\[\det (f(h,h^{-1})) = \prod_{\chi} \left(\sum_{i=1}^{c} \chi(h_i) f(h_i^{-1}) \right) \]

where \(\chi \) runs over all characters of \(H \) such that the restriction of \(\chi \) onto \(K \) coincides with \(\psi \).

We omit the proof, which is quite similar for instance to that of Lemma 5.26 of [6].

Now let \(H = H_{\nu}(\ell) \) and \(K = \langle \sigma, \nu(\ell) \rangle \). Define a character \(\psi \) of \(K \) by putting \(\psi(G) = 1 \) and \(\psi(\nu(\ell)) = -1 \). Applying Lemma 2.1 to our situation, we get

\[(2.4) \quad \det (\log Y(c,c^{-1})) = \prod_{\chi} \left(\sum_{i=1}^{c} \chi(c_i) \right) \log Y(c_0), \]

where \(\prod_{\chi} \) means the same as in (2.1). We note that

\[\det (\log Y(c,c^{-1})) = \pm \det (\log Y(c,c_0)) = \pm \det (Y). \]

Taking the relations (2.2), (2.3), (2.4) into account of, we get

\[\frac{h(M)}{h(M')} = \frac{R(u_1, \ldots, u_{m-1}, Y(c_0), \ldots, Y(c_n))}{2^{n-1} m^m R(M)}, \]

which implies the assertion of Theorem. Q.E.D.

Remark. It seems better to obtain a relative class number formula in Theorem by using the original invariants \(\chi(c,G) \) instead of \(Y(c,G) \).

References

Department of Mathematics
Rikkyo University
Nishi-Ikebukuro, Tokyo
171 Japan

On Relations of Dimensions of Automorphic Forms of \(Sp(2,R) \) and Its Compact Twist \(Sp(2) \) (I)

Tomoyoshi Ibukiyama

Let \(p \) be a fixed prime. In the previous paper [9], we have given some examples and conjectures on correspondence between automorphic forms of \(Sp(2,R) \) (size four) and \(Sp(2) = \{ g \in H; g^* g = 1 \} \) (\(H \): Hamilton quaternions) which preserves \(L \)-functions, where the \(p \)-adic closures of the discrete subgroups (to which automorphic forms belong) are minimal parahoric. This was an attempt to a generalization of Eichler's correspondence between \(SL_2(R) \) and \(SU(2) \). Ihara raised such a problem for symplectic groups and Langlands [15] has given a quite general philosophy on correspondence of automorphic forms of any reductive groups (functoriality with respect to \(L \)-groups). In this paper, we give good global dimensional relations of automorphic forms of \(Sp(2,R) \) and \(Sp(2) \), when the \(p \)-adic closures of discrete subgroups in question are maximal compact. (As for similar results for other groups, see [8].) More precisely, put

\[K(p) = Sp(2,Q) \cap \gamma M(Z) \gamma^{-1} \]

\[= Sp(2,Q) \cap \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

where \(\gamma = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \)

and \(\gamma \)'s run through all integers. For any \(\Gamma \subset Sp(2,R) \), denote by \(A_4(\Gamma) \) (resp. \(S_4(\Gamma) \)) the space of automorphic (resp. cusps) forms belonging to \(\Gamma \). We shall calculate the dimension of \(S_4(K(p)) \) for all primes \(p \) (Theorem 4 in § 4). By comparing these with, those of certain automorphic forms (i.e., certain spherical functions) of \(Sp(2) \), we shall show certain interesting relations of dimensions (Theorem 1 below). Some philosophical aspects of relations of orbital integrals have been explained in Langlands [16]. But except for the case of \(GL_n \), or the product of its copies, as far as I know, this is the first global result concerning on the comparison of
dimensions of spaces of automorphic forms belonging to different \(R \)-forms of a complex Lie group. We propose a precise conjecture on the correspondence of these spaces which is suggested by these relations (Conjecture 1.4). (Some examples of pairs of automorphic forms whose Euler 3-factors fit this conjecture have been given in [9].) In a sense, the situation is fairly different from the case of \(GL_2 \). For example, it is noteworthy that, nevertheless the discrete subgroups in question are ‘maximal’, some ‘old forms’ come in these spaces. This is not because there exist some forms obtained by the Saito-Kurokawa lifting. To state the relation more explicitly, we need some more notations. Let \(B \) be the definite quaternion algebra with the prime discriminant \(p \), \(O \) a maximal order of \(B \). Put \(B_0 = B \otimes \mathbb{Q}_p \) and \(O_0 = O \otimes \mathbb{Z}_p \). Put
\[
G = \{ g \in M_2(B); g^{-1} g = n(g)1, n(g) \in \mathbb{Q}_p^* \}.
\]

Let \(G_0 \) be the adelization of \(G \), and \(G_0 \) (resp. \(G_0 \)) be the infinite (resp. \(q \)-adic) component of \(G_0 \). For any open subgroup \(U \) of \(G_0 \), denote by \(\mathcal{M}(U) \) the space of automorphic forms on \(G_0 \) belonging to \(U \) with ‘weight \(\rho \)’, where \(\rho \) is the irreducible representation of \(\text{Sp}(2) \) which corresponds to the Young diagram

\[
\begin{array}{ccccccc}
\cd & \cd & \cd & \cd & \cd & \cd & \cd \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
\end{array}
\]

(cf. Ihara [11], Hashimoto [3]). We take an open subgroup \(U = G_0 \times U_0 \times U_1 \) of \(G_0 \), where \(U_0 = G_0 \cap G_2 \), and \(U_1 \) is the unit group of the right order of a maximal left \(O_0 \)-lattice in the non principal genus in the quaternion hermitian space \(B_0 \) with the metric \(m(x) + m(y) \) for \((x, y) \in B_0^2 \), where \(m(x) \) is the reduced norm of \(B \). (cf. § 1). Put
\[
\Gamma_0(p) = \{ (a, b) \in \text{SL}_2(\mathbb{Z}); \ c \equiv 0 \mod p \}.
\]

Theorem 1. For each integer \(k \geq 5 \) and each prime integer \(p \), we have the following relation of the dimensions:
\[
\dim S_k(K(p)) = 2 \dim S_k(\text{Sp}(2, \mathbb{Z}))
\]
\[
= \dim \mathcal{M}_{k-1}(U) - \dim A_0(\Gamma_0(p)) \times \dim S_{k-2}(\text{SL}_2(\mathbb{Z})).
\]

