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Abstract. The quantization dimension function for an F -conformal measure mF generated
by an infinite conformal iterated function system satisfying the strong open set condition and
by a summable Hölder family of functions is expressed by a simple formula involving the
temperature function of the system. The temperature function is commonly used to perform
a multifractal analysis, in our context of the measure mF . The result in this paper extends a
similar result of Lindsay and Mauldin established for finite conformal iterated function systems.

1. Introduction

Various types of dimensions such as Hausdorff and packing dimension or the lower and
upper box-counting dimension are important to characterize the complexity of highly irregular
sets. In the past decades, a lot of research has been done aiming at the calculation of these
dimensions for various special cases or establishing some significant properties. In recent years,
paralleling methods have been adopted to study the corresponding dimensions for measures
(cf. [F]). In this paper, we study the quantization dimension for probability measures. The
quantization problem consists in studying the quantization error induced by the approximation
of a given probability measure with discrete probability measures of finite supports. This
problem originated in information theory and some engineering technology. A detailed account
of this theory can be found in [GL1]. Given a Borel probability measure µ on Rd, a number
r ∈ (0,+∞) and a natural number n ∈ N, the nth quantization error of order r for µ is defined
by

Vn,r(µ) := inf{
∫
d(x, α)rdµ(x) : α ⊂ Rd, card(α) ≤ n},

where d(x, α) denotes the distance from the point x to the set α with respect to a given norm
‖ · ‖ on Rd. We note that if

∫
‖x‖rdµ(x) <∞ then there is some set α for which the infimum

is achieved (cf. [GL1]). The set α for which the infimum is achieved is called an optimal set
of n-means or n-optimal set of order r for 0 < r < +∞. The upper and lower quantization
dimension of order r for µ is defined to be

Dr(µ) := lim sup
n→∞

r log n

− log Vn,r(µ)
; Dr(µ) := lim inf

n→∞

r log n

− log Vn,r(µ)
.

If Dr(µ) and Dr(µ) coincide, we call the common value the quantization dimension of order r
for the probability measure µ, and is denoted by Dr := Dr(µ). One sees that the quantization
dimension is actually a function r 7→ Dr which measures the asymptotic rate at which Vn,r
goes to zero. If Dr exists, then one can write

log Vn,r ∼ log(
1

n
)r/Dr .
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Graf and Luschgy first determined the quantization dimension for a finite system of self-similar
mappings associated with a probability vector (cf. [GL1, GL2]). Lindsay and Mauldin extended
the above result to the F -conformal measure m associated with a conformal iterated function
system determined by finitely many conformal mappings (cf. [LM]). Later, quantization
dimension was determined for many other fractal probability measures, for example one could
see [R1, R2, R3, R4, WD]. But, in each case the number of mappings considered was finite.
Quantization dimension for a fractal probability measure generated by infinite mappings was a
long time open problem. In [R6], Roychowdhury first determined the quantization dimension
for a self-similar measure generated by infinite similitudes (Sn)n≥1 with similarity ratios (sn)n≥1

respectively, associated with a probability vector (pn)n≥1, although an extra assumption is
needed for the existence of the function P (q, t) :=

∑∞
j=1 p

q
js
t
j that occurred in that paper. In

this paper, we give an extension of Lindsay and Mauldin’s (cf. [LM]) results to the realm
of itereted function systems with a countable infinite alphabet. The probability measure mF

considered here is the F -conformal measure associated with a summable Hölder family of
functions F := {f (i) : X → R, i ∈ I} and a conformal iterated function system {ϕi : X →
X, i ∈ I}, where I is a countable set, called alphabet, with finitely many, or what we want
to emphasize, infinitely many, elements. We show that for this measure mF , the quantization
dimension exists and is uniquely determined by the following formula:

(1) lim
n→∞

1

n
log
∑
ω∈In

(
‖ exp(Sω(F ))‖‖ϕ′ω‖r

) Dr
r+Dr = 0.

