FORCING OVER A FREE SUSLIN TREE

JOHN KRUEGER AND SARKA STEJSKALOVA

ABSTRACT. We introduce an abstract framework for forcing over a free Suslin tree with suborders of
products of forcings which add some structure to the tree using countable approximations. The main
ideas of this framework are consistency, separation, and the Key Property. We give three applications
of this framework: specializing derived trees of a free Suslin tree, adding uncountable almost disjoint
subtrees of a free Suslin tree, and adding almost disjoint automorphisms of a free Suslin tree. Using
the automorphism forcing, we construct a model in which there is an almost Kurepa Suslin tree and a
non-saturated Aronszajn tree, and there does not exist a Kurepa tree. This model solves open problems
due to Bilaniuk, Moore, and Jin and Shelah.
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1. INTRODUCTION

A classical and fundamental result in mathematics states that any non-empty linearly ordered set
without endpoints which is dense, complete, and separable is isomorphic to the real number line.
Suslin asked whether the same conclusion follows if the assumption of separability is replaced by
the countable chain condition, which means that every pairwise disjoint family of open intervals is
countable ([Sus20]). Equivalently, is every linearly ordered set with the countable chain condition
separable? A counter-example to this statement is called a Suslin line. Suslin’s hypothesis (SH) is
the statement that there does not exist a Suslin line. A number of authors independently discovered
that SH can be characterized in terms of trees ([Kur36], [Mil43], [Sie48]). SH is equivalent to
the non-existence of a Suslin tree, which is an uncountable tree which has no uncountable chain or
uncountable antichain.

The first systematic study of trees appeared in the dissertation of Kurepa ([Kur35]). It includes a
construction of an Aronszajn tree, which is an w1 -tree with no uncountable chains, whose existence
had been proved by Aronszajn in 1934 (by an w;-tree, we mean a tree of height w; with countable
levels). Shortly after, Kurepa proved the existence of a special Aronszajn tree (a tree is special if it
is a union of countably many antichains) ([Kur38]). Later, Kurepa investigated the question of how
many cofinal branches exist in w;-trees ([Kur42]). The statement that there exists an w;-tree with
more than w;-many cofinal branches became known as Kurepa’s Hypothesis (KH), and such a tree
is called a Kurepa tree.

The resolution of SH and KH came with the advent of modern methods of set theory, namely,
constructibility, forcing, and large cardinals ([G6d40], [Coh66]). The consistency of —=SH was
established independently by Jech and Tennenbaum, who defined forcings which add a Suslin tree
([Jec67], [Ten68]). The consistency of KH was observed to follow from an inaccessible cardinal
by Bukovsky and Rowbottom ([Buk66], [Row64]). Namely, the Lévy collapse of an inaccessible
cardinal to become w; forces the existence of a Kurepa tree. Later, KH was shown to be consistent
without large cardinals by Stewart using a direct forcing construction ([Ste66]). It was also shown
that in the constructible universe L, there exists a Suslin tree and there exists a Kurepa tree. Namely,
Jensen proved that ¢ implies the existence of a Suslin tree and ¢ implies the existence of a Kurepa
tree, and these diamond principles hold in L.

For the other direction, Silver proved the consistency of —KH by showing that after forcing
with the Lévy collapse to turn an inaccessible cardinal into w,, there does not exist a Kurepa tree
([Sil71]). Solovay proved that Silver’s use of an inaccessible cardinal is necessary, because if w,
is not an inaccessible cardinal in L then there exists a Kurepa tree. Solovay and Tennenbaum
proved the consistency of SH using their newly developed technique of finite support iterations of
c.c.c. forcings to construct a model of Martin’s axiom together with the negation of the Continuum
Hypothesis (CH) ([ST71]; also see [MS70]). Baumgartner isolated a statement about trees which
implies SH and follows from Martin’s axiom + —CH, namely, that all Aronszajn trees are special
([Bau70], [BMR70]). The consistency of SH together with CH was proved by Jensen ([DJ74]).
Jensen’s proof motivated Shelah’s invention of proper forcing, and Shelah gave an alternative proof
of the consistency of SH 4 CH as an application of his general technique for iterating proper forcing
while not adding reals ([She82]). Both Jensen’s and Shelah’s models satisfy the stronger statement
that all Aronszajn trees are special.

Among the earliest topics studied about Suslin trees after their existence was shown to be consis-
tent are rigidity and homogeneity ([DJ74], [Jec72]). Jensen proved that { implies the existence of
both a rigid Suslin tree and a homogeneous Suslin tree with exactly w;-many automorphisms. And
Jensen proved that (O implies the existence of a homogeneous Suslin tree with at least w,-many
automorphisms. Reviewing the construction of this last tree from (T, it is easy to verify that it is an



FORCING OVER A FREE SUSLIN TREE 3

example of an almost Kurepa Suslin tree, which is a Suslin tree which becomes a Kurepa tree after
forcing with it. Motivated by Jensen’s results, Jech proved that if CH holds and « is a cardinal such
that 2 < k¢ < 2“1 and k® = «, then there exists a forcing which adds a Suslin tree with exactly
k-many automorphisms ([Jec72]). In the case that k > w5, Jech’s forcing gives another example of
an almost Kurepa Suslin tree.

Jensen’s constructions of a rigid Suslin tree and a homogeneous Suslin tree from <) identified two
important types of trees: free Suslin trees and uniformly coherent Suslin trees.! For any positive
n < w, a Suslin tree T is n-free if for any distinct elements Xy, ..., x,—1 of the same level of T,
the product tree Ty, ® -+ ® Tx,_, (called a derived tree with dimension n) is Suslin. And T is
free if it is n-free for all positive n < w. The idea of a free Suslin tree is due to Jensen, and the
rigid Suslin tree he had constructed earlier from ¢ is free. The homogeneous Suslin tree constructed
by Jensen from ¢ is an example of a uniformly coherent Suslin tree, which means a Suslin tree
consisting of countable sequences of natural numbers, downwards closed and closed under finite
modifications, such that any two elements of the tree disagree on at most finitely many elements of
their domain. Any uniformly coherent Suslin tree is homogeneous. Uniformly coherent Suslin trees
have proven useful in a variety of contexts, including in P,,-style constructions involving a Suslin
tree, consistency results, and in forcing axioms ([Lar99], [SZ99], [W0099], [LT02], [Tod]).

Free Suslin trees satisfy some remarkable properties. Freeness is the strongest known form of
rigidity for Suslin trees. Free Suslin trees have the unique branch property, which means that forcing
with a free Suslin tree introduces exactly one cofinal branch to it ((FH09]). A free Suslin tree is
forcing minimal in the sense that after forcing with it, there are no intermediate models strictly
between the ground model and the generic extension. Any strictly increasing and level preserving
map from a free Suslin tree into any Aronszajn tree is injective on a club of levels. A Suslin tree
is free if and only if it satisfies a property which is essentially a translation of the definition of an
entangled set of reals into the context of trees ([Kru20], [AS81]). Another noteworthy fact about
free Suslin trees is their ubiquitousness. The generic Suslin trees of both Jech and Tennenbaum are
free. Larson proved that if there exists a uniformly coherent Suslin tree, then there exists a free
Suslin tree ([Lar99]). Since forcing a Cohen real adds a uniformly coherent Suslin tree, it also adds
a free Suslin tree ([Tod87]). In fact, it is an open problem due to Shelah and Zapletal whether the
existence of a Suslin tree implies the existence of a free Suslin tree ([SZ99]). In other words, it could
be the case that SH is actually equivalent to the non-existence of a free Suslin tree.

In order to motivate the problems which this article addresses, we review some of the early
forcings for adding w; -trees with different properties. Jech’s forcing for adding a Suslin tree consists
of conditions which are countable infinitely splitting downwards closed normal subtrees of the tree
(S*®1w, C), ordered by end-extension ([Jec67]). Jech’s forcing is countably closed, w,-c.c. assuming
CH, and adds a free Suslin tree. Tennenbaum’s forcing for adding a Suslin tree consists of conditions
which are finite trees whose elements are in w; and whose tree ordering is consistent with the ordinal
ordering, ordered by end-extension ([Ten68]). Tennenbaum’s forcing is c.c.c. and adds a free Suslin
tree. Both Jech’s and Tennenbaum’s forcings serve as a foundation on which other forcing posets
for adding wq-trees are based. A variation of Jech’s poset, in which any two elements of a condition
differ on a finite set and conditions are closed under finite modifications, adds a uniformly coherent
Suslin tree. Another variation adds a Suslin tree together with any number of automorphisms of
it ([Jec72]). Stewart’s forcing for adding a Kurepa tree consists of conditions of the form (7, f),
where 7 is a condition in Jech’s forcing with successor height and f is an injective function from a
countable subset of w, into the top level of 7. Conditions are ordered by letting (U, g) < (T, f) if

IThe concept of a free Suslin tree goes by different names in the literature. Free Suslin trees were originally introduced
by Jensen as full Suslin trees ([Jenb]). Abraham and Shelah refer to free Suslin trees as Suslin trees all of whose derived trees
are Suslin ([AS85], [AS93]). The phrase free Suslin tree was used by Larson and Shelah-Zapletal ([Lar99], [SZ99]).
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U end-extends T, dom( ) € dom(g), and for all @ € dom( f), f(«) <y g(«). Stewart’s forcing is
countably closed, and assuming CH, is w,-c.c. and adds an w1 -tree together with w,-many cofinal
branches of it.

In light of Stewart’s forcing for adding a Kurepa tree based on Jech’s forcing, a natural question
is whether there exists a c.c.c. forcing for adding a Kurepa tree based on Tennenbaum’s forcing.
Jensen introduced the generic Kurepa hypothesis (GKH), which states that there exists a Kurepa tree
in some c.c.c. forcing extension ([Jena]). Jensen and Schlechta proved that GKH is not a theorem of
ZFC: if  is a Mahlo cardinal, then after forcing with the Lévy collapse to turn x into w,, any c.c.c.
forcing fails to add a Kurepa tree ([JS90]). On the other hand, Jensen proved that [J,, implies
the existence of a c.c.c. forcing for adding a Kurepa tree ([Jena]). Since the failure of [, is
equiconsistent with a Mahlo cardinal, so is the statement =GKH. Later, Veli¢kovi¢ defined a c.c.c.
forcing for adding a Kurepa tree which is simpler than Jensen’s forcing; it is based on Tennenbaum’s
forcing and uses the function p of Todorcevi¢ derived from a [, -sequence ([Vel92]).

The forcings of Stewart and Velickovi¢ for adding a Kurepa tree have size at least w,, due to
the fact that the conditions in these forcing posets approximate both an wi-tree and a sequence
of wy-many cofinal branches of the tree. Jin and Shelah asked whether it is possible to force the
existence of a Kurepa tree using a forcing of size at most w;, especially in the context of CH
([JS97]). This question was motivated in part by the fact that there exists a forcing of size w which
adds a Suslin tree, namely, the forcing for adding one Cohen real ([She84]). The main result of Jin
and Shelah [JS97] is that assuming the existence of an inaccessible cardinal «, there exists a forcing
which preserves w1, collapses k to become w,, forces that there does not exist a Kurepa tree, and
introduces a countably distributive Aronszajn tree which when you force with it produces a Kurepa
tree. Jin and Shelah asked whether it is possible to obtain such a model where the Aronszajn tree is
replaced by some c.c.c. forcing of size at most w; .

Problem 1 (Jin and Shelah [JS97]). Is it consistent that CH holds, there does not exist a Kurepa
tree, and there exists a c.c.c. forcing of size at most wy which forces the existence of a Kurepa tree?

As previously mentioned, Jensen proved that ¢ implies the existence of a Kurepa tree and a
Suslin tree with at least w,-many automorphisms. In his dissertation written under the supervision
of Baumgartner, Bilaniuk proved that if ¢ holds and there exists a Kurepa tree, then there exists a
Suslin tree with at least w,-many automorphisms [Bil89].

Problem 2 (Bilaniuk [Bil89]). Is it consistent that  holds, there does not exist a Kurepa tree, and
there exists a Suslin tree with at least w,-many automorphisms?

In the Jin-Shelah model, forcing with the Aronszajn tree introduces another tree which is a
Kurepa tree. On the other hand, an almost Kurepa Suslin tree is a Suslin tree which itself becomes
a Kurepa tree after forcing with it. The following problem is closely related to both Problems 1 and
2 and has been worked on by a number of set theorists since Bilaniuk’s dissertation.

Problem 3 (Folklore). Is it consistent that there exists an almost Kurepa Suslin tree and there does
not exist a Kurepa tree?*

Baumgartner introduced the idea of a subtree base for an w;-tree T, which is a collection B of
uncountable downwards closed subtrees of 7" such that every uncountable downwards closed subtree
of T contains some member of B ([Bau85]). He proved that after forcing with the Lévy collapse

2Concerning the relationship between Problems 2 and 3, start with a model with a Mahlo cardinal k¥ and a uniformly
coherent Suslin tree T'. After forcing with Col(w], <k) * Add(w, w>), T is a Suslin tree with w»-many automorphisms.
But T is not an almost Kurepa Suslin tree, since by the result of Jensen and Schlechta, no c.c.c. forcing can introduce a
Kurepa tree in this model.
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Col(wy, < k), where « is an inaccessible cardinal, every Aronszajn tree has a base of cardinality
w1. A related idea called Aronszajn tree saturation was introduced by Konig, Moore, Larson, and
Velickovié in the context of attempting to reduce the large cardinal assumption used to produce a
model with a five element basis for the class of uncountable linear orders ([KLMVO08], [Mo0o06]).
An Aronszajn tree T is saturated if every almost disjoint family of uncountable downwards closed
subtrees of T has cardinality at most ;. Note that if 7" has a subtree base of size w;, then T is
saturated. So after forcing with the Lévy collapse Col(w;, <), where « is an inaccessible cardinal,
every Aronszajn tree is saturated, and by Silver’s result, there does not exist a Kurepa tree. On the
other hand, Baumgartner and Todorcevi¢ proved that if there exists a Kurepa tree, then there exists
a special Aronszajn tree which is not saturated ([Bau85]). These facts lead to the following natural
question of Moore.

Problem 4 (Moore [Moo08]). Is it consistent that there exists a non-saturated Aronszajn tree and
there does not exist a Kurepa tree ?°

In this article, we provide solutions to Problems 1, 2, 3, and 4. Our main result is as follows:

Main Theorem. Suppose that there exists an inaccessible cardinal k and there exists an infinitely
splitting normal free Suslin tree T. Then there exists a forcing poset P satisfying that the product
forcing Col(wy, <k) x P forces:

(1) & = wa;

(2) GCH holds;

(3) T is a Suslin tree;

(4) there exists an almost disjoint family { f; : T < w2} of automorphisms of T';

(5) there does not exist a Kurepa tree.

If b is a generic branch obtained by forcing with the Suslin tree T over a generic extension by
Col(w1, < k) x P, then { f7[b] : T < w,} is a family of w,-many cofinal branches of 7. Thus, in
this generic extension T is a c.c.c. forcing of size w; which forces the existence of a Kurepa tree.
Starting with a model with an inaccessible cardinal and forcing the existence of an infinitely splitting
normal free Suslin tree (for example, by Jech’s forcing), we get the following corollary which solves
Problems 1 and 3.

Corollary. Assume that there exists an inaccessible cardinal k. Then there exists a generic extension
in which k equals w,, CH holds, there exists an almost Kurepa Suslin tree, and there does not exist
a Kurepa tree.

Concerning Problem 2, it suffices to find a generic extension as described in the Main Theorem
which satisfies . Start with a model V in which there exists an inaccessible cardinal « and ¢
holds. Let Q be Jech’s forcing in V' for adding a Suslin tree. Let PP be a Q-name for the forcing
described in the Main Theorem using the generic Suslin tree. Since Q is w;-closed, the forcings
Q * (Col(wq, < K)V@ x ) and (Q * P) x Col(w;, < k) are forcing equivalent. We will show in
Section 6 that the two-step iteration QQ * P is forcing equivalent to some wi-closed forcing, and
consequently so is (Q x P) x Col(w;, < k). But w;-closed forcings preserve ¢, so ¢ holds in
the generic extension of VQ described in the Main Theorem. Since we can force ¢, we have the
following corollary.

Corollary. Assume that there exists an inaccessible cardinal k. Then there exists a generic extension
in which k equals w,, ¢ holds, there exists a normal Suslin tree with w,-many automorphisms, and
there does not exist a Kurepa tree.

3According to Moore, this question is implicit in [Moo08] (see the comments after Question 9.2).
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Concerning Problem 4, working in the generic extension by Col(w;, <x) x P, for all 7 < « let
U. = {(x, fz(x)) : x € T}. Then each U, is an uncountable downwards closed subtree of the
Aronszajn tree T ® T, and any two such subtrees have countable intersection.* We thus get the
following corollary which answers Problem 4.

Corollary. Assume that there exists an inaccessible cardinal k. Then there exists a generic extension
in which k equals w,, there exists a non-saturated Aronszajn tree, and there does not exist a Kurepa
tree.

In their study of rigidity properties of Suslin trees, Fuchs and Hamkins asked, for any positive
n < w, whether a Suslin tree being n-free implies the apparently stronger property of being (n + 1)-
free ([FHO09]). This problem was solved by Scharfenberger-Fabian, who proved that if there exists
a uniformly coherent Suslin tree then for each positive n < w, there exists a Suslin tree which is
n-free but not (n + 1)-free ([SF10]). Scharfenberger-Fabian suggested the possibility of having a
Suslin tree which is n-free and n-self specializing in the sense that forcing with the tree n-many
times specializes the part of the tree outside of the n-many generic branches ([SF10]). The first
author achieved this possibility by defining a c.c.c. forcing which specializes all derived trees of a
free Suslin tree with dimension n + 1 while preserving the fact that the tree is n-free ([Kru]). In this
article, we prove the following theorem which provides the first example of such a forcing which
does not add reals.

Theorem. Letn < w be positive and assume that T is an infinitely splitting normal free Suslin tree.
Then there exists a forcing which is totally proper, has size wy assuming CH, preserves the fact that
T is n-free, and specializes all derived trees of T with dimension n + 1.

We now outline the contents of the article in more detail. We introduce a general framework
for forcing over a free Suslin tree. The goal is to add some structure to a free Suslin tree using a
forcing poset with countable conditions which is totally proper and satisfies other nice properties,
such as preserving the Suslinness of 7' and its derived trees and not adding new cofinal branches
of w-trees. The main technique we will use for proving such properties is building total master
conditions over countable elementary substructures and related constructions. We apply this general
framework to find forcings which add three fundamental types of structures to a free Suslin tree:
specializing functions, subtrees, and automorphisms.

For the entirety of the paper, we fix a normal infinitely splitting w;-tree 7. Most of the ideas we
develop do not require any other properties of 7. But in order to prove the strongest properties of the
forcings, at some points we will need to assume that 7 is a free Suslin tree. In Section 2 we present
our abstract framework for forcing over a free Suslin tree 7. We isolate three important ideas on
which this framework is based: consistency, separation, and the Key Property which describes the
interplay between consistency and separation. In Sections 3, 4, and 5 we give three applications of
this framework, with increasing levels of complexity. These three sections are self-contained and
can be read independently of each other.

In Section 3, we define for each positive n < w a forcing which specializes all derived trees
of the free Suslin tree T with dimension n 4 1 while preserving the fact that 7" is n-free. The
preservation of the n-freeness of T uses a generalization of the Key Property which we call the

“More generally, Justin Moore has pointed out that if 7" is a normal almost Kurepa Suslin tree, then the Aronszajn tree
T ® T is non-saturated. For suppose that (br : T < wy) is a sequence of T'-names for distinct cofinal branches of T'.
For each T < w>, let Uy be the downward closure of the set of (x,y) € T ® T suchthat x IF7 y € [7,. Using the
Suslinness of T, one can show that each Uz is uncountable and any two such subtrees have countable intersection. So the
family {U; : T < ws} witnesses that T @ T is not saturated.
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n-Key Property. In Section 4, we fix a non-zero ordinal « and define a forcing which adds an almost
disjoint «x-sequence of uncountable downwards closed normal subtrees of 7. Assuming that 7 is a
free Suslin tree, this forcing is totally proper, and also assuming CH, is w,-c.c. and does not add any
new cofinal branches of w;-trees which are in the ground model. In particular, if k > w,, then under
these assumptions it is forced that 7 is a non-saturated Aronszajn tree. The material in this section
utilizes many of the main ideas and types of arguments of the article, but in a form which is simpler
and easier to understand than the much more complex automorphism forcing.

Section 5 contains the most substantial results of the article. We fix a non-zero ordinal « and
develop a forcing for adding an almost disjoint x-sequence of automorphisms of 7. Assuming that
T is a free Suslin tree, we show that the forcing is totally proper, and assuming CH and « > w,,
forces that T is an almost Kurepa Suslin tree. Subsections 5.6-5.9, which contain the most intricate
arguments in the article, are devoted to proving that the automorphism forcing does not add new
cofinal branches of w;-trees appearing in intermediate models of its generic extensions. The main
idea used for this result is the concept of a nice condition, which is a total master condition over a
countable elementary substructure for some regular suborder of the automorphism forcing which has
a universality-type property with respect to quotient forcings in intermediate extensions. In Section
6 we prove the main theorem of the article.

Background and preliminaries: The prerequisites for this article are a graduate level background
in combinatorial set theory and forcing which includes the basics of w;-trees, product forcing, and
proper forcing.

An wj-tree is a tree with height w; whose levels are countable. Let T be an w;-tree. For any
x € T, we let htr (x) denote the height of x in 7. Foreacho < w1, Ty, = {x € T : hty(x) = a} is
levela of T,and T [ ={x € T : htr(x) < «a}. Forall x € T and o < htr(x), x | @ denotes the
unique y <7 x with heighto. If X € Tg and o < B, X | « denotes the set {x [ o : x € X}. For
a < B < wyand X C Tg, we say that X has unique drop-downs to « if the function x = x [ o is
injective on X; similar language is used for finite tuples of elements of Tg.

A branch of T is a maximal chain, and a branch is cofinal if it meets every level of the tree. If b
is a branch and « is an ordinal less than its order type, we will write b(«) for the unique element of b
of height «. An antichain of T is a set of incomparable elements of 7. A subtree of T is any subset
of T considered as a tree with the order inherited from 7. The tree T is infinitely splitting if every
element of 7 has infinitely many immediate successors. The tree T is normal if it has a root, every
element of 7" has at least two immediate successors, every element of 7' has some element above it
at any higher level, and any two distinct elements of the same limit height do not have same set of
elements below them.

An Aronszajn tree is an wp-tree with no cofinal branch. A tree T of height w; is special if it
is a union of countably many antichains, or equivalently, there exists a specializing function f :
T — Q, which means that x <7 y implies that f(x) < f(y). A Kurepa tree is an w;-tree with at
least w,-many cofinal branches. A Suslin tree is an uncountable tree with no uncountable chain or
uncountable antichain. Suslin trees are w;-trees. A normal w;-tree is a Suslin tree if and only if it
has no uncountable antichain.

Any w;-tree T can be considered as a forcing poset, where we let y be stronger than x in the
forcing if x <7 y, that is, with the order reversed. A normal w;-tree T is Suslin if and only if the
forcing poset T is c.c.c. When we use forcing language such as “dense” and “open” when talking
about an wq-tree T, we mean with regards to T considered as a forcing poset as just discussed. We
highlight the following important fact because we will use it almost every time we invoke the Suslin
property: A normal wi-tree T is Suslin if and only if whenever D is a dense open subset of T, there
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exists some y < wy such that T, € D. Note that since D is open, T, € D implies that Tz € D for
ally <§& <.

Given finitely many w; -trees Ty, . .., T,—1, the product Tp®- - -®T,,—1 is the partial order, ordered
componentwise, consisting of all tuples (o, . . ., ay—1) such that for some o < wy, ar € (Ty)q for
all k < n. This product is a tree, and if each factor is normal, then so is the product. Let T be
an wp-tree. For any positive n < w, we will write T” for the product of n-many copies of 7. If
i = (ao,....an—1) and b = (bo, ..., by_1) are in T", we will write @ < b to mean that a; <7 b;
foralli < n, and similarly for a < b.

For every a € T, define T, as the subtree {b € T : a <7 b}. For any positive n < w and
n-tuple @ = (ao, . ..,an—1) consisting of distinct elements of 7 of the same height, define T; as the
product T, ® --- ® Ty,,_,, which is called a derived tree of T with dimension n. The tree T is said
to be n-free if all of its derived trees with dimension n are Suslin, and is free if it is n-free for all
positive n < w. Note that by the fact we highlighted in the previous paragraph, if T is n-free and T}
is a derived tree of 7' with dimension 7, then for any dense open subset D of T, there exists some
y < w; such that every member of 7; whose elements have height at least y isin D.

A function f : T — U between trees is strictly increasing if x <r y implies f(x) <y f(y),
is an embedding if x <t y iff f(x) <y f(y), is level preserving if hty(x) = hty(f(x)) for
all x € T, is an isomorphism if it is a bijective embedding, and is an automorphism if it is an
isomorphism and T = U. We will use the basic fact that a strictly increasing and level preserving
map f : T — U is an embedding if and only if it is injective, and therefore is an isomorphism if
and only if it is a bijection. If f is an automorphism of 7', we will write /! for f and f~! for the
inverse of f. An w-tree T is rigid if there does not exist any automorphism of 7" other than the
identity function, and is homogeneous if for all a and b in T with the same height, there exists an
automorphism f : T — T such that f(a) = b. For an w;-tree T, 0(T') denotes the cardinality of
the set of all automorphisms of 7.

When we say that a family of sets (or sequence of sets) is almost disjoint, we mean that the
intersection of any two sets in the family (or in the sequence) is countable. An almost Kurepa
Suslin tree is a Suslin tree such that when you force with it, it becomes a Kurepa tree. A sufficient
condition for a Suslin tree 7" to be an almost Kurepa Suslin tree is that there exists an almost disjoint
family { 7 : T < w,} of automorphisms of 7. For in that case, if b is a cofinal branch of T, then
{fz[P] : T < w,} is a family of w,-many cofinal branches of T. An antichain of subtrees of an
Aronszajn tree T is an almost disjoint family of uncountable downwards closed subtrees of 7. An
Aronszajn tree T is saturated if every antichain of subtrees of 7" has size at most w;, and otherwise
is non-saturated.

When we say that a regular cardinal A is large enough, we mean that it is large enough so that all
of the sets under discussion are members of H(A). For a forcing poset P and a countable elementary
substructure N < H(A) with P € N, a condition ¢ € P is a total master condition over N if for
every dense open subset D of P which is a member of N, there exists some s € D N N such that
q < s. A forcing poset P is totally proper if for all large enough regular cardinals A and for any
countable elementary substructure N < H(A), for all p € N N P there exists some ¢ < p such
that ¢ is a total master condition over N. Clearly, totally proper forcings are proper and countably
distributive. A separative forcing is totally proper if and only if it is proper and does not add reals.
The Lévy collapse of an inaccessible cardinal « to become w,, denoted by Col(wy, < k), is the
forcing poset consisting of all countable partial functions p from x X w; into k such that for all
(o, &) € dom(p), p(a, &) < «a, ordered by reverse inclusion. The Lévy collapse is w;-closed and
k-c.c. Finally, we note that w;-closed forcings do not add new cofinal branches of wj-trees in the
ground model ([She98, Chapter V §8]).
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2. ABSTRACT FRAMEWORK FOR FORCING OVER A FREE SUSLIN TREE

In this section we present the basic framework for forcing over a free Suslin tree. We fix several
objects satisfying some abstract properties, and then derive important consequences from those as-
sumptions. Assume for the remainder of the article that 7 is a fixed w;-tree which is normal and
infinitely splitting, and « is a fixed non-zero ordinal. Additional assumptions about 7" and x will be
made on occasion, most notably, that 7 is a free Suslin tree.

We assume that the following objects and properties are given:

(1) Foreach t < «, (Q, <;) is a forcing poset.

(2) For each t < k, associated to any condition ¢ € QQ; is a countable ordinal which we call
the top level of q.

(3) P is a forcing poset satisfying that for all p € P, p is a partial function whose domain is
a countable subset of «, and there is a fixed countable ordinal «, called the top level of p,
such that for all T € dom(p), p(r) € Q; and p(t) has top level @. Also, g <p p implies
that dom(p) € dom(g) and for all T € dom(g), ¢(t) <; p().

(4) For all T < «, for all ¢ € Q, and for all positive n < w, we have a fixed relation between
members @ < b of T" which we call G and b being g-consistent.

(5) For any p € P, for any finite set A € dom(p), and for all a € T=%, we have a fixed
property which we call {p(t) : T € A} being separated on a.

We make the following assumptions about the above objects and properties:

(A) If ¢ <p p then the top level of ¢ is greater than or equal to the top level of p.

(B) (Transitivity) Suppose that a < b < T <K, 1<, 9 and the heights of b and C are
equal to the top levels of g and r respectively. If @ and b are g-consistent and b and ¢ are
r-consistent, then @ and ¢ are r-consistent.

(C) (Persistence) Let « < B < w;. Suppose that p € P has top level « and A € dom(p) is
finite. Let @ < b have heights « and B respectively. If {p(z) : T € A} is separated on d,
then for any g <p p with top level 8, {q(t) : T € A} is separated on b.

