6.5 Linear First-Order Differential Equations

- A first-order differential equation that can be written in the form

\[\frac{dy}{dx} + P(x) y = Q(x), \]

where \(P \) and \(Q \) are functions of \(x \), is a linear first-order equation of standard form.

- We solve the above equation by multiplying both sides by a positive function \(v(x) \) that transforms the left-hand side into the derivative of the product \(v(x) \cdot y \). This will require \(v \) to satisfy

\[\frac{d}{dx}(vy) = v \frac{dy}{dx} + Pvy. \]

This equation holds if

\[\frac{dv}{dx} = P v. \]

By separating the variables, we obtain

\[\ln v = \int P \, dx. \]

Notice that since \(v > 0 \), we do not need absolute value signs in \(\ln v \). Finally, solving for \(v \) gives

\[v = e^{\int P \, dx}. \] \hspace{1cm} \text{(Integrating factor)}

- With the above construction of \(v \), we can state the solution of the linear equation as

\[y = \frac{1}{v(x)} \int v(x) Q(x) \, dx, \]

where

\[v(x) = e^{\int P(x) \, dx}. \]

In the formula for \(v \), we do not need the most general antiderivative of \(P(x) \). \hspace{1cm} \text{[2,16]}

- **Mixture Problems.** A chemical in a liquid solution runs into a container holding the liquid with a specified amount of the chemical dissolved. The mixture is kept uniform by stirring and flows out of the container at a known rate. The differential equation describing the process is based on the formula

\[\text{Rate of change} \ \text{of chemical} = \left(\text{rate at which chemical arrives} \right) - \left(\text{rate at which chemical departs.} \right) \]

If \(y(t) \) is the amount of chemical in the container at time \(t \) and \(V(t) \) is the total volume of liquid in the container at time \(t \), then the equation is

\[\frac{dy}{dt} = (\text{chemical’s arrival rate}) - \frac{y(t)}{V(t)} \cdot (\text{outflow rate}). \] \hspace{1cm} \text{[26]}