeled m_{st}:
Spherical Coxeter groups = finite

Here’s the list of irreducible ones (Coxeter, 1935):

\[A_n, (n \geq 1): \]

\[B_n, (n \geq 2): \]

\[D_n, (n \geq 4): \]

\[F_4: \]

\[H_4: \]

\[H_3: \]

\[E_6: \]

\[E_7: \]

\[E_8: \]

\[I_2(m), \] (\(m \geq 5, m \neq \infty \)): \[m \]
Spherical Coxeter groups = finite

Here’s the list of irreducible ones (Coxeter, 1935):

- $A_n, (n \geq 1)$: \[\begin{array}{c}
 \bullet \quad \bullet \quad \bullet \quad \ldots \quad \bullet
\end{array} \]
- $B_n, (n \geq 2)$:
- $D_n, (n \geq 4)$:
- F_4:
- H_4:
- H_3:
- E_6:
- E_7:
- E_8:

Groups generated by reflections in the faces of a simplex in S^n

(m $\geq I_2(m)$, $m \neq \infty$): m
Affine Coxeter groups

\[\tilde{A}_n, (n \geq 2): \]

\[\tilde{B}_n, (n \geq 4): \]

\[\tilde{C}_n, (n \geq 3): \]

\[\tilde{D}_n, (n \geq 5): \]

\[\tilde{E}_6: \]

\[\tilde{E}_7: \]

\[\tilde{E}_8: \]

\[\tilde{F}_4: \]

\[\tilde{G}_2: \]
Affine Coxeter groups

\[\tilde{A}_n, \, (n \geq 2): \]

\[\tilde{B}_n, \, (n \geq 4): \]

\[\tilde{C}_n, \, (n \geq 3): \]

\[\tilde{D}_n, \, (n \geq 5): \]

\[\tilde{E}_6: \]

\[\tilde{E}_7: \]

\[\tilde{E}_8: \]

\[\tilde{F}_4: \]

\[\tilde{G}_2: \]

Groups generated by reflections in the faces of a simplex in \(\mathbb{R}^n \)
Lannér’s hyperbolic Coxeter groups

with \(\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1 \),
Lannér’s hyperbolic Coxeter groups

$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1,$

Groups generated by reflections in the faces of a simplex in \mathbb{H}^n
Our results, part I

Theorem 1
Let \((W, S)\) be a 1-ended Coxeter system. If \((W, S)\) is irreducible and non-affine, then the divergence of \(W\) is at least quadratic.
Our results, part I

Theorem 1

Let \((W, S)\) be a 1-ended Coxeter system. If \((W, S)\) is irreducible and non-affine, then the divergence of \(W\) is at least quadratic.

As a corollary we get a complete characterization of linear divergence:

Corollary 2

Let \((W, S)\) be a 1-ended Coxeter system. Then \(W\) has linear divergence if and only if \((W, S) = (W_1, S_1) \times (W_2, S_2)\) where either

1. both \(W_1\) and \(W_2\) are infinite, or
2. \(W_1\) is finite (possibly trivial) and \(W_2\) is irreducible affine of rank \(\geq 3\).
Our results, part I

Theorem 1
Let \((W, S)\) be a 1-ended Coxeter system. If \((W, S)\) is irreducible and non-affine, then the divergence of \(W\) is at least quadratic.

As a corollary we get a complete characterization of linear divergence:

Corollary 2
Let \((W, S)\) be a 1-ended Coxeter system. Then \(W\) has linear divergence if and only if \((W, S) = (W_1, S_1) \times (W_2, S_2)\) where either

1. both \(W_1\) and \(W_2\) are infinite, or
2. \(W_1\) is finite (possibly trivial) and \(W_2\) is irreducible affine of rank \(\geq 3\).

Corollary 3
If a 1-ended Coxeter group has a super-linear divergence, then its divergence is at least quadratic.
I.e. there is a gap between \(r\) and \(r^2\).
Our results, part II

Ivan Levcovitz introduced what he called a hypergraph index for RACGs, which is an integer ≥ 0 or ∞, computable directly from the Coxeter graph. We generalize it for general Coxeter groups.

Theorem 4

1. $h = 0 \iff W$ has linear divergence.
2. $h = 1 \implies W$ has quadratic divergence.
3. h is finite \implies the divergence of W is bounded above by a polynomial of degree $h + 1$.
4. $h = \infty \iff$ the divergence of W is exponential.
Our results, part II

Ivan Levcovitz introduced what he called a **hypergraph index** for RACGs, which is an integer ≥ 0 or ∞, computable directly from the Coxeter graph. We generalize it for general Coxeter groups.