(D) (Extension) Let o < 8 < w;. Assume thatd < b have heights o and § respectively, p € P
has top level o, and A € dom(p) is finite. Then there exists some ¢ <p p with top level 8
and with the same domain as p such that for all T € A4, @ and b are q(t)-consistent.

(E) (Key Property) Let @ < B < wi. Suppose that a has height o, P is a condition with top
level o, A € dom(p) is finite, and {p(7) : T € A} is separated on a. Then for any ¢ <p P
with top level B and any finite set # C T, there exists some b of height B such that a < b

the elements of b are not in t,and forall T € A, a and b are ¢q(t)-consistent.

While the above properties are described in terms of tuples, it is often the case that the properties
are independent of the order in which a tuple lists its elements. For the applications in this article,
this independence always holds for the consistency relations. But the definition of separation for the
automorphism forcing of Section 5 depends on the order of a tuple. In any case, it is a simple matter
to translate the results of this section for tuples into analogous results for finite sets.

Lemma 2.1. Suppose that D is a dense open subset of P and p € P has top level §. Let A C dom(p)
be finite. Consider a tuple a of height & and assume that {p(t) : © € A} is separated on d. Let X
be the set of all ¢ in the derived tree T; for which there exists some ¢ <p p in D whose top level
equals the height of ¢ such that for all T € A, a and ¢ are q(t)-consistent. Then X is a dense open
subset of Tj.
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Proof. For openness, consider a tuple b € X as witnessed by a condition ¢ <p p. Let ¢ be a tuple
such that b < ¢ and ¢ has height {. By (D) (Extension), find » <p ¢ with top level ¢ such that for

all T € A, b and C are r(t)-consistent. Since D is open, r € D. By (B) (Transitivity), forall t € A4,
a and ¢ are r(t)-consistent. So r witnesses that ¢ € X.

To show that X is dense, consider b € T; with height § > &. By (D) (Extension), fix g <p p with
top level § such that for all T € A, a and b are ¢(t)-consistent. By (C) (Persistence), {q(z) : T € A}

is separated on b. Let E be the set of condition s € PP such that s has top level greater than §. By
(D) (Extension), E is dense, and by (A), E is open. So D N E is dense open. Fixr <pgin D N E
and let p be the top level of r. Then p > §. Since r < ¢ and {g(7) : T € A} is separated on b, by
(E) (Key Property) we can find some ¢ with height p such that b < Zandforall t € A, b and ¢ are

r(t)-consistent. By (B) (Transitivity), for all T € A, @ and ¢ are r(t)-consistent. So r is a witness
that ¢ € X. O

The next proposition will be used to prove that the forcings introduced in this article are totally
proper.

Proposition 2.2 (Consistent Extensions Into Dense Sets). Suppose that T is a free Suslin tree. Let
A be a large enough regular cardinal and let N be a countable elementary substructure of H())
containing as members T, k, (Q; : Tt < k), andP. Let § = N N w;. Assume that D € N is a dense
open subset of P, p € N NP has top level B, and A C dom(p) is finite. Let @ have height § with
unique drop-downs to B such that {p(t) : © € A} is separated on a | B. Then there exists some
g <p pin D N N whose top level is some ordinal y < § such that forallt € A,a | Bandad | y
are q(t)-consistent.

Proof. Let X be the set of all tuples b in the derived tree T3, p satisfying that for some ¢ <p p in

D,forallt € A,a | B and b are q(t)-consistent. Note that X € N by elementarity, and X is
dense open in 75,5 by Lemma 2.1. Since X' is dense open, fix y > B such that any member of T 4
whose elements have height at least y is in X'. By elementarity, we can choose y € N N w; = 6.
Thena | y € X, which by elementarity can be witnessed by some g € D N N. Clearly, ¢ is as
required. ]

We now develop a higher dimensional variant of the Key Property which will be used for pre-
serving Suslin trees.

Definition 2.3 (n-Key Property). Let n < w. The forcing poset P satisfies the n-Key Property if the
following statement holds. Assume that:

o< ,3 < wi;,

a = (ao, ...,aj_1) is an injective tuple consisting of elements of T, where | > n;

p € P has top level a, A € dom(p) is finite, and {p(t) : T € A} is separated on a;

i, ... ,in—1 <[ aredistinct and for each k < n, ci € Tg is above a;, .

Then for any q <p p with top level B, there exists some b= (bo, ...,bj_1) above d consisting of
elements of Tg such that:

(1) by, =ck forallk < n;

(2) forall T € A, a and b are q(t)-consistent.
Proposition 2.4 (Consistent Extensions for Sealing). Suppose that T is a free Suslin tree. Assume

that P has the n-Key Property, where n < w is positive. Let A be a large enough regular cardinal
and let N be a countable elementary substructure of H(A) containing T, k, (Q; : T < k), and P.
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Let§ = N Nwy. Let B < § and let ¥ = (xq, ..., Xn—1) have height B. Suppose that E € N is a
P-name for a dense open subset of the derived tree Tj.

Let p € N NP have top level y, where y > B. Suppose that @ = (aq, ...,a;_1) has height §,
where l > n, iy, ..., in—1 <[ aredistinct, and xy <t aj, for all k < n. Assume that A < dom(p)
is finite and { p(t) : T € A} is separated on a | y. Then there exists some r <p p in N with some top
level & such that r \Fp (ai,, ..., ai,_,) € E andforallt € A, a | B andad | £ are r(t)-consistent.

Proof. Let X be the set of all d = (do, . ..,d;—1) in the derived tree 77, satisfying that for some
r <p p with top level equal to the height of d ,
rle (digs ... di,_,) € E,

andforallt € A,a | y and d are r(t)-consistent. Note that X € N by elementarity.

We claim that X" is dense open in T3, To show that X" is dense, consider b= (ho, ... bi—1)
in T, whose elements have height { > y. By (D) (Extension), find ¢ <p p with top level { such
that forall T € A, d | y and b are q(t)-consistent. As {p(z) : T € A} is separated on a | y, (C)
(Persistence) implies that {g(t) : T € A} is separated on b.

Since E is forced to be dense open in Tz, fix r <p ¢ with some top level £ and ¢ = (co, ..., Cn—1)
above (bj,, ..., b;,_,) with some height p such that r I (co,...,ch—1) € E. By extending further
if necessary using (D) (Extension) and using the fact that E is forced to be open, we may assume
without loss of generality that £ = p > . Since P satisfies the n-Key Property, we can find
d = (do,...,d;—1) above b such that di, =ciforallk <nandforallt € 4, b and d are r(7)-
consistent. By (B) (Transitivity), forall T € 4, a | y and d are r(t)-consistent. Sob<deX.

To show that X' is open, suppose that d = (do,...,d;—y) is in X as witnessed by r, and let
é = (eg,...,e;_1) be above d of height £&. We will show that ¢ € X. By (D) (Extension), find
s <p r with top level £ such that for all T € A, d and @ are s(t)-consistent. Since E is forced
to be open and r IFp (dyy,....di,_,) € E, it follows that s IFp (€ig, ... €, ;) € E. By (B)
(Transitivity), for all T € A, a | y and € are s(t)-consistent. So ¢ € X.

Since X’ is dense open, we can fix some § > y such that any member of 7}, whose elements have
height at least £ is in X. By elementarity, we can choose £ in N Nw; = 8. Soa | £ € X, which by
elementarity can be witnessed by some r € N. So r IFp (aiy,....ai,_,) [ £ € E andforall 7 € 4,
a|yandd | £ are r(t)-consistent. Since E is forced to be open, r IFp (aig, ..., ai,_,) € E. O

In comparing the Key Property with the n-Key Property, note the absence in the latter of the set
t appearing in the former. Merging the two properties we get a natural strengthening of the n-Key
Property.

Definition 2.5 (Strong n-Key Property). Let n < w. The forcing poset P satisfies the n-Key Property
if the following statement holds. Assume that:

o 0 <f<w;
t C Tg finite;
da = (ay, ...,aj_1) is an injective tuple consisting of elements of T, where | > n;
p € P has top level a, A € dom(p) is finite, and {p(t) : T € A} is separated on a;
io,...,in—1 <l are distinct and for each k < n, ¢y € Tg is above a;, .

Then for any q <p p with top level B, there exists some b= (bo, ..., bj_1) above a consisting of
elements of Tg \ t such that:

(1) by, =ckforallk <n;
(2) forallt € A, a and b are q(v)-consistent.
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Observe that the Key Property is equivalent to the Strong 0-Key Property, and the 0-Key Property
is weaker than the Key Property. We note that the automorphism forcing of Section 5 satisfies the
1-Key Property but not the Strong 1-Key Property.

The following lemma is immediate.

Lemma 2.6. For any m < n < o, if P satisfies the n-Key Property then P satisfies the m-Key
Property, and if P satisfies the Strong n-Key Property then P satisfies the Strong m-Key Property
and the Key Property.

3. APPLICATION I: SPECIALIZING DERIVED TREES OF A FREE SUSLIN TREE

For the remainder of this section fix a natural number n > 1. We will develop a forcing poset
which, assuming that 7 is a free Suslin tree, specializes all derived trees of 7" with dimension n + 1
while preserving the fact that 7' is n-free. In the notation from Section 2, let k = w;.

3.1. Suitable Families of Specializing Functions.

Definition 3.1. An injective tuple a@ € T"*! of height o is minimal if for all B < «, d@ | B is not
injective.

Since T is normal, the height of any minimal tuple is a successor ordinal. So a tuple ¢ =
(ao, ... ,an) € T"*! is minimal if and only if it is injective, has some successor height 8 + 1, and
there existi < j <nsuchthata; [ B =a; | B.

Clearly, there are uncountably many minimal tuples in 7" %!, So the next lemma can be thought
of as a generalization of Kurepa’s theorem that 7 ® T is not Suslin.

Lemma 3.2. Leta = (ag,...,ay) and b = (bo, ..., by) be distinct injective tuples in T" 1 which
are both minimal. Then the derived trees T; and Ty are disjoint.

Proof. Let a have helght « and let b have height 8. If ¢ is a member of both derived trees, then
Cla=dand¢ | B = b. Since #* b a # B. Without loss of generahty, assume that ¢ < . Then
bla=(|B)a=C7C]|a=a. This contradicts the minimality of b since @ is injective. |

Lemma 3.3. Any derived tree of T with dimension n + 1 is a subtree of some derived tree T;, where
a is minimal.

Proof. Let b be an injective tuple in 7" %!, Let a be the least ordinal such that » | « is injective.
Since T has aroot, @ > 0, and since T is normal, « is equal to some successor ordinal y + 1. Then

[ (v + 1) is minimal and 7} < T 41D’ ]

So in order to specialize all derived trees of 7 with dimension n + 1, it suffices to specialize all
derived trees of the form T, where d € T7*1 is minimal. For the remainder of the section, fix an
enumeration (a° : T < w;) of all injective tuples in 7"+ which are minimal. For each 7 < o, let
T® =T, and let

UP=T'U{ceT":¢<a,}).
Note that the height of a tuple in the tree U* coincides with the heights in 7 of its elements. So

we will use U7 in the definition of our poset for specializing 7" to provide some simplifications in
notation.

Definition 3.4 (Specializing Functions). Let t < w; and B < w;. A specializing function on
Y1 (B+1)isany function f: U | (B + 1) — Q satisfying:
(1) foralla € dom(f), ifa < d, then f(d) = —1, and ifa € TT then f(a) > 0;
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() forall b and ¢ in T N dom(f), if b < ¢ then f(b) < £ (7).
In the above, we refer to 8 as the top level of f.

Leta < B < wy and T < w;y. If g is a specializing function on U | (B + 1), then we will
write g [ (@« + 1) for g [ (U* | (@ 4+ 1)), which is easily seen to be a specializing function on
U [ (@+1). If G = {g, : T € I}isan indexed family, where / C w; and each g, is a specializing
functionon UT | (B + 1), we will write G | (o + 1) for the indexed family {g,; [ (@ + 1) : T € I}.

Instead of having a single consistency relation, as is the case in the applications of Sections 4
and 5, for the specializing forcing we will have a consistency relation for each finite set of positive
rational numbers. Let QT = {g € Q : ¢ > 0}.

Definition 3.5 (Consistency). Leta < B < w; and t < wy. Let Q C Q7 be finite. Suppose that f
is a specializing functionon U™ | (B + 1).
(1) Let X C Tg be finite with unique drop-downs to a.. Then X | o and X are (f, Q)-consistent
ifforallq € Q, forany¢ € T*N X" if f(C | a) < q then f(C) < q.
(2) Leta = (ag, ...,am—1) be an injective tuple consisting of elements of Tg. Then a | p and
a are (f, Q)-consistent if {ay, ..., am—1} | @ and {aq, ...,am—1} are (f, Q)-consistent.

Note that if the set X in (1) has size less than n + 1, then consistency holds vacuously. Also,
observe that in (1), if consistency holds for X, then it also holds for any ¥ C X.
The following lemma is easy to check.

Lemma 3.6 (Transitivity). Leta < B <y < wjandt < wy. Let Q € Q7 be finite and let X C T,
be finite with unique drop-downs to . Suppose that f is a specializing function on U™ | (y + 1). If
Xlaand X | Bare (f | (B + 1)), Q)-consistent and X | B and X are (f, Q)-consistent, then
X [ aand X are (f, Q)-consistent.

In contrast to the other applications in Sections 4 and 5, we will not need any notion of separation
for the specializing forcing. So when we apply the results of Section 2, we will assume that the
separation assumptions made there hold automatically.

Definition 3.7 (Specializing Families). Let 8 < w;. An indexed family { f; : t € 1}, where [ C w;
is countable and each f; is a specializing function on UT | (B + 1), is called a specializing family
with top level B.

Definition 3.8 (Suitable Specializing Families). Suppose that G = {g. : © € I} is a specializing
Sfamily with top level y. We say that G is suitable if the following holds. Assume that:

ca<B=y

e BC I, RCQ, andt C Tg are finite sets;

® ay,...,aj_ are distinct elements of Ty, where | > n;

® ig,...,in—1 <[ aredistinct and for each k < n, cx € Tg \ t is above a;, .

Then there exist by, ... ,by—y in Tg \ t such that:

(1) a; <7 b; foralli <1;
(2) bi, =ck forallk <n;
(3) forallt € B, {ag,...,aj—1}and {by, ..., bj_1} are (g: | (B + 1), R)-consistent.

Clearly, if G is a suitable specializing family with top level y and £ < y,then G | (§ + 1) isa
suitable specializing family.

3.2. Constructing and Extending Suitable Families.

Lemma 3.9. Assume the following:
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® Yy <wys
o {fr : v € I}isasuitable specializing family with top level y;
o O C Qtisfinite, A C I is finite, and X C Ty is finite and has unique drop-downs to y.

Then there exists a suitable specializing family {g, : T € 1} with top level y + 1 satisfying:

(1) fy Cgcforalltel;
(2) forallt € A, X | 'y and X are (g, Q)-consistent.

Proof. For each v € I define g; [ (y + 1) = f;. We define the values of g, on (U%), 41, for all
T € I, in w-many stages, where at any stage we will have defined only finitely many values of g
for finitely many z € I. We also define finite sets X, € Ty41, Om C QT, and A4,, C I for each
m < w so that U,, Xm = Ty+1, Uy Om = QT, and | J,, Am = I. Our inductive hypothesis is
that for all m < w, forall t € I, and for alla € (UT), 41, if g-(a) was defined by stage m, then
T€Apanda e X+

Fix an enumeration (z, : m < ) of T, 41, an enumeration (g, : m < w) of Q*, and an
enumeration (7, : m < w) of I (with repetitions if [ is finite).

Stage 0: Consider t € Aandd € (U%),4+1 N X"*1, and we define g.(d). If @ < d, then let
g:(@) = —1. Suppose that @ € T*. Choose some positive rational number ¢ such that fz(a | y) <
g,and forall r € Q,if f;(a | y) < r, then g < r. This is possible since Q is finite. Now define
g:(@) =q.Let Xo = X, Qo = Q, and Ag = A. The inductive hypothesis clearly holds.

Stage m + 1: Let m < w and assume that we have completed stage m. In particular, we have
defined X,,, Am, and Q. Define X1 = X U {Zm}, Amt1 = Am U {tm}, and Qpy1 =
Om U{gm}. Consider t € Ayyq1 anda € (U%)y41 N X,',’lill Assuming that g; (@) has not already
been defined, we will specify its value now. If @ < a., let g;(@¢) = —1. Suppose thata € T°".
Choose some positive rational number ¢ such that f;(d | y) < ¢, and for all r € Q41, if
fe(@ 1 y) <r,thenqg < r. Now define g, (@) = q. This completes stage m + 1. Clearly, the
inductive hypothesis is maintained.

This completes the construction. Each g; is a specializing function on U® | (y + 2) such that
fr € g¢. By what we did at stage 0, forall t € A, X [ y and X are (g,, Q)-consistent. We claim
that {g, : T € I} is suitable. Solet B C I, R C QT,andt C Ty 41 be finite sets and leta < y 4 1.
Suppose that I > n, ay, ...,a;—; are distinct elements of Ty, ig,...,i,—1 < [ are distinct, and for
eachk <n,cr € Ty41 \ t is above a;, .

If @ < y, then applying the fact that { f; : © € I} is suitable, fix by, ...,b;—; in T, such that
a; <t by foralli <[, by = cx [ yforallk < n,and forall t € B, {ap,...,a;—1} and
{bo,...,bj_1} are (f¢, R)-consistent. On the other hand, if « = y, then let b; = q; forall i < [.
Choose m < o large enough so that R € (Q,,+1. Since T is infinitely splitting, we can choose
di >7 biinTy41\ (X, Ut)foreachi €\ {ip,...,in—1}. Forallk < n,letd; = cg. Then for
alli </l,d; e Ty41 \ 1.

We claim that for all t € B, {ag,...,a;—1} and {dyp,...,d;—1} are (g, R)-consistent, which
finishes the proof. Considerr € Randé € T*N{dy, ..., d;_;}* ! suchthat g (¢ | o) < r. We will
show that g, (¢) < r. Now g;(¢ | y) < r holds, trivially if « = y, and because {ao, ...,a;_} and
{bo,...,b;_1} are (fr, R)-consistent in the case that & < y. Since € has (n + 1)-many elements, it
must contain at least one element notin {¢ : k < n}. So € contains d; for some i € [\{ig,...,in—1}.
Hence, € contains some element not in X,,. By the inductive hypothesis, we did not define g, (&)
until some stage m’ > m. Since r € Opm+1 C Qnv, at stage m’ we defined g.(€) so that, if
f-(€]y)<r,theng.(e) <r.But fz(¢ | y) = g:(€ | y) <r,soindeed g.(¢) < r. O

Proposition 3.10. Assume the following:

) )/<8<Cl)1,'
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o {fr .t € I}isasuitable specializing family with top level y;
e O CQF, AC I, and X C Ty are finite;
e X has unique drop-downs to y.
Then there exists a suitable specializing family {g, : t € I} with top level § satisfying:

(1) fr S gcforalltel;
(2) forallt € A, X | y and X are (g, Q)-consistent.

Proof. The proof is by induction on §, where the base case and the successor case follow easily from
Lemma 3.9 and the inductive hypothesis. Assume that § is a limit ordinal and the statement holds
for all B such that y < 8 < §. We will prove that the statement holds for §.

We fix several objects in order to help with our construction. Fix an enumeration (g, : m < w)
of Q%, an enumeration (z,, : m < w) of T, and an enumeration (z,, : m < w) of I (with repetitions
if I is finite). Fix an increasing sequence (y,, : m < w) of ordinals cofinal in § with yo = y. Fix a

surjection / from w onto the set of all tuples of the form (¢, B, R, d, f, ), where:
t CTs, B < I,and R C Q7 are finite;

e d = (ag,...,a;—1) is an injective tuple, where [ > n, consisting of elements of T, for
some o < §;

o= (io, ..., In—1) is an injective tuple consisting of numbers less than /;

e ¢ = (co,...,cn—1) is a tuple consisting of elements of T5 \ ¢ such that a;, <7 cx for all
k <n.

We will define by induction in w-many stages the following objects:

- a subset-increasing sequence (X, : m < w) of finite subsets of Ty with union equal to Ty;

- a subset-increasing sequence (A, : m < w) of finite subsets of / with union equal to /;

- a subset-increasing sequence (Q,, : m < w) of finite subset of Q whose union is equal to
Q*;

- a strictly increasing sequence (8,, : m < w) of ordinals cofinal in §;

- for each m < w, a suitable specializing family { f/ : © € I} which has top level §,, and
satisfies that f; C fI* C ff’”/ forall t € I and m’ > m;

- functions 2™ : (X,,)"T' N (U%)s — Qforallm < w and T € Ap.

The following inductive hypotheses will be maintained for all m < w:

(a) X, has unique drop-downs to &,,;

(b) forall T € A, Xm | 8m and Xy | 81 are (f/"1, Qm)-consistent;

(c) forall T € Ay and d € (X,n)" T N (U%)s,if G < d, then K™ (@) = —1, and if & € T7 then
M@ | 8m) < h7(a);

(d) forallt € Ay and d € (Xp)" T N (UY)s, K1 (a) = h™(a).

Stage 0: Let Xo = X, A9 = A, Qo = Q,and §o = y. Foreach t € I, let f0 = f,. Consider
tedanda € X"t N (U7)s, and we define h2(d). If @ < dy, then let h%(d@) = —1. Suppose that
a € TT. Define h?(a) to be some positive rational number r such that f;(@ | y) < r and for all
q € Q,if fr(a | y) < qthenr < g. This is possible since Q is finite.

Stage m + 1: Let m < w and assume that we have completed stage m. In particular, we have
defined X, A, O, S, { f" 1 v € 1}, and {AT : v € Ay} satisfying the required properties.

Let h(m) = (t,B,R,ﬁ,;, ¢), where @ = (ap,...,a;_1) consists of elements of T,, [ > n,
i = (io, ..., in-1), and ¢ = (co,...,Cn—1). Fix 841 < & greater than &8, Ym+1, and o such
that the set X, U {z;} U {cx : k < n} has unique drop-downs to §,,+1. It follows that co |
Sm+1>-+-2Cn—1 | Smt1 are not in (X U {zm}) \ {ck : kK < n}) | 8m+1. Apply the inductive
hypothesis to find a suitable specializing family { //"*1 : 7 € I} with top level §,,41 satisfying:
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o fmC fmtlforallr €I
o forall T € Am, Xm | 8m and X [ Smt1 are (f7F, O U Ufran(h?) : 0 € Am})-
consistent.

Applying the fact that { f/*! : ¢ € I} is suitable, fix by, ..., b;_; in

Tsyir \ (X Uizm}) \ {ck 2k <n}) [ 6m+1)

such that a; <7 b; foralli <1[,b;, = cg [ 6mq1 forallk < n,andforall v € B, {ap,...,a;—1}
and {bg,...,bj_1} are (f/"T!, R)-consistent. For each i € I\ {ix : k < n} pick some d; €
Ts\ (X;n Ut) above b;. Also, letd;, = ci forallk < n. Define X111 = X, Uldg 1 k <[} U{z,},
Om+1 = 0m URU{gm},and Ay = A U B U {15, }. Note that X;,,+1 has unique drop-downs
t0 8mt1-

Consider T € Ayyq1 anda € X251 N (UT)s, and we define A7 T1(@). If T € A,, andd € X211,
then h™(a) is already defined, and we let A T1(a) = h™(a). Assume that either t ¢ A4,, or
a ¢ X't Ifa < dg, then let ""t1(@) = —1. Suppose that @ € T®. Define i *1(d@) to
be some positive rational number r such that f**1(a@ | 8u4+1) < r and for all ¢ € Qpp1, if
S +(G | §p1) < g thenr < g. This is possible since Q1 is finite.

Suppose that é € {dy, ...,d;_;}"*T'NT*. Since & has (n+1)-many elements and {dy, ..., d;_}N
Xm C {ck : k < n}, € contains a member which is not in X,,. By construction, for all z € B and
forallg € R,if f/"T1(€ | §m+1) < ¢ then W™ F1(€) < g. Also, for all T € B, {ao,...,a;—;} and
{bo,....bi_1} are (f/"1, R)-consistent. So forall T € B and for all ¢ € R, if f"T1(¢ | o) < g
then K™ T1(2) < q.

This completes stage m + 1. It is routine to check that the required properties hold.

This completes the construction. For all T € 1, let

h,=U{h’t”:m<w,teAm}.

Then /. is a function from (U%)s to Q since | J,, Xm = Ts5, U,, Am = I, and by inductive
hypothesis (d). Let

gZZU{fthm<a),‘C€Am}Uhr_

Inductive hypothesis (c) easily implies that for all 7 € I, g, is a specializing function on U® |
(6 4+ 1). Obviously, f; € g, forall r € /. By what we did at stage 0, forallt € A4, X | y and X
are (g, Q)-consistent.

It remains to prove that {g, : T € I} is suitable. Let @ < &, and suppose that B € I, R € QT,
and ¢t C Ty are finite. Assume that/ > n, @ = (ao,...,a;—1) is an injective tuple consisting of
elements of Ty, and io,...,i—1 < [ are distinct. For each k < n, let cx € Ts \ t above a;,.
Fix m < w such that h(m) = (¢, B, R, a, ;, ¢). Reviewing what we did in case m + 1, there are
do,....dj—1in T5 \ t such thata; <7 d; foralli <[, d;, = cg forallk <n,andforallt € B
and forall ¢ € R, if g.(¢ | @) = f™T1(é | o) < q then g.(¢) = h™T1(&) < ¢. In other words,
forall T € B, {ag,...,a;—1} and {dy, ..., d;—1} are (g, R)-consistent. O

Proposition 3.11. Assume the following:

o ¥y < 8 < wy;

o {g. : 1 € I} isasuitable specializing family with top level §;

e 0 € w1 \ I and f5 is a specializing function with top level y;
{fotU{g: [ (y +1): 1 € I} is suitable;
e O C QT and X C Ty are finite and X has unique drop-downs to .

Then there exists a specializing function gs with top level § such that:
(1) fo < gos
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(2) {g::t €l U{o}} is suitable;
(3) X [ yand X are (go, Q)-consistent.

The proof is a variation of the proofs of Lemma 3.9 and Proposition 3.10. We leave it as an
exercise for the interested reader.

3.3. The Forcing Poset for Specializing Derived Trees.

Definition 3.12. For each t < wy, let Q; be the forcing poset whose conditions are all specializing
Sfunctions on UT | (a + 1), for some o < wy, ordered by q <q, pifp Cq. If p € Qrisa
specializing function on U | (a + 1), then we refer to a as the top level of p.

Definition 3.13. Let P be the forcing poset whose conditions are all functions p satisfying:

(1) the domain of p is a countable subset of w;;

(2) there exists an ordinal o < w1, which we call the top level of p, such that for all T €
dom(p), p(t) is a specializing function on UT | (a + 1);

(3) the family {p(z) : © € dom(p)} is suitable.

Let g < p if dom(p) C dom(q) and for all T € dom(p), p(r) < q(7).

Definition 3.14 (Consistency). Let o < 8 < w1 and t < w1. Let p € Q have top level B. Let
0 C QT be finite.
(1) Let X C Tg be finite with unique drop-downs to a. We say that X | o and X are (p, Q)-
consistent if forall r € Q, forany¢ € T* N X" if p(¢ | o) < r then p(¢) <.
(2) Letd = (ao., . ..,aj—y) be an injective tuple consisting of elements of Tg. We say that a | o
and d are (p, Q)-consistent if {ag, ...,a;_1} | « and{ay, ...,a;_1} are (p, Q)-consistent.

We have now defined for the subtree forcing the objects and properties described in Section 2,
where we can consider each statement of Section 2 about consistency as relative to a fixed finite set
0 cQt.

We now work towards verifying properties (A)-(E) of Section 2. (A) is clear. (B) (Transitivity)
follows from Lemma 3.6 and (C) (Persistence) is automatically true. The next lemma implies (D)
(Extension).

Lemma 3.15 (Extension). Leta < 8 < wy, let O € Q7 be finite, and let X < Ty be finite with
unique drop-downs to . Suppose that p € P has top level « and A € dom(p) finite. Then there
exists some q < p with top level B and with the same domain as p such that forallt € A, X | «
and X are (q(t), Q)-consistent.

Proof. Immediate from Proposition 3.10. ]

Finally, (E) (Key Property) holds by the next proposition.

Proposition 3.16 (Strong n-Key Property). Let o < B < w1, lett € Tg be finite, and let p € P
have top level . Suppose that ay, . ..,a;— are distinct elements of Ty, where | > n. Let Q C Qt
and A € dom(p) be finite sets. Assume that iy, ...,i,—1 < | are distinct, and for each k < n,
¢k € Tg \ t is above a;,. Then for any g < p with top level B, there exist by, ..., by in Tg \ t
such that a; <t b; foralli <1, b, = ci forallk < n, and forall T € A, {agp,...,a;_1} and
{bo,...,bj_1} are (q(t), Q)-consistent.

Proof. Immediate from Definition 3.8 letting G = {¢(t) : t € dom(q)}, which is suitable by the
definition of P. O
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In other words, P satisfies the Strong n-Key Property essentially by definition. While this may
seem like cheating, it is justified by the constructions of Subsection 3.2.
The next lemma follows immediately from Propositions 3.10 and 3.11.