The conjectural meaning of this Theorem will be explained in Section 1. The dimension of \(S_k(\text{Sp}(2, \mathbb{Z})) \) has been known by Igusa [12], and the dimension of \(\mathcal{M}_{k-1}(U) \) has been given in [7] (II). So, only \(\dim S_k(K(p)) \) is to be calculated. Recently, Hashimoto [6] obtained a general (but not explicit) formula of dimensions of cusp forms belonging to any discrete subgroups \(\Gamma \) of \(\text{Sp}(2, \mathbb{R}) \). Roughly speaking, his assertion is as follows: apparently, we have to calculate the contribution of each \(\Gamma \)-conjugacy class to the dimension, but at least for the semi-simple conjugacy classes, we can calculate everything from some data on integral property of their local conjugacy classes in \(\text{Sp}(2, \mathbb{Q}_p) \) and \(\text{Sp}(2, \mathbb{R}) \) (so, in these cases, we can avoid the classification of \(\Gamma \)-conjugacy classes), and besides, for all conjugacy classes, ‘local data’ at the infinite place can be explicitly written down. (As for the further details such as ‘family’, see his paper.) But in order to obtain the dimensions explicitly by using his formula, we must calculate such local data (the number of ‘optimal embeddings’ and some local masses) of semi-simple conjugacy classes, and classify \(K(p) \)-conjugacy classes of parabolic type or some mixed type. (Since \(K(p) \) is not contained in \(\text{Sp}(2, \mathbb{Z}) \), there were no known results on such classification.) These calculations are rather elaborate and have been done in somewhat lengthy case by case process similar to [7], and here, we shall often omit the proofs, or content ourselves with some sketchy proofs. (As for an expository review on results in [5], [6], [7] how to calculate dimensions in general, confer [8], § 4.) In Section 2, we give local data of semi-simple conjugacy classes. In Section 3, we classify \(K(p) \)-conjugacy classes of parabolic or mixed type. In Section 4, we sum up them and prove Theorem 1.

The author would like thank Dr. K. Hashimoto who has shown him the manuscript of his paper [6], and Dr. S. Kato who informed him the notion of the folding of the Dynkin diagrams of \(p \)-adic algebraic groups. The author would like to express his hearty thanks to Professors I. Satake and Y. Morita who gave him an opportunity to write this paper here, in spite of his absence from this Symposium.

§ 1. Conjectural meaning of Theorem 1

To explain the situation more clearly, we recall some local theory of \(p \)-adic algebraic groups (cf. Tits [18]). The extended Dynkin diagram for \(G_0 \) can be obtained from the one for \(\text{Sp}(2, \mathbb{Q}_p) \) by dividing by the non trivial graph automorphism \(\sigma \), and each vertex can be regarded as a double coset of a minimal parahoric subgroups. The diagrams are given as follows: (See \(C_2 \) and \(^3C_2 \) in the table of [16], p. 64.)

\[
\begin{array}{c}
\sigma \subset S_0 \subset S_1 \\
\end{array}
\]

\[
\begin{array}{c}
t_0 \sim t_1 \sim \infty
\end{array}
\]

These double cosets are explicitly given as follows: put
Among these, only $K(p)_p$ is invariant by σ, and the group which 'corresponds' with $K(p)_p$ by 'folding' is $U^\#_p \cup \tau_p$. So, it is natural to consider that there exists some good correspondence between $S_\lambda(K(p))$ and $U^\#_p \cup \tau_p$. But, in spite of the fact that these are 'maximal' groups, we must subtract the 'old forms' from each space. Now, we shall explain this. We intend to regard the cusp forms in $S_\lambda(K(p))$ obtained 'from' $S_\lambda(Sp(2, Z)) + S_\lambda(\rho \Sp(2, Z)\rho^{-1})$ as old forms. But $K(p)$ is not conjugate to $Sp(2, Z)$ or $\rho \Sp(2, Z)\rho^{-1}$, and is not contained in, or does not contain any of these groups. So, we must define some mapping between these spaces. Define $\Tr_{K(p)/B(p)}: S_\lambda(K(p)) \rightarrow S_\lambda(K(p))$ by:

$$\Tr_{K(p)/B(p)}(f) = \left(\sum_{g \in B(p) \cap K(p)} f([g]_\lambda) / [K(p): B(p)] \right)$$

for any $f \in S_\lambda(B(p))$, where $f([g]_\lambda) = f(\tau g \tau)$ and $\tau = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(2, Q)$. Denote by \Tr the restriction of $\Tr_{K(p)/B(p)}$ on $S_\lambda(Sp(2, Z)) + S_\lambda(\rho \Sp(2, Z)\rho^{-1})$. We define new forms of $S_\lambda(K(p))$ to be the orthogonal complement of $\Tr_{K(p)/B(p)}(S_\lambda(Sp(2, Z)) + S_\lambda(\rho \Sp(2, Z)\rho^{-1}))$ in $S_\lambda(K(p))$, and denote it by $S_\lambda(K(p))$. The map \Tr does not vanish in general. For example, we have

Lemma 1.2. Let $f \in S_\lambda(Sp(2, Z))$ be an eigen form of the Hecke operators $T(p)$ and $T(p')$ with eigenvalues $\lambda(p)$ and $\lambda(p')$, respectively. Assume that $\lambda(p) \neq 0$ and $\lambda(p') \neq p^{\epsilon-1}$. (For example, this is satisfied for all eigen forms of the Maass space M_{2s}.) Then $\Tr(f) \neq 0$.

The proof consists of an easy argument on Fourier coefficients, and will be omitted here. In view of the Ramanujan Conjecture, it is very plausible that the assumption of Lemma 1.2 is always satisfied. On the other hand, the map \Tr is not injective in general:

Lemma 1.3. Let k be an even integer. Then, for $f \in M_{2s}$, we have $\Tr(f) = \Tr([f]_\lambda)$.

The proof is easy and omitted here. It seems that, if k is odd, then \Tr is injective, and if k is even, then $\ker \Tr = \{ f - f([f]_\lambda) : f \in M_{2s} \}$. If this is true, we have $\dim S_{2s}(K(p)) = \dim S_{2s}(Sp(2, Z))$ for odd k, and $\dim S_{2s}(K(p)) = \dim S_{2s}(Sp(2, Z)) - 2 \dim S_{2s}(Sp(2, Z)) + \dim S_{2s}(Sp(2, Z))$ for even k. (Numerical examples in [9] support this.) On the other hand, we can show that, if a common eigen form $f \in \mathfrak{M}_\lambda(U)$ satisfies a certain condition, then $L(s, f) = L(s, g) L(s, h)$ for some $g \in A_{4} (\Gamma(p))$ and $h \in S_{s+1}(SL(2, Z))$. (This is a slight modification of Iwahara [13] So, denote by $\mathfrak{M}_\lambda(U)$ the space spanned by common eigen forms $f \in \mathfrak{M}_\lambda(U)$. Such
that $L(s, f) = L(s, g)L(s, h)$ (up to Euler p-factors) for some $g \in \mathcal{A}(\Gamma_1(p))$ and $h \in \mathcal{S}(SL(Z))$. We define the space of new forms of $\mathcal{M}(U)_{\nu}$ to be the orthogonal complement of $\mathcal{M}(U)_{\nu}$ in $\mathcal{M}(U)_{\nu}$. Theorem 1 and some examples seem to suggest that

$$\dim \mathcal{M}(U)_{\nu} = \dim \mathcal{M}(U)_{\nu} - \dim \mathcal{A}(\Gamma_1(p)) \times \dim \mathcal{S}(SL(Z))$$

for even ν, and

$$\dim \mathcal{M}(U)_{\nu} = \dim \mathcal{M}(U)_{\nu} - \dim \mathcal{S}(\Gamma_1(p)) \times \dim \mathcal{S}(SL(Z))$$

for odd ν.