The multifractal formalism for a probability measure corresponding to a two parameter family
of Hölder continuous functions

Gq,t := {g(i)
q,t := qf (i) + t log |ϕ′i| : i ∈ I}

does indeed hold if I is a countable set (cf. [HMU, MU]). In particular, the singularity
exponent β(q) (also known as the temperature function) satisfies the usual equation

(2) lim
n→∞

1

n
log
∑
ω∈In
‖ exp(Sω(F ))‖q‖ϕ′ω‖β(q) = 0,

and that the spectrum f(α) is the Legendre transform of β(q). Comparing (1) and (2), we see
that if qr = Dr

r+Dr
, then β(qr) = rqr, that is, the quantization dimension function for an infinite

self-conformal measure has a relationship with the temperature function of the thermodynamic
formalism arising in multifractal analysis (for thermodynamic formalism, multifractal analysis
and the Legendre transform one could see [F, HMU]). The result in this paper is an infinite
extension of Lindsay and Mauldin (cf. [LM]).

2. Basic definitions and lemmas

In this paper, Rd denotes the d-dimensional Euclidean space equipped with a metric d. Let
us write,

Vn,r = Vn,r(µ) := inf{
∫
d(x, α)rdµ(x) : α ⊂ Rd, card(α) ≤ n}.

A set α ⊂ Rd with card(α) ≤ n is called an n-optimal set of centers for µ of order r or
Vn,r(µ)-optimal set if

Vn,r(µ) =

∫
d(x, α)rdµ(x).

As stated before, n-optimal sets exist when
∫
‖x‖rdµ(x) <∞.

Let X be a nonempty compact subset of Rd and I be a countable set with infinitely many
elements. Without any loss of generality we can take I = {1, 2, · · · } the set of natural numbers.
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Let S = {ϕi : i ∈ I} be a collection of injective contractions from X into X for which there
exists 0 < s < 1 such that

(3) d(ϕi(x), ϕi(y)) ≤ sd(x, y)

for every i ∈ I and every pair of points x, y ∈ X. Thus the system S is uniformly contractive.
Any such collection S of contractions is called an iterated function system. Put I∗ =

⋃
n≥1 I

n

and for ω = ω1ω2 · · ·ωn ∈ In, n ≥ 1, set

ϕω = ϕω1 ◦ ϕω2 ◦ · · · ◦ ϕωn .
If ω ∈ In we say n is the length of ω. We have made the convention that the empty word ∅ is
the only word of length 0 and ϕ∅ = IdX . If ω ∈ I∗ ∪ I∞ and n ≥ 1 does not exceed the length
of ω, we denote by ω|n the word ω1ω2 · · ·ωn. Observe now that given ω ∈ I∞, the compact
sets ϕω|n(X), n ≥ 1, are decreasing and their diameters converge to zero. In fact, by (3)

(4) diam(ϕω|n(X)) ≤ sndiam(X).

It implies that the set

π(ω) =
∞⋂
n=0

ϕω|n(X)

is a singleton and therefore this formula defines a map π : I∞ → X which, in view of (4) is
continuous. The main object of our interest will be the limit set

J = π(I∞) =
⋃
ω∈I∞

∞⋂
n=0

ϕω|n(X).

Let σ : I∞ → I∞ denote the left shift map (cutting out the first coordinate) on I∞, i.e.,
σ(ω) = ω2ω3 · · · . Note that π ◦ σ(ω) = ϕ−1

ω1
◦ π(ω), and hence rewriting π(ω) = ϕω1(π(σ(ω))),

we see that

J =
⋃
i∈I

ϕi(J).

The set J is called the infinite self-conformal set corresponding to the infinite conformal iter-
ated function system S. Notice that if I is finite, then J is compact and this property fails for
infinite systems. An iterated function system satisfies the Open Set Condition if there exists
a nonempty open set U ⊂ X (in the topology of X) such that ϕi(U) ⊂ U for every i ∈ I and
ϕi(U) ∩ ϕj(U) = ∅ for every pair i, j ∈ I, i 6= j. Furthermore, the system satisfies the strong
open set condition if U can be chosen such that U ∩ J 6= ∅.

An iterated function system satisfying the Open Set Condition is said to be conformal if the
following conditions are satisfied:

(i) U = IntRd(X).
(ii) There exists an open connected set V with X ⊂ V ⊂ Rd such that all maps ϕi, i ∈ I,

extend to C1-conformal diffeomorphisms of V into V .
(iii) There exist γ, ` > 0 such that for every x ∈ ∂X ⊂ Rd there exists an open cone

Con(x, γ, `) ⊂ Int(X) with vertex x, central angle of Lebesgue measure γ, and altitude `.
(iv) Bounded Distortion Property (BDP): There exists C ≥ 1 such that

|ϕ′ω(y)| ≤ C|ϕ′ω(x)|
for every ω ∈ I∗ and every pair of points x, y ∈ V , where |ϕ′ω(x)| means the norm of the
derivative.