Lemma 3.17. Forany t < wy, p < w1, and p € P, there exists some g < p with T € dom(q) and
q has top level at least p.

3.4. Basic Properties of the Specializing Forcing. In this subsection we will prove, assuming that
T is a free Suslin tree, that the forcing poset P is totally proper and forces that 7" is n-free. Note
that under CH, P has cardinality wy, so it preserves all cardinals. Also, by a density argument using
Lemma 3.17, IP specializes all derived trees of 7' with dimension n + 1.

Theorem 3.18. Suppose that T is a free Suslin tree. Then the forcing poset P is totally proper and
forces that T is n-free.

Proof. Let X be an injective tuple in 7" and let E be a P-name for a dense open subset of the
derived tree Tj. Let A be a large enough regular cardinal. Suppose that N is a countable elementary
substructure of H (1) containing as members T, (Q; : T < w1), P, and X. Let § = N Nw;. We will
prove that for any p € N N P, there exists a total master condition » < p over N such that r forces
that every tuple in 73 whose members have height § is in E. Tt easily follows that P is totally proper
and forces that every derived tree of T with dimension # is Suslin.

Solet N, 8, and p be given as above, and let 8 be the top level of p. To help with our construction,
we fix the following objects:

an increasing sequence (yy, : m < ) of ordinals cofinal in § with yo = B;

an enumeration (z,, : m < w) of Tg;

an enumeration {¥™ : m < w) of all of the tuples in Tz whose members have height §;
an enumeration {t,, : m < w} of §;

an enumeration (D, : m < w) of all dense open subsets of P which lie in N.

Fix a surjection /2 from w onto the set of all tuples of the form (¢, B, R, a, 7, ¢), where:
et CTs, BC§,and R C Q7 are finite;

e d = (ag,...,a;_1) is an injective tuple, where [ > n, consisting of elements of Ty, for
some o < §;

°oi= (io, ..., In—1) is an injective tuple consisting of numbers less than /;

e ¢ =(co....,cn—1) is a tuple consisting of elements of Ty, where a;, <7 ¢k forallk < n.

We will define by induction in w-many stages the following objects:

a subset-increasing sequence (X, : m < w) of finite subsets of Ts with union equal to Ty;

a subset-increasing sequence (A, : m < w) of finite subsets of § with union equal to &;

- a subset-increasing sequence (Q,, : m < ) of finite subset of Q with union equal to Q;

a strictly increasing sequence (8, : m < w) of ordinals cofinal in §;

- a descending sequence (p, : n < w) of conditions in N N P, where pg = p and each p,
has top level §,;

- functions 2™ : (X,,)"T' N (U%)s — Qforallm < w and t € Ap.

The following inductive hypotheses will be maintained for each m < w:

(a) X, has unique drop-downs to §,, and A,, < dom(py,);

(b) forall t € A, X | O and Xy, | 841 are (Prm+1(7), Qm)-consistent;

(c) forall T € Ay, and forall @ € (X,)"t' N (U")s, if d < d, then ™ (@) = —1, and if
a € T* then pp(t)(a [ §m) < W7 (a);

(d) forall T € Ay, and foralld € (Xp)" ' N (U%)s, K™ (@) = h™(a).
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Stage 0: Let Xo = 0, A9 = @, Q¢ = 0, 8o = B, and py = p. The required properties clearly
hold.

Stage m + 1: Let m < w and assume that we have completed stage m. In particular, we have
defined X, A, Om, Om. pm. and b7 forall € A, satisfying the required properties. Let 4(m) =

(t,B,R.,d,i,), where @ = (ag, . ..,a;_) consists of elements of Ty, | > 1,1 = (ig, ... in-1),
and ¢ = (co,...,cn—1). Fix p < § larger than &,,, ym+1, and & such that

Xr/n =X U{zm,co,...,cn—1} UL

has unique drop-downs to p. Stage m 4 1 will consist of three steps.

Step 0: Apply Proposition 2.2 (Consistent Extension Into Dense Sets) and Lemma 3.17 to fix
some py.0 < pm in N N D, with some top level §,, o which is greater than p such that B U {z,,} <
dom(py,0) and forall T € Apm, Xim | 8 and Xy | Sm 0 are (Pim,0(x), OmUJ{ran(h??) : 0 € Am})-
consistent.

Step 1: Apply Proposition 2.4 (Consistent Extensions for Sealing) to fix some p;4+1 < pm,o in

N N P with some top level §,,+1 such that p,,+1 IFp y™ € E and forall T € Ay, X [ Om.0 and

X | 8m+1 are (Pm+1(1), Qm U U{ran(h?) : o € A,,})-consistent.
Step 2: Note that by unique drop-downs, ¢ [ §m+1,...,Cn—1 | Om+1 are not in

(X \ {co. o cnm1}) [ S
Applying the fact that {p,,+1(7) : T € dom(py,+1)} is suitable, fix by, ..., b;_; in

Ts,y \ (Xp \{co.- ... Cno1}) | Smt1)

such that a; <7 b; foralli <1[,b;, = cg [ Opmq1 forallk < n,andforall v € B, {ap,...,a;—1}
and {by,...,b;_1} are (pm+1(7), R)-consistent. Foreachi € [ \ {ix : k < n} pick some d; €
Ts \ X,, above b;. Also, let dj, = ci for all k < n. Note that for all i < [, d; ¢ t. Define
X1 =X, U{d; 11 <}, Amy1 = Am U BU {1y}, and Qi1 = Om U R U {gm}. Note that
Xm+1 has unique drop-downs to 8,4+ 1.

Consider 7 € A4 andd € X251 N (UT)s, and we define A7 1(@). If T € A,y andd € X2 F1,
then 4™ (a) is already defined, and we let A *t1(@) = h™(a). Assume that either T ¢ Ay, or
a¢ X't Ifa < d, then let A1 (d) = —1. Suppose that @ € TT. Define h"*1(a) to be
some positive rational number r such that p,,4+1(t)(@ | §m+1) < r and for all ¢ € Q1. if
Pm+1(t)(@ | 8m+1) < g then r < g. This is possible since Q,,+1 is finite.

Suppose that é € {dy, ....d;_; "' NT?*. Since € has (n+1)-many elements and the intersection
of {dy,...,d;_1} and X,, is a subset of {cg : k < n}, € contains a member which is not in X,,. By
construction, for all T € B and for all ¢ € R, if pp+1(7)(€ | Sm+1) < ¢ then A1 (é) < g. Also,
forall T € B, {ag,...,a;—1} and {by, ...,b;_1} are (pm+1(t), R)-consistent. So for all T € B and
forall ¢ € R, if pm+1(7)(€ | @) < g then "1 (&) < q.

This completes stage m. It is routine to check that the required properties hold.

This completes the construction. We define a condition r with top level § and domain § as follows.
For all T € §, let

he = JIh? :m < 0. T € Ap}.

Then k. is a function from (U7)s to Q since | J,, Xm = Ts, |,, Am = &, and by inductive hypoth-
esis (d). Now let

r(@) = J{pm() :m < 0, T € dom(pm)} U by

Using inductive hypothesis (c), it is easy to check that each r(7) is a specializing function on (U?) |
G+ 1.
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In order to prove that r is a condition, we need to show that {r(t) : 7 € §} is suitable. Let B C §,
R € Qt,and t C Ty be finite. Suppose that o < 8,1 > n, ay, ..., a;—; are distinct elements of
Ty, ig,...,in—1 < [ are distinct, and for each k < n, ¢y € T3 \ t is above a;, . Fix m such that
h(m) = (B,R,t,ﬁ,?, ¢), where a = (ag,...,a;_1), i = (io,....in—1), and ¢ = (co,...,Cn—1).
Reviewing what we did in case m+ 1, there are dy, . . ., d;j—1 in T\t such thata; <r d; foralli <,
di, = cg forallk <n,andforallt € Bandforallg € R,if r(z)(€ | @) = pmt1(x)(€ [ @) < g
then r(7)(€) = h™*T1(€) < g. In other words, for all T € B, {ao,...,a;—1} and {do, ..., d;_1} are
r(t)-consistent.

Sor € Pand clearly r < p, for all n < w. By our bookkeeping, r is a total master condition
over N and r forces that level § of the derived tree T is contained in E. g

Corollary 3.19. Assuming that T is a free Suslin tree, the forcing poset P forces that T is an n-free
Suslin tree all of whose derived trees with dimension n + 1 are special. If CH holds, then P preserves
all cardinals.

4. APPLICATION II: ADDING SUBTREES OF A FREE SUSLIN TREE

In this section we give our second application of the abstract framework of Section 2: adding
almost disjoint uncountable downwards closed subtrees of a free Suslin tree. In this example we
will make use of most of the main ideas of the article, but in a form which is simpler and easier
to understand than the automorphism forcing of Section 5. One of the reasons for this relative
simplicity is that separation for a tuple in the subtree forcing depends on a property of the elements
of the tuple considered one at a time, rather than on how the elements of the tuple relate to each other
(compare Definitions 4.4 and 5.3). We recommend that the reader use this section as a warm-up for
Section 5.

4.1. Consistency and Separation for Subtree Functions.

Definition 4.1 (Subtree Functions). Let § < w;. A function g : T | (B + 1) — 2 is called a subtree
functionon 7' [ (B + 1) if:
(1) the value of g on the root of T equals 1;
(2) ifg(a) = 1 thenforally <htr(a), gla [ y) =1;
(3) foralla € T | (B + 1) and for any & with hty(a) < & < B, there exist infinitely many
b € Tg above a such that g(b) = 1.

In the above, we refer to B as the top level of g.

If g is a subtree functionon T [ (B+1) and o < B, we will write g | (a+1) forg [ (T | (¢+1)),
which is easily seen to be a subtree functionon 7 | (o + 1). If G = {g, : T € I} is an indexed
family of subtree functions on 7 | (B + 1), we will write G | (@ + 1) for the indexed family
{ge T (@+1):tel}

Definition 4.2 (Consistency). Leta < f < wy andletg : T | (B + 1) — 2 be a subtree function.

(1) Let X C Tg be finite with unique drop-downs to a. We say that X | o and X are g-
consistent if forall x € X, g(x [a) = 1 iff g(x) = 1.

(2) Letd = (ao. ..., an—1) be an injective tuple consisting of elements of Tg. We say thatd | «
and a are g-consistent if foralli < n, g(a; | o) = 1 iffg(a;) = 1.

Note that in (1) above, the sets X | o« and X are g-consistent if and only if for all x € X,
g(x [ @) = 1 implies that g(x) = 1. For the reverse implication follows from (2) of Definition 4.1
(Subtree Functions). A similar comment applies to (2).

The following lemma is easy to check.
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Lemma 4.3 (Transitivity). Let o < B < y < w; and let X C T, be a finite set with unique
drop-downs to a. Let g be a subtree functiononT [ (y +1). If X [aand X [ Bare (g [ (B+1))-
consistent and X | B and X are g-consistent, then X | a and X are g-consistent.

Definition 4.4 (Separation). Let @ < w;i. Suppose that G = {g. : t € I} an indexed family of
subtree functions on T | (a + 1) and X C T,. We say that G is separated on X if for all x € X
there exists at most one © € I such that g.(x) = 1. We say that G is separated if it is separated on
Ty.

Note that separation is defined for indexed families of subtree functions, rather than for sets
of subtree functions. This is required in order for the subtree forcing of Subsection 4.3 to satisfy
property (C) (Persistence) from Section 2.

Lemma 4.5 (Persistence). Let o < 8 < wy. Suppose that G = {g. : © € 1} an indexed family of
subtree functionsonT | (B+1). Let X C Ty. If G | (a + 1) is separated on X, then G is separated
oni{y € Tg : y [ a € X}. In particular, if G | (o + 1) is separated, then G is separated.

Proof. Consider y € Tg suchthat y [ « € X. By (2) of Definition 4.1 (Subtree Functions), if t € 1
and g;(y) = 1,then g.(y [ ) = 1. Since G | (@ + 1) is separated on X, there exists at most one
such 7. O

Proposition 4.6 (Key Property). Let @ < < w;. Suppose that ay, . . ., an—1 are distinct elements
of Ty and G = {g, : © € I} is an indexed family of subtree functions on T | (B + 1) such that
G | (¢ + 1) is separated on {a, . ..,an—1}. Lett C Tg be finite. Then there exist by, ..., b,_1 in
Tg \ t such that a; <t b; for alli < n and for all T € I, {ao,...,an—1} and {by,...,by_1} are
g.-consistent.

Proof. Consideri < n and we will choose b;. If there does not exist any T € [ such that g, (a;) = 1,
then let b; be an arbitrary element of Tg \ ¢ above a;. This is possible since T is infinitely splitting.
Otherwise by the separation assumption, there exists a unique t € [ such that g;(a;) = 1. By (3) of
Definition 4.1 (Subtree Functions), there are infinitely many b € Tg above a; such that g.(b) = 1.
So we can pick some b; € Tg \ t above a; such that g;(b;) = 1. Now note that for any = € I and
i <n,ge(a;) = 1implies that g, (b;) = 1. O

4.2. Constructing and Extending Subtree Functions.

Proposition 4.7. Assume the following:
oy < :B < wip;,
o X C Tg is finite and has unique drop-downs to y;
{fr : T € I} is a non-empty countable collection of subtree functionson T | (y + 1);
o A C [ is finite.
Then there exists a family {g. : © € I} of subtree functions on T | (B + 1) satisfying:
(1) frSgeforaltel;
(2) forallt € A, X | y and X are g.-consistent;
(3) if{fr: 1 € A} is separated on X | y, then {g, : T € 1} is separated.

Proof. We begin by defining a family { f;* : © € I} of subtree functions on 7' | (y + 2). For each
tel,let fF [ (y+1) = fr. Foreveryt € Aand x € X | (y + 1), define f7(x) = 1if
fe(xTy)=1and ff(x) =0if fr(x | y) =0.Foreveryr € I \ Aand x € X | (y + 1), define
fr+ (x) =0.

For each a € T,, fix a partition {Z, ; : T € I} of the set of immediate successors of a minus the
elements of X [ (y 4 1) into infinite sets. This is possible since X is finite, / is countable, and T is
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infinitely splitting. Consider b € Ty, 41 \ (X [ (y + 1)), and let a be the immediate predecessor of
b. Fix T € I such thatb € Z, .. Define ;7 (b) = 1if f;(a) = 1 and f,7(b) = 0if f;(a) = 0.
For each o € I different from 7, define £, (b) = 0.

It is easy to check that each f,t is a subtree functionon 7' | (y + 2) and forallt € A, X |y
and X | (y + 1) are f;"-consistent. Suppose that { f; : T € A} is separated on X | y, and we will
prove that { /7 : © € I} is separated. Consider b € T,y and let a be its immediate predecessor.
Ifbe X | (y+1),thena € X | y, so by separation there exists at most one T € A such that
fz(@) = 1. So by construction, there exists at most one T € A such that f,*(b) = 1, and for all
oel\A, f;f(b)=0.1fb € Ty11 \ (X | (y + 1)), then for some t € I, b € Z, .. By definition,

~F(b) = 1 implies 0 = 7. So there is at most one T € I such that f7(b) = 1.

If B = y + 1, then we are done, so assume that y +1 < . Lett € I. Define g, | (y +2) = f,F.
Consider b € T | (B + 1) such that hty(b) > y + 1. Define g.(b) = 1if f;H (b [ (y +1) =1
and g.(b) = 0if fr(b | (y + 1)) = 0. Itis easy to check that each g, is a subtree function. If
{fr 17 € A}is separated on X | «, then {f;" : v € I} is separated. By Lemma 4.5 (Persistence),
{gr : T € I}1is separated. |

The following variation of Proposition 4.7 will be used in Subsection 4.5 for showing that the
forcing poset for adding subtrees to a free Suslin tree does not add new cofinal branches of any
w1 -tree in the ground model.

Lemma 4.8. Assume the following:

® Yy <wys
o C and D are disjoint finite subsets of Ty, 1, each with unique drop-downs to y, such that
Cly=Dly;

o {f; : 1 € I}isanon-empty countable collection of subtree functionson T | (y + 1);
o A C [ isfinite and { f; : T € A} is separated on C | y.
Then there exists a family {g, : T € I} of subtree functions on T | (y + 2) satisfying:
(1) fr Sgeforalrtel;
(2) forallt € A, C | y and C are g-consistent and D | y and D are g,-consistent;
(3) {g::t € A} is separated on C U D.

Proof. Foreach t € I, define g; [ (y +1) = f;. Forevery x € C U D and t € A, define
g:(x)=1if fr(x [ y) =1land g.(x) =0if f;(x | y) =0. Foreveryx e CUD andt € I \ A4,
define g;(x) = 0. Forany b € T,,41 \ (C U D) and v € I, define g.(b) = 1if fz(b [ y) =1 and
ge(b) =0if fz(b [y) =0.

It is easy to check that each g; is a subtree function and f; € g,. Clearly, forallt € A,C [y
and C are g.-consistent and D [ y and D are g.-consistent. To show that {g; : T € A} is separated
on C U D, considerx € CUD. Thenx [ y € C | y, so there is at most one t € A such that
f:(x [ y) = 1. Since g.(x) = 1 implies f;(x [ y) = 1 for any 7 € I, there is at most one t € A
such that g;(x) = 1. O

4.3. The Forcing Poset for Adding Subtrees.

Definition 4.9. Let Q be the forcing poset whose conditions are all subtree functionson T | (@ +1),
for some o0 < wy, ordered by q <q p if p € q. If p € Q is a subtree functionon T | (a + 1), then
« is the top level of p.

Definition 4.10. Let P be the forcing poset whose conditions are all functions p satisfying:

(1) the domain of p is a countable subset of k;
(2) there exists an ordinal o < w1, which we call the top level of p, such that for all T €
dom(p), p(v) is a subtree functionon T | (¢ + 1).
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Let g < p if dom(p) C dom(q) and for all T € dom(p), p(t) € q(7).

Definition 4.11 (Consistency). Let o < B < w; and let g € Q.
(1) Let X C Tg be finite with unique drop-downs to a. We say that X | a and X are g-
consistent if forall x € X, g(x [ @) = 1 iffq(x) = 1;
(2) Letd = (ao. ..., an—1) be an injective tuple consisting of elements of Tg. We say thatd | «
and a are g-consistent if for alli < n, q(a; | ) = 1iffq(a;) = 1.
Definition 4.12 (Separation). Let o < w;. Suppose that p € P has top level o and A C dom(p).
(1) Let X C Ty. We say that {p(t) : T € A} is separated on X if for all x € X, there exists at
most one T € A such that p(t)(x) = 1. And {p(t) : T € A} is separated if {p(7) : T € A}
is separated on T,
(2) Let X = (xg,...,Xn—1) be an injective tuple consisting of distinct elements of a. Then
{p(r) : T € A} is separated on X if {p(7) : T € A} is separated on {xy, ..., Xp—1}.

Observe that if {p(t) : T € A} is separated on X, then forany B C AandY C X, {p(r) : 7 €
B} is separated on Y. We will use this fact implicitly going forward.

We have now defined for the subtree forcing the objects and properties described in Section 2,
where we let Q; = Q for all T < k. We now work towards verifying properties (A)-(E) of Section
2. (A) is clear. (B) (Transitivity) follows from Lemma 4.3. The next lemma implies (C) Persistence:

Lemma 4.13 (Persistence). Let @ < < w;. Suppose that p € P has top level o, ¢ < p has top
level B, X C Ty has unique drop-downs to o, and A € dom(p). If {p(z) : T € A} is separated on
X | «, then{q(t) : T € A} is separated on X.

Proof. Immediate from Lemma 4.5 (Persistence) letting G = {¢(t) : T € A}. |
The next lemma implies (D) (Extension).

Lemma 4.14 (Extension). Let o < 8 < wy and let X C Tpg be finite with unique drop-downs to a.
Let p € P have top level « and let A € dom(p) be finite. Then there exists some q < p with top
level B and with the same domain as p such that for all t € A, X | a and X are q(t)-consistent.

Proof. Immediate from Proposition 4.7 (ignoring conclusion (3)). O
Finally, (E) Key Property holds by the next proposition.

Proposition 4.15 (Key Property). Let « < f < w;. Suppose that ay,...,an—1 are distinct el-
ements of Ty, p € P has top level &, A C dom(p) is finite, and {p(t) : © € A} is separated

on{aop,...,an—1}. Then for any g < p with top level B and any finite set t < Tpg, there exist
bo,...,by—1 in Tg \ t such that a; <t b; for alli < n, and for all T € A, {ag,...,an—1} and
{bo,...,by—_1} are q(t)-consistent.

Proof. Immediate from Proposition 4.6 letting G = {q(t) : T € A}. ]

This completes the verification of properties (A)-(E) from Section 2 for the subtree forcing. We
are now free to apply Proposition 2.2 (Consistent Extensions Into Dense Sets).

Definition 4.16 (Separated Conditions). A condition p € P is separated if {p(t) : T € dom(p)} is
separated on Ty, where o is the top level of p.

Lemma 4.17 (Separated Conditions are Dense). The set of separated conditions is dense in P. In
fact, let o < B < w1 and let X C Tg be finite with unique drop-downs to a. Suppose that p € P
has top level a, A € dom(p) is finite, and {p(t) : T € A} is separated on X | o. Then there exists
some q < p with top level B and having the same domain as p such that q is separated and for all
1€ A, X [ aand X are q(t)-consistent.
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Proof. The second part follows immediately from Proposition 4.7. The first statement follows from
the second statement letting X = 0. (]

Lemma 4.18 (Strong Persistence). Let ¢ < § < w1. Suppose that p € P has top level «, X C Ty,
A € dom(p), and {p(v) : v € A} is separated on X. LetY ={y € Tg : y | o € X}. Then for
any g < p with top level B, {q(t) : T € A} is separated on Y. In particular, if {p(t) : T € A} is
separated, then {q(t) : T € A} is separated. And if p is separated, then q is separated.

Proof. Immediate by Lemma 4.5 (Persistence) letting G = {¢(t) : T € A}. O

Lemma 4.19. Let B C « be countable and let p < wy. Let D be the set of conditions r € P such
that the top level y of r is at least p, B C dom(r), and {r(t) : t € B} is separated. Then D is
dense open.

Proof. To show that D is dense, consider p € P with top level @. Define p* with domain equal
to dom(p) U B so that p* | dom(p) = p and for all t € B \ dom(p), p*(r)(x) = 1 for all
x €T ] (¢+1). Then p* € Pand p* < p. Applying Lemma 4.17 (Separated Conditions are
Dense), letting X = @, find ¢ < p* with top level at least p such that ¢ is separated. Then g € D.
For openness, let r < g where g € D. We will show that r € D. Let g have top level £ and let r
have top level y. Sinceq € D andr < g, B € dom(r) and y > p. As q is separated, {g(t) : T € B}
is separated. By Lemma 4.18 (Strong Persistence), {r(t) : t € B} is separated. Sor € D. O

4.4. Basic Properties of the Subtree Forcing. In this subsection we will prove, assuming that T
is a free Suslin tree, that the forcing poset PP is totally proper and adds a sequence of length x of
uncountable downwards closed infinitely splitting normal subtrees of T'. Also, assuming CH, P is
wz-c.C.

The next proposition establishes the existence of total master conditions over countable elemen-
tary substructures. The additional part of the proposition concerning the tuples ¢ and d will be used
in the next subsection.

Proposition 4.20 (Existence of Total Master Conditions). Suppose that T is a free Suslin tree. Let
A be a large enough regular cardinal and assume that N is a countable elementary substructure of
H (L) which contains as elements T, k, Q, and P. Let § = N N wy.

Suppose that p € N NP has top level a, X is an injective tuple consisting of elements of Ty,
A C dom(p) is finite, and {p(t) : T € A} is separated on X. Let ¢ and d be tuples of height § each
above X such that ¢ | (o« + 1) and dl (a + 1) are disjoint.

Then there exists a total master condition ¢ < p over N with top level § and with domain equal
to N Nk such that for all T € A, X and ¢ are q(t)-consistent and X and d are q(t)-consistent.

Proof. Fix an increasing sequence (y, : n < w) of ordinals cofinal in § with Y9 = «, and fix an
enumeration (D, : n < w) of all of the dense open subsets of P which lie in N. Fix a surjection
g :w — (T | 8) x (N N k) such that every element of the codomain has an infinite preimage. Let
C consist of the elements of ¢ and let D consist of the elements of d.

We will define the following objects by induction in w-many steps:

a subset-increasing sequence (X, : n < w) of finite subsets of T;

a subset-increasing sequence (A4, : n < w) of finite subsets of N N « with union equal to
N Nk;

a non-decreasing sequence (8, : n < w) of ordinals cofinal in §;

a decreasing sequence (p, : n < w) of conditions in N N P such that py = p, and for all
n < w, the top level of py, is 6,;

for eachn < w and 7 € A,, a function i, ; : X,, — 2.
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In addition to the properties listed above, we will maintain the following inductive hypotheses for
alln < w:

(1) X, has unique drop-downs to §,;

(2) A, € dom(py,) and {p,(t) : T € A} is separated on X, [ §,;
(3) forall T € Ay, X, | 8, and X, | 8,41 are p,+1(7)-consistent;
(4) forallt € A, and x € X,,,

hn,t(x) =1 << pa(0)(x[8s) =1

Stage 0: Apply Lemma 4.8 to find po < p with top level o + 1 and with the same domain as p
satisfying:
e {p(r): 7t € A}isseparated on (C U D) | (a + 1);
e forallt € A, X and ¢ | (« + 1) are po(z)-consistent and X and d | (a + 1) are po(7)-
consistent.

Let Xo =C UD, Ap = A,and §p = a + 1. Foreach t € Ay, define ho . : Xo — 2 as described
in inductive hypothesis (4).

Stagen + 1: Let n < w and assume that we have completed stage n. In particular, we have
defined X, An, On, Pn,and h, ; forall T € A, satisfying the required properties. Let g(n) = (x, 0).

Fix p < ¢ larger than §,, y,+1, and hty(x). Let E be the set of conditions 7 in D,, such that
the top level y of r is at least p, 4, U {o} € dom(r), and {r(t) : T € A, U {o}} is separated. By
Lemma 4.19, E is dense open in P, and £ € N by elementarity.

By Proposition 2.2 (Consistent Extensions Into Dense Sets), fix p,4+1 < p, in N N E with
some top level &, such that for all t € A,, X, | §, and X, [ 8,41 are p,+1(7)-consistent. So
{pn+1(x) : T € A, U{o}} is separated.

We consider the two possibilities of whether or not p,1(c)(x) = 1. If not, then let X, = X,
and A,41 = A, U {o}. Define hyy1: : Xpy1 — 2 forall T € A,4q as described in inductive
hypothesis (4).

Now assume that p,41(0)(x) = 1. Since p,+1(0) is a subtree function, by (3) of Definition 4.1
(Subtree Functions) we can find some x T above x in Ts,41 \(Xn [ 8n+1) such that p,1q (@) (xh) =
1. Now pick some z, € Ts above x* and define X171 = X, U {z}. Note that z, | 8,41 = xT
which is notin X, [ 8,41, 30 X,+1 has unique drop-downs to 8,+;. Define A, 41 . forallt € A,
as described in inductive hypothesis (4). Observe that /1,41 5(zx) = 1. This completes stage n + 1.
It is routine to check that the inductive hypotheses hold.

This completes the construction. We claim that for alln < w and v € Ap, hpt1,c | Xn = hne.
Letz € X,. Then hy41,0(z) = 1iff pp1(t)(z | 84+1) = 1 (by inductive hypothesis (4) forn + 1)
iff pn(t)(z [ 8,) = 1 (by inductive hypothesis (3) for n) iff 4, . (z) = 1 (by inductive hypothesis
(4) for n).

We define a condition ¢ with domain N N « as follows. Consider t € N N k. By the previous
paragraph,

hi = Lj{hn,r ‘n<w, 1€ A}
is a function from ( J, X, into 2. Define i, : Ts — 2 by letting h(z) = h%(z) for all z € dom(h?)
and h.(z) = Oforall z € Ts \ dom(h}). Now define

9(0) = Jipn(@) 1n <0, v € dom(pa)} U .

We claim that for all T € N Nk, g(7) is a subtree functionon T | (6+1). We verify properties (1)-
(3) of Definition 4.1 (Subtree Functions). (1) is immediate. (2) follows from inductive hypothesis
(4). (3) follows easily from our bookkeeping and the successor case of the construction. It follows
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that g € Pand g < p, foralln < w. So g < p and ¢ is a total master condition over N with
domain N N x and top level §.

Consider € Aandz € C U D = Xp. Then q(t)(z) = liff h¥(z) = 1iff h%z) = 1iff
po(t)(z T (e + 1)) = 1 (by inductive hypothesis (4)) iff po(t)(z [ @) = 1 (by the choice of pg in
stage 0) iff ¢(7)(z | @) = 1. So X and ¢ are ¢(t)-consistent and X and d are q(t)-consistent. a

The following is now immediate from Proposition 4.20 (Existence of Total Master Conditions)
letting X, ¢, and d be the empty tuples.

Corollary 4.21. Assuming that T is a free Suslin tree, the forcing poset P is totally proper.
Proposition 4.22. Assuming CH, the forcing poset P is w,-c.c.

This proposition follows by a standard application of the A-system lemma, assuming CH, to an
w»-sized collection of countable sets.