Conjecture 1.4. For any integer $k \geq 5$, there exists an isomorphism ϕ of $\mathcal{M}_{\nu}(U)$ onto $\mathcal{S}(K(p))$ such that $L(s, f) = L(s, \phi(f))$ (up to Euler p-factors) for any common eigenform $f \in \mathcal{M}(U)$ of all the Hecke operators $T(n)$ ($n \neq p$).

Now, we point out one important fact. There exist some new forms of $\mathcal{S}(K(p))$ which can be obtained by lifting cusp forms in $\mathcal{S}(\Gamma_1(p))$ (see examples in [9]). So, also in the case of $\mathcal{M}(U)$, it seems more natural to define new forms in the same point of view as in the case of $\mathcal{S}(K(p))$. Put $U' = GL(2, \mathbb{Z}) \cap G_\nu$. Put

$$U' = G_\nu \left\{ \begin{array}{c} \bigcup \mathcal{M}(U)_{\nu} \end{array} \right\}, \quad U' = G_\nu \left\{ \begin{array}{c} \bigcup \mathcal{M}(U)_{\nu} \end{array} \right\}$$

The ‘trace map’ Tr_{G_ν} of $\mathcal{M}(U)$ to $\mathcal{M}(U)$ can be defined as before. Denote the orthogonal complement of $Tr_{G_\nu}(\mathcal{M}(U))$ in $\mathcal{M}(U)$ by $\mathcal{M}(U')$. (We note here that $U' \neq U$ which causes the difference from the case of $SL(Z)$. Then, it seems natural to expect $\mathcal{M}(U') = \mathcal{M}(U)$.)

In representation theoretic language, our conjecture seems to be stated as follows: Let $x = \otimes x_\nu$, or $x = \otimes x_\nu$ be an irreducible (admissible) automorphic representation of $Sp(2, \mathbb{Q})$ or $Sp(2, \mathbb{Z})$. (Here, GSp means the group of symplectic similitudes.) Assume that x_ν corresponds to det^{-1}, or x_ν corresponds to det, and that x_ν or x_ν is a $Sp(2, \mathbb{Z})$-fixed vector. Further, assume that x_ν is a $Sp(2, \mathbb{Z})$-fixed vector, but no $Sp(2, \mathbb{Z})$-fixed vector, and that x_ν is a $Sp(2, \mathbb{Z})$-fixed vector, but no $Sp(2, \mathbb{Z})$-fixed vector.

Proposition 2.1. The total contribution of $\pm 1 \in K(p)$ to dim $\mathcal{S}(K(p))$ is given by:

$$(p^2 + 1)(2k - 2)(2k - 3)(2k - 4)/2^{33}.$$

Proof. Obvious, because $[Sp(2, \mathbb{Z}): B(p)] = (p^2 + 1)(p^2 + 2)/2$ and

$$Q(p): B(p) = (p^2 + 1)/2.$$

Proposition 2.2. The representatives of $K(p)|\{\pm 1\}$-conjugacy classes with $f(x) = (x - 1)(x + 1)^2$ are given by:

$$\delta_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \quad \text{and} \quad \delta_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

The contribution $t(\delta_1)$, $t(\delta_2)$ of each conjugacy class to dim $\mathcal{S}(K(p))$ for $k \geq 5$ is given by:

$$t(\delta_1) = \frac{(-1)^k(2k - 2)(2k - 4)/2}{3^3}, \quad \text{if } p \neq 2,$$

$$t(\delta_2) = \frac{(-1)^k(2k - 2)(2k - 4)/2}{3}, \quad \text{if } p = 2.$$
Next, we treat the case where \(f(x) = (x-1)^2 g(x) \) and \(g(x) \) is an irreducible quadratic polynomial. Put \(F = \mathbb{Q}[x]/g(x) \). We identify the algebra \(M_4(\mathbb{Q}_p) \times M_4(\mathbb{Q}_p) \) with the algebra
\[
\begin{pmatrix}
a & b & 0 & 0 \\
0 & x & 0 & y \\
c & 0 & d & 0 \\
0 & z & 0 & w
\end{pmatrix}; \ a, b, c, d, x, y, z, w \in \mathbb{Q}_p.
\]

Put \(g = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ omega = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}, \) or \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \) for \(f(x) = (x-1)^2(x^2 + x + 1), (x-1)^3(x^2 + x + 1), \) or \((x-1)^3(x^2 + x + 1) \), respectively.

Proposition 2.3. Let notations be as above.

(i) If \(\left(\frac{F}{p} \right) = 1 \), then
\[
c_s(g, R, \Lambda) = \begin{cases} 2 \cdots \text{if } \Lambda \sim M_4(\mathbb{Z}_p) \oplus \mathbb{Z}_p^2, \\ 0 \cdots \text{otherwise.} \end{cases}
\]

(ii) If \(\left(\frac{F}{p} \right) = -1 \), or \(p=3 \) and \(f(x) = (x-1)^3(x^2 + x + 1) \), then
\[
c_s(g, R, \Lambda) = \begin{cases} 2 \cdots \text{if } \Lambda \sim M_4(\mathbb{Z}_p) \oplus \mathbb{Z}_p^2 = \Lambda_1, \\ 0 \cdots \text{otherwise,} \end{cases}
\]
and \(M(g, \Lambda) = \begin{pmatrix} 0 & p & 0 & 0 \\ p & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \).

