Coordinatewise decomposition of Borel functions

Benjamin Miller
March 24th, 2006
1. Descriptive set theory

Definition. A topological space X is *Polish* if it is separable and completely metrizable.

Definition. The *Borel subsets of* X are those obtained from the open sets via complements and countable unions (and countable intersections).

Definition. A function $f : X \to Y$ is *Borel* if

$$\forall B \subseteq Y \text{ Borel } (f^{-1}(B) \text{ is Borel}).$$

A central part of descriptive set theory is the study of Borel sets and functions on Polish spaces.
§1. Descriptive set theory

Definition. An equivalence relation E on X is $Borel$ if it is Borel as a subset of $X \times X$.

The study of Borel equivalence relations on Polish spaces is a relatively recent, but rapidly developing, piece of modern descriptive set theory.

One motivation comes from foundational questions regarding effective cardinality and classification.

Another comes from ergodic theory, where the importance of equivalence relations induced by group actions has been apparent for some time.

Here we will focus on some descriptive set-theoretic questions which are intimately linked to their ergodic-theoretic counterparts.
Suppose that Z is a Polish space and E is a Borel equivalence relation on Z.

Definition. E is *smooth* if there are Borel sets $B_0, B_1, \ldots \subseteq Z$ such that, for all $z_1, z_2 \in Z$,

$$z_1 E z_2 \iff \forall n \in \mathbb{N} \ (z_1 \in B_n \iff z_2 \in B_n).$$

Definition. A *transversal* of E is a set $B \subseteq Z$ such that $\forall z \in Z \ \exists! y \in B \ (zEy)$.

Definition. E is *countable* if all of its equivalence classes are countable.

Fact. If E is countable, then E is smooth if and only if E admits a Borel transversal.
§2. Smooth equivalence relations

Example. The Vitali equivalence relation is the equivalence relation on \(\mathbb{R} \) given by

\[x E_V y \iff \exists q \in \mathbb{Q} \ (x + q = y). \]

Fact. If \(m \) is Lebesgue measure on \(\mathbb{R} \), then

\(\forall B \subseteq \mathbb{R} \) Borel (\(m(B) > 0 \Rightarrow E_V|B \) is non-smooth).

Theorem (Harrington-Kechris-Louveau). Exactly one of the following holds:

1. \(E \) is smooth;

2. There is a Borel set \(B \subseteq \mathbb{Z} \) with \(E|B \cong_B E_V \).

Corollary. If \(E \) is non-smooth, then there is a probability measure \(\mu \) on \(\mathbb{Z} \) such that

\(\forall B \subseteq \mathbb{Z} \) Borel (\(\mu(B) > 0 \Rightarrow E|B \) is non-smooth).
§3. Marriage problems

Definition. A marriage problem is a set $S \subseteq X \times Y$, where $X \cap Y = \emptyset$.

Definition. A solution to a marriage problem is a bijection $f : X \to Y$ such that $\text{graph}(f) \subseteq S$.

Example. Let $X = 2\mathbb{Z}$, $Y = 2\mathbb{Z} + 1$, and

$$S = \{(m, n) \in X \times Y : |m - n| = 1\}.$$

The function $f : 2\mathbb{Z} \to 2\mathbb{Z} + 1$, given by

$$f(m) = m + 1,$$

is a solution to the marriage problem.
Example. Define \(s : 2\mathbb{Z} \to 2\mathbb{Z} \) by
\[
[s(x)](n) = x(n + 1).
\]
Define \(i : 2\mathbb{Z} \to 2\mathbb{Z} \) by
\[
[i(x)](n) = x(-n).
\]
Clearly \(i^2 = \text{id} \), and since \(i \circ s = s^{-1} \circ i \), we have
\[
(s \circ i)^2 = s \circ i \circ s \circ i
= s \circ s^{-1} \circ i \circ i
= \text{id}.
\]
Let \(X = \{ x \in 2\mathbb{Z} : x \text{ is not periodic} \} \) and
\[
Y = \{ \{x_1, x_2\} : i(x_1) = x_2 \text{ or } s \circ i(x_1) = x_2 \}.
\]
Define \(S \subseteq X \times Y \) by
\[
S = \{ (x, \{x_1, x_2\}) \in X \times Y : x \in \{x_1, x_2\} \}.
\]
§3. Marriage problems

Claim. There is a solution to S.