Proposition 4.23. Assuming that T is a free Suslin tree, the forcing poset P adds an almost disjoint
sequence of length k of uncountable downwards closed infinitely splitting normal subtrees of T .

Proof. For each t < k let f'r be a P-name for the set  J{p(z) : p € G, t € dom(p)} and let U,
be a P-name for the set {x € T : f, (x) = 1}. From the definition of a subtree function and Lemma
4.19, it is easy to check each U, is forced to be an uncountable downwards closed infinitely splitting
normal subtree of 7. To see that these subtrees are almost disjoint, consider a condition p and
79 < 71 < k. By Lemma 4.19, we can find ¢ < p with some top level y such that 7, 7; € dom(g)
and {q(t) : T € {19, T1}} is separated. So for all x € Ty, it is not the case that both ¢(zp)(x) = 1
and ¢g(t1)(x) = 1. So ¢q forces that UTO N U,] C T | y. By genericity, P forces that U,O and Ur]
are almost disjoint. ]

4.5. The Subtree Forcing Adds No New Cofinal Branches. The goal of this subsection is to prove
the following theorem.

Theorem 4.24. Suppose that T is a free Suslin tree. Let U be an w1 -tree. Then P forces that every
cofinal branch of U in V¥ is in V. In particular, P forces that T is an Aronszajn tree.

For the remainder of the section, fix an w;-tree U and a P-name b for a branch of U. Without loss
of generality assume that for each y < w, U, consists of ordinals in the interval [ - y, @ - (y + 1)).
Fix a large enough regular cardinal A. A set N is said to be suitable if it is a countable elementary
substructure of (H (1), €) which contains as members the objects T, x, Q, P, U, and b.

Proposition 4.25. Suppose that p € P has top level B and p forces that b is a cofinal branch of U
which is not in V. Assume that X is an injective tuple consisting of elements of Tg, A  dom(p) is

finite, and {p(t) : T € A} is separated on X. Define X as the set of all tuples b in the derived tree
T; for which there exist conditions qo, g1 < p with top level equal to the height y of b such that:
(1) forallt € Aand j < 2, X and b are q; (t)-consistent;
(2) there exists some { < y such that qo \Fp ¢ € band gy IFp ¢ b.

Then X is dense open in Tj.

Proof. To prove that X is open, assume that b € X has height y and ¢ > b has height &. Fix
qo,q1 < p with top level y which witness that b € X'. Apply Lemma 4.14 (Extension) to find rg

and r; below go and ¢ respectively with top level & such that forall T € A and j < 2, b and ¢ are
rj(t)-consistent. Then ry and r; witness that ¢ € X.
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Now we prove that X' is dense. Suppose for a contradiction that b e T; and for all ¢ > l;
¢ ¢ X. Let o be the height of b. Apply Lemma 4.14 (Extension) to find p < p with top level
a such that for all T € A, X and b are p(t)-consistent. Since {p(r) : T € A} is separated on X,
{p(r) : T € A} is separated on b by Lemma 4.13 (Persistence). Fix a €-increasing and continuous
chain (N, : y < w1) of suitable sets such that p is in Ny. Let 6, = N, Nw; forall y < ;.

We define a function F which takes as inputs any tuple a satisfying that for some y < w;:

(a) a has height §y;

(b) b < a

(c) there exists some r < p with top level §, such that r decides hnN d, and forall T € A, l;
and a are r(t)-consistent.

For any such tuple a, define F(a) to be equal to b*, where for some r as in (¢), r IFp bn 8, =b*.

Claim 1: F is well-defined. Proof: Let a and y be as above, and consider two conditions rq and
r1 as described in (c). For each j < 2 fix b; such that r; IFp bn 8y, = b;. If by # by, then there is
some { < &, such thatrg IFp ¢ € b and ry IFp l ¢ b. But then ro and r1 witness that & € X, which
is a contradiction. This completes the proof of claim 1.

Claim 2: For all y < w, there exists some a with height §, which is in the domain of F. Proof:
By Proposition 4.20 (Existence of Total Master Conditions), fix a total master condition r < p over
N, with top level §,. By Proposition 4.15 (Key Property), there exists some tuple d above b with
height §,, such that for all 7 € A, 5 and a are r(t)-consistent. Since r is a total master condition
over Ny, r decides hn 8y. So r witnesses that @ is in the domain of F. This completes the proof of
claim 2.

Claim 3: If ¢ and d are both in the domain of F and have the same height §,, then F(¢) = F (67 ).
Proof: Let r be a condition which witnesses that d is in the domain of F. So r has top level §,, r
decides b N dy,and forall r € A4, b and J are r(t)-consistent. Define r* to be the condition with
the same domain as r such that for all t € dom(r*), r*(tr) = r(t) | (¢ + 1). Then r* < p has top
level o« + 1. By Proposition 4.15 (Key Property), find a tuple é* above b with height o 4+ 1 which
is disjoint from ¢ | (@ + 1) such that for all T € A, b and &* are r*(t)-consistent. By Lemma 4.13
(Persistence), {r*(tr) : T € A} is separated on é*. Since r < r*, we can apply Proposition 4.15
(Key Property) again to find a tuple ¢ above ¢* of height &, such that for all T € A, ¢* and ¢ are
r(t)-consistent. Then for all T € A, b and ¢ are r(t)-consistent, and ¢ is in the domain of F as
witnessed by 7.

Since ¢ | (¢ + 1) and € | (a + 1) = é* are disjoint, by Proposition 4.20 (Existence of Total
Master Conditions) we can fix a total master condition s < p over N, with top level 6, such that
forall T € A, b and € are s(t)-consistent and b and @ are s(t)-consistent. Since s is a total master
condition, we can fix some b* such that s I-p b N 8, = b*. Then F(¢) = F(é) = b* as witnessed
by s, and F(¢) = F(J) as witnessed by . So F(¢) = F(c?). This completes the proof of claim 3.

Based on claims 2 and 3, for each y < w; we can define F(y) to be the unique value of F(a)
for some (any) a above b with height §, in the domain of F. Then each F(y) is a cofinal branch of
Urlsé,.

Clz:im 4:Forally < § < wy, F(y) = F(§) N §,. Proof: Since N, € Ng, by elementarity we
can fix a tuple a with height 8, and some r € N satisfying properties (a)-(c) in the definition of a
being in the domain of F. Thenr IFp F(y) = 508,,. By Lemma 4.13 (Persistence), {r(t) : T € A}
is separated on b. By Proposition 4.20 (Existence of Total Master Conditions), letting X, ¢, and
d be the empty tuples, fix s < r with top level 8¢ which is a total master condition over N¢. By
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Proposition 4.15 (Key Property), fix ¢ above d with height 8; such that for all t € A4, @ and ¢ are
s(t)-consistent. Then s - F(§) = b N 8. Since s < r, s IFp F(y) =b N8, = F(E) | 8. So
indeed F(y) = F(§) N §,. This completes the proof of claim 4.

Define ¢ = (J{F(y) : y < w1}. By claim 4, ¢ is a cofinal branch of U and for all y < wy,
cnNé, = F(y).

Claim 5: p forces that ¢ = b. Proof: Since ¢ is a chain, it suffices to show that p IFp b Ce. If
not, then for some ¢ < pand ¢ < wy,q lFp ¢ € b \c. Then ¢ ¢ c. Fix y < w; such that{ < §,.
Then ¢ ¢ F(y),soq lFp ¢ € b \ F(y). Note that F(y) is definable in N, 11, so by elementarity we
may assume that ¢ € N, 1. Apply Proposition 4.20 (Existence of Total Master Conditions) to find
r < g which is a total master condition over N, 1 with top level 8, 4. Sincer < ¢q,r lFp { € b.
By the Key Property, r decides bn dy+1 astheset F(y +1). So¢ € F(y + 1) N, and by claim
4, F(y + 1) Néd, = F(y). Hence, { € F(y), which is a contradiction. This completes the proof of
claim 5. ]

Now c is in the ground model, so p forces that b is in the ground model, which contradicts that
p=p* O

Lemma 4.26. Suppose that T is a free Suslin tree. Let N be suitable and let § = N N wy. Suppose
that po, ..., pi—1 are conditions in N N P all of which have top level B and each of which forces
that b is a cofinal branch of U which is not in V. Assume that X C Ty is finite and has unique
drop-downs to B, A C (\<; dom(py) is finite, and for all k < I, {pr(t) : T € A} is separated
on X | B. Then there exists y < 8 and for all k < [ there exist conditions qo,qx1 < px in N
satisfying that for all j < 2:

(1) gk,; has top level y;

(2) forallt € A, X | Band X | y are qx,;(t)-consistent;

(3) there exists some §{ <y such that q o IFp ¢ € b and ka1 lFp ¢ ¢ b.

Proof. The proof is by induction on /. Let N and 6 be as above and let X C Ty be finite.

Base case: Suppose that p € N N P has top level 8 and forces that b is a cofinal branch of
U which is not in V. Assume that X has unique drop-downs to 8, A € dom(p) is finite, and
{p(tr) : T € A} is separated on X | B. Fix an injective tuple d which lists the elements of X. Let
X=alp.

Define X as the set of all tuples b in the derived tree T for which there exist go, g1 < p with top
level equal to the height p of b such that:

e forallt € Aand j < 2, X and b are g; (t)-consistent;
e there exists some { < psuchthatgg IFp { € band gq IFp ¢ ¢ b.

By Proposition 4.25, X is dense open in T3. Also, X € N by elementarity. Since T is a free Suslin
tree, Ty is Suslin. So fix some y < § greater than 8 such that every member of T; with height at
least y is in X. In particular, @ | y € X. Fix go,q1 < p which witness thata | y € X. Then y, qo,
and ¢ satisfy conclusions (1)-(3).

Inductive step: Let / < w be positive. Assume that the statement of the lemma is true for /, and
we will prove that it is true for / + 1. Suppose that po, ..., p; are conditions in N N P all of which
have top level 8 and each of which forces that b is a cofinal branch of U which is not in V. Assume
that X has unique drop-downs to 8. Let A C (1), ; dom(py) be finite and suppose that forall k </,
{pr(t) : T € A} is separated on X | B. -

By the inductive hypothesis, we can fix y < § and conditions g o, gk,1 < prin N forallk </
satisfying conclusions (1)-(3). Apply Lemma 4.14 (Extension) to find some ¢ < p; with top level
y and the same domain as p; such that forall t € A, X | B and X [ y are ¢(r)-consistent. Note
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that by Lemma 4.13 (Persistence), {g(7) : T € A} is separated on X [ y. Fix an injective tuple
a = (ay,...,an—1) which enumerates X. LetXx = a | y.

Define X as the set of all tuples b in the derived tree Tz for which there exist go, g1 < g with top
level equal to the height p of b such that:

e forallt € Aand j <2, X and b are q; (t)-consistent;
e there exists some { < psuchthatgg IFp ¢ € band gq IFp ¢ ¢ b.

By Proposition 4.25, X" is dense open in 7. Also, X € N by elementarity. Since 7T is a free Suslin
tree, Ty is Suslin. So fix some § < § greater than y such that every member of 73 with height at
least £ is in X. In particular, d | £ € X.

Fix o, 1 < ¢ which witness thata | § € X'. Now apply Lemma 4.14 (Extension) in N to find,
foreach k < [ and j < 2, a condition gx, ; < qk,; in N with top level & such that for all T € A4,
X ['yand X | § are gk ; (r)-consistent. Now the ordinal £ and the conditions gk ; for k& < [ and
j < 2 are as required. (]

The following lemma now completes the proof of Theorem 4.24.

Lemma 4.27. Assuming that T is a free Suslin tree, the forcing poset P forces that if bisa cofinal
branch of U, then b isin V.

Proof. Suppose for a contradiction that there exists a condition p which forces that b is a cofinal
branch of U which is not in V. We will prove that U has an uncountable level, which contradicts
that U is an w;-tree. Let « be the top level of p.

Fix a suitable model N such that p € N and let § = N N w;. Fix an increasing sequence
(yn : n < w) of ordinals cofinal in § with yy = «, and fix an enumeration (D, : n < w) of all
dense open subsets of [P which lie in V. Fix a surjection g : @ — (T [ §) x (N N «) in which each
element of the codomain has an infinite preimage.

We will define by induction the following objects in w-many steps:

a subset-increasing sequence (X, : n < w) of finite subsets of T;

a subset-increasing sequence (4, : n < w) of finite subsets of N N x with union equal to
N Nk;

e an increasing sequence (8, : n < w) of ordinals cofinal in §;

for all s € =*2, a condition r® € N NP and an ordinal ¢; < §;

forall s € =®2 and v € A|g, a function h$ : X|g — 2.

We will maintain the following inductive hypotheses for alln < w and s € "2:

(1) X}, has unique drop-downs to §,;
(2) 6, is the top level of r*;
3) r’ < p,andifm >n,t €™2,ands C 1, then r’ <rs;
(4) Ap € dom(r?®);
(S) &s <Ont13 .
©) 1 Olpésebandr® Vikp & ¢ b;
(7) forallt € A, and j <2, X, | 8, and X, | 8,41 are r* 7/ (r)-consistent;
(8) r* %and r* 'arein Dy;
9) {r’(r) : T € Ay} is separated on X, | 8,;
(10) forallt € A,, and x € X,

hi(x)=1 << r'(@)(x [ 8,) = 1.
Stage 0: Let Xo = @, Ag = 0,80 = a, and r? = p.
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Stagen + 1: Let n < o and assume that we have completed stage n. In particular, we have
defined X, A,, 8,, r® and h$ for all s € "2 and v € A, which satisfy the required properties. Let
gn) = (x,0).

Fix p < § larger than §,, y,+1, and hty(x). Let D be the set of conditions r in D, such that
the top level y of r is at least p, A, U {o} € dom(r), and {r(7) : t € A, U {o}} is separated. By
Lemma 4.19, D is dense open in P, and D € N by elementarity.

Applying Proposition 2.2 (Consistent Extension Into Dense Sets), for each s € "2 fix 7* < r® in
N N D with some top level y; such that for all T € A,, X, | §, and X}, | y, are ¥¥(t)-consistent.
Then {r°(t) : T € A, U{o}}is separated. Now fix y < § larger than each y;, and apply Lemma 4.14
(Extension) to find for each s € "2 a condition 7* < r* with top level y such that for all t € A4,,
X, | vs and X, [ y are 75(t)-consistent. By Lemma 4.18 (Strong Persistence), for each s € "2,
{F¥(z) : T € A, U {o}} is separated.

Let B be the set of s € "2 such that 7°(0)(x) = 1. For each s € B, choose some x; above x in
Ty \ (Xn | ) such that #*(0)(x;") = 1, and such that whenever s # ¢ are in B then x; # x; . This
is possible by (3) of Definition 4.1 (Subtree Functions). Now for each s € B choose some x; € T
above xs"’. Define X,+1 = X, U {x] : s € B}. Observe that X,+; has unique drop-downs to y.
Define A,4+1 = An U {o}. So foreach s € "2, {#*(t) : t € A, 41} is separated on X, 41 [ y.

Now apply Lemma 4.26 to find some 8,41 < 8, and for each s € 2 find conditions ¥~ 9,75 1 <
7S with top level 8,41 and &5 < 8,41 such that r* © IFp & € b, r* ! IFp & ¢ b, and for all
T € Apnt1, Xpy1 [ yand Xp4q | 8pa1 are r* °(t)-consistent and r* !(7)-consistent. For each
s €2, j <2, and T € Ay, define a function hiA] : Xn41 — 2 by letting, for all x € X4,
hy 7(x) = 1iff r* 7 (¢)(x | $441) = 1. Observe that for all s € B and j < 2, since X,41 | ¥
and X, 11 | 8,41 are r*~ (o)-consistent, 43 7 (x*) = 1. This completes stage 1 + 1. It is easy to
check that the required properties are satisfied.

This completes the construction. Consider a function f € “2. As in the proof of Proposition 4.20
(Existence of Total Master Conditions), we can define a condition r¢ with domain equal to N N«
such that foralln < w, ry < rr), andforallt € N Nk, X, [ 8, and X, are ry(7)-consistent. In
particular, r¢ is a total master condition over N .

For each f € “2, let by be such that ry IFp hNng = br. Suppose that f # g. Let n be
least such that f(n) # g(n), and assume without of generality that f(n) = 0 and g(n) = 1. Let
s=fln=gln Thenry <r* ®andrg <r* . Sorslrp s ebNdandrg Ibp & ¢ bN 6.
Hence, by # bg.

For each f € “2, by is a cofinal branch of U [ § and ry forces that by = hNs§. Hence, ry forces
that 5(8) is an upper bound of b¢. Since having an upper bound in U is absolute between V' and VE,
by does in fact have an upper bound in Us, which we will denote by xy. By construction, if /' # g
then by # by, s0 xy # x,. Hence, Us is uncountable, which contradicts that U is an w;-tree. [

Corollary 4.28. Assuming that T is a free Suslin tree, the forcing poset P forces that T is an Aron-
szajn tree for which there exists an almost disjoint sequence of length k of uncountable downwards
closed infinitely splitting normal subtrees.

The forcing poset P of this section satisfies a stronger property than not adding cofinal branches
of w;-trees in the ground model. Let 6 < « and define Py as the suborder of P consisting of all
conditions whose domain is a subset of 6. Then Py is a regular suborder of P. It turns out that for
any w;-tree U in the intermediate extension V¢, every cofinal branch of U in VT is already in V7.
The proof is a simpler variation of the proof of the same fact about the automorphism forcing which
is given in Subsections 5.6-5.9. We omit the proof since we do not need it, although we note that this
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result can be used to give a more direct construction of a model in which there exists a non-saturated
Aronszajn tree but no Kurepa tree.

5. APPLICATION III: ADDING AUTOMORPHISMS OF A FREE SUSLIN TREE

We have now arrived at the most substantial part of the article. Our goal is to develop a forcing
poset which adds almost disjoint automorphisms of a free Suslin tree. This section mirrors the
structure of Section 4 but with some additional complications. The notion of separation for the
automorphism forcing is more complex than separation for the subtree forcing, which in particular
makes the construction of total master conditions and related objects more difficult. In order to prove
the main results of the article, we will need to prove that quotient forcings of the automorphism
forcing do not add new cofinal branches of w;-trees appearing in intermediate extensions. However,
since the free Suslin tree 7' is no longer free in an intermediate extension, the arguments we have
been giving throughout the article using freeness do not apply there. To overcome this difficulty, we
introduce and prove the existence of so-called nice conditions for regular suborders.

5.1. Consistency and Separation for Automorphisms. If § < w;, g is an automorphism of 7 |
B+1,anda < B, we will write g | (¢ + 1) for g [ (T [ (a + 1)), which is obviously an
automorphism of 7 | (¢ + 1). If G = {g; : © € [} is an indexed family of automorphisms of
T | (B+1),wewill write G [ (o« + 1) for the indexed family {g, [ (¢ + 1) : T € I}.

Definition 5.1 (Consistency). Leta < 8 < w; and let g be an automorphism of T | (B + 1).

(1) Let X C Tg be finite with unique drop-downs to a. We say that X | a and X are g-
consistent if forall x,y € X, gx o) =y [a iff g(x) = y.

(2) Letd = (ao., . .., an—1) be an injective tuple consisting of elements of Tg. We say that d | «
and a are g-consistent if forall i, j <n, g(a; | @) =a; | a iff g(a;) = a;.

Note that in (1) above, the sets X | o and X are g-consistent if and only if for all x,y € X,
g(x [ @) = y | a implies g(x) = y. For the reverse implication follows from the fact that g is
strictly increasing. A similar comment applies to (2).

The following lemma is easy to check.

Lemma 5.2 (Transitivity). Leta < 8 <y < w; and let X C T, be finite with unique drop-downs
to «. Let g be an automorphism of T | (y + 1). If X [aand X | B are g | (B + 1)-consistent and
X | B and X are g-consistent, then X | a and X are g-consistent.

Definition 5.3 (Separation). Let o < wj. Suppose that G = {g, : t© € 1} is an indexed family of
automorphisms of T | (@ + 1) and a = (aq, . ..,an—1) consists of distinct elements of T,. We say
that G is separated on a if for all k < n:
(1) forallt € I, g.(ar) # ag;
(2) there exists at most one triple (i, m, t), wherei < k, m € {—1,1}, and t € I, such that
g7 (ax) = ai.

We will sometimes refer to an equation of the form g7'(ax) = a; as in (2) above as a relation.
So separation means that each member of the tuple has at most one relation with previous members
of the tuple, and no relation with itself. In contrast to the subtree forcing from Section 4, the way in
which a tuple is ordered is essential to whether or not separation holds.

Lemma 5.4 (Persistence). Let o < f < wy and let G = {g; : © € I} be an indexed family of
automorphisms of T | (B + 1). Let b = (bo, ...,by—1) consist of distinct elements of Tg. If the
indexed family G | (o + 1) is separated on b [ «, then G is separated on b.
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Proof. Forall t € I, the fact that g is strictly increasing implies that for all i, j < n,if g;(b;) = b;
then g (b; | o) = bj | a. So any violation of separation of G on b would imply a violation of
separationof G [ (@ + 1) on b | a. O

Lemma 5.5. Let @« < wy. Leta = (ay,...,an—1) consist of distinct elements of T,, and let
G = {g¢ : T € A} be a finite indexed family of automorphisms of T | (« + 1). Then for all n < n,
there exists a sequence
(io, i1,m1, 1), ((1—1,Mi—1, T1-1))s

for some |l < i + 1, such that:

(D) n=ipg>iy>-->0ij_1 >0;

(2) forall0 <k <1, mg € {—1,1}, 7 € A, and g5,* (a;,_,) = ai;;

(3) there does not exist a triple (i, m,t) such thati < ij_;, m € {—1,1}, T € A, and

¢ (ai_,) = ai.

Moreover;, if G is separated on d, then the above sequence is unique.

Proof. We construct the sequence by induction. Let ip = 1. Now let k¥ > 0 and assume that we
have defined (i, (i1,m1, 1), ..., (ix, Mk, 7)) as described in (1) and (2). If there does not exist a
triple (i, m, v) such thati < iy, m € {—1,1}, v € A, and g7 (a;,) = a;, thenlet/ = k + 1 and we
are done. Otherwise fix such a triple (i, m, ) (which is unique in the case that G is separated on ),
andletiz; =i, mg+1 = m, and 141 = 7. This completes the construction. Note that (1) implies
that/ <n + 1. O

While separation in the context of automorphisms depends on the way in which a tuple is ordered,
the following notion of separation for sets is useful when we do not need to be explicit about what
that order is.

Definition 5.6 (Separation for Sets). Let @ < w;. Suppose that G = {g. : t € 1} is an indexed
Sfamily of automorphisms of T | (¢ + 1) and X is a finite subset of T,,.. We say that G is separated on
X if there exists some injective tuple a which lists the elements of X such that G is separated on .

Lemma 5.7 (Persistence for Sets). Leta < < wy and let G = {g. : T € I} be an indexed family
of automorphisms of T | (B + 1). Let X C Ty be a finite set with unique drop-downs to a. If the
indexed family G | (o + 1) is separated on X | «, then G is separated on X .

Proof. Let a be an injective tuple which lists the elements of X so that G | (« + 1) is separated on
a | a. Now apply Lemma 5.4 (Persistence). (]

The proof of the following lemma is easy.

Lemma 5.8. Let « < wy and let X be a finite subset of Ty. Suppose that {f; : i € I} and
{g; 1 J € J} are indexed families of automorphisms of T | (a + 1), h : I — J is a bijection, and
foralli €1, f; = gne). If{gj 1 j € J} is separated on X, then { f; : i € I} is separated on X.

Lemma 5.9. Let o < wy. Suppose that G = {g. : v € 1} is an indexed family of automorphisms of
T | (a + 1) and X is a finite subset of Ty. If G is separated on X, then forany J C I andY C X,
{g:: T € J}isseparatedon'Y .

Proof. Let a be an injective tuple which lists the elements of X such that G is separated on a. Let
b be an injective tuple which lists the elements of ¥ in the same order in which they appear in a.

Now any counter-example to the indexed family {g; : T € J} being separated on » would yield a
counter-example to G being separated on d. ]
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Definition 5.10. Let o < wy. Suppose that G = {g, : T € 1} is an indexed family of automorphisms
of T | (a + 1). We say that G is separated if for any finite set X C Ty, {g, : T € 1} is separated on
X.

Additional remarks: Although we will not use it, there is a graph-theoretic characterization of
when an indexed family G = {g; : t € I} of automorphisms of 7 [ (« + 1) is separated on a finite
set X C T,. Namely, equip the set X with a set of directed edges labeled by indices in I, where a
is connected to b with a directed edge labeled with index t if g;(a) = b. Then G is separated on X
if and only if:

(1) no element of X has an edge to itself;

(2) there exists at most one edge between any two distinct elements of X;

(3) there does not exist a loop, by which we mean a finite sequence (xo, ..., X,—1) of elements
of X satisfying that m > 4, (x¢,...,X,—2) is injective, xg = Xp—1, and there exists an
edge between x; and x; 11 (in either direction) for each i < m — 1.

The forward direction of the equivalence is easy. For the reverse direction, we build a tuple
(ap,...,an—1) listing the elements of X and witnessing that G is separated on X roughly as follows.
This tuple will split into consecutive segments, where there is no edge between members of distinct
segments, and for each member b of a segment other than the first element a of the segment, there
exists a path from b down to a, by which we mean a finite sequence {cy,...,Cn—1) such that
m>2,c¢9=b,cym—1 = a,and foralli < m — 1, ¢;41 appears earlier in the segment than c;
and ¢; and c;4+; are connected by an edge (in either direction). For the first segment, let ag be
arbitrary. Assuming that (ao, ..., ax) has been defined and is part of the first segment, let az4; be
any member of X \ {ao, ..., a,} which is connected by an edge (in either direction) to some member
of {ay, ...,ar}. If there does not exist such an element, then we move on to the second segment,
and so forth, using the same instructions as above. Of course, when we run out of elements of X,
we are done.

To see that this tuple witnesses separation, note that by construction there are no relations between
members of distinct segments, (1) implies that there are no fixed points, and (2) implies that each
element in the tuple has at most one relation with any element appearing earlier in the tuple. Finally,
if a member of the tuple has a relation with two distinct elements appearing earlier in the same
segment, then there are distinct paths of that member down to the first element of the segment;
taking the first shared element of both paths, we get a loop which contradicts (3).

5.2. The Key Property for Automorphisms.

Proposition 5.11 (Key Property). Let o < < wi. Suppose that ay, . . ., a,—1 are distinct elements
of Ty and G = {g, : © € A} is a finite indexed set of automorphisms of T | (B + 1) such that
G | (o + 1) is separated on (ao, . ..,an—1). Let t C Tg be finite. Then there exist by, ... ,by—_1 in
Tg \ t such that a; <t b; for alli < n, and for all T € A, (ao,...,an—1) and (bo,...,by,_1) are
g.-consistent.

Proof. Let 1* be the set of all y € Tg such that either y € ¢, or y = g7,'7' (-+- (g7," (x)), for some
xet,l <n+1,t,...,71-1 € A,and my,...,mj_; € {—1, 1}. Note that ¢* is finite.
By induction on k < n, we will choose by € Tg above ay, maintaining that for all k < n:
(a) forall T € A4, (ap,...,ar) and (b, ..., by) are g,-consistent;
(b) if there does not exist a triple (j,m, 1), where j < k, m € {—1,1}, and t € A, such that
g™ (ax) = aj, then by ¢ t*.
For the base case, let by be an arbitrary member of Tg \ t* above ag, which is possible since T
is infinitely splitting. Consider any t € A. Since § is separated on (ay,...,as—1), g(ao) # ao,
which implies that g;(bg) # bg. So (ap) and (by) are g -consistent.
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Now let 0 < k < n be given, and assume that we have chosen b; for all i < k so that the tuple
(bo, ..., br_1) satisfies the inductive hypotheses.

Case 1: There does not exist a triple (j, m, t), where j < k, m € {—1,1}, and T € A, such that
g7 (ax) = aj. In this case, let by be an arbitrary member of Tg \ t* above a, which is possible
since 7 is infinitely splitting. Since there are no relations between ay and members of the tuple
(ao, - . .,ax—1), the inductive hypothesis together with the argument we gave for the base case easily
imply that for all t € A, (ao,...,ar) and (b, ..., by) are g.-consistent. So inductive hypothesis
(a) holds, and (b) is immediate from the choice of by.

Case 2: There exists a triple (j,m,0), where j < k, m € {—1,1}, and 0 € A, such that
g™ (ax) = aj. Hence, ar = gi™™(a;). Since G | (« + 1) is separated on (o, . . ., dn—1), this triple
is unique. Let by = gl=™(b;). By the uniqueness of the triple (j, m, o), the inductive hypotheses,
and the argument we gave in the base case, it easily follows that for all t € A4, (ao,...,ax) and
(bo, . .., by) are g.-consistent. So inductive hypothesis (a) holds, and (b) holds vacuously.