(iii) If \(p=3 \) and \(f(x) = (x-1)^3(x^2 + x + 1) \), then
\[
c_s(g, R, \Lambda) = \begin{cases} 2 \cdots \text{if } \Lambda \sim \Lambda_1 = M_4(\mathbb{Z}_p) \oplus \mathbb{Z}_p^2, \\ 1 \cdots \text{if } \Lambda \sim \Lambda_2, \\ 0 \cdots \text{otherwise,} \end{cases}
\]
where
\[
\Lambda_1 = \begin{pmatrix} \begin{pmatrix} a & 3b \\ c & d \end{pmatrix}, \ x+y \omega; \ a, b, c, d, x, y \in \mathbb{Z}_p, x+y \equiv d \mod 3 \end{pmatrix},
\]
\([\Lambda_1 \cap \text{GSp: } \Lambda_1 \cap \text{GSp}] = 6 \), and \(M(g, \Lambda) \) is as in (ii),
\[
M(g, \Lambda) = \begin{pmatrix} -3 & 3 & -1 & 0 \\ 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.
\]

(iv) If \(\left(\frac{F}{p} \right) = 0 \) and \(p=2 \), then
\[
c_s(g, R, \Lambda) = \begin{cases} 2 \cdots \text{if } \Lambda \sim M_4(\mathbb{Z}_p) \oplus \mathbb{Z}_p^2, \\ 1 \cdots \text{if } \Lambda \sim \Lambda_2, \\ 0 \cdots \text{otherwise,} \end{cases}
\]
where
\[
\Lambda_2 = \begin{pmatrix} \begin{pmatrix} a & 2b \\ c & d \end{pmatrix}, \ x+y \omega; \ a, b, c, d, x, y \in \mathbb{Z}_p, x+y \equiv d \mod 2 \end{pmatrix},
\]
\([\Lambda_2 \cap \text{GSp: } \Lambda_2 \cap \text{GSp}] = 3 \), and \(M(g, \Lambda) \) is as in (ii),
\[
M(g, \Lambda) = \begin{pmatrix} -2 & 2 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.
\]

Dimensions of Automorphic Forms (1)

Next, we treat the case where \(f(x) = g(x)^2 \) and \(g(x) \) is an irreducible quadratic polynomial. First, we treat the case where \(Z_6(g) \) is split. (As for the notation \(Z_6(g) \), see [7] (I), § 2.) Put \(F = \mathbb{Q}[x]/g(x) \).

Proposition 2.4. Let assumptions be as above.

(i) If \(\left(\frac{F}{p} \right) = -1 \), then \(c_s(g, R, \Lambda) = 0 \) for any \(\Lambda \).

(ii) If \(\left(\frac{F}{p} \right) = 1 \), take \(g = \begin{pmatrix} a_1 & 0 \\ 0 & b_1 \end{pmatrix} \), where \(a, b \in \mathbb{Q}_p \) and \(g(x) = (x-a)(x-b) \), then
\[
c_s(g, R, \Lambda) = \begin{cases} 1 \cdots \text{if } \Lambda \sim \Lambda_1 = M_4(\mathbb{Z}_p) \oplus \begin{pmatrix} 0 & 0 \\ 0 & p \end{pmatrix}^{-1} M_4(\mathbb{Z}_p) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \\ 0 \cdots \text{otherwise,} \end{cases}
\]
\([\text{GSp} \cap \text{GL}_4(\mathbb{Z}_p)^\pi; \text{A}_1 \cap \text{GSp}] = 6 \), where we embed \(M_4(\mathbb{Q}_p) \) in \(M_6(\mathbb{Q}_p) \) diagonally.

(iii) If \(\left(\frac{F}{p} \right) = 0 \) and \(p=2 \), take \(g = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \), then
\[
c_s(g, R, \Lambda) = \begin{cases} 1 \cdots \text{if } \Lambda \sim \Lambda_1 = xR_{x^{-1}} \cap Z(g), \\ 0 \cdots \text{otherwise,} \end{cases}
\]
where
\[
x = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 1 & -1 & -1 \\ 1 & 0 & 0 & -1 \end{pmatrix} \quad \text{and} \quad y = \begin{pmatrix} 4 & 0 & 1 & 2 \\ -4 & 4 & 1 & 0 \\ -4 & 4 & -3 & -4 \\ 4 & 0 & 1 & -2 \end{pmatrix}.
\]
\[d_s(A) = 3, \quad e_s(A) = 2, \quad d_s(A) = 6, \quad e_s(A) = 2. \]

(iv) If \(\left(\frac{F}{p} \right) = 0 \) and \(p = 3 \), take \(g = \begin{pmatrix} 1 & 1 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \), then

\[c_p(g, R, A) = \begin{cases} 1 \cdots \text{if } A \sim A' = xRx^{-1} \cap Z(g), \\ 1 \cdots \text{if } A \sim A' = yRy^{-1} \cap Z(g), \\ 0 \cdots \text{otherwise,} \end{cases} \]

where

\[x = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad y = \begin{pmatrix} 3 & 0 & 0 & 1 \\ 3 & 3 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

Next, we treat the case where \(Z_p(g) \) is a division. Then, \(\left(\frac{F}{p} \right) \neq 1 \) by definition of \(Z_p(g) \).

Proposition 2.5.

(i) If \(\left(\frac{F}{p} \right) = -1 \), take \(g = \left(\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right)^{-1} \), where \(\omega \) are as in Proposition 2.3, and \(g \) are regarded as elements of \(GSp \) as in Proposition 2.3. Then,

\[c_p(g, R, A) = \begin{cases} 1 \cdots \text{if } A \sim A', \\ 0 \cdots \text{otherwise,} \end{cases} \]

and \(d_s(A) = e_s(A) = 1 \), where

\[A_p = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\} = A, B, C, D \in Z_p[\omega] \subset M_4(Z_p). \]

(ii) If \(\left(\frac{F}{p} \right) = 0 \) and \(p = 2 \), take \(g = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \), then

\[c_p(g, R, A) = \begin{cases} 1 \cdots \text{if } A \sim A' = xRx^{-1} \cap Z(g), \\ 1 \cdots \text{if } A \sim A' = yRy^{-1} \cap Z(g), \\ 0 \cdots \text{otherwise,} \end{cases} \]

where

\[x = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \]

Next, we treat the regular elements \(g \in K(p) \). When \(Z_p(g) \) is the maximal order of \(\mathbb{Q}[g] \), it is fairly easy to classify global conjugacy classes. We sketch it here. Let \(\zeta \in Sp(2, Z) \) be an element whose principal polynomial is \(f(x) = (x^2 + 1)^2 \), \(x^2 + x^2 + x^2 + 1 \), or \(x^2 - x^2 + 1 \). (It exists and we fix it.) When \(f(x) = (x^2 + 1)^2 \), more explicitly, put

\[\zeta = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}. \]

Put \(J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \). Assume that \(g^{-1} \zeta g \in K(p) \) for some \(g \in GL_4(\mathbb{Q}) \).