Inequality (3) implies that for every i ∈ I,

‖ϕ′i‖ = sup
x∈X
|ϕ′i(x)| = sup

x∈X
lim
y→x

d(ϕi(y), ϕi(x))

d(y, x)
≤ sup

x∈X

sd(x, y)

d(x, y)
= s,
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and hence ‖ϕ′ω‖ ≤ sn for every ω ∈ In, n ≥ 1. For t ≥ 0, the topological pressure function for
a conformal iterated function system S = {ϕi : i ∈ I} is given by

P (t) = lim
n→∞

1

n
log
∑
ω∈In
‖ϕ′ω‖t,

provided the limit exists. As it was shown in [MU1], there are two disjoint classes of conformal
iterated function systems, regular and irregular. A system is regular if there exists t ≥ 0
such that P (t) = 0. Otherwise the system is irregular. Moreover, if S is a conformal iterated
function system, then

dimH(J) = sup{dimH(JF ) : F ⊂ I, F finite} = inf{t ≥ 0 : P (t) ≤ 0},

where dimH(J) represents the Hausdorff dimension of the limit set J and JF is the limit set
associated to the index set F . If a system is regular and P (t) = 0, then t = dimH(J). Let us
assume that the conformal iterated function system considered in this paper is regular.

Let F = {f (i) : X → R}i∈I be a family of continuous functions such that if we define for
each n ≥ 1,

Vn(F ) = sup
ω∈In

sup
x,y∈X

{
|f (ω1)(ϕσ(ω)(x))− f (ω1)(ϕσ(ω)(y))|

}
eβ(n−1)

for some β > 0, then the following is satisfied:

(5) Vβ(F ) = sup
n≥1
{Vn(F )} <∞.

The collection F is called then a Hölder family of functions (of order β). Denote by ‖ · ‖0 the
supremum norm on the Banach space C(X) and by 11 the function with constant value 1 on
X. If in addition to (5) we have∑

i∈I

‖ef (i)‖0 <∞ or equivalently LF (11) ∈ C(X),

where

LF (g)(x) =
∑
i∈I

ef
(i)(x)g(ϕi(x)), g ∈ C(X),

is the associated Perron-Frobenius or transfer operator, then F is called a summable Hölder
family of functions (of order β). It was originally in [HMU], and called a strongly Hölder
family of functions. In our paper, we assume that F is a summable Hölder family of functions
of order β.

For n ≥ 1 and ω ∈ In, set Sω(F ) :=
∑n

j=1 f
(ωj) ◦ ϕσj(ω). Then following the classical

thermodynamic formalism, the topological pressure of F is defined by

P (F ) := lim
n→∞

1

n
log
∑
ω∈In
‖ exp(Sω(F ))‖0.

The limit above exists by the standard theory of sub-additive sequences. Subtracting from
each of the functions f (i) the topological pressure of F we may assume that P (F ) = 0. By
[HMU], there exists a unique Borel probability measure mF on X such that for any continuous
function g : X → R and n ≥ 1,∫

gdmF =
∑
ω∈In

∫
exp(Sω(F )) · (g ◦ ϕω)dmF .
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In particular, for any Borel set A ⊂ J and τ ∈ In, n ≥ 1, we have

mF (ϕτ (A)) =
∑
ω∈In

∫
exp(Sω(F )(x)) · (Iϕτ (A) ◦ ϕω(x))dmF (x)

=

∫
exp(Sτ (F )(x)) · (Iϕτ (A) ◦ ϕτ (x))dmF (x)

=

∫
A

exp(Sτ (F )(x))dmF (x).

Moreover, mF satisfies mF (ϕω(X) ∩ ϕτ (X)) = 0 for all incomparable words ω, τ ∈ I∗. The
probability measure mF is called the F -conformal measure of the (possibly) infinite conformal
iterated function system S and the summable Hölder family of functions F = {f (i) : X →
R, i ∈ I}. Let us now consider a two-parameter family of Hölder continuous functions

Gq,t = {g(i)(q, t) := qf (i) + t log |ϕ′i|}i∈I .
The topological pressure corresponding to Gq,t is given by

(6) P (q, t) = lim
n→∞

1

n
log
∑
ω∈In
‖ exp(Sω(F ))‖q‖ϕ′ω‖t.