It remains to show that for all 7 < n, b; ¢ t. Suppose for a contradiction that there exists some
i1 < n such that b; € t. Applying Lemma 5.5, fix a sequence

(i()? (ll» my, TI)» ceey (ll—lv ml—lv tl—]))v

for some [ < 5 + 1, such that:

D) n=iy>iy>--->i_1>0;

(2) forall0 < k <[, my € {—1,1}, 7y € 4, and g;',’("’ (aip_,) = ai;

(3) there does not exist a triple (i,m, t) such that i < i;_y, m € {—1,1}, t € I, and

¢ @i, ) = a;.
By (3) and inductive hypothesis (b), b;,_, ¢ t*. By (2) and Case 2, we have that
bil_l = g?,”__ll ( o (g::r:l (blo)))

So b;,_, € t*, which is a contradiction. O

Proposition 5.12 (1-Key Property). Let « < f < w;. Suppose that ay,...,ay—1 are distinct
elements of Ty and G = {g, : © € A} is a finite indexed set of automorphisms of T | (B + 1)

such that G | (a + 1) is separated on (ay, . ..,an—1). Letni < n. Fixb € Tg such that a; <t b.
Then there exist by, ...,by—1 in Tg such that a; <t b; foralli < n, by = b, and for all T € A,
(ag,...,an—1) and (by, ..., by—1) are g -consistent.

Proof. Apply Lemma 5.5 to find some / < 77 + 1 and a sequence

{io, (i1, my,T1), ..., (=1 M1, 71—1)),

satisfying (1)-(3) of that lemma. In particular, iy = n. Define (cy, ..., c;—1) inductively by letting
co =b,and forall0 < k <[, ¢ = g;';(" (ck—1). Using the fact that a; <7 b and (2) of Lemma
5.5, it is easy to prove by induction that for all k < [, a;, <7t ck.

By induction on i < n we will choose b; in Tg above a;, maintaining that for all k < n:

(a) forall T € A4, (ag,...,ar) and (b, ..., by) are g.-consistent;
(b) forallm < 1,ifi,, <k thenbd;, = cpm.
Assuming that we are able to define (by,...,b,—1) with these properties, then for all T € A,
(ao,....an—1) and (by, ..., b,—1) are g,-consistent, and b; = b;, = co = b, which completes
the proof.
For the base case, if 0 € {ip,...,i;—1}, then clearly 0 = i;_q, so in this case we let by =

bi,_, = ci—1. Otherwise, let by be an arbitrary element of Tg above ag. Consider any v € A. Since
G | (@ + 1) is separated on (ay, .. .,dn—1), gz(ao) # ag, and hence g, (bg) # bg. So (ag) and (bg)
are g.-consistent. Clearly, the inductive hypotheses are maintained.
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Now let 0 < k < n and assume that we have chosen b; for all i < k so that (bg,...,bg_1)
satisfies the inductive hypotheses.

Case 1: There does not exist a triple (j,m,t) such that j < k, m € {—1,1}, T € A, and
gMay) = aj. Itk € {ip,....ij—1}, then clearly k = i;_y, and we let by = b;,_, = c;—1.
So inductive hypothesis (b) holds. Otherwise, choose by above aj arbitrarily. For all © € A,
gr(ar) # ag, which implies that g;(br) # bg. So the inductive hypothesis together with the
fact that there are no relations between a; and members of (ay, ..., ar—1) easily imply inductive
hypothesis (a).

Case 2: There exists a triple (j,m,o0) suchthat j <k, m € {—1,1},0 € A, and g)'(ax) = a;.
Then ax = gl™™(a;). Define by = gl=™(b;). By the inductive hypothesis, the uniqueness of
the triple (j,m, o), and the fact that g, (br) # by for all T € A, it easily follows that for all
T € A, (ap,...,ax) and (by, ..., by) are g,-consistent. In the case that k € {iyp,...,i;—1}, by the
uniqueness of the triple (j,m,0) and the assumption of Case 2 it must be the case that k = iz_;
for some ¢ such that0 < g </ —1, j =iy, m = my, and t = 74. By the induction hypothesis,
b

iy = Cq» and by definition of b;,_, and ¢4y, b;,_, = giq_m" (bi,) = giq_m" (cq) = cq—1- O

We cannot improve Proposition 5.12 to get the Strong 1-Key Property of Definition 2.5. For
example, using the configuration described in Proposition 5.12, if g, (a;) = aj for some t € A and

k < 7, then letting t = {g.(b)}, we cannot find by, . . ., b,—; as described in Proposition 5.12 which
are all not in ¢.

5.3. Constructing and Extending Automorphisms.

Lemma 5.13. Let y < w; and let {f; : © € 1} be a countable family of automorphisms of T |
(y + 1). Then there exists a family {g. : T € 1} of automorphisms of T | (y + 2) such that:

(1) forallt € I, f; C g¢;
(2) for all distinct tg and vy in I and for all x € Ty 11, 8¢, (X) # gr, ().

Proof. Fix a bijection h : @ — Ty41 x 1. Let g, [ (y +1) = frforall v € I. We will
define the values of each g; on 7)1 in w-many stages, where at any given stage we will have
defined only finitely many values of finitely many g.’s. We also define a subset-increasing sequence
(X 1 n < ) of finite subsets of T}, 4.

At stage 0, we do nothing. Let Xo = @. Now let n < w and suppose that stage n is complete. In
particular, the finite set X,, € 7,4 has been defined. Let i(n) = (z,0). Stage n + 1 will consist
of two steps. In the first step, if g5 (2) is already defined, then move on to step 2. Otherwise, define
go(2) to be some element of 7}, 11 above fo(z | y) whichis notin X,. In the second step, if g, ' (z)
is already defined, then we are done. If not, then define g, !(z) to be some element of Ty, +1 above
S 1z | y) whichis notin X,,. Now let X,41 = X, U {z, g5(2), g5 (2)}.

This completes the construction. It is easy to check that for all T € I, g, is a strictly increasing
function from 7' | (y 4+ 2) onto T | (¥ + 2). Suppose for a contradiction that for some z € Ty 41,
8w (2) = g« () for distinct 7y and 7 in /. Assume that g.,(z) was defined at stage »n and g, (z)
was defined at stage m, where n < m. At stage n, either h(n) = (7o, z) and we defined g,(z), or
for some yg, h(n) = (70, yo) and we defined z = gt_o1 (¥0). In either case, both z and g, (z) are in
X,. At stage m, either h(n) = (11, z) and we defined g, (z) which is not in X,,, or for some yy,
h(n) = (11, y1) and we defined z = gr_ll(yl) which is not in X,,. In the first case, g, (z) cannot
equal g,(z) since the latter element is in X,, and the second case is impossible since z € X,.
So we have a contradiction. A similar argument shows that each g, is injective, and hence is an
automorphism of 7' [ (y + 2). O

Lemma 5.14. Assume the following:
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Yy <o)

X C Ty is finite and has unique drop-downs to y;

{fr : T € 1} is a countable collection of automorphisms of T | (y + 1);
A C [ is finite.

Then there exists a family {g. : T € I} of automorphisms of T | (y + 2) satisfying:

(1) frSgeforalrel;
(2) forallt € A, X | y and X are g.-consistent;
(3) if{fr : T € A} is separated on X | y, then {g, : T € 1} is separated.

Proof. Fix abijectionh : w — T4y x I. Foreacht € I, define g; [ (y +1) = f;.
We will define the values of the functions g on T} 11 in w-many stages. The following describes
the construction:

e at any given stage n, we will have defined only finitely many values of the functions g, for
finitely many t € I;

e we will define a sequence (ax : k < w) which enumerates 7,1, where at any stage n we
will have defined (ay : k < I,) for some [, < w, and let X,, = {ay : k < [,,}.

We will maintain the following inductive hypotheses:

(i) for all n, if the value g7"(a) = b is defined at stage n, where v € [ and m € {—1, 1}, then
aand b arein X,, f/"(a [ y) = b [ y,andif {f; : T € A} is separated on X [ y, then
a # b;
(ii) for all ng < ny,if a and b are in X, and g7 (a) = b has been defined by the end of stage
ny, where t € I andm € {—1, 1}, then g7 (a) = b has been defined by the end of stage n¢;
(iii) in the case that { f; : T € A} is separated on X [ y, then for all n and k < [, there exists at
most one triple (j, m, t), where j < k,m € {—1,1}, and t € I, such that g (ay) has been
defined by stage n and g7 (ax) = a;.

Stage 0: For each 7 € A and x,y € X, define g,(x) = y iff fr(x [ y) = y [ y. Let
Ao = A and let [ = |X|. In the case that { f; : T € A} is separated on X [ y, fix an injective
enumeration @ = (o, ..., aj,—1) of X such that { f; : T € A} is separated on d | y. Otherwise, let
a = (ao, ...,aj,—1) be an arbitrary injective enumeration of X. It is easy to check that the required
properties hold.

Stage n + 1: Let n < w and suppose that stage n is complete. Let i(n) = (z,0). Stage n +
1 consists of two steps. In the first step, if go(z) is already defined, then move on to step two.
Otherwise, define g, (z) to be some member of 7,4 above f;(z [ y) which is not in X, U {z}.
This is possible since T is infinitely splitting. In the second step, if g, 1(z) is already defined, then
we are done. Otherwise, define g;!(2) to be some member of T, 41 above g !(z | y) which is not
in X, U{z, go(2)}. Again, this is possible since 7 is infinitely splitting. Now define (ay : k < [,,4+1)
by adding at the end of the sequence (ax : k < I) the elements among z, g,(2), and g, ' (z) which
are not already in X, in the order just listed.

Let us check that inductive hypotheses (i)-(iii) hold. (i) is clear. For (ii), the only new equations
of the form g (a) = b which were introduced at stage n + 1, where t € I, m € {—1,1}, and
a,b € Ty41,is when t = o and at least one of a or b is in X, 1 \ X,. So (ii) easily follows from
the inductive hypothesis.

Now we prove (iii). Assume that { f; : © € A} is separated on X | y. Consider first the case
when z is not in X,. Then by inductive hypothesis (i), neither g, (z) nor g;l (z) were defined at any
earlier stage. So by definition, g,(z) and g;!(z) are not in X,. Hence, the last three elements of
(ak : k < ly4+1) are z, g5(2), and g ' (z). The relations introduced between these three elements
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at stage n + 1 yield no counter-example to (iii), and z, g5 (z), and g, ! () have no relations to any
elements of (ay : k < [,). (iii) follows from these observations and the inductive hypothesis.

Next, consider the case when z is in X},. Then z already appears on the sequence {(ay : k < [,,).
At stage n + 1, no new relations are introduced between elements of (ar : k < [,). Each new
element in X, 41 \ X, has exactly one relation between any other member of X}, 1, namely z. (iii)
follows from these observations and the inductive hypothesis.

This completes the construction. It is straightforward to check that each g, is an automorphism
of T | (y + 2). By what we did at stage 0, forall t € A, X | y and X are g.-consistent. Now
assume that {f; : 7 € A} is separated on X [ y. To show that {g; : T € [} is separated, let
Y € T,41 be finite. Fix a large enough n so that Y C X,. Then by Lemma 5.9, it suffices to
show that {g; : T € I} is separated on X, as witnessed by the tuple (ao,...,a;,—1). Suppose
that k < [, and the triple (j,m, v) satisfies that j < k, m € {—1,1}, v € I, and g”(ax) = a;.
By inductive hypothesis (ii), the relation g7*(ax) = a; was introduced by the end of stage n. By
inductive hypothesis (iii), there is at most one such triple. |

Proposition 5.15. Assume the following:
e a0 <4 <w;
o X C Ty is finite and has unique drop-downs to o;
{f: : © € 1} is a countable collection of automorphisms of T | (¢ + 1);
o A C [ is finite.
Then there exists a collection {g. : t € 1} of automorphisms of T | (§ + 1) such that:
(1) fr Sgeforalrel;
(2) forallt € A, X | « and X are g-consistent;
(3) if{fr : T € A} is separated on X | «, then {g, : T € 1} is separated.

Proof. The proof is by induction on §, where the base case and the successor case follow easily
from Lemma 5.14 and the inductive hypothesis. Assume that § is a limit ordinal and the statement
holds for all § with @ < B < §. Fix a surjection & : @ — Ts x [ such that each member of the
codomain has an infinite preimage. Fix an increasing sequence (y, : n < w) of ordinals cofinal in §
with yo = a.

We will define by induction in w-many stages the following objects satisfying the listed proper-
ties:
a subset-increasing sequence (X, : n < ) of finite subsets of 75 with union equal to Tj;
a subset-increasing sequence (A, : n < w) of finite subsets of / with union equal to /;
a non-decreasing sequence (8, : n < w) of ordinals cofinal in §;
for each n < w a collection {f* : 7 € I} of automorphisms of 7' | (8, + 1), where
S C fIFforallm > n;
e partial injective functions 47 from X, to X, foralln < w and v € 4,,.

The following inductive hypotheses will be maintained for each n < w:

(a) X, has unique drop-downs to §,;

(b) if n > 0, then forall t € A,_1, X1 [ 8,1 and X, [ 8, are f*-consistent;

(c) if {fz : T € A} is separated on X | o, then { f]" : T € I} is separated;

(d) forallt € A, and x,y € X,

We(x)=y <= f(x18)=y16.
Stage 0: Let Xg = X, A9 = A, and §p = « + 1. Apply the inductive hypothesis to find a
collection { /.2 : T € I} of automorphisms of 7' | (« + 2) satisfying:
o fr C fOforallr eI
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e forallt € A, X [a@and X | (& + 1) are f.°-consistent;
o if {f; : 7 € A}isseparated on X | a, then {0 : v € I} is separated.
Forall x,y € X and T € A, define h%(x) = y iff f2(x | o) =y | o.

Stagen > 0: Let 0 < n < w and assume that we have completed stage n — 1. In particular,
we have defined X,—1, Ay—1, Sp—1, {f71 1 v € I}, and {h?~! : © € I} satisfying the required
properties. Let hi(n — 1) = (z, 0).

Ifz € Xp—1,0 € Ay_1, z € dom(h? 1), and z € ran(h”~!), then there is nothing for us to do
at stage n. So let X, = Xp—1, Ap = An—1,8, = 8n—1, fI' = fP Vand h" = k" forallt € I.
The required properties are immediate. If not, then exactly one of the following cases holds.

Case 1: Either z ¢ X,,_; oro ¢ A,—1. Fix §, < § larger than 8, and y, such that X,,_; U {z}
has unique drop-downs to 6,. Apply the inductive hypothesis to find a collection { f* : T € I} of
automorphisms of 7' [ (8, + 1) satisfying:

(1) fr=tcC frforallzr € I;

(2) forallt € Ap—1, Xy—1 [ 84—1 and X, [ 8, are f*-consistent;

(3) if {fr”_1 1T € Apy—1}is separated on X, [ §,—1, then { f]* : T € I} is separated.
Define X,, = X,—1 U{z}and 4, = 4,1 U {0}.

Case2:z € Xy—1,0 € Ay_q,and z ¢ dom(hg_l). Define 8, = 8,_1, An = An_1, and
fr = fr=lforall t € I. We claim that f"(z | 8) is notin X,—; | 8,. For otherwise let x be
the unique element of X,_; such that x [ §, = fJ(z [ 8,), which exists by unique drop-downs.
By inductive hypothesis (d) applied to n — 1, h”~!(z) = x, which is a contradiction. Choose some
¢ € Ts whichis above fJ(z [ 8,). Define X,, = X,,_; U{c}, and note that by the claim just proved,
X, has unique drop-downs to &j,.

Case3:z € Xp—1,0 € Ap—1, z € dom(h™™ 1), and z ¢ ran(h”~'). Define 8, = 8y—1, Ap =
Ap—1, and f" = fP~1 for all t € I. By the same argument as in Case 2, (/") '(z | 8,)
is not in X,—1 | 8n—1. Let d be some element of Ts which is above (f?)~'(z | 8,). Define
X, = X,—1 U{d}, and note that X, has unique drop-downs to &j,.

Now in any case, define forall t € A, and x, y € X,,,

W(x)=y < fI(x18)=y]6b.

Note that in Case 2, hl}(z) = ¢, so z € dom(h}), and in Case 3, h2(d) = z, so z € ran(h}).

Inductive hypotheses (a), (b), and (d) are clear. Let us verify inductive hypothesis (c). Suppose
that {f; : © € A} is separated on X | «. By (c) forn — 1, {f~! : v € I} is separated. In
Cases 2 and 3 we are done. For Case 1, we clearly have that { f/"~! : © € A,_} is separated on
Xpn—1 | 6n—1. So by statement (3) of Case 1, { f* : © € I} is separated.

This completes the construction. We claim that forall 0 <n < w and v € A,—1, K} N X,%_l =
h"1. Let x,y € Xn—1. Then h(x) = y iff f/(x | 8,) = y | 8x (by (d) for n) iff £~ 1(x |
8n—=1) = ¥ | 84—1 (by (b) for n) iff K"~ (x) = y (by (d) for n — 1).

Fix 7 € I. By our bookkeeping, it is clear that i, = (J{h" : n < w, T € A,} is a bijection
from T to Ts. And by (d), it is straightforward to show that g; = (J{f : n < w} U h is an
automorphism of 7 [ (§ + 1) satisfying that f; C g,. Lett € A = Ay. Forany x,y € X = Xo,
by (d) we have that g;(x) = y iff h%(x) = y iff fo(x @) =y [« iff g;(x | @) = y | «. Hence,
X [ o and X are g.-consistent.

Now assume that { f; : © € A} is separated on X | «. To prove that {g, : T € I} is separated,
let Y C Tj be finite. Fix n large enough so that ¥ € X,,. Then by inductive hypothesis (a), ¥ has
unique drop-downs to §,. By inductive hypothesis (c), { f* : T € I} is separated on X, [ §,. By
Lemma 5.7 (Persistence for Sets), it follows that {g, : T € B} is separated on Y. (Il

5.4. The Forcing Poset for Adding Automorphisms.
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Definition 5.16. Let Q be the forcing poset whose conditions are all automorphisms f : T |
(x+1) > T | (¢ + 1), for some ¢ < wy, ordered by g < fif f C g. If f € Qisan
automorphism of T | (a + 1), then « is the top level of f.

Definition 5.17. Let P be the forcing poset whose conditions are all functions p satisfying:
(1) the domain of p is a countable subset of k;

(2) there exists an ordinal o < w1, which we call the top level of p, such that for all T €
dom(p), p(t) is an automorphism of T | (o + 1).

Let g < p if dom(p) C dom(q) and for all T € dom(p), p(t) < ¢(7).

Definition 5.18 (Consistency). Let o < B < w; and let g € Q.

(1) Let X C Tg be finite with unique drop-downs to o. We say that X | o and X are g-
consistent if forall x,y € X, q(x [a) =y [« iff g(x) = y.

(2) Leta = (ao,...,an—1) consist of distinct elements of Tg. We say that d | « and d are
g-consistent if forall i, j <n, q(a; [ @) = a; [ «iffq(a;) = a;.

Definition 5.19 (Separation). Let ¢ < w;. Suppose that p € P has top level «, A € dom(p), and
a = (aog, ...,an—1) is an injective tuple whose members are in T,. We say that {p(t) : T € A} is
separated on d if for all k < n:
(1) forallt € A, p(r)(ay) # ag;
(2) there exists at most one triple (j,m, 1), where j <k, m € {—1,1}, and © € A, such that
P (@) = aj.
Definition 5.20 (Separation for Sets). Let ¢ < w;. Suppose that p € P has top level &, A C

dom(p), and X C Ty is finite. We say that {p(t) : T € A} is separated on X if there exists some
injective tuple @ which lists the elements of X such that {p(t) : © € A} is separated on a.

We have now defined for the automorphism forcing the objects and properties described in Sec-
tion 2, where we let Q; = Q for all T < x. We now work towards verifying properties (A)-(E)
of Section 2. (A) is clear, and (B) (Transitivity) follows from Lemma 5.2 (Transitivity). For (C)
(Persistence):

Lemma 5.21 (Persistence). Let o < B < wy. Suppose that p € P has top level «, A € dom(p),
a is an injective tuple whose members are in Ty, and {p(t) : T € A} is separated on a. Then for
any q < p with top level  and any tuple b above a whose members are in Tg, {q(t) : T € B} is

separated on b.

Proof. Immediate by Lemma 5.4 (Persistence). U

Lemma 5.22 (Persistence for Sets). Let @ < f < w;. Assume that p is a condition with top level
o, q < p, q has top level B, X C Tg is finite and has unique drop-downs to o, and A C dom(p) is
finite. If {p(t) : T € A} is separated on X | «, then {q(t) : T € A} is separated on X .

Proof. Let a be an injective tuple which lists the elements of X in such a way that {p(t) : T € A}
is separated on d@ | . Then {g(t) : T € A} is separated on a by Lemma 5.21 (Persistence). ]

Definition 5.23. A condition p € P with top level « < w, is separated if for any finite set X C T,
{p(r) : T € dom(p)} is separated on X.

The next lemma implies (D) (Extension).
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Lemma 5.24 (Extension). Let o < B < wy and let X C Tg be finite with unique drop-downs to a.
Suppose that p € P has top level @« and A C dom(p) is finite. Then there exists some q < p with top
level B and with the same domain as p such that for all t € A, X | a and X are q(t)-consistent.
Moreover, if {p(t) : T € A} is separated on X | o, then we can find such a condition q which is
separated.

Proof. Immediate from Proposition 5.15. (|
Finally, (E) (Key Property) follows from the next proposition.

Proposition 5.25 (Key Property). Let ¢ < B < wy. Suppose that ay,...,a,—1 are distinct el-
ements of T, p € P has top level o, A C dom(p) is finite, and {p(t) : © € A} is separated

on (ag,...,an—1). Then for any q < p with top level B and any finite set t < Tpg, there exist
bo,....,bp_1 in Tg \ t such that a; <t b; for all i < n, and for all T € A, (ao,...,an—1) and
(bo, ...,by—1) are q(t)-consistent.

Proof. Immediate from Proposition 5.11 letting G = {¢q(t) : T € A}. ]

Proposition 5.26 (1-Key Property). Let « < B < wy. Suppose that ay,...,a,—1 are distinct
elements of Ty, p € P has top level «, A C dom(p) is finite, and {p(t) : T € A} is separated on
(@o,...,an—1). Fixn < nand b € Tg with az <t b. Then for any g < p with top level B, there

existby,...,by_1in Tg such that a; <t b; foralli <n, bz = b, and forall t € A, (ao,...,an-1)
and (by, . .. ,by—1) are q(t)-consistent.
Proof. Immediate from Proposition 5.12 letting G = {g(7) : T € A}. ]

Lemma 5.27. Forany t < k and p < w1, the set of conditions q € P such that t € dom(q) and the
top level of q is at least p is dense open.

Proof. Given any condition p € P, we can easily add 7 to the domain of p, for example, by
attaching to it the identity automorphism. The second part of the statement follows from Lemma
5.24 (Extension). O

Lemma 5.28. For any 19 < 11 < K, the set of conditions q € P with some top level a satisfying
that to, 11 € dom(q) and for all x € Ty, q(19)(x) # q(t1)(x), is dense open.

Proof. The set of such conditions is dense by Lemmas 5.13 and 5.27. It is easy to check that if
a < B, f and g are automorphisms of 7 [ (8 + 1), x € Ty, and f(x) # g(x), thenforany y € Tg
above x, f(y) # f(y). This fact easily implies that the set of such conditions in open. O

Lemma 5.29 (Separated Conditions are Dense). The set of separated conditions is dense in P. In
fact, suppose that p is a condition with top level y < w1, X C T, 41 Is finite with unique drop-
downs to y, A C dom(p) is finite, and {p(t) : © € A} is separated on X | y. Then there exists
q < p with top level y 4 1 such that q is separated on T, 11 and forallt € A, X | y and X are
q(t)-consistent.

Proof. Immediate from Lemma 5.14. O

Lemma 5.30. A condition p € P with top level o is separated if and only if for any finite set
A C dom(p) and finite set X C Ty, {p(t) : T € A} is separated on X.

Proof. The forward direction of the if and only if is immediate. For the converse, assume the second
statement. It easily follows that for any T € A, p(t) has no fixed-points in 7. Let X C Ty be finite
with size n < w and suppose for a contradiction that { p(t) : T € dom(p)} is not separated on X . For
any injective tuple @ = (ay, . .., dy—1) which lists the elements of X, we can find some k < n and
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distinct triples (jo, Mo, 7o) and (j1,m1, 71) such thatfori < 2, j; < k,m; € {—1, 1}, t; € dom(p),
and p(z;)™ (ax) = aj;. There are only finitely many such enumerations, so we can find a finite
set A € dom(p) such that for any such enumeration, the fixed triples (jo, 79, 7o) and (ji,m1, 71)
described above satisfy that 7y and t; are in A. Now it is easy to check that {p(z) : T € A} is not
separated on X, which is a contradiction. O

Lemma 5.31 (Generalized Key Property). Let ¢ < & < wy. Suppose that p € P has top level «, b is
a finite tuple with height o, A C dom(p) is finite, and {p(v) : T € A} is separated on b. Assume that
ro,...,n—1 < p are conditions with top level &, {h, : T € B} is a finite family of automorphisms
of T | (§+1), andt C Ty is finite. Then there exist tuples @°, ..., a" ' above b with height & such
that:

(1) for allt e A andj <n, b and @’ are rj(v)-consistent;

@ a® [ (+1),....,a" ' [ (@+1)andt | (o + 1) are pairwise disjoint;

Q@) forallx €t, 1 € B, and m € {—1,1}, K™ (x) is not in any of the tuples a@°, ...,a""';

(4) forallt € B, m € {—1,1}, and distinct i, j < n, if X is in the tuple ' then h’(x) is not in

the tuple a’ .

Proof. The proof is by induction on n > 0. Let n > 0 be given, and assume that the statement holds

for n — 1 (in the case that n > 1). Assume that rg,...,r,—1 < p are conditions with top level &,
{he : © € B} is a finite family of automorphisms of 7 [ (§ + 1), and ¢ C T is finite. Applying
the inductive hypothesis in the case that n > 1, fix a°,...,a" 2 above b with height £ satisfying
(D-).

Define r,7_; to be the condition with the same domain as r,_; so that for all ¢ € dom(r,—1),
ry_1 () =rp_1(z) [ (@ +1). Thenr,—y <r;_; < pandr,_, hastoplevel « + 1. Let Z be the
finite set of elements of T, which are in one of a° | (a + 1) La" b (e + 1) ort [ (w+1),or
else of the form A7’ (x) | (@ + 1), where t € B, m € {—1, 1} and xisinoneofa®,...,a" lorint.

By Proposmon 5.25 (Key Property), find a tuple b1 > b with height & + 1 such that for all T € 4,
b and b"~! are ry_, (r)-consistent, and b1 s disjoint from Z. By Lemma 5.21 (Persistence),
{rr_i(r) : T € A} is separated on pn-1, Apply Proposition 5.25 (Key Property) again to find a tuple
a" with height & above 5"~! such that for all T € 4, 5"~! and @"~! are r,_; (t)-consistent. O

5.5. Basic Properties of the Automorphism Forcing. In this subsection we will prove, assuming
that T is a free Suslin tree, that the forcing poset PP is totally proper, preserves the fact that T is
Suslin, and adds a sequence of length k of almost disjoint automorphisms of 7'. Also, assuming
CH, P is w,-c.c. In particular, if T is a free Suslin tree, CH holds, and k¥ > w,, then PP forces that T
is an almost Kurepa Suslin tree.

Many of the proofs in the rest of the article will involve constructing total master conditions over
countable elementary substructures. The next two lemmas provide tools for such constructions.

Lemma 5.32 (Constructing Total Master Conditions). Let A be a large enough regular cardinal and
assume that N is a countable elementary substructure of H(A) which contains as elements T, k, Q,
andP. Let § = N Nw;.

Assume the following:

(1) {6, : n < w) is a non-decreasing sequence of ordinals cofinal in §;
(2) (pn : n < w) is a decreasing sequence of conditions in N N P, where each p,, has top level
Sn;

Ay i n < ) is a subset-increasing sequence of finite subsets of N N k with union equal to

3) (
N Nk;
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@) (X, :n < w) is a subset-increasing sequence of finite subsets of Ts with union equal to Ty,
where each X, has unique drop-downs to 8y;
(5) {hne i n < w, T € Ay} is a family of functions, where each hy, ; is an injective partial
function from Xy to Xp;
(6) forall z € Ts and t € N N k, there exists some n < w such that z is in the domain and in
the range of hp «;
(7) foralln < wandt € Ay:
(a) T € dom(pn);
(b) Xy, | 8y and Xy, | 8n+1 are py41(7)-consistent;
(c) forallx,y € Xp, hy(x) =y iff po(t)(x [ Sp) =y | 6.

Let q be the function with domain N N k such that for all T € N Nk,

q(0) = Jipn(0) in <o, 1€ 4} U Jhnrin <o, T € Ay}

Then q € P, g has top level §, and g < py, foralln < w. Foralln < w and forall t € A,, X, | 0y
and X, are q(t)-consistent. Moreover, if for all dense open sets D € N there exists some n such
that p, € D, then q is a total master condition over N.

Proof. We claim that for all n < w and v € Ay, hpy1,c N X,% = hy.. Letx,y € X,. By
(2) and (7), hn,o(x) = y iff pa(D)(x | 8n) = y | 8 Ul put1(D(x | Spg1) = y [ Sy iff
hnt1,-(x) = y. It follows from this fact together with (4), (5), and (6) that for each 7 € N Nk,
U{hne:n <o, T € Ay} is a bijection from Tg onto Ts.