Then, \(\zeta gJ^TgJ^{-1} = (gJ^TgJ^{-1}) \zeta \), and \(gJ^TgJ^{-1} \in \mathbb{Q}(\zeta) \). The map \(\mathbb{Q}(\zeta) \hookrightarrow h \mapsto J^TJ^{-1} \in \mathbb{Q}(\zeta) \) is the complex conjugation on \(\mathbb{Q}(\zeta) \), and \(gJ^TgJ^{-1} \) is invariant by this map. So, \(gJ^TgJ^{-1} \in \mathbb{Q}(\zeta) \). Put

\[\tilde{\gamma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

Then, \(\gamma^{-1}g^{-1}\zeta g\gamma \in M_4(Z) \). Now, the class number of \(\mathbb{Q}(\zeta) \) is one. So, by virtue of Chevalley [2], \(\alpha g \gamma \in GL_4(Z) \) for some \(\alpha \in \mathbb{Q}(\zeta) \).

Lemma 2.6. Let \(f(x) \) be one of the above polynomials. Then, the set of \(K(p) \)-conjugacy classes with principal polynomial \(f(x) \) corresponds bijectively to the set.
\[(\alpha/p; \alpha \in \mathbb{Z}[\zeta + \zeta^{-1}], N(\alpha) = \pm p)/N_{\mathbb{Q}(\zeta)/\mathbb{Q}(\zeta)}(\mathbb{Z}[\zeta]^n) \]

The map is given by:

\[\{g^{-1}g; g \in \text{GL}_n(\mathbb{Z})\} \rightarrow g J^1 g^{-1}. \]

Proof. The injectivity is obvious. The surjectivity is proved by case by case process. q.e.d.

Proposition 2.7. The numbers of \(K(p) \)-conjugacy classes of above types are given as follows:

\[
\begin{align*}
(x^2 + 1)(x^2 \pm x + 1) & \cdots 8 \\
0 \cdots & \text{if } (\frac{F}{p}) = -1, \\
x^2 + 1 & \cdots 4 \cdots \text{if } (\frac{F}{p}) = 0, \\
8 \cdots & \text{if } (\frac{F}{p}) = 1, \\
x^2 - x^2 + x^2 + x + 1, \text{ and } & \cdots \text{same as in } x^2 + 1, \\
x^2 - x^2 + 1 & \cdots 2 \cdots \text{if } (\frac{F}{p}) = 0, \\
4 \cdots & \text{if } (\frac{F}{p}) = 1,
\end{align*}
\]

where \(F = \mathbb{Q}(\zeta + \zeta^{-1}) \).

Next, we treat the case where \(f(x) = (x^2 + x + 1)(x^2 - x + 1) \). In this case, \(\mathbb{Z}[x]/f(x) \) is not the maximal order, and we give the local data instead of giving global conjugacy classes. Put \(F = \mathbb{Q}(x) \). Put

\[
g = \begin{pmatrix}
a & 0 & 0 & 0 \\
0 & -a & 0 & 0 \\
0 & 0 & b & 0 \\
0 & 0 & 0 & -b
\end{pmatrix}, \quad \text{where } (\frac{F}{p}) = 1,
\]

where \(f(x) = (x^2 - a^2)(x^2 - b^2), a, b \in \mathbb{Q}_p \).

Dimensions of Automorphic Forms (1)

\[
g_1 = \begin{pmatrix}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1
\end{pmatrix}, \quad g_2 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
p & 0 & -1 & 0 \\
0 & -1 & 0 & -1
\end{pmatrix}, \quad \text{when } (\frac{F}{p}) = -1,
\]

and

\[
g_1 = \begin{pmatrix}
0 & 0 & -1/p & 0 \\
0 & 0 & 0 & -1 \\
p & 0 & -1 & 0 \\
0 & -1 & 0 & 0
\end{pmatrix}, \quad g_2 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad \text{when } p = 3.
\]

Proposition 2.8.

(i) If \((\frac{F}{p}) = 1 \), then

\[c_p(g, R, A) = \begin{cases} 2 \cdots & \text{if } A \sim Z_p^2 \\
0 \cdots & \text{otherwise}, \end{cases} \]

where \(Z_p^2 \) is embedded diagonally in \(M_2(\mathbb{Z}_p) \), and

\[
M(g, Z_p^2) = \begin{pmatrix} 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

(ii) If \((\frac{F}{p}) = -1 \), then

\[c_p(g, R, A) = 0 \text{ for any } A, \text{ and}\]

\[c_p(g, R, A) = \begin{cases} 2 \cdots & \text{if } A \sim o_p, \\
0 \cdots & \text{otherwise}, \end{cases} \]

where \(o_p \) is the maximal order of \(F = \mathbb{Q}(\zeta) \), and

\[
M(g, o_p) = \begin{pmatrix} 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

(iii) If \((\frac{F}{p}) = 0 \) \((p = 3) \), then

\[c_p(g, R, A) = \begin{cases} 2 \cdots & \text{if } A \sim o_{3i}, \\
0 \cdots & \text{otherwise, for } i = 1, 2, \end{cases} \]

where \(o_{3i} \) and \(M(g, o_{3i}) \) are the same as in (ii).
Now, denote by H_i the total contribution to $\dim S_4(K(p))$, of those semi-simple conjugacy classes whose principal polynomials are of the form $f_i(\pm x)$, where the polynomials $f_i(x)$ are defined as in [7] (1), p. 590. We can give H_i explicitly as a corollary to the above results by using [7] and Hashimoto [6].

Theorem 2. Assume that $k\geq 5$, then H_i and H_t have been given in Proposition 2.1, 2.2, and $H_i (t \geq 3)$ are given as follows:

$$H_i = \begin{cases} [k-2, -k+1, -k+2, k-1; 4]23, & \text{if } p \equiv 2, \\
[5-k, -k+1, -k+2, k-1; 4]23, & \text{if } p \equiv 2, \\
[2k-3, -k+1, -k+2, 3]23, & \text{if } p \equiv 3, \\
[5-2k-3, -k+1, -k+2, 3]23, & \text{if } p \equiv 3, \\
[1, 0, 0, -1, -1, -1, 0, 1, 1, 1; 12]23, & \text{if } p \equiv 2, \\
[2, 1, 0, -1, 0, 0; 6]23, & \text{if } p \equiv 2, \\
[1, 0, 0, -1, 0, 0; 6]23, & \text{if } p \equiv 2, \\
\end{cases}$$

$$H_t = \begin{cases} \frac{5(2k-3)(p+1)}{23} + \frac{(-1)^k(p+1)}{23}, & \text{if } p \equiv 1 \mod 4, \\
\frac{2k-3(p+1)}{23} + \frac{5(-1)^k(p+1)}{23}, & \text{if } p \equiv 3 \mod 4, \\
\frac{3(2k-3)}{23} + \frac{7(-1)^k}{23}, & \text{if } p \equiv 2, \\
\frac{(2k-3)(p+1)}{23} + \frac{(p+1)}{23}, [0, -1, 1; 3], & \text{if } p \equiv 1 \mod 3, \\
\frac{(2k-3)(p-1)}{23} + \frac{(p-1)}{23}, [0, -1, 1; 3], & \text{if } p \equiv 2 \mod 3, \\
\frac{5(2k-3)}{23} + \frac{1}{3} [0, -1, 1; 3], & \text{if } p \equiv 3, \\
\end{cases}$$

where $\left(\frac{\ast}{p} \right)$ is the Legendre symbol, and $t=[t_0, t_1, \cdots, t_{r-1}; q]$ means that $t_i \equiv j \mod q$.