The limit above exists by the standard theory of sub-additive sequences. We assume that for
every q ∈ [0, 1] there exists u ∈ R such that

(7) 0 < P (q, u) < +∞.
For q = 0 this simply means that the system S is strongly regular; see [MU1] for a detailed
discussion of this concept. Let

Fin(q) = {t ∈ R : LGq,t(11) <∞} = {t ∈ R : P (q, t) <∞} and θ(q) = inf Fin(q).

Notice that either Fin(q) = (θ(q),+∞) or Fin(q) = [θ(q),+∞) The following lemma is easy to
prove (cf. [HMU], Lemma 7.1).

Lemma 2.1. For every q ∈ R the function (θ(q),+∞) 3 q 7→ P (q, t) is strictly decreasing,
convex and hence continuous.

With the use of (7), the proof of [HMU, Lemma 7.2] gives the following.

Lemma 2.2. If q ∈ [0, 1], then there exists a unique t = β(q) ∈ R such that P (q, β(q)) = 0.

By [HMU, Theorem 7.4], the function β is strictly decreasing, convex and hence continuous
on [0, 1]. This function is commonly called the temperature function of the thermodynamic
formalism under consideration.

Note 2.3. Since the system S is strongly regular β(0) = dimH(J) of the limit set J (cf.
[HMU]). Moreover, P (1, 0) = 0, which gives β(1) = 0 (see Figure 1).

3. Main result

For a given r ∈ (0,+∞) consider the function g : (0, 1]→ R given by the formula

g(x) =
β(x)

rx
.

We know that β(1) = 0 and β(0) = dimH(J), and so g(1) = 0 and limx→0+ g(x) = +∞.
Moreover, the function g is continuous, even differentiable, and strictly decreasing (calculate
its derivative which is negative since β′ < 0) on (0, 1]. Hence there exists a unique qr ∈ (0, 1)
such that g(qr) = 1, i.e.,

β(qr) = rqr.
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H    Dim (J)
y=rq

Dr

qr

β(q)y=

1

y

q

        

Figure 1. To determine Dr first find the point of intersection of y = β(q) and
the line y = rq. Then Dr is the y-intercept of the line through this point and
the point (1, 0).

The relationship between the quantization dimension function and the temperature function
β(q) for the F -conformal measure m, where the temperature function is the Legendre transform
of the f(α) curve (for the definitions of f(α) and the Legendre transform see [F, HMU]) is
given by the following theorem which constitutes the main result of our paper. For its graphical
description see Figure 1.

Theorem 3.1. Let m be the infinite F -conformal measure associated with the infinite family of
strongly Hölder functions F := {f (i) : X → R}i∈I and the infinite conformal iterated function
system S. For each r ∈ (0,+∞) the quantization dimension (of order r) of the probability
measure mF is given by

Dr(mF ) =
β(qr)

1− qr
,

where, we recall β is the temperature function.

Lemma 3.2. Let 0 < r < +∞ be given. Then there exists exactly one number κr ∈ (0,+∞)
such that

P

(
κr

r + κr
,
rκr
r + κr

)
= 0.

Proof. Just take κr := rqr
1−qr and apply the definition of qr. �

For every M ≥ 2 write IM = {1, 2, · · · ,M}, and consider the partial system

SM = {ϕi : X → X : i ∈ IM}
of the infinite system S. Let JM be its limit set. Consider also the partial Hölder family of
functions

FM = {f (i) : X → R : i ∈ IM}
of the infinite family F . Let mM be the corresponding FM -conformal measure on JM . Fur-
thermore, let PM(q, t) be the topological pressure and βM(q) be the temperature function
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associated with the system SM . Note that for each M ≥ 2, PM(q, t) is strictly decreasing,
convex and hence continuous in each variable q, t ∈ R separately (cf. [F1, P]).

The following lemma is a special case of the Lemma 3.2.