Let 7 € N Nk and we will show that ¢(7) is strictly increasing. It suffices to show that if x € T
and y < &, then ¢(7)(x) is above ¢(7)(x | y). Fix n < w large enough so that x € X, t € A,,
and 8, > y. By (7), q(v)(x) = hp (x) is above p,(t)(x | 8,). Since p, is strictly increasing,
Pn(T)(x [ 8n) is above p, (T)(x [ ¥) = q(z)(x [ ¥).

Sogq € Pand g < p, for all n < w. The other statements are easy to verify. (]

Lemma 5.33 (Augmentation). Let A be a large enough regular cardinal and assume that N is
a countable elementary substructure of H(A) which contains as elements T, k, Q, and P. Let
8 = N N wy. Suppose the following:

p € N NP has top level y;

B C dom(p) is finite;

z € Ty and o € dom(p);

X C Ty is finite and X U {z} has unique drop-downs to y;
{p(x) : v € B} is separated on X | y.

Then there exists some q < p in N NP with top level y + 1 and there exists a finite set Y C Ty
satisfying:
(1) forallt € B, X [ yand X | (y + 1) are q(v)-consistent;
(2) X U{z} CY andY has unique drop-downs to y + 1;
(3) {q(r) : t € BU{o}}isseparatedonY | (y + 1);
(4) let h} be the partial injective function from Y to Y defined by letting, for all x,y € Y,
hf(x)=yiffqo)(x [ (y + 1)) =y | (y + 1), then z is in the domain and range of h.

Proof. Apply Lemma 5.29 (Separated Conditions are Dense) and elementarity to find a separated
condition g < p in N N P with top level y + 1 satisfying thatforallt € B, X [yand X | (y + 1)
are ¢(t)-consistent. Define

W={zl(y+1, 9@ ¢+1)q0) I+ \ XIF+1).
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Note that by unique drop-downs of X U {z},ifz ¢ X thenz [ (y + 1) isnotin X [ (y + 1).
So if z is not in X, then z [ (y 4+ 1) is in W. Choose a set Y < Ty consisting of the elements
of X together with exactly one element of T5 above each member of W, and such that if z ¢ X
then the element of Y above z | (y + 1) is z. Note that ¥ has unique drop-downs to y + 1 and
YThy+D)=&XT+1))uw.

Conclusions (1), (2), and (3) are clear. (4): Note that g(o)(z [ (y + 1)) iseitherin X | (y + 1)
orin W. AsY [ (y+1) = (X | (y + 1)) UW, in either case we can fix ¢ € Y such that
¢ (y+1)=gq@)z | (y+1)). Then by the definition of A}, g(0)(z [ (y + 1)) =c | (y + 1)
implies that A} (z) = ¢, so z € dom(h}). The proof that z is in the range of i is similar. O

Theorem 5.34. Suppose that T is a free Suslin tree. Then the forcing poset P is totally proper and
preserves the fact that T is Suslin.

Proof. Let A be a large enough regular cardinal. Let N be a countable elementary substructure of
H (A) containing as members 7', k, Q, and P. Let 6 = N Nw;. Suppose that p € N NP and EeN
is a P-name for a dense open subset of 7. We will prove that there exists a total master condition
g < p over N such that ¢ IF T5 C E. The theorem easily follows.

Solet N, 8, p, and E be given. Let o be the top level of p. Fix an increasing sequence (y, : n <
o) of ordinals cofinal in § with Y9 = o« and an enumeration (D, : n < w) of all of the dense open
subsets of IP which lie in N. Fix a surjection g : @ — 3 x Ts x (N N k) such that every element of
the codomain has an infinite preimage.

We will define the following objects by induction in w-many stages:

a subset-increasing sequence (X, : n < w) of finite subsets of 75 with union equal to Tj;
a subset-increasing sequence (A, : n < w) of finite subsets of N N x with union equal to
N Nk;

a non-decreasing sequence (8, : n < w) of ordinals cofinal in §;

a decreasing sequence (p, : n < w) of conditions in N N P such that pg = p and for all n,
8y is the top level of p,;

e foreachn < w and 0 € N N «, an injective partial function 4, ; from X,, to X,.

In addition to the properties listed above, we will maintain the following inductive hypotheses for
alln < w:

(1) X, has unique drop-downs to &,;

(2) A, C dom(py) and {p,(t): T € A,}is separated on X, | 8
(3) forall T € Ay, X, | 8, and X, | 8,41 are p,4+1(7)-consistent;
(4) forallt € A, and x,y € X,

hne(x) =y <= pa(D)(x [ ) =y [ 8n.

Stage 0: Let Xg = 0, Ag = @, 6o = «, and pg = p.

Stagen + 1: Let n < w and assume that we have completed stage n. In particular, we have
defined X,, Ay, 8n. pu, and h, . for all T € A, satisfying the required properties. Let g(n) =
(no,z,0).

Case a: ng = 0. Apply Proposition 2.2 (Consistent Extensions Into Dense Sets) and Lemma 5.27
to find a condition p,41 < p, in N N (., Dk with 0 € dom(p,+1) and top level some ordinal
8n+1 greater than y,q such that for all T € A,, X, | 8, and X}, | 8,41 are p,41(7)-consistent.
Define X, 41 = X, and A,41 = Ap. Define forall t € 4,1 a partial function 4,1, as described
in inductive hypothesis (4). It is routine to check that the required properties are satisfied.

Caseb:ng = 1. If z ¢ X,,, thenlet X,,4+1 = X, An+1 = An, Op+1 = 6n, Pn+1 = Pn, and
hnt1c = hy o forall T € A,. Suppose that z € X,,. Fix an injective tuple a = (ao,...,a;—1)
which lists the elements of X,, and fix j < [/ such that z = a;. We apply Lemma 5.26 (1-Key
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Property) and Proposition 2.4 (Consistent Extensions for Sealing), where the derived tree in the
statement of Proposition 2.4 is just T itself. So fix p,+1 < p in N N P with some top level 8,1
such that p,41 IFp a; € E and forall t € A,, @ | 8, and @ | 8,41 are p41(7)-consistent.
Then py4q IFp z € E and forall t € A,, X, [ 6, and X, [ 8,41 are p,41(7)-consistent. Let
Xn+1 = X, and Ay41 = Ap. Define for all T € A, 4 a partial function h,4; . as described in
inductive hypothesis (4). The required properties are clearly satisfied.

Case c: ng = 2. If 6 ¢ dom(py,), then let X,,+1 = Xy, Ap+1 = An, Snt+1 = Sn»> Pnt1 = Pns
and hp41,; = hp forall T € A,. Now suppose that 0 € dom(p,). Fix y < § larger than §,
and y,41 such that X,, U {z} has unique drop-downs to y. Apply Lemma 5.24 (Extension) to find
Py < pn with top level y such that for all T € A,, X,, | §, and X, | y are p),(v)-consistent.

Apply Lemma 5.33 (Augmentation) to find p,11 < pj, with top level y + 1 and a finite set
Y C Ty satisfying:

(1) forallt € A,, X, [ y and X, | (y + 1) are p,+1(7)-consistent;

(2) X, U{z} CY and Y has unique drop-downs to y + 1;

) {pn+1(r) : 1€ A, U {o}}isseparatedon Y [ (y + 1);

(4) let hr—:_,a be the partial injective function from Y to Y defined by letting, for all x,y € Y,
hi(x) = yiff ppr1(0)(x [ (y + 1)) = y | (y + 1); then z is in the domain and range of
hyt s

Let Xp41 =Y, Ay41 = A, U{o}, and §,4+1 = y + 1. For each t € A, 4, define a partial
injective function /4 . from X, ;1 to X,4; as described in inductive hypothesis (4). Note that
hnyi10 = h,t »» 80 Z is in the domain and range of /,41,. The inductive hypotheses are clearly
satisfied.

This completes the construction. By our bookkeeping, it is routine to check that the assumptions
of Lemma 5.32 (Constructing Total Master Conditions) hold. Fix a total master condition ¢ over N
such that g < py for all n. Reviewing Case (b) and our bookkeeping, it is easy to show ¢ forces that
Ts C E. O

Lemma 5.35. Let A be a large enough regular cardinal and let N be a countable elementary sub-
structure of H(A) which contains as members T, k, Q, and P. If q is a total master condition over
N such that dom(q) = N Nk, then q is separated.

Proof. Let § = N N w;. By Lemma 5.30, to show that g is separated it suffices to show that
whenever A € dom(g) and X C Ty are finite sets, then {g(7) : T € A} is separatedon X. Fix £ < §
large enough so that X has unique drop-downs to €. Let D be the set of conditions s with top level at
least & such that A € dom(s) and s is separated. By Lemmas 5.27 and 5.29 (Separated Conditions
are Dense), D is dense and D € N by elementarity. Since ¢ is a total master condition, we can find
some s € N N D such that ¢ < s. Let p be the top level of s. As p > &, X has unique drop-downs
to p. Since s is separated, {s(7) : T € A} is separated on X | p. By Lemma 5.22 (Persistence for
Sets), {q(t) : T € A} is separated on X. O

Proposition 5.36. Assuming CH, the forcing poset PP is w,-c.c.

This follows by a standard application of the A-system lemma, assuming CH, to an w,-sized
collection of countable sets.

Let us say that two automorphisms of T' are almost disjoint if they agree on only countably many
elements of 7', or in other words, their graphs have countable intersection.

Proposition 5.37. Suppose that T is a free Suslin tree. Then P forces that there exists an almost
disjoint sequence of length k of automorphisms of T .
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Proof. Let G be a generic filter on P. For each 7 < k, let f; := [ J{p(z) : p € G, t € dom(p)}.
By Lemma 5.27 and a density argument, it is easy to check that each f; is an automorphism of
T. Consider i < 71 < k. By Lemma 5.28, we can find o = gy, < w; such that for all
x € Ty, foo(x) # fry(x). Butif x <7 y and fry(x) # fr,(x), then foo(y) # fr;(¥). So
xeT: fro(x) = fr,(X)} ST [ag,z- O

Proposition 5.38. Suppose that T is a free Suslin tree and k > w,. Then P forces that T is an
almost Kurepa Suslin tree.

Proof. Let G be a generic filter on P. By Theorem 5.34, T is Suslinin V[G]. In V[G],let{f; : T <
k} be an almost disjoint family of automorphisms of 7. Force with T over V[G] to get a generic
branch b of T. In V[G][b], define b, = f;[b] forall T < k. For any 79 < 11 < «, since f, and
Jr, are almost disjoint, it is easy to conclude that by, = f7,[b] and b, = f,[b] have countable
intersection. So (b; : T < k) is a sequence of k-many distinct cofinal branches of 7. Hence, T is a
Kurepa tree in V[G][D]. |

5.6. More About Constructing and Extending Automorphisms. We now turn towards proving
that the automorphism forcing does not add new cofinal branches of w;-trees appearing in certain
intermediate extensions, a task which will occupy us for the remainder of the section. In this sub-
section we prove three technical lemmas about extending countable families of automorphisms one
level higher in order to achieve some desirable properties. These lemmas anticipate configurations
which will appear in proofs occurring later in the section. Specifically, Lemmas 5.39 and 5.40 are
used in the proof of Lemma 5.53, and Lemma 5.41 is used in the proof of Lemma 5.47. The proofs
of Lemmas 5.39 and 5.40 are fairly simple and almost identical. Lemma 5.41 is essentially an
expansion of Lemma 5.14 to a more elaborate context.

Lemma 5.39. Let y < wy and let { f; : © € I} be a countable family of automorphisms of T |
(y +1). Let AC B C I be finite. Let Y, Z Ty 41 be finite sets each with unique drop-downs to
y such that Y N Z = @. Then there exists a family {g, : t© € 1} of automorphisms of T | (y + 2)
such that:

(1) forallt €I, f; € g¢;

(2) forallt € B,Y [ y andY are g-consistent;

(3) forallt € A, Z | y and Z are g.-consistent;

(4) forallt € B\ Aandforall x € Z, g.(x) and g;'(x) arenotin Y U Z.

Proof. Fix a bijection h : @ — T4y xI. Let g, [ (y +1) = frforall t € I. We define
the values of the functions g; on T}, 11 in w-many stages, where at any given stage we will have
defined only finitely many values for finitely many g.’s. We also define a subset-increasing sequence
(Xn : n < w) of finite subsets of Ty 1.

Atstage 0, forallt € Bandx,y € Y, let g, (x) = yiff fr(x [y) =y [ y. Andforallt € A
andx,y e Z,letg,(x) =yiff frf(x [y)=y[y.LetXo=Y UZ.

Now let n < w and assume that we have completed stage n. In particular, we have defined the
finite set X, € T, 4+;. Consider h(n) = (z,0). Stage n + 1 will consist of two steps. For the first
step, if g4 (z) is already defined, then move on to step 2. Otherwise, define g4 (z) to be some element
of Ty 11 above f5(z [ y) which is not in X, U {z}. This is possible since T is infinitely splitting.
For the second step, if g, 1(z) is already defined, then we are done. Otherwise, define g, !(z) to
be some element of 741 which is above f;1(z | y) and is not in X, U {z, g5(z)}. Again, this is
possible since 7 is infinitely splitting. Define X, 4+1 = X, U {z, g+(2), g, (2)}.

This completes the construction. It is routine to check that this works, using what we did at stage
0 to show (2) and (3), and using the sets X, to show injectivity and (4). O
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Lemma 5.40. Let y < wy and let { f; : T € 1} be afamily of automorphisms of T | (y+1). Let A C
B C I be finite sets. Let by, . .., by_1 be distinct elements of T), and let cy, .. .,cn—1,do, ..., dn—1
be distinct elements of Ty 41 such that for all k < n, by <t cx and by <t di. Define C = {ci :
k <n}and D = {dy : k <n}. Let Y C T, 11 be finite and assume that (C UD)NY = 0.

Then there exists a family {g. : © € 1} of automorphisms of T | (y + 2) such that:

(1) forallt € I, f; C g¢;

(2) forallt € A, (by,...,by—1) and (cy,...,cn—1) are gy-consistent and (by, . ..,by—1) and
(do, ...,dn—1) are g.-consistent;

(3) forallx € C: ift € A, then g.(x) and g;'(x) arenotin Y U D, and if t € B\ A, then
gr(x) and g; ' (x) arenotinC UD UY;

(4) forall x € D: ift € A, then g(x) and g;'(x) arenotin Y U C, and if t € B\ A, then
gr(x) and g7 (x) arenotinC UD UY;

(5) forallx € Y and v € B, g¢(x) and g;'(x) are notinC UD UY.

Proof. Fix a bijection h : @ — T4y x 1. Let g, [ (y +1) = frforall t € I. We define
the values of the functions g; on T}, 11 in w-many stages, where at any given stage we will have
defined only finitely many values for finitely many g.’s. We also define a subset-increasing sequence
(Xn : n < w) of finite subsets of Ty 1.

At stage 0, forall T € A and i, j < n, define g.(¢;) = ¢;j iff fz(b;) = b; and g.(d;) = d; iff
fr(bi) = bj. Let Xo =Y UC U D.

Now let n < w and assume that we have completed stage n. In particular, the finite set X, C
Ty +1 has been defined. Consider (n) = (z,0). Stage n + 1 will consist of two steps. For the first
step, if g (2) is already defined, then move on to step 2. Otherwise define g, (z) to be some element
of T 41 above f(z [ y) which is not in X, U {z}. This is possible since T is infinitely splitting.
For the second step, if g, !(z) is already defined, then we are done. Otherwise define g !(z) to be
some element of 7,41 which is above £, !(z) and not in X, U {z, g5(z)}. Again, this is possible
since 7 is infinitely splitting. Define X,+1 = X, U {z, g5(2), g5 (2)}.

This completes the construction. It is routine to check that this works. (]

Lemma 5.41. Assume the following:
o y<wiandn < w;
o X C T, is finite and has unique drop-downs to y;
o {f; 1t € I} isacountable collection of automorphisms of T | (y + 1);
o {Io} U{Jr : k <n}isapartitionof I;
o {A} U {Ag : k < n}is afamily of finite sets, where A C Iy and Ay < Jy for each k < n;
e forallk <n, {f;:t € AU Ay} is separated on X | y.
Then there exists a family {g. : © € 1} of automorphisms of T | (y + 2) satisfying:
(1) frSgeforaltel;
(2) forallt € AUy, Ak, X |y and X are g-consistent;
(3) forallk <n, {g,:t € Iy U Jy} is separated.

Proof. Fix abijectionh : w — T)41 x I. Foreacht € I, define g, [ (y +1) = f;.

We will define the values of the functions g, on T}t in w-many stages. In addition, for each
k < n we will define an injective sequence (a;c : | < w) which enumerates 7}, 4. At any given
stage p < w, we will have defined a set X, of some finite size /,, and also defined, for each k < n,
an injective enumeration (a;‘ : [ < Ip) of X, which will be an initial segment of the sequence
(af‘ 1l < w).

We will maintain the following inductive hypotheses:
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(i) forall p < w, if the value g7 (a) = b is defined at stage p, where t € [ and m € {—1, 1},
thena and b arein X,,a # b,and f"(a [y) =b [ y;

(ii) forall po < p1 < w, if a and b are in X, and g7"(a) = b has been defined by the end of
stage py, where t € [ and m € {—1, 1}, then g7 (a) = b has been defined by the end of
stage po;

(iii) forall k < n, p < w, and ! < [,, there exists at most one triple (j, m, ), where j < I,
m € {—1,1},and v € Iy U Ji, such that g7 (a;‘) has been defined by the end of stage p and

gi"(af‘) = a}‘.

Stage 0: For each t € AU (J;_, Ax and x,y € X, define g(x) = yiff fr(x [y) =y [ y.
Define Xo = X and /[y = |X|. Foreach k < n, since { f; : T € AU A} is separated on X | y, we

can fix an injective sequence (alg s a/lk(,—l) which lists the elements of X sothat {f; : T € AU Ay}
is separated on @* | y, where a* = (af, ..., a;‘o_l).

Let us check that the inductive hypotheses hold. (i) Suppose g7 (a) = b is defined at stage 0,
where T € I and m € {—1, 1}. By flipping a and b if necessary, we may assume without loss of
generality that m = 1. Then by construction, ¢ and b are in X = Xo, 7 € AU Uk<n Apg, and
frl@ay)=>b]y. Fixk <nsuchthatt € AU Ag. Since {f; : T € AU Ay} is separated on
X y,aly#b]y,andhencea # b.

(ii) is vacuously true. (iii) Fix k < n and [ < ly. Suppose that there exists a triple (j, m, 1),
where j <[, m € {—1,1}, and t € Iy U Jg, such that gz”(a;‘) = a}‘ has been defined by the end
of stage 0. Then by what we did at stage 0, t € A U Ag. Since { f; : T € A U Ag} is separated on
ak | y, the triple (7, m, r) must be unique.

Stage p + 1: Let p < w and suppose that stage p is complete. In particular, we have defined X,
and for each k < n we have defined an injective sequence (a;c : 1 < I,) which lists the elements of
X, satisfying the required properties. Let h(p) = (z, 0).

We will define g,(z) and g_!(z) in two steps, where at each step we use the fact that T is
infinitely splitting. In the first step, if g (z) is already defined, then move on to step two. Otherwise,
define g5(z) to be some member of 7, which is above f;(z | y) and is not in X, U {z}. In the
second step, if g, 1(z) is already defined, then we are done. Otherwise, define g;!(z) to be some
member of T, 41 which is above g !(z | y) and is notin X, U {z, g5(2)}.

Let Xp+1 = X,U{z, g5(2). g5 (2)} and 41 = | Xp41|. Foreach k < n, define (afc 2 <lpyr)
by adding at the end of the sequence (a;C : 1 < I,) those elements among z, g5(2), and g, ! (z) which
are not already in X, in the order just listed.

Let us check that inductive hypotheses (i)-(iii) hold for p + 1. (i) is clear. For (ii), the only new
equations of the form g7 (a) = b which were introduced at stage p 4+ 1, where t € I, m € {—1,1},
and a,b € Ty, is when at least one of a or b is in X,41 \ X,. So (ii) easily follows from the
inductive hypothesis.

Now we prove (iii). Fix k& < n. Consider first the case when z is not in X,. Then by inductive
hypothesis (i), neither g5(z) nor g, '(z) were defined at any stage earlier than p + 1. So by how
we defined g, (z) and g, ' (z) at stage p + 1, g5(z) and g, ' (z) are not in X,. Hence, the last three
elements of (afc 1 < lp41) are z, g5(2), and g, ! (z). The relations introduced between these three
elements at stage p + 1 yield no counter-example to (iii), and z, g, (z), and g, ! (z) have no relations
to any elements of (a;c : 1 < I,). So (iii) follows by the inductive hypothesis.

Next, consider the case when z is in X,. Then z already appears on the sequence (a;C < Ip).
At stage p + 1, no new relations are introduced between elements of (a;‘ 1l < lp). Each new
element in X,4; \ X, has exactly one relation with elements of X, , namely with z. So (iii)
follows by the inductive hypothesis.
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This completes the construction. It is routine to check that each g, is an automorphism of 7' |
(y + 2) extending f;. By what we did at stage 0, forall t € AU J, 4s, X | y and X are
g.-consistent.

Now consider & < n, and we will show that {g; : © € Iy U J} is separated. By inductive
hypothesis (i), g; has no fixed points in 7,4 forany v € Io U Ji. Let Y C T, be finite. Fix a
large enough p < wsothat Y C X,,. Then by Lemma 5.9, it suffices to show that {g; : v € IoU Ji}
is separated on X, as witnessed by the tuple (alg, cees a;‘p_l). Suppose that [ < [, and (j,m, 7)

satisfies that j </, m € {—1,1}, v € Iy U Ji, and g7 (a;‘) = a}‘. By inductive hypothesis (ii), the

relation g7 (a;‘) = a}‘ was introduced by the end of stage p. By inductive hypothesis (iii), there is
at most one such triple. ]

5.7. Regular Suborders and Generalized Properties. In this subsection we generalize many of
the main properties of P’ to the context of regular suborders of P.

Definition 5.42. For any set X C «, let Py denote the suborder of P consisting of all p € P such
that dom(p) C X.

The proof of the following is routine.
Proposition 5.43. For any set X C «, Py is a regular suborder of P.

Of particular interest for us will be Py, where 6 < k. The goal for the remainder of Section 5
is to show that whenever 6 < x and U is a Pg-name for an w;-tree, then P forces that any cofinal
branch of U in V¥ isin V4. When 6 < « is fixed, we will write <g for the ordering on Py, mainly
to emphasize that the conditions we are relating are in Pg. On the other hand, when we write < we
mean the ordering on P.

The remaining results of this subsection can be described as follows. Many previously discussed
properties of P were of the form that some condition can be extended to a higher level satisfying
some additional information. Now we will have finitely many conditions, all with the same restric-
tion to [Py, and we will simultaneously extend those conditions so that the extended conditions also
have the same restriction to Pg. We refer to this type of result as generalized versions of the earlier
results.

Lemma 5.44 (Simple Generalized Extension). Let 6 < k. Assume the following:
y=é<oyi;

p € P has top level y, w € Py has top level &, and w <g p | 0;

B C dom(p);

e X is a finite subset of Tg with unique drop-downs to y;

e forallt € BNO, X | y and X are w(t)-consistent.

Then there exists a condition ¢ < p with top level § and domain equal to dom(w) U dom(p) such
thatq | 0 = wand forallt € B, X | y and X are q(t)-consistent.

Proof. Apply Lemma 5.24 (Extension) to the condition p | [0, «) to find a condition s < p [ [0, k)
with top level £ and with the same domain as p | [0, k) such thatforallt € B\ 6, X | y and X are
s(t)-consistent. Now letg = w U s. O

Lemma 5.45 (Generalized Extension). Let 6 < k. Assume the following:

o y<é<wy

e {po,..., Pn—1} is a finite set of conditions in P all with top level y;
e vePyandforallk <n, pp | 0 = v;

* B S (i<, dom(pk);
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o X is a finite subset of Tg with unique drop-downs to y.

Then there exists a set of conditions { Py, . .., pn—1} all with top level & and there exists some 1 € Py
such that for all k < n:

(D) Pk < prs

(2) pr 16 =70;

(3) forallt € B, X |y and X are py(t)-consistent.
Moreover, if w <g v is a fixed condition with top level & such that forallt € BN, X [ y and X
are w(t)-consistent, then we can also arrange that v = w.

Proof. We apply Lemma 5.24 (Extension) several times. In the case of the moreover clause, let
v = w. Otherwise, apply Lemma 5.24 (Extension) to find ¢ < v with top level £ and the same
domain as v such that forall t € BN #H, X | y and X are ¥(r)-consistent. For each k < n,
apply Lemma 5.24 (Extension) to find sy < pi | [0, «) with top level £ and the same domain as
Pk | [6,k) such thatforallt € B\ 6, X | y and X are pg(v)-consistent. Now let pr = 0 U sy for
all k < n. |

Lemma 5.46 (Generalized Consistent Extensions Into Dense Sets). Suppose that T is a free Suslin
tree. Let 0 < k. Let A be a large enough regular cardinal and let N be a countable elementary
substructure of H(A) which contains as members T, k, Q, P, and 0. Let § = N N w,. Assume that:

e D € N is adense open subset of P;
e {po,..., Pn—1} i a finite set of conditions in N N P all with top level &;
e ve NNPyandforallk <n, pp | 0 = v;
e X C Ty is finite and has unique drop-downs to &;
® B C (i<, dom(py) is finite;
e foreachk < n, {pir(zr): 1t € B} isseparatedon X | §.
Then there exist qq, . ..,qn—1 in N N D, w € N NPy, and y < § satisfying that for all k < n,

(1) qx < pr, qx has top level y, and qi | 60 = w;
(2) forallt € B, X | £ and X | y are q (t)-consistent.

Proof. The proof is by induction on n. For the base case n = 1, the statement follows immediately
from Proposition 2.2 (Consistent Extensions Into Dense Sets). Now assume that n > 1 and the
statement holds for n. Consider D, {po,..., pn}, & v, X, and B as above. By the inductive
hypothesis applied to the set {po, ..., pn—1}, iX qo, ..., gn—1iIN NN D, we NNPg,andy <§
satisfying properties (1) and (2). In particular, (2) implies that forallt € BN 6, X [ Eand X [ y
are w(7)-consistent.

Apply Lemma 5.44 (Simple Generalized Extension) inside N to find g, < p, with top level
ysuch that g, | 8 = wandforalltz € B, X | £ and X | y are g,(t)-consistent. Since
{pn(t) : T € B} is separated on X [ & and ¢, < p,, by Lemma 5.22 (Persistence for Sets),
{gn(t) : T € B} is separated on X [ y. So we can apply Proposition 2.2 (Consistent Extensions
Into Dense Sets) to find g, < g, in N N D with some top level p < § and some w € N N Py such
that g, | 6 = wandforallt € B, X | y and X [ p are g, (7)-consistent. Now apply Lemma 5.45
(Generalized Extension) inside N to find a family {g : k < n} of conditions in N such that for all
k<n,gr <qr.qr | 0 =w,andforallt € B, X | y and X | p are g (t)-consistent. Since D is
open, each g isin D. So gy, ..., g, and w are as required. O

Lemma 5.47 (Generalized Separated Conditions are Dense). Let 0 < k. Assume the following:

e {po,..., Pn—1} is a finite set of conditions in P all with top level y;
o vePyandforallk <n, pp | 0 = v;
o X is a finite subset of T\, 11 with unique drop-downs to y;
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® B C (i<, dom(py) is finite and for all k < n, {px () : T € B} is separated on X | y.

Then there exist qq, . .. ,qn—1 in P and w € Py, all with top level y + 1, such that w <g v and for all
k <n,qr < pr, qx | 0 = w, q is separated, and forallt € B, X | y and X are qy(t)-consistent.

Proof. Let Iy = dom(v) and A = B N 6. For each k < n, let Jy = {k} x (dom(pg) \ 0) and
A =1k} x (B\ 0). Let I = Iy UJy_, Jk. Forall t € Iy, let f; = v(r), and for all k < n and
T € dom(pg) \ 0, let fix,o) = pi (7).

We would like to apply Lemma 5.41 to the above objects. The first five assumptions of this
lemma clearly hold. For the last assumption, we need to show that forall k < n, {f; :i € AU A}
is separated on X [ y. Define h : AU Ay — B by h(r) = tforall t € A, and h((k, 7)) = 7 for
all (k,t) € Ag. Then h is a bijection and f; = pi(h(i)) foralli € A. Since {pr(7) : T € B} is
separated on X [ y,by Lemma 5.8 sois {f; :i € AU Ag}.

Applying Lemma 5.41 fix a family {g; : i € I} of automorphisms of 7' | (y + 2) satisfying:

(1) f; C g foralli € I;
(2) foralli € AU Jy., Ak, X | y and X are g;-consistent;
(3) forallk <n,{g; :i € Iy U Jy} is separated.

Define w with the same domain as v so that for all T € dom(v), w(r) = g,. For each k < n,
define g; with the same domain as pj so that g | 6 = w and for all T € dom(pg) \ 0, gx(7) =
&(k,v)- It is easy to check that each g is a condition below py with top level y + 1.