§ 3. Conjugacy classes of non-semi-simple types

In this section, we shall give the representatives of non semi-simple $K(p)$-conjugacy classes which have non-zero contribution to $\dim S_4(K(p))$, and give their contribution to $\dim S_4(K(p))$. Put

$$P_\ast = \left\{ \left(\begin{array}{cc} A & B \\ 0 & D \end{array} \right) \in \text{Sp}(2, Q) \right\}$$

and

$$P_t = \left\{ \left(\begin{array}{cccc} \ast & 0 & 0 & 0 \\ 0 & \ast & 0 & 0 \\ 0 & 0 & \ast & 0 \\ 0 & 0 & 0 & \ast \end{array} \right) \in \text{Sp}(2, Q) \right\}.$$
By this Lemma, we can assume that \(g \in P_\alpha, P_\beta, \) or \(P'_\beta \). Then, by case by case direct calculations, we can give a complete list of \(K(p) \)-conjugacy classes which are not semi-simple and which have contribution to \(\text{dim} \ S_q(K(p)) \). The proofs are lengthy but routine, and will be omitted here.

Theorem 3. The representatives of \(K(p) \)-conjugacy classes which are of elliptic/parabolic, \(\delta \)-parabolic, parabolic, or paraelliptic (in the sense of Hashimoto [6]), are given in the following list, together with their contribution to \(\text{dim} \ S_q(K(p)) (q \geq 5) \). The contribution to \(\text{dim} \ S_q(K(p)) \), of each set of conjugacy classes below, is denoted by \(I_q \).

(I) **Elliptic/parabolic**

1. \(f(x) = (x-1)(x^2-x+1) \) and \((x+1)(x^2+x+1) \),

\[
\pm \begin{pmatrix}
 0 & 0 & 1/p & 0 \\
 0 & 1 & 0 & n \\
 -p & 0 & 1 & 1 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\pm \begin{pmatrix}
 1 & 0 & -1/p & 0 \\
 0 & 1 & 0 & n \\
 p & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\pm \begin{pmatrix}
 1 & 0 & n/p & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1
\end{pmatrix}
\pm \begin{pmatrix}
 1 & 0 & n/p & 0 \\
 0 & 1 & 0 & -1 \\
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0
\end{pmatrix}
\]

\((n \in \mathbb{Z}, n \neq 0)\)

The total contribution of the above conjugacy classes to \(\text{dim} \ S_q(K(p)) \) is given by:

\[I_q = [0, 1, 1, 0, -1, -1; 6]/6, \]

(2) \(f(x) = (x-1)(x^2+x+1) \) and \((x+1)(x^2-x+1) \)

\[
\pm \begin{pmatrix}
 0 & 0 & 1/p & 0 \\
 0 & 1 & 0 & n \\
 p & 0 & -1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\pm \begin{pmatrix}
 -1 & 0 & 1/p & 0 \\
 0 & 1 & 0 & n \\
 -p & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\pm \begin{pmatrix}
 1 & 0 & n/p & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & -1
\end{pmatrix}
\pm \begin{pmatrix}
 1 & 0 & n/p & 0 \\
 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0
\end{pmatrix}
\]

\((n \in \mathbb{Z}, n \neq 0)\): \[I_q = [-2, 1, 1; 3]/2 \cdot 3^3, \]

(II) **\(\delta \)-parabolic:** \(f(x) = (x-1)(x^2+x)^3 \)

(1) \[\pm \begin{pmatrix}
 1 & 0 & n/p & 0 \\
 0 & 1 & 0 & m \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & -1
\end{pmatrix}
\pm \begin{pmatrix}
 1 & 0 & 1/p & 0 \\
 0 & 1 & 0 & m \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & -1
\end{pmatrix}
\]

\((n, m \in \mathbb{Z}, m \neq 0, m \neq 0)\): \[I_q = (-1)^3/2^3, \]

(2) \[\pm \begin{pmatrix}
 1 & 0 & n/p & m \\
 0 & 1 & 0 & -2m \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & -1
\end{pmatrix}
\pm \begin{pmatrix}
 1 & 1 & n/p & m \\
 0 & 1 & 0 & -2m \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & -1
\end{pmatrix}
\]
\[
\begin{pmatrix}
-1 & 0 & 2m/p & m \\
-p & 1 & m-1 & n \\
0 & 0 & -1 & -p \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-1 & 0 & (2m-1)/p & m \\
-p & 1 & m-1 & n \\
0 & 0 & -1 & -p \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
\(m, n \in \mathbb{Z}, \text{ and } (2n+pm, -2m), (4n+p(2m-1), -2m+1), (2m, 2n-pm), \text{ or } (2m-1, 4n-p(2m-1)), \) is not equal to \((0, 0), \) respectively:

\(I_0 = (-1)^s \left(2 - \frac{-1}{p}\right) / 2^s,\)

(iii) \(\pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},\)

where \(S = \begin{pmatrix} n/p & 0 \\ 0 & n \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} n/p & -1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & n \end{pmatrix} (n \in \mathbb{Z}, n \neq 0)\)

\(I_1 = -(-1)^s (2k-3)/2^3.\)

(III) Parabolic: \(f(x) = (x-1)^2 (x+1)^2\)

(1) \(\pm \begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix}; S = \begin{pmatrix} 0 & 0 \\ 0 & n \end{pmatrix}, \begin{pmatrix} n/p & 0 \\ 0 & 0 \end{pmatrix} (n \in \mathbb{Z}, n \neq 0),\)

\(I_t = -p(2k-3)/2^3 \cdot 3^3.\)

Next, put \(L = \left\{ \begin{pmatrix} s_1 & s_2 \\ \bar{s}_1 & \bar{s}_2 \end{pmatrix}; s_1, s_2 \in \mathbb{Z}, \bar{s}_1, \bar{s}_2 \in \mathbb{Z} \right\} \) and for \(S_v, S_t \in L,\)

write \(S_t \sim S_v \) when \(S_t = US_v^t U \) for some \(U \in \Gamma(p) \cup \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \Gamma(p).\)

(2) \(\pm \begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix}; S \in \{ S \in L, \det S \in (\mathbb{Q}^\times)^2 \}/\sim,\)

\(I_2 = -1/2^3.\)

(3) \(\pm \begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix}; S \in \{ S \in L, S \text{ definite} \}/\sim,\)

\(I_3 = (p+1)/2^3.\)

(4) \(\pm \begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix}; S \in \{ S \in L, S \text{ indefinite} \}/\sim,\)

(the contribution to the dimension is zero).