Proof. Associated with S is the graph G_S on the disjoint union $Z_S = X \sqcup Y$, given by

$$G_S = \{(z_1, z_2) : (z_1, z_2) \in S \text{ or } (z_2, z_1) \in S\}.$$

Let E_S be the equivalence relation whose classes are the connected components of G_S.

By AC, there is a transversal $B \subseteq X$ of E_S.

Next, we must consider the structure of \mathcal{G}_S:

\[
\begin{align*}
&\ s^2(i(x)) \quad s(i(x)) \quad i(x) \quad s^{-1}(i(x)) \quad s^{-2}(i(x)) \\
&\ s^{-2}(x) \quad s^{-1}(x) \quad x \quad s(x) \quad s^2(x)
\end{align*}
\]

Definition. The s-saturation of B is given by

\[
[B]_s = \bigcup_{n \in \mathbb{Z}} s^n(B).
\]

Define $f : X \rightarrow Y$ by

\[
f(x) = \begin{cases}
\{x, i(x)\} & \text{if } x \in [B]_s, \\
\{x, s \circ i(x)\} & \text{otherwise}.
\end{cases}
\]

The function f is a solution to S. \square
Claim. There is no Borel solution to S.

Proof. Suppose, towards a contradiction, that $f : X \to Y$ is a solution to S.

Then the set $A = \{x \in X : f(x) = \{x, i(x)\}\}$ is Borel and s-invariant, and $X = A \cup i(A)$.

Let μ be the product measure on $2^\mathbb{Z}$.

Then $\mu(X) = 1$ and $\mu(A) = \mu(i(A))$.

The ergodicity of s ensures that $\mu(A) \in \{0, 1\}$.

These conditions are mutually exclusive. \qed
As with the non-smoothness of E_V, we have shown the inexistence of a Borel solution by verifying a measure-theoretic strengthening.

Definition. A set $S \subseteq X \times Y$ is 2-regular if $|S_x| = |S^y| = 2$, for all $x \in X$ and $y \in Y$.

Theorem. Suppose that $S \subseteq X \times Y$ is a 2-regular Borel marriage problem with no Borel solution. Then there is a probability measure μ on X such that, for every Borel set $B \subseteq X$ of positive measure, there is no Borel injection $f : B \to Y$ whose graph is contained in S.

Remark. In contrast, Graf-Mauldin have shown that c-regular Borel marriage problems always admit measure-theoretic solutions, even though Borel (or even just Baire measurable) solutions need not exist.
§4. Coordinatewise decomposition

Suppose $X \cap Y = \emptyset$, $S \subseteq X \times Y$, G is a non-trivial standard Borel group, and $f : S \to G$.

Definition. A *coordinatewise decomposition* of f is a pair (u, v), where $u : X \to G$, $v : Y \to G$, and

$$\forall (x, y) \in S \ (f(x, y) = u(x)v(y)).$$

Definition. A set $S \subseteq X \times Y$ admits decompositions if every function $f : S \to G$ admits a coordinatewise decomposition.
Claim. S admits decompositions $\iff G_S$ is acyclic.

Proof of \Rightarrow. Suppose $x_0, y_0, x_1, y_1, \ldots, x_{n+1} = x_0$ is a cycle, fix $g_0 \in G \setminus \{1_G\}$, and define

$$f(x, y) = \begin{cases} g_0 & \text{if } (x, y) = (x_0, y_0), \\ 1 & \text{otherwise.} \end{cases}$$

If (u, v) is a decomposition of f, then

$$g_0 = f(x_0, y_0)f(x_1, y_0)^{-1} \cdots f(x_n, y_n)f(x_{n+1}, y_n)^{-1} = (u(x_0)v(y_0))(u(x_1)v(y_0))^{-1} \cdots (u(x_n)v(y_n))(u(x_{n+1})v(y_n))^{-1} = 1_G,$$

which contradicts our choice of g_0. \qed
§4. Coordinatewise decomposition

Proof of \((\Leftarrow)\). Fix a transversal \(B \subseteq Z\) of \(E_S\).