Lemma 3.3. Let 0 < r < +∞ and M ≥ 2 be as before. Then there exists exactly one number
κr,M ∈ (0,+∞) such that

PM

(
κr,M

r + κr,M
,
rκr,M
r + κr,M

)
= 0.

Lindsay and Mauldin showed that the above κr,M is the quantization dimension for the prob-
ability measure mM (cf. [LM]). We shall prove the following lemma.

Lemma 3.4. If (qM)M≥2 is a sequence of elements in (0, 1) such that qM → q for some
q ∈ (0, 1], then βM(qM)→ β(q) as M →∞.

Proof. Let us first show that βM(qM) ≤ β(qM) for all M ≥ 2. If not then there exists a positive
integer M ′ ≥ 2 such that βM ′(qM ′) > β(qM ′). Then

0 = PM ′(qM ′ , βM ′(qM ′)) < PM ′(qM ′ , β(qM ′)) ≤ P (qM ′ , β(qM ′)) = 0,

which is contradiction, and hence βM(qM) ≤ β(qM) for all M ≥ 2. By the hypothesis, qM → q
for some q ∈ (0, 1] as M →∞. Moreover, the temperature functions are continuous on (0, 1],
and hence

(8) lim sup
M

βM(qM) ≤ lim sup
M

β(qM) = lim
M
β(qM) = β(q).

If lim infM βM(qM) < β(q), then for some ε > 0 there exists a subsequence (βMk
(qMk

))k≥1 of
the sequence (βM(qM))M≥2 such that

βMk
(qMk

) ≤ β(q)− ε < β(q).

Then for all k ≥ 1,

0 = PMk
(qMk

, βMk
(qMk

)) ≥ PMk
(qMk

, β(q)− ε),
and hence for any positive integer ` if k ≥ `,

0 ≥ PMk
(qMk

, β(q)− ε) ≥ PM`
(qMk

, β(q)− ε),

which implies

0 ≥ lim
k→∞

PM`
(qMk

, β(q)− ε) = PM`
(q, β(q)− ε),

and so we have

0 ≥ lim
`→∞

PM`
(q, β(q)− ε) = P (q, β(q)− ε) > P (q, β(q)) = 0,

which is a contradiction. Hence,

(9) lim inf
M

βM(qM) ≥ β(q).

By (8) and (9), it follows that

lim
M→∞

βM(qM) = β(q),

and thus the lemma is yielded.
�

Lemma 3.5. Let 0 < r < +∞, and let κr and κr,M be as in Lemma 3.2 and Lemma 3.3.
Then κr,M → κr as M →∞.



8 Mrinal Kanti Roychowdhury and Mariusz Urbański

Proof. Let qr,M =
κr,M
r+κr,M

and qr = κr
r+κr

. It is enough to prove qr,M → qr as M → ∞. Let

(qr,MK
)k≥1 be a subsequence of (qr,M)M≥2 such that qr,Mk

→ q̂ for some q̂ ∈ (0, 1]. Then by
Lemma 3.4,

rq̂ = lim
k→∞

rqr,Mk
= lim

k→∞
βMk

(qr,Mk
) = β(q̂).

So, by uniqueness of qr, this implies that q̂ = qr. Hence qr,M → qr as M →∞, i.e., κr,M → κr
as M →∞. �

Lemma 3.6. Let mM and mF be as defined before. Then mM converges weakly to mF as
M →∞.

Proof. Let f : I∞ → I∞ be such that f(ω) = f (ω1)(π(σ(ω))), i.e. f is an amalgamated function
corresponding to the infinite family F of strongly Hölder functions. Then for each M ≥ 2, f |I∞M
is an amalgamated function for the partial family FM of strongly Hölder functions. Let m̃M

be the conformal measure of the function fM with respect to the dynamical system generated
by the shift map σM : I∞M → I∞M . Then (see Theorem 3.2.3 in [MU]) mM := m̃M ◦ π−1

M is the
unique FM -conformal measure, where πM := π|I∞M is the restriction of the coding map π on the
space I∞M . The proof of Theorem 2.7.3 along with Corollary 2.7.5 (especially its uniqueness part
(a)) in [MU] gives that the sequence (m̃M)∞M=2 converges weakly to m̃, the unique conformal
measure for f : I∞ → R. Since the projection map π : I∞ → X is continuous, we therefore
have that the sequence (mM)∞M=2 converges weakly to the measure mF := m̃ ◦ π−1. Thus the
proof of the lemma is complete. �

But because of Theorem 3.2.3 in [MU] again, so defined measure mF is the unique conformal
measure for the Hölder family F , i.e., mF = m, where m is the F -conformal measure defined
before.