(IV) Paraelliptic:

Put

\[\begin{pmatrix} 1 & 0 & 0 \\ d & 1 & 0 \\ 0 & 0 & 1 - d \end{pmatrix},\]

where \(d\) is some integer.

(1) \(f(x) = (x^2 + 1)^2:\)

(i) \(\text{If } \left(\frac{-1}{p}\right) = -1, \text{ then exists none in } K(p),\)

(ii) \(\text{If } \left(\frac{-1}{p}\right) = 1, \text{ then}\)

\[S = \begin{pmatrix} 0 & -n \\ n & 0 \end{pmatrix}, \begin{pmatrix} 1 & n \\ -n & 1 \end{pmatrix} (n \in \mathbb{Z}, n \neq 0),\]

\[\begin{pmatrix} 0 & -n \\ n+1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & n+1 \\ -n & 1 \end{pmatrix} (n \in \mathbb{Z}),\]

where \(d\) runs through a set of the representatives in \(\mathbb{Z}\) of the solutions of \(d^2 + 1 \equiv 0 \mod p,\) and

(iii) \(\text{if } p = 2, \text{ then}\)

\[\begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}\)

\[S = \begin{pmatrix} 0 & -n \\ n & 0 \end{pmatrix}, \begin{pmatrix} 2^{-1} & -2^{-1-n} \\ 2^{-1+n} & 2^{-1} \end{pmatrix} (n \in \mathbb{Z}, n \neq 0),\]

\[\begin{pmatrix} 0 & -n \\ n+1 & 0 \end{pmatrix}, \begin{pmatrix} 2^{-1} & -2^{-1-n} \\ 2^{-1+n} & 2^{-1} \end{pmatrix} (n \in \mathbb{Z}),\]

\(I_n = -\left(1 + \left(\frac{-1}{p}\right)\right)/8.\)

(2) \(f(x) = (x^2 + x + 1)^2 \) and \((x^2 - x + 1)^2:\)

(i) \(\text{If } \left(\frac{-3}{p}\right) = -1, \text{ then exists none in } K(p),\)

(ii) \(\text{If } \left(\frac{-3}{p}\right) = 1, \text{ then}\)
\[\pm g(d)^{-1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} S \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} g(d), \]

\[S = \begin{pmatrix} -n & -2n \\ n & -n \end{pmatrix} (n \in \mathbb{Z}, n \neq 0), \]

\[\begin{pmatrix} -n & -2n \\ n+1 & -n \end{pmatrix}, \begin{pmatrix} -n & -2n \\ n+2 & -n \end{pmatrix} (n \in \mathbb{Z}), \]

where \(d \) runs through a set of the representatives of the solutions of \(x^2 + x + 1 \equiv 0 \mod p \), and

(iii) if \(p = 3 \), then, besides the above conjugacy classes in (ii) (here, we put \(d = 1 \)), there exist following conjugacy classes:

\[\begin{pmatrix} 1 & -1 \\ 3 & 0 \end{pmatrix} B, \quad \text{where } B = \begin{pmatrix} -m-2e-h & -3m-6e-h \\ 0 & -3m-6e+h \end{pmatrix}, \]

\[e = \pm 1/3, h = 0, \pm 1, \text{ and } m \text{ is any integer such that } 3m+6e+h \neq 0: \]

\[I_2 = -\left(1 + \left(\frac{-3}{p} \right) \right) / 6. \]

§ 4. Proof of Theorem 1

In this section, we prove Theorem 1. First, we get

Theorem 4. For any integer \(k \geq 5 \) and any prime \(p \), we have

\[\dim S_k(K(p)) = \sum_{r \mid t} H_r + \sum_{r \mid t} I_r, \]

where \(H_r \) or \(I_r \) is given in Theorem 2 or Theorem 3, respectively.

By virtue of [7] and Igusa [12], our Theorem 1 is a corollary to Theorem 4. But it is interesting to see the details of contribution of each conjugacy classes. We denote by \(J_i \) the contribution to

\[\dim S_k(K(p)) - 2 \dim S_k(Sp(2, \mathbb{Z})) - \dim \mathfrak{M}_{k+1}. \]

of those semi-simple conjugacy classes whose principal polynomials are of the form \(f_i(\pm x) (i = 1, \cdots, 12) \). (As for the notations \(f_i(x) \), see \([7]\), p. 590, e.g., \(f_2(x) = (x^2 + 1)^k, f_3(x) = (x^3 + x + 1)^k \), and \(f_{12}(x) = x^4 - x^3 + 1 \). We get the following result.

Proposition 4.1. The numbers \(J_i \ (i = 1, \cdots, 12) \) are given as follows:

\[J_{1} = 0 \text{ if } i \neq 6, 7, 12, \text{ and } \]

\[J_1 = \frac{1}{2^i} \left(1 - \left(-\frac{1}{p} \right) \right) + \frac{(p-1)}{2^i} \left(1 - \left(-\frac{1}{p} \right) \right) - \frac{k}{2^i} \left(1 - \left(-\frac{1}{p} \right) \right), \]

\[J_2 = \frac{1}{2^i} \left(1 - \left(-\frac{3}{p} \right) \right) + \frac{(p-1)}{2^i} \left[0, -1, 1; 3 \right] - \frac{k}{2^i} \left(1 - \left(-\frac{3}{p} \right) \right), \]

\[J_3 = \frac{1}{2^i} \left(1 - \left(-\frac{3}{p} \right) \right) \left(1 - \left(-\frac{1}{p} \right) \right) \left[0, -1, 1; 3 \right]. \]

Proof. The contribution to \(\dim \mathfrak{M}_{k+1}(U_2) \) has been given in [7], \(\dim S_k(Sp(2, \mathbb{Z})) \) in Hashimoto [6], and \(\dim S_k(K(p)) \) in Theorem 2 of this paper.