Let k < n. We claim that for all t € B, X | y and X are g (7)-consistent. If t € B N 6, then
qr(t) = w(r) = grand t € A,and by (2), X | y and X are g,-consistent. Suppose that t € B\ 6.
Then (k, 7) € Ag and g (v) = gk,r)- By (2), X [ y and X are g, r)-consistent.

Finally, we claim that gj is separated. Solet Y C T, be finite, and we will show that {gx (7) :
T € dom(qyg)} is separated on Y. Define a function / : dom(gx) — Io U Ji by letting h(t) = t if
T < 0,and h(r) = (k,7)if > 6. Then h is a bijection, for all t € dom(qx), gk (t) = gh(r), and
by (3), {gi : i € Ip U Ji} is separated on Y. So by Lemma 5.8, {gx(7) : T € dom(gx)} is separated
onY. ]

Lemma 5.48 (Generalized Augmentation). Let A be a large enough regular cardinal and assume
that N is a countable elementary substructure of H(A) which contains as elements T, k, Q, and P.
Let § = N N wy. Suppose the following:
{Po, ..., Pn—1} is a finite set of conditions in N N P with top level y;
v € Pgandforallk <n, pp | 0 =v;
B S (<, dom(py) is finite;
ze€Tsando € (., dom(pk);
o X C Ty is finite and X U {z} has unique drop-downs to y;
e forallk <n, {pr(t): 7t € B} is separatedon X | y;
Then there exist qg, ...,qn—1 in N NP and w € N N Py, all with top level y + 1, and a finite set
Y C Ts suchthat X U{z} C Y and Y has unique drop-downs to y + 1, satisfying that for all k < n:
(1) gx < prandqr | 0 = w;
(2) forallt € B, X [ yand X | (y + 1) are qi(t)-consistent;
3) {qr(v) : T € BU{o}}isseparatedon Y | (y + 1);
(4) let h;‘ o be the partial injective function from Y to Y defined by letting, for all x,y €Y,
h,to(x) =yiffqr(o)(x [ (y + 1)) =y [ (y + 1), then z is in the domain and range of
.
k,o

Proof. Apply Lemma 5.47 (Generalized Separated Conditions are Dense) in N to find conditions
qos---,qn—1 iIn N NP and w <g v in N N Py, all with top level y + 1, such that for all k < n,



FORCING OVER A FREE SUSLIN TREE 51

qr < Pk, qrx | 8 = w, qi is separated, and forall 7 € B, X [ yand X [ (y + 1) are gi(7)-
consistent.
Define

W=({zI@+D}) Ulgx@"CT(r+1) k<n me{-1L1}}) \ (X[ (y+1).
Note that by unique drop-downs of X U {z},ifz ¢ X thenz [ (y + 1) isnotin X [ (y + 1). Soif
zisnotin X,thenz [ (y + 1) isin W.

Let Y consist of the elements of X together with exactly one element of 75 above each member
of W, and such that if z ¢ X then the element of Y above z | (y + 1) is z. Note that Y has unique
drop-downstoy +landY [ (y +1) = (X | (y + 1)) U W. Now define h;g forall k < n as
described in (4).

Conclusions (1), (2), and (3) are clear. (4): Let k < n. Note that gz (0)(z | (y + 1)) is either in
X[ (y+DorinW.AsY [ (y+1) = (X [ (y+1))UW,ineither case we can find ¢ € Y such that
¢l (y+1)=gqr(o)(z | (y +1)). Then by the definition ofh,tg, qo)z T (y+1)=cl(y+1
implies that h;ﬂ (z) =c,s0z € dom(h,”:’o). The proof that z is in the range of h,to is similar,. O

5.8. Existence of Nice Conditions. Our goal for the rest of the section is to prove the following
theorem:

Theorem 5.49 (No New Cofinal Branches). Suppose that T is a free Suslin tree and CH holds. Let
0 < k and suppose that U is a Pg-name for an w;-tree. Then P forces that every branch of U in V¥
is in VFe.

Lemma 5.50. In Theorem 5.49, it suffices to prove the statement under the assumption that k < ws.

Proof. Assume that the result holds when x < w;, and now let 8 < « be arbitrary. Suppose that U
is a Pg-name for an w;-tree and b is a P-name for a branch of U. Without loss of generality, we
may assume that U is forced to be a subset of w1, and U and b are nice names.

Since P is w,-c.c. by Lemma 5.36, conditions have countable domain, and U is a nice name, we
can find a set X C 6 of size at most w; such that Uisa Py-name. Similarly, we can find a set
Y C k of size at most w; suchthat X C Y and b is a Py -name. Then U is a Py ~g-name.

Consider a generic filter G on Pand let H = G NPy. Let U = U and b = bS. We will
show that » € V[H]. By the choice of Y and the names, U € V[H N Pyng] and b € V[G N Py].
Let k¢ be the order type of ¥ and let 6y be the order type of Y N 6. By standard arguments, there
exists an isomorphism ¢ : Py — P, such that ¢ [ Pyng is an isomorphism of Py ng onto Pg,. Let
G = ¢[G NPy]and H = ¢[H N Pyng]. Then G is a generic filter on Py, H = G N Py, is a
generic filter on P, U € V[H], and b € V[G]. Since Y has cardinality at most w;, 8y < ko < w>.
Sob € V[H]. But V[H] C V[H]. O

For the remainder of this section assume that 6 < Kk < w,, Uisa Py-name for an w1 -tree, and
b is a P-name for a branch of U. We will prove that PP forces that b is in V¢, Without loss of
generality assume that the underlying set of U is forced to equal @y, and in fact that for any y < wy,
the elements of Uy are ordinals in the interval [o - y,w - (y + 1)).

Fix a large enough regular cardinal A and a well-ordering < of H(A). Define a set N to be

suitable if it is a countable elementary substructure of (H (1), €, <) which contains as members the
objects T', k, Q, P, 0, U, and b.
Definition 5.51 (Nice Conditions). Let N be suitable, § = N N wy, and o < §. Suppose that
p € N NP has top level x and A C dom(p) is finite. Let bbea tuple consisting of distinct elements
of T,, and assume that {p(t) : T € A} is separated on b. A condition v € Py is said to be N -nice
for p, l;, and A if the following statements hold:
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(1) v < p | 0, v has top level §, and v decides U | 8.

(2) Forallqg € N NPsuchthatq < p andv < q | 0, there exists some r < q with top level §
such thatr | 0 = v, N Nk C dom(r), r is separated, and r decides b N §.

(3) Suppose that a® and a' are distinct tuples above b with height 8, and qo,q1 < p have top
level § and satisfy: qo | 60 = a [ 8 = v, NNk C dom(gp) N dom(ql) qo and g, are
separated, qo and q, decide bns, and forallt € Aand j < 2, b and @’ are q;(1)-
consistent. Then there exist q; and q7 satisfying the same properties listed above for qqo
and q, there exists r < p with top level 8, and there exist disjoint tuples e° and &' above b
with height § satisfying: r [ 6 = v, N Nk C dom(r), r is separated, r decides b N 8, and
forallt € Aand j <2, b and &' are q]’.‘ (t)-consistent and r(t)-consistent.

Lemma 5.52. Let M and N be suitable, N C M,§ = NNwy =M Nw,a <8, pe NNP
has top level a, and A € dom(p) is finite. Let b bea tuple consisting of distinct elements of Tq and
assume that {p(t) : © € A} is separated on b. If v is M -nice for p, b and A, then v is N -nice for
)2 b and A.

Proof. We verify that v satisfies properties (1)-(3) of Definition 5.51 (Nice Conditions) for N. (1)
is immediate and (2) follows easily from the fact that N € M. (3) is easy to check once we show
that N Nk = M N k, which is where we use the assumption that x < w,. Let g : @1 — k be the
<-minimum function in H(A) which is a surjection of w; onto k. As k € N N M, it follows that
g € NN M by elementarity. Also, by elementarity, N Nk = g[N Nw;] = g[M Nw1] = MNk. O

We need the following technical lemma in order to prove the existence of nice conditions.

Lemma 5.53. Assume the following:
1) a<p<owyy
(2) p € P has top level o, v € Py has top level p, and v <g p | 0;
(3) A C dom(p) is finite, B C « is finite, A C B, and B N 6 C dom(v);
4) b= (bo, . . ., bn—1) consists of distinct elements of Ty;
(5) {p(z): T € A} is separated on b;
(6) Yisa ﬁnlte subset of Tp11 with unique drop-downs to p;
@) d® and d" are tuples above b with height p + 1;
(8) forallt € AN, b and d° [ p are v(t)-consistent and b and d* [ p are v(t)-consistent;
9) {v(r):t € BNO}isseparatedonY | p;
(10) letting D° be the set of elements of d% and D! the set of elements of c?l, we have that
OT@+1), D' [ (a+1),and Y | (« + 1) are pairwise disjoint;
(11) forallt € BN O andm € {—1,1}:
- forallx €Y | p,v(t)"(x) ¢ (D°UDY [ p
- forallx € D° | p, v(©)™(x) ¢ D' | p
- forallx € D' | p, v(t)™(x) ¢ D° | p
Then there exist ¢ € P and w € Py, both with top level p + 1, satisfying:
Q) qg=pw=gv,q [G—w and B C dom(q);
(D forallt € A, b and d° are q(t)-consistent and bandd! are q(t)-consistent;
() forallt € BNOH, (Y UD°UDY) [ pandY U D° U D' are w(t)-consistent;
(IV) {q(z) : T € B} is separated on Y U D° U D1,

Proof. Let us define a condition p < p with top level @ such that dom(p) = dom(p) U B. Let
[ dom(p) = p. Forall T € B \ dom(p), define p(t) = v(7) [ (¢ + 1) if t < 0, and let p(t) be
the identity functionon 7' | (¢ + 1) if t > 6. Note that v <g p [ 6.
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Define D = D [ (@ +1), D' = D! [ (@+1),andY =Y | (a + 1). Applying Lemma 5.40,
fix a family {g, : T € dom(p) \ 0} of automorphisms of 7' | (« + 2) satisfying:

(a) for all T € dom(p) \ 0, p(r) C g

(b) forallt € A\ 0, b and d° [ (o + 1) are g-consistent and b and d! [ (@ + 1) are
g-consistent;

(c) forallx € D% if r € A\6, then g,(x) andgr ' (x) are not in YUD! andifzr € (B\0)\A,
then g (x) and g7 ' (x) are notin D° U D' U Y;

(d) forallx € D':if r € A\6, then g (x) and g7 1(x) arenotin Y UD®, andif r € (B\6)\A4,
then g (x) and g; ' (x) are notin D° U D' U Y;

(e) forallx € Y andt € B\ 6, g;(x) and g7 ! (x) are notin D° U D' U'Y.

Define s with domain equal to dom(p) \ 6 so that for all t € dom(s), s(tr) = g.. Clearly, s is a
condition with top level « + 1 and s < p [ [0, k).

By (9), we can fix an injective tuple y which enumerates Y such that {v(z) : T € B N 0} is
separated on ¥ | p. Let X be the tuple of height p + 1 which consists of the concentation of the
tuples 7, d°, and d, in that order. So X enumerates Y U D U D1

We claim that {s(t) : T € B\ 0} is separated on X | (¢ + 1). Since d° [ (¢ + 1) and
il [ (¢ + 1) are above l;, s <pllf,«),and{p(r): t € A}is separated on I;, it follows by Lemma
5.21 (Persistence) that {s(t) : T € A \ 0} is separated on both d° | (¢ + 1) and d' | (a + 1). By
properties (c), (d), and (e) above, if a relation of the form s(z)™(x) = y holds, where t € B \ 0,
me{—1,1}and x,y € D°U D' UY, then it must be the case that T € A\ 6 and either x, y € DO
or x,y € D'. Based on this information, it easily follows that {s(z) : T € B\ 6} is separated on

(a4 1).

Apply Lemma 5.24 (Extension) to find a condition z < s with top level p 4+ 1 with the same
domain as s such that forall T € B\ 6, X | (« + 1) and X are z(t)-consistent. By Lemma 5.21
(Persistence), {z(t) : T € B\ 0} is separated on X.

Now apply Lemma 5.39 to find a family {#; : t € dom(v)} of automorphisms of 7 [ (p + 2)
satisfying:

(f) forall T € dom(v), v(t) C hy;

(g) forallt € BNO,Y [ pand Y are h -consistent;

(h) forallt e ANG, d° [ p and d® are h-consistent and dl [ pand dl are h-consistent;
(i) forallt € (BNO)\ A,m e {—1,1},andx € D° U D', h™(x) ¢ Y UD° U DL.

Define w with the same domain as v so that for all ¢ € dom(v), w(zr) = h;. Clearly, w € Py,
w <g v, and w has top level p + 1. Since {v(t) : T € BN O} is separated on y | p, by Lemma 5.21
(Persistence), {w(t) : T € B N 0} is separated on ¥.

Finally, let ¢ = w U z. Then {g(t) : T € B N 0} is separated on y and {g(z) : T € B\ 0} is
separated on X.

Let us prove conclusions (I)-(IV). (I) is clear. (II) Let 7 € A. If t € A N 6, then (II) holds by (8)
and (h). If t € A\ 0, then (II) holds by (b) and the choice of z.

(TIT) Statement (g) implies that forallt € BN A, Y | pand Y are w(t)-consistent. Statement (i)
implies that for all T € (B N 9)\A ifx,ye YuD°uDl | pand w(t)(x) = y,thenx,y €Y.
By (I), forall 7 € AN G, b and d° are w(t)-consistent and b and d! are w(t)-consistent. This
implies that forall t € AN 6, D° | p and D° are w(t)-consistent and D! | p and D! are w(z)-
consistent. By (11),ift € AN6H, x,y € (Y UD®U DY) | p, and w(r)(x) = y, then either
x,yeY p,x,ye D%l p,orx,ye D! p. Altogether this information easily implies (IIT).

(IV) We claim that {g(t) : T € B} is separated on X. First, let us show that for all T € B, ¢(1)
has no fixed points in X. Since {g(t) : T € B \ 0} is separated on X, for all T € B \ 6, ¢(7) has no
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fixed points in X. So it suffices to consider t € B N 6. As {¢q(t) : T € B N 6} is separated on ¥, for
all T € B N6, q(r) has no fixed points in y. Because {p(7) : T € A} is separated on l; by Lemma
5.21 (Persistence), {g(t) : T € A} is separated ond® and separated on dl. Hence, forallt € ANH,
q(7) has no fixed points in d° orin d'. Finally, consider € (B \ 4) N § and we show that ¢(7)
has no fixed points in d° or . But this follows from (i).

Consider a relation of the form ¢ (7)™ (x) = y, where t € B,m € {—1,1},x,y € Y UD°U D!,
and y appears earlier in the ordering of X than x. First, assume that T < 6. By (11), the only
possibilities are that x,y € Y, x,y € DO or x, y € D1 By (i), if t ¢ A then x, y € Y. Secondly,
assume that 7 > 6. By (c), (d), and (e), T € A and either x, y € DO or x, y € D!. So altogether, if
one of x or y isin Y, then t < § and x and y are both in Y. Since {g(z) : T € B N 6} is separated
on ¥, there is at most one such relation which holds in this case. Now suppose that it is not the case
that one of x or y isin Y. Then t € A, and either x, y € D% or x,y € D!. Butsince {¢(7) : T € A}
is separated on d° and separated on d 1. there is at most one such relation which holds in this case
as well. ]

Proposition 5.54 (Existence of Nice Conditions). Suppose that T is a free Suslin tree. Let N be
suitable and let § = N Nwy. Suppose that p € N NP has top level « < § and p forces in P that b is
a cofinal branch of U which is not in V¥¢. Assume that A C dom(p) is finite, b consists of distinct
elements of Ty, and {p(t) : T € A} is separated on b. Then for any ¢ < p in N NP, there exists
some v € Pg which is N -nice for p, 1; and A such thatv <g q | 6.

Proof. Letg < pin N N P. We will prove that there exists some v € Pg which is N -nice for p, l;,
and A such that v <g ¢ [ 6. Without loss of generality, assume that the top level of ¢ is greater than
a.

To help with the construction of v, we fix the following objects:

- an enumeration ((a"™°,a™') : n < w) of all distinct pairs of tuples above b with height §;

- anon-decreasing sequence (y, : n < w) of ordinals cofinal in § with yy = y; = «;

- an enumeration (z, : n < w) of Tg;

- an enumeration (s, : n < w) of N N P;

- asurjection g : @ — 4 X w x (N N k) such that every element of the codomain has an
infinite preimage;

- an enumeration (D, : n < w) of all of the dense open subsets of P which lie in V.

As in previous proofs, our construction of the nice condition v will take place over w-many
stages, with the function g being used for bookkeeping. In order to satisfy properties (2) and (3)
of Definition 5.51 (Nice Conditions), the construction will involve building not only v, but also
infinitely many total master conditions r with r [ 6 = v. At any given stage n, we will define an
approximation v, of v together with finitely many approximations of the total master conditions.
The first coordinate n¢ of the value g(n) splits the construction into four cases. When ny = 0, we
handle a case of Definition 5.51(2), and when ny = 3, we handle a case of Definition 5.51(3). When
ng is 1 or 2, we take the usual steps for building total master conditions, namely, meeting dense sets
in the first case and applying augmentation in the second case.

More specifically, we define by induction the following objects in w-many steps:

e a subset-increasing sequence (X, : n < ) of finite subsets of T with union equal to Ty;

e a subset-increasing sequence (A4, : n < w) of finite subsets of N N x with union equal to
N Nk;

e anon-decreasing sequence (8, : n < w) of ordinals cofinal in §, where each X, has unique
drop-downs to §,;



FORCING OVER A FREE SUSLIN TREE 55

e adecreasing sequence (v, : n < w) of conditions in N N Py;

e asequence {/,, : m < w) of natural numbers;

e a family {r,',"’l m < w,l <ly, m <n < w} of conditions in N N P below p such that
foreachm < w and ! < [, (r,',"’l :m < n < w) is a descending sequence;

e for each m < w such that /,, = 3, a pair ™% and é™! of tuples above b with height § such
that ™0 | (o 4+ 1) and ™! | (o + 1) are disjoint, and the elements of é”° and ™! are
in Xpmi1;

o forallm < w,l < l,,,n > m,and t € A,, an injective partial function hnmrl from X, to
Xn.

At stage n, we will define X,,, A, 85, vy, and whenn > 0, [,,_1, r,’,"’l and h:,"fl forallm < n,
| <l,,and 7 € A,, and when [,,_; = 3, ¢" 1% and "~ 1.1,

In addition to the properties listed above, we will maintain the following inductive hypotheses
forallm <n <wand! < [y:

(1) ™! and v, have top level 8, and r™! | 6 = vy;

(2) forallt € Ay, X, | 6, and X, [ 6,41 are r,'l"_;ll (7)-consistent;

3) A, < dom(r,',"’l) and {r,T’l(r) 17 € A,}is separated on X, [ 8,5

(4) suppose that g(n) = (ng,n1,0), where ng = 0, s,, has top level less than 6,, s,, < p, and
Un <g Sn, | 0;thenl, = 1and r,'l’fl < Sns

(5) if g(n) = (no,n1,0), where ng = 1, then r;";ll € (\k<p D and o € dom(r;";ll);

(6) assuming that g(n) = (ng,n1,0), whereng = 2,ando € ﬂ{dom(r,’,"’l) m<n,l <ly},
then o € A, and forall m < n and [ < [, z,, is in the domain and range of hnmjrll,g;

(7) forallt € A, and x,y € X,,

() =y <= M@ 1 8) =y | 6

Stage 0: Let Xo = ¥ and Ag = A. Let §y be the top level of ¢ and let vg = ¢ [ 6. Note that by
our assumption about ¢, o > «.
Stage 1: Let lo=1.Let X1 = X9 =0, A1 = Ao, 61 = 6o, r{)’o =gq,andv; =¢q | 0 = vy.

Define h?:g =@ forallt € A;.

Stage n + 1 (n > 0): Assume that stage n is complete, where n < w is positive. In particular,
we have defined the following objects which we assume satisfy all of the required properties: X,
Ay, 8p, Up, Iy for all m < n, and r,',"’l and h:,"fl forallm < n, ! < I, and t € A,. Let
g(n) = (no,n1,0).

Case a: ng = 0. Consider s,,, whichis in N N P, and let y be the top level of s,,. We will only
take action in the case that y < §,, s,, < p,and v, < s,, [ 0. If not, thenlet/, =0, X,,11 = Xp,
Api1 = A, Sp1 = 8py Va1 = Un, r;"jrl1 = ™ and hnmjrlLr = h:,",l forallm < n,l < I, and
T €A,

Otherwise, let [, = 1. Without loss of generality, we may assume that A, C dom(s,,), for
otherwise we can easily extend s,, to have this property without increasing its top level or changing
the fact that v <y s,, [ 6. Apply Lemma 5.44 (Simple Generalized Extension) to find some
s < §p, in N with top level 6, such that s [ 8 = v,. Applying Lemma 5.29 (Separated Conditions
Are Dense) and using the fact that {v,(t) : © € A, N 6} is separated on X, [ &, (by inductive
hypothesis (3) and Lemma 5.9), find a separated condition r, ’+01 < s with top level §,, + 1 such that

forallt € 4, N0, X, [ 8, and X,, | (§, + 1) are rffl(r)-consistent. Let vyq1 = r,':fl | 6. Then
in particular, forall t € 4, N O, X, | 6, and X, | (6, + 1) are v,41(7)-consistent. Now apply

Lemma 5.45 (Generalized Extension) to find for each m < n and [ < [, a condition r;" 4’_11 <y A
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with top level 8, + 1 such that 7"
nH(r) -consistent.

Define X, +1 = Xy, Au+1 = Apn, and 6,41 = 8, + 1. Define hn+1 cforallm < n,l < lp,
and T € A,4+ as described in inductive hypothesis (7). It is routine to check that the inductive
hypotheses hold.

Caseb:ng = 1. Let/,, = 0, X,+1 = X;,, and A,+1 = A,. Let D be the set of conditions r in
(i <n D satisfying that o € dom(r) and the top level of r is at least y,+1. Then D is dense open in
P, and D € N by elementarity. Apply Lemma 5.46 (Generalized Consistent Extensions Into Dense
Sets) to find an ordinal 8,41 < &, a condition v,4+; <g v, in N, and for each m<nandl <1,,a

condition r, +ll <t Lin N N D with top level 6,41 satisfying that rn +1 [ 0 = vy41, and for all

n+1 [ 0 =vy4randforallt € 4, X, | 6, and X, | (8, + 1) are

T € Ap, X, | 6 and X, | 841 are r +1(r) -consistent. Define hn+1 , forall © € A4, as described
in inductive hypothesis (7). It is routine to check that the inductive hypotheses hold.

Casec: ng = 2. If o ¢ ({dom(rp," ) m < n I < Iy}, thenlet Xy, 41 = Xy, Apy1 = Ag,
8pe1 =8, Vpa1 = Un, I, = 0, and r,'l"Jrl1 = ™ and hnerll L= h;"rl forallm < n,l < I, and
T € A,.

Otherwise, fix y < § large enough so that X,, U{z,, } has unique drop-downs to y. Apply Lemma
5.45 (Generalized Extension) to ﬁnd some v, € N N Py with top level y, and for each m < n and
I < I, find a condition 7" < < 1n N N P with top level y such that 7, oL [ 8 = v, and for all
T€ Ay, Xp | 8pand X, | y are 7y (t)-consmtent. By Lemma 5.22 (Persistence for Sets), for all
m<nand! < I,, {'m’ (r) : T € Ap}is separated on X | y.

Now apply Lemma 5.48 (Generalized Augmentation) to find for each m < n and [ < [, a
condition ! in N NP with top level y + 1, a condition v, € N NPy with top level y + 1, and
a finite set X, 41 € T such that X, U {z,,} € X4 and X, has unique drop-downs to y + 1,
satisfying that for all m < n and [ < [,

m,l
® it
o forallte A,, X, [yand X, | (y + 1) are r,',"+l1 (7)-consistent;

{rn+1(r) T € A, U{o}}isseparatedon X,41 [ (y +1);

let At m.1.o D€ the partial injective function from X1 to Xp41 defined by letting, for all
X,y € Xp+1, h:;,l,g(x) = yiff r,'l"jrll(o)(x ['(y +1)) =y [ (y + 1); then z,, is in the
domain and range of h; Lo

ffn andrn+1 [9—vn+1,

Define X, 11 = X, U{zy, }, Ant1 = A, U{0},6p41 = y+1,and [, = 0. Forallm < n,l <[,

and T € A, 41, define h;";ll . as described in inductive hypothesis (7). Note that h;" +l Lo = h; lo

and therefore z,, is in the domain and range of h:’_;_ll, -~ The inductive hypotheses are straightforward
to check.

Case d: ng = 3. Let us consider a"1*° and d For simplicity in notation, write a° for a"1-°
and @' for a"1>!. We will only take action when the elements of the tuples @° and @' are in X,, and

forallt € ANfand j <2, b and @’ I 8, are v, (t)-consistent. If not, thenlet/,, = 0, X;,+1 = Xa,
Apns1 = An, 8pa1 = 8, Vng1 = Up, 1 ,TJ;II = ™ and hnmjrll,r = h:,",l forallm < n,l < I, and
7 € Ap. Otherwise, proceed as follows.
Applying Lemma 5.47 (Generalized Separated Conditions are Dense) in N, find a family {7, <
m < n, | < l,} of conditions with top level §, + 1 and a condition v,, <g v, such that for all
m<nand! < I, r,',"l <pml gl g — 5, Fml g separated, and for all T € A,, X,, | 8, and

[ (8n + 1) is (t)—consmtent.

n11
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Fix an injective tuple Z = (zo,...,z3_;) which enumerates X,,. Since the elements of a° and
a! are in X,, we can fix distinct jo, ..., jg—; and distinct ko,...,kg—1 in A such that a° =
(zjgs+--»Zj,_,) and al = (Zkgs -+ Zky_y ) Let x; = zp | (8, + 1) for all m < 71, and let
X =(x0,...,X5_1).

Define X'* as the set of all tuples ¥ = (yo, ..., ys_1) in the derived tree T for which there exist
conditions ¢°, ¢! < p with top level £ equal to the height of y and there exists w € Py satisfying:
10 =1"160=uw=<g vy
forallt € A, N O, X and y are w(z)-consistent;
for j <2, Ay, C dom(t/);
for j < 2, for any finite ¥ C T with unique drop-downs to §,, {t(r) : T € Ay} is
separated on Y';

e forallt € A, b and Vjos -+ Vjg_,) are t9(7)-consistent, and b and (Vkgs-- -+ Yky_,) are
t1(v)-consistent;

Now let X be the set of all J in Ty such that either ¥ € X'*, orelse forall Z > ¥, Z ¢ X™*. Obvi-
ously, X is dense in 7. Using Lemma 5.45 (Generalized Extension) and Lemma 5.22 (Persistence
for Sets) it is easy to show that X'* is open. Also, X € N by elementarity. Since T is a free Suslin
tree, Tz is Suslin. So we can fix some & < § greater than y such that every member of 7% of height
at least £ isin X,

We consider two cases. First, assume that Z | £ ¢ X*. Since Z | £ € X, it follows that Z is
not in X'* either. In this case, let [, = 0, X411 = Xn, An+1 = An, Opt1 = 6n + 1, Vpy1 = U,
r,'l"+’l1 = 7™ and h;";_ll’r = hnmrl forallm <n,l <1l,,,and 7 € A,,.

Secondly, assume that Z | £ € X'*. Fix 0t andwin N satisfying the five statements listed in
the definition of X*. Let [, = 3. Apply Lemma 5.31 (Generalized Key Property) to find tuples ¢°
and &' above b with height £ satisfying:

forallt € Aand j <2, b and &/ are t/ (t)-consistent;

T (@+1),¢' [ (@+1),and X, | (a + 1) are pairwise disjoint;

forallx € X, [ £, 1 € A, NB,andm € {—1,1}, w(r)™(x) is not in ¢° or in ¢;
forallt € A, NG, m e {—1,1},and j < 2,if x isin ¢/ then w(z)™(x) is notin ¢'=/.

Pick arbitrary tuples d° and d ! above &° and &' respectively of height £ + 1. Let D° be the set
of elements in @° and let D! the set of elements in d !. Apply Lemma 5.53 in N to find conditions
r:fl € N NPand v,; € N NPy, both with top level £ + 1, satisfying:

. r;’fl < P, Uny1 <g W, r,':_fl [0 =v,y1,and 4, C dom(r:fl);

e forallt € A, b and d° are r;'fl (7)-consistent and bandd! are r,':_fl (t)-consistent;

o forallt € A, NO, (X, [E)UMD° T E)UD [ &) and (X, [ (E+1)UDOU D! are
Un+1(7)-consistent;

o {rr':fl (t) : T € Ay} is separated on (X, | (£ +1)) u D° U D!