Theorem 4

1. $h = 0 \iff W$ has linear divergence.
2. $h = 1 \implies W$ has quadratic divergence.
3. h is finite \implies the divergence of W is bounded above by a polynomial of degree $h + 1$.
4. $h = \infty \iff$ the divergence of W is exponential.

Conjecture

h is finite \iff the divergence of (W, S) is polynomial of degree $h + 1$.

Levcovitz (2020): true for right-angled Coxeter groups ($m_s, t \in \{2, 1\}$). We proved it for certain series of non-right-angled Coxeter groups.
Our results, part II

Ivan Levcovitz introduced what he called a hypergraph index for RACGs, which is an integer ≥ 0 or ∞, computable directly from the Coxeter graph. We generalize it for general Coxeter groups.

Theorem 4

1. $h = 0 \iff W$ has linear divergence.
2. $h = 1 \implies W$ has quadratic divergence.
3. h is finite \implies the divergence of W is bounded above by a polynomial of degree $h + 1$.
4. $h = \infty \iff$ the divergence of W is exponential.

Conjecture

h is finite \iff the divergence of (W, S) is polynomial of degree $h + 1$.

Levcovitz (2020): true for right-angled Coxeter groups ($m_{s,t} \in \{2, \infty\}$).
Our results, part II

Ivan Levcovitz introduced what he called a hypergraph index for RACGs, which is an integer ≥ 0 or ∞, computable directly from the Coxeter graph. We generalize it for general Coxeter groups.

Theorem 4

1. $h = 0 \iff W$ has linear divergence.
2. $h = 1 \implies W$ has quadratic divergence.
3. h is finite \implies the divergence of W is bounded above by a polynomial of degree $h + 1$.
4. $h = \infty \iff$ the divergence of W is exponential.

Conjecture

h is finite \iff the divergence of (W, S) is polynomial of degree $h + 1$.

Levcovitz (2020): true for right-angled Coxeter groups ($m_{s,t} \in \{2, \infty\}$). We proved it for certain series of non-right-angled Coxeter groups.
Our results, part III

Theorem 5

Let \((W, S)\) be a Coxeter system with the Coxeter graph \(\Delta = \Delta(W, S)\) and hypergraph index \(h = h(W, S)\). If \(h\) is finite then \(h \leq b_1(\Delta) + 1\), where \(b_1(\Delta)\) is the 1-st Betti number of \(\Delta\).
Our results, part III

Theorem 5

Let \((W, S)\) be a Coxeter system with the Coxeter graph \(\Delta = \Delta(W, S)\) and hypergraph index \(h = h(W, S)\). If \(h\) is finite then \(h \leq b_1(\Delta) + 1\), where \(b_1(\Delta)\) is the 1-st Betti number of \(\Delta\).

\[b_1(\Delta) = e - v + k, \quad v = \#\text{vertices}, \quad e = \#\text{edges}, \quad k = \#\text{components}. \]
Our results, part III

Theorem 5
Let \((W, S)\) be a Coxeter system with the Coxeter graph \(\Delta = \Delta(W, S)\) and hypergraph index \(h = h(W, S)\). If \(h\) is finite then \(h \leq b_1(\Delta) + 1\), where \(b_1(\Delta)\) is the 1-st Betti number of \(\Delta\).

\[b_1(\Delta) = e - v + k, \quad v = \#\text{vertices}, \quad e = \#\text{edges}, \quad k = \#\text{components}. \]

Corollary 6
If a Coxeter group \(W\) is not relatively hyperbolic, then the divergence of \(W\) is bounded above by a polynomial of degree \(b_1(\Delta) + 2\).

Corollary 7
If the Coxeter graph of \((W, S)\) is a tree and \(W\) is 1-ended, then \(W\) has divergence linear, quadratic or exponential only. Moreover, each of these possibilities is realized.
Key idea

Behrstock–Caprace–Hagen–Sisto (2017): A Coxeter group W is either:

- relatively hyperbolic \iff $\text{div} \simeq \text{exponential}$
- thick \iff div is \preceq a polynomial
Key idea

Behrstock–Caprace–Hagen–Sisto (2017): A Coxeter group W is either:

- relatively hyperbolic $\implies \text{div} \simeq \text{exponential}$
- thick $\implies \text{div} \leq \text{a polynomial}$

Goal: Determine the exact upper bound.
Key idea

Behrstock–Caprace–Hagen–Sisto (2017): A Coxeter group W is either:

- relatively hyperbolic \implies div \simeq exponential
- thick \implies div is \preceq a polynomial

Goal: Determine the exact upper bound.