For notational simplicity, assume that \(B \subseteq X\).

Let \(B_n = \{z \in Z_S : d(z, B) = n\}\), where \(d\) is the graph metric induced by \(G_S\).

For \(x \in B_0\), set \(u(x) = 1_G\).

For \(y \in B_{2n+1}\), let \(x\) be the unique neighbor of \(y\) in \(B_{2n}\), and set \(v(y) = u(x)^{-1} f(x, y)\).

For \(x \in B_{2n+2}\), let \(y\) be the unique neighbor of \(x\) in \(B_{2n+1}\), and set \(u(x) = f(x, y)v(y)^{-1}\).

\(\square\)

If \(f\) and \(B\) are Borel, then the resulting functions \(u, v\) will be Borel as well.

So, if \(G_S\) is acyclic and \(E_S\) admits a Borel transversal, then \(u, v\) can be chosen to be Borel.
§4. Coordinatewise decomposition

Definition. A Borel set $S \subseteq X \times Y$ admits Borel decompositions if every Borel function $f : S \to G$ admits a Borel coordinatewise decomposition.

Kłopotowski-Nadkarni-Sarbadhikari-Srivastava have shown the following:

Theorem. Suppose that $G = \mathbb{Z}$ and $S \subseteq X \times Y$ is a Borel set which admits decompositions. If S is 2-regular, then the following are equivalent:

1. S admits Borel decompositions;
2. E_S is smooth.

Proof (of $\neg(2) \Rightarrow \neg(1)$). By a Glimm-Effros style embedding argument, we can assume that:

(a) E_S is non-smooth;
(b) There is a Borel solution $g : X \to Y$ to the marriage problem associated with S.
§4. Coordinatewise decomposition

Define $f : S \to \mathbb{Z}$ by

$$f(x, y) = \begin{cases}
1 & \text{if } g(x) = y, \\
-1 & \text{otherwise},
\end{cases}$$

and suppose that (u, v) is a decomposition of f.

Then we obtain a transversal of E_S, by setting

$$B = \{x \in X : u(x) = 0\} \cup \{y \in Y : v(y) = 0\}.$$

Moreover, if u and v are Borel, then so is B.

As E_S is non-smooth, it follows that there is no Borel decomposition of f.

\[\square\]
This argument does not extend to all Borel sets $S \subseteq X \times Y$, even when $G = \mathbb{Z}$.

Nevertheless, we have the following:

Theorem. Suppose that $S \subseteq X \times Y$ is a Borel set which admits decompositions. Then the following are equivalent:

1. S admits Borel decompositions;
2. E_S is smooth.

Proof. To see that S does not admit Borel decompositions when E_S is non-smooth, we use the Harrington-Kechris-Louveau theorem to push a copy of E_V into E_S.

We simultaneously push through a subequivalence relation $F_V \subseteq E_V$ such that E_V/F_V is generated by a “Borel” free action of a countable $H \leq G$.
§4. Coordinatewise decomposition

We ensure also that E_V, F_V share a common ergodic probability measure.

This allows us to prove a measure-theoretic strengthening of the inexistence of decompositions.

To see that if E_S is smooth, then S admits Borel decompositions, we use a result of Hjorth:

Theorem. Suppose that E is a Borel equivalence relation whose classes are the connected components of an acyclic Borel graph. Then E is smooth if and only if E admits a Borel transversal.

As G_S is acyclic and E_S is smooth, it follows that E_S admits a Borel transversal.

We have already seen that this implies that S admits Borel decompositions. \[\square\]
§4. Coordinatewise decomposition

There is a much finer question to be asked:

Question. Under what circumstances does a given \(f : S \to G \) admit a Borel decomposition?

When \(G = \langle \mathbb{R}, + \rangle \), the answer depends entirely on the presence of certain measures on \(Z_S \).

We will work with \(\langle (0, \infty), \cdot \rangle \) instead of \(\langle \mathbb{R}, + \rangle \).

