1. Let A and B be two sets, and let $f : A \rightarrow B$ define a function from A to B. Let C_1 and C_2 be subsets of A. Prove that

$$f(C_1 \cup C_2) = f(C_1) \cup f(C_2).$$
2. Let A and B be two sets, and let $f : A \rightarrow B$ define a function from A to B. Let D_1 and D_2 be subsets of B. Prove that

$$f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2).$$

Note: In this case, f^{-1} denotes the inverse image of sets, not necessarily an inverse function, as such a function may not be defined in this case.
3. Let A and B be two sets, and let $f : A \rightarrow B$ define a function from A to B. Let C be a subset of A. If f is injective, show that $f^{-1}[f(C)] = C$.
4. Let A and B be two sets, and let $f : A \rightarrow B$ define a function from A to B. Let D be a subset of B. If f is surjective, show that $f[f^{-1}(D)] = D$.
5. True or False: \(\bigcup_{k=1}^{\infty} P(\{1, 2, \ldots, k\}) = P(\mathbb{N}) \)

Here, \(P \) denotes "power set of," \(\{1, 2, \ldots, k\} \) represents the first \(k \) counting numbers, and \(\mathbb{N} \) stands for the set of natural numbers.
6. Prove that a countable union of countable sets is countable.
7. Let \(r \in \mathbb{R} \) such that \(r \neq 1 \). Show for all \(n \in \mathbb{N} \) that

\[
1 + r + r^2 + r^3 + \ldots + r^n = \frac{(1 - r^{n+1})}{(1 - r)}.
\]

If we let “\(n \to \infty \)”, what do we get? Under what circumstances do we get convergence? divergence?