A relatively hyperbolic group H has a family of peripheral subgroups P_i:

1. Each $\mathbb{Z} \times \mathbb{Z}$ subgroup of H must be contained in some of P_i
2. Groups P_i and all their conjugates must intersect in finite subgroups
Key idea

Behrstock–Caprace–Hagen–Sisto (2017): A Coxeter group W is either:

- relatively hyperbolic \implies div \simeq exponential
- thick \implies div is \leq a polynomial

Goal: Determine the exact upper bound.

A relatively hyperbolic group H has a family of peripheral subgroups P_i:

1. Each $\mathbb{Z} \times \mathbb{Z}$ subgroup of H must be contained in some of P_i
2. Groups P_i and all their conjugates must intersect in finite subgroups

Plan: Build candidates for peripheral subgroups $P_i \subseteq W$ forced by (1) and (2). Start with obvious subgroups containing $\mathbb{Z} \times \mathbb{Z}$ and take their joins if they intersect infinitely. Once the process stops:

- if no subgroup P_i equal W: we get an honest peripheral structure and W is relatively hyperbolic \implies div \simeq exponential
- if some $P_i = W$, the Coxeter group W is thick, and the number of steps before stabilization is our hypergraph index $h \implies \text{div} \leq r^{h+1}$.
More formally:

Wide subsets: \(\Omega(S) = \text{maximal sets of the form } A \times B \) where
- \(A, B \) both nonspherical, or
- \(A \) irreducible affine of \(\text{rk} \geq 3 \), \(B \) spherical (or empty)

Slab subsets: \(\Psi(S) = \text{maximal sets of the form: } A \times K \), such that
- \(A \) is minimal nonspherical
- \(K \) is maximal nonempty spherical, commuting with \(A \)
- there does not exist \(T \in \Omega(S) \) such that \(A \times K \subseteq T \).

Define:

\[\Lambda_0(S) = \Omega(S) \cup \Psi(S), \]
\[\Lambda_{i+1}(S) = \text{set of all unions of elements in } \equiv_i \text{ equivalence class on } \Lambda_i(S), \]

generated by the condition “\(T \cap T' \) is nonspherical”

Then the **hypergraph index** \(h \) is:

- if \(S \in \Lambda_h(S) \setminus \Lambda_{h-1}(S) \) and \(\Omega(S) \neq \emptyset \): \(h \in \mathbb{N} \)
- otherwise \(h = \infty \)
\[\Lambda_0 = \{ T_1, T_2, T_3 \} \]

\[T_i \cap T_j = C_2 \times C_2, \text{ spherical} \]

\[\Lambda_1 = \Lambda_0, \text{ relatively hyperbolic with peripheral subgroups } \{ W_{T_1}, W_{T_2}, W_{T_3} \} \]

\[h = \infty \]
(b) \(h = 1 \)

\[
T_1 = \{ s_2, s_3, s_9, s_8 \} \times \{ s_4, s_5, s_6 \} = S \setminus \{ s_3, s_7 \}
\]

\[
T_2 = \{ s_3, s_2, s_1, s_9 \} \times \{ s_5, s_6, s_7 \} = S \setminus \{ s_4, s_8 \}
\]

\[
T_1 \cap T_2 = \{ s_1, s_2, s_3 \} \times \{ s_5, s_6 \} = \tilde{C}_2 \times B_2
\]

\[
T_1 \cup T_2 = \text{all of } S \quad h = 1
\]

(c) \(h = 2 \)

\[
T_1 = S \setminus \{ s_1, s_5 \} = \{ s_2, s_3, s_4 \} \times \{ s_6, s_7, s_8, s_9 \}
\]

\[
T_2 = S \setminus \{ s_1, s_6 \} = \{ s_2, s_3, s_4 \} \times \{ s_5, s_7, s_8, s_9 \}
\]

\[
T_1 \cap T_2 = \{ s_2, s_3, s_4 \} \times \{ s_5, s_6, s_7, s_8 \} = \tilde{C}_2 \times \tilde{C}_2, \text{ non spherical}
\]

\[
T_1 \cup T_2 = S \setminus \{ s_1 \}
\]

\[
T_3 = S \setminus \{ s_2, s_9 \} = \{ s_3, s_4, s_5, s_6 \} \times \{ s_1, s_7, s_8 \} = \tilde{C}_5 \times A_1
\]

\[
T_3 \cap T_4 = \tilde{C}_5, \text{ non spherical}, \quad h = 2
\]

\[
T_5 = T_3 \cup T_4 = S
\]