As before, it is elementary to see that the existence of a decomposition for \(f : S \to (0, \infty) \) is equivalent to a simple combinatorial property of \(G_S \) and \(f \).

For \((x, y) \in S \), set \(\varphi_f(x, y) = f(x, y) \).

Extend \(\varphi_f \) to the space of all paths \(\gamma \) through \(G_S \), by insisting that \(\varphi_f(\gamma^{-1}) = \varphi_f(\gamma)^{-1} \) and \(\varphi_f(\gamma_1 \gamma_2) = \varphi_f(\gamma_1) \varphi_f(\gamma_2) \).
Claim. The following are equivalent:

1. f admits a decomposition;

2. For every loop γ through \mathcal{G}_S, $\varphi_f(\gamma) = 1$.

If f admits a decomposition, we can therefore define $\rho_f : E_S \to (0, \infty)$ by $\rho_f(x, y) = \varphi_f(\gamma)$, where γ is any path from x to y.

Then ρ_f is a Borel cocycle, i.e.,

$$\forall xE_S yE_S z (\rho_f(x, z) = \rho_f(x, y)\rho_f(y, z)).$$

Definition. A cocycle $\rho : E \to (0, \infty)$ is a (Borel) coboundary if there is a Borel function $w : Z \to (0, \infty)$ such that

$$\forall z_1 E z_2 (\rho(z_1, z_2) = w(z_1)/w(z_2)).$$
Claim. Suppose that $f : S \to (0, \infty)$ admits a decomposition. Then the following are equivalent:

1. f admits a Borel decomposition;
2. ρ_f is a coboundary.

When every horizontal and vertical section of S is countable, the existence of a Borel decomposition is therefore a special case of the following:

Question. Suppose that E is a countable Borel equivalence relation and $\rho : E \to (0, \infty)$ is a Borel cocycle. Under what circumstances is ρ a coboundary?
§5. Some remarks about measures

Definition. The *(Borel) full group* of E is the group $[E]$ of Borel automorphisms $f : Z \to Z$ such that $\text{graph}(f) \subseteq E$.

Definition. A measure μ is *E-quasi-invariant* if every $f \in [E]$ sends μ-null sets to μ-null sets.

Definition. A set $B \subseteq Z$ is an *(E-complete section)* if $\forall x \in X \exists y \in B \ (x E y)$.

Fact. For every σ-finite measure μ on Z, there is a μ-conull Borel E-complete section $B \subseteq Z$ such that $\mu|B$ is $(E|B)$-quasi-invariant.

Remark. When studying probability measures and countable Borel equivalence relations, this essentially allows us to assume quasi-invariance.
§5. Some remarks about measures

Definition. A measure μ is ρ-invariant if, for every Borel set $B \subseteq Z$ and every $f \in [E],$

$$\mu(f^{-1}(B)) = \int_B \rho(f^{-1}(x), x) \, d\mu(x).$$

Definition. A measure μ is E-invariant, if it is invariant with respect to the trivial cocycle $\rho \equiv 1,$ or equivalently, if every element of $[E]$ is μ-measure preserving.

Fact. Suppose that μ is an E-quasi-invariant, σ-finite measure. Then there is a Borel cocycle $\rho : Z \to (0, \infty)$ such that μ is ρ-invariant. Moreover, this cocycle is unique μ-almost everywhere.
Theorem. Suppose that $\rho : E \to (0, \infty)$ is a Borel cocycle. Then the following are equivalent:

1. ρ is a coboundary;

2. The following conditions hold:

 (a) Every E-invariant, σ-finite measure is equivalent to a ρ-invariant, σ-finite measure;

 (b) Every ρ-invariant, σ-finite measure is equivalent to an E-invariant, σ-finite measure.
§6. Borel cocycles

The proof uses 3 Glimm-Effros style dichotomies:

1. The original Glimm-Effros dichotomy, which can be viewed as a characterization of the existence of ergodic measures of type II;

2. A characterization of the existence of ρ-invariant measures of type II;

3. A characterization of the existence of ρ-invariant measures of type III.

All of the details can be found at:

http://www.math.ucla.edu/~bdm