Remark. This result is rather mysterious. Those elements with the principal polynomials \(f_i(x) (i = 8, \cdots, 12) \) are regular elements. Among those, as stated above, only \(J_3 \) is exceptionally non-zero. I do not know the intrinsic reason of this.

Next, we shall give the contribution to

\[\dim S_k(K(p)) - 2 \dim S_k(Sp(2, \mathbb{Z})), \]

of non-semi-simple conjugacy classes. (Note that there is no such contribution to \(\mathfrak{M}_{k+1}(U_2) \).) More precisely, take a set \(\gamma \subset Sp(2, \mathbb{R}) \) of non semi-simple elements, and denote by \(K(\gamma) \) the contribution to

\[\dim S_k(K(p)) - 2 \dim S_k(Sp(2, \mathbb{Z})), \]
of those $K(p)$-conjugacy classes whose elements are $Sp(2, \mathbb{R})$-conjugates of one of $\{\gamma\}$. Put

$$
\delta(\pm 1, \pm 1) = \begin{pmatrix}
1 & 0 & \pm 1 & 0 \\
0 & 1 & 0 & \pm 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \\
a = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \\
b = \begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \\
\delta(\theta, \lambda) = \begin{pmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 2 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \\
\delta(\theta, \lambda) = \begin{pmatrix}
\cos \theta & \sin \theta & \lambda \cos \theta & \lambda \sin \theta \\
-\sin \theta & \cos \theta & -\lambda \sin \theta & \lambda \cos \theta \\
0 & 0 & \cos \theta & \sin \theta \\
0 & 0 & -\sin \theta & \cos \theta
\end{pmatrix}.
$$

Proposition 4.2. For $k \geq 5$, we have

$$
K(\pm \delta(\frac{2\pi}{3}, +1)) = \left(1 - \frac{-3}{p}\right)(0, -1, 1; 3)/3,
$$

$$
K(\delta(\pm 1, \pm 1)) = \left(1 - \frac{-1}{p}\right)^2(1 - \frac{-1}{p})/6,
$$

$$
K(\pm a) = -\frac{p-1}{2^{3/2}}(2k-3),
$$

$$
K(\pm b) = -\frac{p-1}{2^{3/2}},
$$

$$
K(\delta(\frac{\pi}{2}, \pm 1)) = \frac{1}{2^{3/2}}(1 - \frac{-1}{p}),
$$

$$
K(\pm \delta(\frac{2\pi}{3}, \pm 1)) = \frac{1}{2^{3/2}}(1 - \frac{-3}{p}),
$$

and $K(\gamma) = 0$ for any other $\gamma \in Sp(2, \mathbb{R})$ which is not $Sp(2, \mathbb{R})$-conjugate to one of the above.

Proof is obvious by virtue of Theorem 3 and Hashimoto [6], Theorem 6.2. Now, denote six non zero values in Proposition 4.2 by $K_i (i = 1, \ldots, 6)$, that is, $K_i = K(\pm \delta(2\pi i/3, \pm 1))$, and so on. Then, for $k \geq 5$, we have

$$
\dim S_4(K(p)) - 2 \dim S_4(Sp(2, Z)) - \dim \mathcal{M}_{k-2}(U_3)
$$

$$
= J_4 + J_{12} + \sum_{i=1}^{6} K_i.
$$

So, we obtain Theorem 1.

Remark. We get also the following interesting result. Put

$$
\Gamma_0(p) = B(p) \cup B(p)w_B(p), \quad \Gamma_1(p) = B(p) \cup B(p)w_B(p),
$$

and

$$
\Gamma_0''(p) = B(p) \cup B(p)w_B(p).
$$

When $p = 2$, the dimensions of cusp forms belonging to these groups are easily calculated by using Igusa [14] (II) (cf. [11]). We get the following equality for $k \geq 3$:

$$
\dim S_4(B(2)) - \dim S_4(\Gamma_0(2)) - \dim S_4(\Gamma_0'(2)) - \dim S_4(\Gamma_0''(2))
$$

$$
+ \dim S_4(\Gamma(2)) + 2 \dim S_4(\mathcal{M}_2(U_3))
$$

$$
= \dim \mathcal{M}_{k-2}(U_3) - \dim \mathcal{M}_{k-2}(U_3) - \dim \mathcal{M}_{k-2}(U_3)
$$

where the discriminant of B is two. This supports the conjecture in [9].

This relation is extended in [8] for all p.

References

[8] ———, On relations of dimensions of automorphic forms of $Sp(2, \mathbb{R})$ and its compact twist $Sp(2, \mathbb{R})$, in this volume.
On Relations of Dimensions of Automorphic Forms of $Sp(2, R)$ and Its Compact Twist $Sp(2)$ (II)

Ki-ichiro Hashimoto and Tomoyoshi Ibukiyama

In this paper, we show some good global dimensional relations between automorphic forms of $Sp(2, R)$ (matrix size four) and its compact twist $Sp(2)$. One of the authors has already shown such relations when the p-adic completions (for a fixed prime p) of the discrete subgroups in question are maximal compact (See [24]). In this paper, we treat discrete subgroups whose p-adic completions are minimal parahoric. Our aim is a generalization of Eichler-Jacquet-Langlands correspondence between SU_q and $SU(2)$ to the symplectic case of higher degree. Such correspondence should be proved by comparison of the traces of all the Hecke operators. Our results mean that there exist relations of traces at least for $T(1)$ for some explicitly defined discrete subgroups of $Sp(2, R)$ and $Sp(2)$ (§2 Main Theorem I). Besides, they give meaningful examples for Langlands philosophy on stable conjugacy classes (§2 Main Theorem II). Roughly speaking, such comparison is divided into character relations at infinite places (which are more or less known) and arithmetics at finite places. Our point is to execute the comparison of the arithmetical part explicitly. It seems that our Theorems are the first global results on such relations except for GL_2 (cf. also [24]). In Section 1, after a brief introduction, we give a precise formulation on our problems between $Sp(n, R)$ and $Sp(n)$ for general n, e.g. on how to choose discrete subgroups explicitly. For automorphic forms with respect to these explicitly chosen discrete subgroups, we propose three conjectures (which were first given in [21], [23]): coincidence of dimensions and existence of an isomorphism between new forms as Hecke algebra modules. For $n = 1$, these are nothing but the theorems by Eichler [10], [11], and the above conjectures are a natural generalization of his results. Langlands [34] has given a quite general philosophy on correspondence of automorphic forms of any reductive algebraic groups, but we understand that his philosophy does not give very detailed formulation at present for such typical and explicit cases as

Received March 5, 1984.

The authors were partially supported by SFB 40, Univ. Bonn and Max-Planck-Institut für Mathematik.