Apply Lemma 5.45 (Generalized Extension) to find 7, < % and r;3| < ¢! with top level & + 1
such that for each j < 2, r:;jl [0 = vy andforallt € A,, (X, [E)U (D [E)U(D! |§)and
X, [ (E+1)uD®UD!are r;’jrjl (t)-consistent. It follows that for j < 2, forall T € A, b and
d’ are r,'l’jrjl (t)-consistent. For each j < 2, since §, > o, the set (X, [ £) U(D° [ &) U (D! [ §)
has unique drop-downs to &, so {t/(t) : © € A,} is separated on it; by Lemma 5.22 (Persistence
for Sets), {r,'l'_’kj1 () : T € Ay} is separated on (X, | (£ +1)) U D° U D

Apply Lemma 5.45 (Generalized Extension) to find a family {r,','ﬂ;ll m<n,l <l,} of condi-

m,l -m,] _m,l

tions with top level £ + 1 such that forallm <nand! < by, r, ;) <7y, 7,0 [ 0 = vy41, and
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forallt € A, Xp [ 6y +1)and X, [ (E+ 1) are r,','ﬂ’rll (7)-consistent. Since each f;”’l is separated
and (X, | (€ + 1)) U D° U D! has unique drop-downs to §, + 1, by Lemma 5.22 (Persistence for
Sets), {r:l”_;_ll (t) : T € Ay} is separated on (X, | (£ +1)) U D°U D!

Define A,41 = A, and 8,41 = £ + 1. Fix arbitrary tuples ™ and ™! above d® and d!
respectively with height §. Define X, by adding to X,, the elements of ¢*-* and ¢™!. Finally,
define hnmjrll’t foreachm < n,[ < 1I,,and t € A, as described in inductive hypothesis (7). It is
straightforward to check that the required properties are satisfied.

To make the verification of (3) below easier to check, let us highlight the following facts which
we have proven:

h 70 n2 : n,0 . .
e forallt € A, b and ci are r,, ;" (t)-consistent and r,;} ", (t)-consistent;
o forall r € A, band d' are r]";?, (v)-consistent and !, (v)-consistent;
o d° < &% d! < ¢!, and the elements of €° and &! are in X, 4.

This completes the construction. For all m < w and [ < [,,,, define r™l ¢ P with domain N N«
so that forall T € N Nk,

() = U{r,’l"’l(r) m<n<w,T€ A} U U{h;"rl m<n<ow,TE Ay}

Also, define v = r™! | @ for some (any) any m < w and | < [,,. By Lemma 5.32 (Constructing
Total Master Conditions), each r™l is a total master condition over N which is a lower bound of
the sequence (r,',"’l :m < n < w), and for all n < w and for all T € A4,, X, [ 6, and X, are
r™! (1)-consistent. By Lemma 5.35, each " is separated.

This completes the construction. Note that by what we did at stage 0, v < ¢ [ 6. So it remains
to prove that v is N-nice for p, l;, and A. We verify property (1)-(3) of Definition 5.51 (Nice
Conditions).

(1) Clearly, v < p | 6 and v has top level §. Since, for example, r*? is a total master condition
for P over N, by a standard argument it follows that v = r%° | 6 is a total master condition for Py
over N. So v decides U | 8.

(2) Let s € N N P have top level y such that s < p and v <p s | 6. It suffices to show that for
some 1, ™% < 5. Fix n; such that s = s,,. Pick n’ large enough so that dom(s) N § € dom(vy’)
and 8,» > y. Note that for any n > n’, v, <g s | 6. Now find n > n’ such that for some 0 € N Nk,
g(n) = (0,ny,0). By inductive hypothesis (4), r*? < s.

(3) Suppose that @° and @' are distinct tuples above b with height 8, and g, g1 < p have top
level 6 and satisfy: go [ 0 = ¢1 [ 8 = v, N Nk C dom(gg) N dom(qy), go and ¢, are separated,
qo and g; decide hN§, andforall T € Aand Jj <2, b and G’ are q; (t)-consistent. In particular,

0,0

forallte ANBAandj <2, b and G/ are v(t)-consistent. Fix n’ large enough so that the elements
of a° and a! are in X,,. Fix n; so that (@"-°,a"1>!) = (@° a'). Find n > n’ such that for some
o€ NNk, g(n) = (3,n,0). Observe that forall T € AN @ and j < 2, the fact that b and @/ are

v(7)-consistent implies that b and G’ [ 8, are v, (7)-consistent.

So the requirements described in the first paragraph of Case d are met. Letting Z be the enumer-
ation of X, given in Case d, clearly Z € X'* as witnessed by ¢g, ¢1, and v. Using the information
which we highlighted at the end of Case d and the fact that for all j < 3 and for all T € A4,
Xn+1 | 841 and X, 41 are r™/ (7)-consistent, it is routine to check that 70, pm1, pn:2 gn0
and ™! satisfy the properties described of gg, g7, r, €°, and €' in (3) in Definition 5.51 (Nice
Conditions). O

5.9. The Automorphism Forcing Adds No New Cofinal Branches. In this subsection we com-
plete the proof of Theorem 5.49 (No New Cofinal Branches).
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Proposition 5.55. Suppose that p € P has top level B and p forces that b is a cofinal branch
of U which is not in V. Assume that A C dom(p) is finite, X = (xo....,Xn—1) consists of
distinct elements of Tg, and {p(t) : v € A} is separated on X. Define X as the set of all tuples
b= (bo, - - -, bn—1) in the derived tree Ty for which there exist qo,q1 < p with top level equal to
the height y of b such that:

(M) qo10=q116; .

(2) forallt € Aand j <2, X and b are q; (t)-consistent;

(3) there exists some { <y such that g IFp ¢ € b and qg1lFp C ¢ b.

Then X is dense open in Tj.

Proof. To prove that X is open, assume that b € X has height y and ¢ > b has height £. Fix
qo,q1 € P with top level y which witness that b € X,andletv =¢qo [ 8 = g1 | 6. By Lemma
5.45 (Generalized Extension), extend gg and g; to ro and rq respectively with top level £ such that
o |0 =r1[Oandforallt € Aand j < 2, 1; and ¢ are rj(t)-consistent. Then r¢ and r; witness
that ¢ € X. . .

Now we prove that X’ is dense. Suppose for a contradiction that b € Ty and for all ¢ > b,
¢ ¢ X. Let a be the height of b. Apply Lemma 5.24 (Extension) to find some p < p with top level
a such that for all T € A, X and b are p(t)-consistent. Since {p(r) : T € A} is separated on X,
{p(r) : T € A} is separated on b.

Let C be the collection of all suitable sets. Fix a €-increasing and continuous chain (N; : i < wy)
of suitable sets which are elementary substructures of (H (1), €, <,(C) such that p is in Ngy. Let
8, = N, Nw; forall y < w;. Observe that for all y; < y, < w;, the property of a condition being
N, -nice for p, b, and A is definable in Ny, .

We define a function F which takes as inputs any pair (v, r) satisfying that for some y < wy:

(1) v is Ny-nice for p, 5, and A;
(2) r < p,rhastoplevel 6,,r [ 8 = v, N, Nk € dom(r), r is separated, and r decides
hnsé,.
Let F (v, r) be the unique set b, such that r IFp hnN 8, =by.

Claim 1: For any y < w; and any v which is N, -nice for p, l;, and A, there exists some r such
that (v, ) € dom(F'). Proof: This follows from (2) of Definition 5.51 (Nice Conditions).

Claim 2: For any y < w; and any v which is N, -nice for p, l; and A, if (v, go) and (v, gy) are
both in the domain of F, then F (v qo) = F(v,q1). Proof: Using Lemma 5.25 (Key Property)
twice, fix disjoint tuples a° and @' above b with height §, such that forallz € Aand j < 2, b and
a’ are g;(t)-consistent.

Note that qq, ¢1, @°, and a' satisfy the properties listed in (3) of Definition 5.51 (Nice Condi-
tions). Since v is N, -nice, there exist g5 and g satisfying the same properties of ¢¢ and ¢; which
are listed in (3) of Definition 5.51 (Nice Conditions), there exists r < p with top level §,,, and there
exist disjoint tuples €° and é! above b with height §, satisfying: r [ 8 = v, N, Nk € dom(r),
r is separated, r decides bn 8y,and forallt € Aand j < 2, b and &/ are q;‘ (t)-consistent and
r(t)-consistent.

Observe that (v,qg), (v,q7), and (v, r) are in the domain of F. Recall that for all ¢ > 5,
¢ ¢ X. In particular, €°, &', 4°, and a' are notin X. If F(v,q3) # F(v,r), then ¢§ and r would
witness that €° € X. Hence, F(v,q3) = F(v,r). If F(v,r) # F(v,q}), thené! would bein X. So
F(v,r) = F(v,q}). Similarly, the fact that G° and ! are not in X implies that F (v, o) = F(v, qg)
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and F(v,q1) = F(v,q7). So F(v,q0) = F(v,q3) = F(v,r) = F(v,qf) = F(v,q1). This
completes the proof of claim 2.

Define F(v) to be equal to F (v, r) for any r such that (v, ) is in the domain of F. By claim 1,
F(v) is defined for any v which is N, -nice for p, l;, and A for some y < w;. By claim 2, F(v) is
well-defined. .

Claim 3: Suppose that y; < y2, v; € N,, is Ny, -nice for p, b and A, v, is N,,-nice for p,
l;, and A, and v, <¢ v;. Then F(vi) = F(vz) N §y,. Proof: By (2) of Definition 5.51 (Nice
Conditions) and elementarity, fix some r; < p in N,, with top level §,, such that r; [ 0 = vy,
Ny, Nk € dom(ry), ry is separated, and r; decides hnN 8y, as some set by. Then F(vq) = b;. Since
v <g v1 =ry [ 0 and v, is N,,-nice for p, l;, and A, by (2) of Definition 5.51 (Nice Conditions)
we can find some r, < ry with top level 8,, such that r, [ 8 = v, N, Nk € dom(rz), r» is
separated, and r, decides hn 8y, as some set by. Then F(vy) = b,. Since r, < ry, by = by N6y,
which completes the proof of claim 3.

Claim4: If y < £ < w1, v is Ny -nice for p, l;, and A, w is Ng-nice for p, l;, and A, and v and w
are compatible in Py, then F(v) = F(w) N, . In particular, if y = £ then F(v) = F(w). Proof: If
not, then since N¢ € Ng, by elementarity we can find counter-examples v and w in Ngy ;. Now
find z <g v, w in Ng4 ;. Apply Lemma 5.44 (Simple Generalized Extension) to find ¢ < p in Negy
such that ¢ [ 6 = z. By Proposition 5.54 (Existence of Nice Conditions), fix v, <g ¢ [ 8 = z such
that v, is Ng-nice for p, 5, and A. Then by claim 3, F(v) = F(v2) N8, and F(w) = F(v2) N &,
so F(v) = (F(v2) Né) NS, = F(w) NS, which is a contradiction. This completes the proof of
claim 4.

For each y < wy, let ¢, be a Pg-name for the unique set which is equal to F(v), where v € Ge
is Ny -nice for p, l;, and A, and is equal to the emptyset if there is no such v. Note that by claim
4, ¢, is well-defined. By elementarity, we can choose the name ¢, to be in N,,1. Now let ¢ be a
Pg-name for the union ( J{¢, : ¥ < w;}. Note that the names ¢,, and the name ¢ are also P-names
since [Py is a regular suborder of P.

Claim 5: p forces in PP that ¢ is a chain in U. Proof: Clearly, for all y < wy, p forces that ¢, is a
chain in U. So it suffices to show that p forces that for all y < & such that ¢, and ¢¢ are non-empty,
¢y, = ¢¢NJ,. Solet G be a generic filter on P which contains p andlet Gg = GNPg. Letc, = éfe

and cg = c'f ¢ and assume that ¢y and cg are non-empty. Fix v € Gy which is N, -nice for p, b, and

A, and fix w € Gy which is Ng-nice for p, l;, and A, which exist because ¢, and c¢ are non-empty.
Then ¢, = F(v) and ¢ = F(w). Since v and w are in Gy, they are compatible in Pg, so by claim
4,cy = F(v) = F(w) N§, = c¢. This completes the proof of claim 5.

Claim 6: p forces in P that ¢ is equal to b, and hence that b € VF¢. Since p < p, this claim
gives a contradiction to our initial assumptions. Proof: Since p forces that ¢ is a chain in U and b is
an uncountable branch of U , it suffices to show that p forces that b C¢.

Suppose for a contradiction that there exists some ¢ < p and some { < w; such that g IFp ¢ €
b \ ¢. Fix a e-increasing and continuous sequence (M, : y < w;) of suitable sets such that My
contains as members the objects p, g, ¢, (N; : i < wy), and (¢; : i < w1). Let D € w; be a club
such thatforally € D, Ny, Nw; = M, Nw;.

Fix y € D. Apply Proposition 5.54 (Existence of Nice Conditions) to find some v which is
M, -nice for p, l;, and A such that v <g ¢ [ 6. By (2) of Definition 5.51 (Nice Conditions), fix
r < q with top level §,, such thatr [ & = v, N Nk € dom(r), r is separated, and r decides b N 8y
as some set b,. By Lemma 5.52, v is also N, -nice. Hence, F(v) = b,. Since g IFp { € b,r < q,
and ¢ < §,, r forces that { € hn 8, = b,. Hence, { € F(v). Now r forces that v € G, so r forces
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that ¢, = F(v), and hence r forces that { € ¢,. But p forces that ¢, is a subset of ¢. Sor < g and
r IFp ¢ € ¢, which is a contradiction. ]

Lemma 5.56. Suppose that T is a free Suslin tree. Let N be suitable and let § = N N w;. Suppose
that py, ..., pi—1 arein N NP and v € N NPy, all of which have top level B. Assume that for all
k <1, pr | 0 = v and py forces that bisa cofinal branch of U which is not in V¥é. Let X C Ty
be finite with unique drop-downs to B, A C (. ; dom(py) is finite, and suppose that for all k < |,
{pr(t) : T € A} is separated on X | B.
Then there exist y < 8, w € N NPy, and for all k < [ conditions qi0.qk,1 in N NP, all with

top level y, satisfying:

(1) foreach j <2, qi,; < px and qi,; | 0 = w;

(2) foreach j <2andt € A, X | Band X | y are gy, ;(t)-consistent;

(3) there exists some §{ <y such that q o IFp ¢ € b and ka1 lFp ¢ ¢ b.

Proof. The proof is by induction on /. Let N and § be as above and let X C Ty be finite.

Base case: Suppose that p € N NPand v € N NPy have top level B, p | 6 = v, and p
forces that b is a cofinal branch of U which is not in V?¢. Assume that X has unique drop-downs
to B, A € dom(p) is finite, and {p(7) : T € A} is separated on X [ B. Fix an injective tuple
a = (ap....,an—1) which enumerates X so that {p(r) : T € A} is separated on @ | B. Let
X=alp.

Define X as the set of all tuples b= (bo, . -.,bn—1) in the derived tree T3 for which there exist
qo,q1 < p with top level equal to the height p of b such that:

e qo[0=q1]0; )
e forall7 € Aand j <2, X and b are ¢; (t)-consistent;
e there exists some { < psuchthatgg lFp { € band gy IFp ¢ ¢ b.

By Proposition 5.55, X is dense open in T3, and X € N by elementarity. Since 7 is a free Suslin
tree, Ty is Suslin. So by elementarity we can find some y < § greater than 8 such that every member
of Ty with height at least y is in X. In particular, @ | y € X. Fix go,q1 < p which witness that
alyeX.Theny,qo | 0, qo, and g satisfy conclusions (1)-(3).

Inductive Step: Let [ > 0 be given and assume that the statement is true for /. We will prove that
it is true for / + 1. Suppose that py,..., p; are in N NP and v € N N Py, all of which have top
level 8. Assume that for all k <[, p; [ 8 = v and py forces that b is a cofinal branch of U which
is not in V¥¢. Suppose that X has unique drop-downs to 8, 4 C ("), ., dom(py) is finite, and for
allk <I,{pr(r): 7 € A} isseparated on X | B. -

By the inductive hypothesis, we can fix y < §, w € N N Py, and conditions g o, qx,1 < px in
N NPforall k < [ satisfying conclusions (1)-(3). By Lemma 5.44 (Simple Generalized Extension),
find ¢ < p; with top level y suchthatq [ & = wand forallt € A, X | fand X | y are
q(t)-consistent.

Since {p;(tr) : T € A} is separated on X [ B, {¢(r) : © € A} is separated on X [ y by
Lemma 5.21 (Persistence). Fix an injective tuple @ = (ao, ..., an—1) which enumerates X so that
{q(x) : T € A}is separatedond | y. LetX = a [ y.

Define X as the set of all tuples b= (bo, - . .,by—1) in the derived tree T3 for which there exist
qo,q1 < q with top level equal to the height p of b such that:

(1) qo10=q110;
(2) forallt € Aand j < 2, X and b are q; (t)-consistent;
(3) there exists some { < p such that go IFp ¢ € b and q1Fp ¢ ¢ b.
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By Proposition 5.55, X is dense open in T, and X € N by elementarity. Since 7 is a free Suslin
tree, Tk is Suslin. So by elementarity we can find some £ < § greater than y such that every member
of Ty with height at least £ is in X. In particular, d | § € X.

Fix g1,0.41,1 < q which witness thatd | § € X. Letz = g; | 6. Now apply Lemma 5.45
(Generalized Extension) in N to find, for each k </ and j < 2, a condition g, ; < gi,; in N with
top level & suchthatgi ; [ 0 = zandforallt € A, X [ y and X [ £ are gi, ; (r)-consistent. Then
§,z,and g ; forall k <[ and j < 2 are as required. O

Proof of Theorem 5.49 (No New Cofinal Branches). Suppose for a contradiction that there exists a
condition p € P which forces in P that b is a cofinal branch of U which is not in V¥, We will find
some v <g p [ 8 which forces in Py that U has an uncountable level, which contradicts that U is a
Pg-name for an w; -tree. Let o be the top level of p.

Fix a suitable set N suchthat p € N andlet§ = N Nw;. Fix an increasing sequence (y, : n < w)
of ordinals cofinal in § with Y9 = «, and fix an enumeration (D, : n < w) of all dense open subsets
of P which liein N. Let g : @ — 2 x Ts x (N N k) be a surjection such that every element of the
codomain has an infinite preimage.

We will define by induction the following objects in w-many steps:

e a subset-increasing sequence (X, : n < ) of finite subsets of T with union equal to Ty;
a subset-increasing sequence (A, : n < w) of finite subsets of N N x with union equal to
N Nk;

an increasing sequence (8, : 7 < w) of ordinals cofinal in §;

a decreasing sequence (v, : n < w) of conditions in N N Py;

a family of conditions {r* : s € =®2} C N N P and ordinals {{; : s € =®2} C §;

foralln < w,s € "2, and t € Ay, an injective partial function 2% from X, to X,,.

We will maintain the following inductive hypotheses for all n < w and s € "2:

(1) X, has unique drop-downs to §,;
(2) 6, is the top level of r*;
3) r’ < p,andifm >n,t €™2,ands C ¢, then r’ < rs;
@) [0 = vy;
(5) A € dom(r®);
(6) &5 < Sps1, 15 Ol &g eb andrs VIF &g ¢ by
(7) forallt € A, and j <2, X, | 8, and X, | 8,41 are r* 7 (t)-consistent;
(8) * %and r* ! arein D,;
9) {r’(r) : T € A,} is separated on X, | 8,;
(10) forallt € A, and x, y € X,,

R(x)=y < r'(t)(x [ 8) =y | 6.

Stage 0: Let Xo =0, Ag = 0,80 = a,v9 = p F@,r‘a = p.

Stagen + 1: Let n < w and assume that we have completed stage n. In particular, we have
defined the following objects which satisfy the required properties: X,, An, 8n, Un, 1%, {5, and h
foralls € "2 and t € A,. Let g(n) = (ng,z,0).

Fix p < § larger than §, and y,,+1 such that X, U {z} has unique drop-downs to p. Let D be the
set of conditions r in D, which have some top level £ > p such that A, U {o} € dom(r). Then
D € N and D is dense open in PP.

Apply Lemma 5.46 (Generalized Consistent Extensions Into Dense Sets) to find a family {7* :
s € "2} of conditions in N N D, a condition v, € N NPy, and y < § so that for each s € "2:

(@) r* <rS5, 7" hastoplevel y,and 7* | 0 = v,;
(b) forall T € A, X, | 8, and X, | y are 7*(r)-consistent.
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Apply Lemma 5.48 (Generalized Augmentation) to find a family {7/ : s € "2} of conditions in
N N P and a condition ¥, € N N Py, all with top level y + 1, and a finite set ¥ < Tjs such that
X, U{z} C Y and Y has unique drop-downs to y + 1, satisfying that for all s € "2:
(©) P <iSand7* [ 0 = Uy;
(d) forallT € A,, X,, [ y and X, | (y + 1) are 7*(7)-consistent;
(e) {F*(r):t € A, U{o}}isseparatedon Y [ (y + 1);
) let h;fo be the partial injective function from Y to Y defined by letting, for all x,y € Y,
hjjg(x) = yiff #(@)(x [ (y + 1)) = y [ (y + 1); then z is in the domain and range of
h,.
Define X,+1 = Y and 4,41 = A, U{o}. Soforalls € "2, {#*(r) : t € A,+1} is separated on
Xn+1 f (1/ + 1)
Now apply Lemma 5.56 to find 8,41 < 6§, vy41 € N N Py, and for all s € "2, conditions
rs7 0, T <75 in N N P satisfying that for all s € "2:
(g) foreach j <2,r* J hastoplevel §,11 and r 7/ [ 6 = vy41;
(h) foreach j <2andt € Apy1, Xpy1 [ (v +1)and X, | 8,41 are r* 7 (t)-consistent;
(i) there exists some ¢y < 8,41 such that r* O lkp & € band r¥ L IFp & ¢ b.

Foreachs € "2, j < 2,and t € A,41, define a partial injective function hihj from X, +1 to Xy41
by letting, for all x,y € X, 41, hiAj(x) = yiff r* J(2)(x | 8p+1) = ¥ | 8ns1. Observe that by
(f) and (h), we have:
(j) foralls € "2and j <2, hf, = k37, and hence z is in the domain and range of % 7.
This completes stage n 4 1. It is easy to check that the inductive hypotheses are satisfied.
This completes the construction. For each f € “2, define a condition s with domain equal to
N Nk as follows. For any 7 € N N «, define

re(t) = U{rﬁ”(r) ‘n<w,T€ Ay} U U{h{rn ‘n<w,n€A,}.

By Lemma 5.33 (Constructing Total Master Conditions), each r¢ is a total master condition for [P
over N. Define v = ry [ 0 for some (any) f € “w.

For each f € “2, let by be such that ry IFp hns = by . Due to our assumption about the levels
of U, it is easy to argue that ry forces that by is a cofinal branch of U | 8. Suppose that f # g.
Let n be least such that f(n) # g(n), and assume without loss of generality that f(n) = 0 and
gn)=1.Lets=f |n=g|n Thenry <r* %andry <r* ' SorsIFp & € b | §and
rg ke &s # b | 8. Hence, by # bg.

Now we are ready to get a contradiction. Let Gg be a generic filter for Py such that v € Gy. In
V[Ggl, let P/ G be the suborder of P consisting of all ¢ € P such thatg [ 6 € Gg. Let U = U%e.
In V[Gg], each by is a cofinal branch of U | &, and ry forces in P/Gg that by = b N 8. Hence ry
forces that h(§) is an upper bound of by. Since having an upper bound in U is absolute between
V[Gg] and any generic extension by P/ Gg, by does in fact have an upper bound in Us, which we
will denote by xr. By construction, if f* # g then by # bg, so xy # xg. Hence, U is uncountable,
which contradicts that U is an w;-tree in V[Gg]. |

6. THE MAIN RESULT
We are now prepared to prove the main result of the article.

Theorem 6.1 (Main Theorem). Suppose that there exists an inaccessible cardinal k and an infinitely
splitting normal free Suslin tree T. Then there exists a forcing poset P satisfying that the product
forcing Col(wy, <k) x P forces:
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(1) kK = way

(2) GCH holds;

(3) T is a Suslin tree;

(4) there exists an almost disjoint family { f; : T < w2} of automorphisms of T';
(5) there does not exist a Kurepa tree.

Proof. Let V be the ground model in which 7" and « are as above. For simplicity in notation, let
Q = Col(wy, < k). Note that Q x P has size k. Let IP be the forcing poset of Definition 5.17 in
V. Since w;-closed forcings preserve Suslin trees, T is still free in V2. Also, the definition of P is
easily seen to be absolute between V and V2. So Q x P is forcing equivalent to the two-step forcing
iteration of Q followed by the forcing of Definition 5.17 (with k = w,). Since CH holds in V©, in
Q2 we have that P is w,-c.c. Consequently, Q x P is k-c.c. As Q is w;-closed and hence totally
proper, and Q forces that IP is totally proper and preserves the fact that 7" is Suslin, Q x PP is totally
proper and forces that 7" is Suslin. Statements (1)-(4) are now clear.

For (5), let U be a nice (Q x P)-name for an w;-tree (with underlying set w;). By the k-c.c.
property and the fact that conditions in @ x P have countable domain, there exists some 6 < «
such that U is a (Col(w1, < 0) x Pg)-name. Let G x H be a generic filter on Q x P. By the
usual factor analysis for product forcings, we can write V[G] = V[G4][G?][Hy][H], where Gg =
G N Col(w, < 6), G = Gn Col(wy, [0,k)), Hy = H N Py, and we consider H to be a
V[G][Hg]-generic filter on the quotient forcing P/ Hy.

Let U = U%>Hé_ Then U is in V[Gg][Hp], and hence U is in V[G][Hy]. Consider a cofinal
branch b of U in V[G][H]. Applying Theorem 5.49 in V[G], b is in the model V[G][Hg], which
by the product lemma is equal to the model V[Gg][Hg][G?]. Since Col(w;, [0, «)) is w;-closed in
V[Ggl[Hpg] and w-closed forcings do not add new cofinal branches of w;-trees, b is in V[Gg][Hg].
As K is inaccessible and 6 < «, « is also inaccessible in V [Gg][Hg]. Because every cofinal branch
of U in V[G][H] is in V[Gg][Hg], there are fewer than k many cofinal branches of U in V[G][H].
So U is not a Kurepa tree in V[G][H]. O

It remains to verify the following claim from Section 1.

Proposition 6.2. Let k be an inaccessible cardinal, let Q be Jech’s forcing for adding a Suslin tree,
and let P be a Q-name for the forcing of Definition 5.17 using the generic Suslin tree. Then Q x P is
forcing equivalent to some w1-closed forcing.

Proof. In V define a forcing poset A as follows. A condition in A is a pair (¢, ) satisfying:
et €Q;
e f is a function whose domain is a countable subset of ¥ and whose range is a set of auto-
morphisms of 7.
Let (u,g) < (¢, f) if u <qg ¢, dom(f) € dom(g), and for all « € dom(f), f() € g(x). Itis
easy to check that A is w;-closed. (The forcing A is similar to [Jec72, Theorem 3], but we are not
requiring that f be injective nor that the range of f be a group).

Let A’ be the suborder of A consisting of all conditions (¢, /) such that ¢ has successor height.
We claim that A’ is dense in A. So let (¢, f) € A be such that # has height a limit ordinal §.
Enumerate ¢ as (x, : n < w) and dom( f) as (y, : n < w). For each n < w fix a cofinal branch b,
of t with x,, € b,. For purposes of bookkeeping, fix a surjection

h:w—=>2x{-1,1} xwoxw

such that: for all n < w, letting h(n) = (i,m,k,l),if n = O0theni = 0, and if n > O then k < n.
We build a sequence (¢, : n < w) of cofinal branches of 7 in w-many stages as follows. Assuming
that n <  and we have completed stages before n, let h(n) = (i,m,k,[). If i = 0, letc, =
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F)bg]- Ifi = 1,1etc, = f(y;)"[ck]- This completes the construction. Now letu = ¢ U {b,, :
n < w}U{c, : n < w}. Define g with domain equal to dom( f) so that for all 7 € dom( f),
g(®) [t = f(r)andforallbinu\¢, g(r)(b) = f(t)[b]. By our bookkeeping, it is straightforward
to check that (u, g) € A’ and (u, g) < (¢, f).

Now the map from A’ to Q * [P given by (7, f) — (¢, f ) is clearly an embedding. To see that
the range is dense, consider (z, f ) € Q % . Extend ¢ to u in Q which decides f as f and has
successor height greater than the height of . Now applying Proposition 5.15 (replacing T | (o + 1)
with u, letting X = @, and ignoring (3)), there exists some g such that dom(f) = dom(g) and
for all T € dom(f), g(r) is an automorphism of u such that f(r) € g(r). Then (u,g) € A’ and

(.8) = (. f)inQx*P. O

By the arguments given in Section 1, we have the following consequences of Theorem 6.1 (Main
Theorem).

Corollary 6.3 (Almost Kurepa Suslin Tree + —KH). Assume that there exists an inaccessible cardi-
nal k. Then there exists a generic extension in which k equals w,, CH holds, there exists an almost
Kurepa Suslin tree, and there does not exist a Kurepa tree.

Corollary 6.4 (T is Suslin + 6(T) = wy + ¢ + —=KH). Assume that there exists an inaccessible
cardinal k. Then there exists a generic extension in which k equals w,,  holds, there exists a normal
Suslin tree with w,-many automorphisms, and there does not exist a Kurepa tree.

Corollary 6.5 (Non-Saturated Aronszajn Tree + —KH). Assume that there exists an inaccessible
cardinal k. Then there exists a generic extension in which k equals w,, there exists a non-saturated
Aronszajn tree, and there does not exist a Kurepa tree.
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