Let M denote the set of all Borel probability measures on X. Then given 0 < r < +∞, we
know Lr-minimal metric (also refereed as Lr-Wasserstein metric or Lr-Kantorovich metric) is
given by

ρr(P1, P1) = inf
ν

(∫
‖x− y‖rdν(x, y)

) 1
r

,

where the infimum is taken over all Borel probabilities ν on Rd × Rd with fixed marginals
P1 and P2. Note that weak topology and the topology induced by any Lr-minimal metric ρr
coincide on M.

The following lemma is well-known (cf. [GL1]).

Lemma 3.7. Let Pn denote the set of all discrete probability measures Q on Rd with |supp(Q)| ≤
n. Then

Vn,r(P ) = inf
Q∈Pn

ρrr(P,Q).

Let us now prove the following lemma.

Lemma 3.8. Let 0 < r < +∞, and mM → m with respect to the weak topology. Then for any
n ≥ 1,

lim
M→∞

Vn,r(mM) = Vn,r(m).

Proof. Since X is compact, for any Borel probability measure ν we have
∫
‖x‖rdν(x) < ∞.

Hence by Lemma 3.7, it follows that

|V 1/r
n,r (mM)− V 1/r

n,r (m)| ≤ ρr(mM ,m),

which yields the lemma. �

Now we prove the main result of our paper.
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Proof of Theorem 3.1. To prove the theorem let us first prove

(10) κr ≤ lim inf
n

r log n

− log Vn,r(m)
≤ lim sup

n

r log n

− log Vn,r(m)
≤ κr.

If possible, let lim infn
r logn

− log Vn,r(m)
< κr. Then there exists a subsequence

(
r lognk

− log Vnk,r(m)

)
k≥1

of

the sequence
(

r logn
− log Vn,r(m)

)
n≥1

such that limk→∞
r lognk

− log Vnk,r(m)
< κr, which implies that there

exists a positive integer K0 such that r lognk
− log Vnk,r(m)

< κr for all k ≥ K0. Thus for k ≥ K0, using

Lemma 3.5 and Lemma 3.8, we obtain

lim
M→∞

r log nk
− log Vnk,r(mM)

=
r log nk

− log Vnk,r(m)
< κr = lim

M→∞
κr,M ,

and so there exists a positive integer M ′ such that r lognk
− log Vnk,r(mM )

< κr,M for all M ≥ M ′ and

for all k ≥ K0. In particular, for all k ≥ K0 we have

(11)
r log nk

− log Vnk,r(mM ′)
< κr,M ′ .

Note that Vnk,r(mM ′) → 0 as k → ∞, and Vnk,r(mM ′) ≥ Vnk+1,r(mM ′) > 0 for all k ≥ 1, and
thus there exists a positive integer K ′0 such that for all k ≥ K ′0,

1 > Vnk,r(mM ′) ≥ Vnk+1,r(mM ′) > 0,

Hence for all k ≥ K ′0, we have

(12)
r log nk

− log Vnk,r(mM ′)
≥ r log nk+1

− log Vnk+1,r(mM ′)
,

i.e.,
(

r lognk
− log Vnk,r(mM′ )

)
k≥K′

0

is a decreasing sequence of real numbers. Then by (11) and (12), we

deduce

lim
k→∞

r log nk
− log Vnk,r(mM ′)

< κr,M ′ , i.e., lim inf
n

r log n

− log Vn,r(mM ′)
≤ lim

k→∞

r log nk
− log Vnk,r(mM ′)

< κr,M ′ .

κr,M ′ is the quantization dimension for the probability measure mM ′ , and so by the preceding
inequality, we obtain

κr,M ′ = lim
n→∞

r log n

− log Vn,r(mM ′)
= lim inf

n

r log n

− log Vn,r(mM ′)
< κr,M ′ ,

which is a contradiction. Hence

κr ≤ lim inf
n

r log n

− log Vn,r(m)
, and similarly, lim sup

n

r log n

− log Vn,r(m)
≤ κr.

Therefore, the inequalities in (10) are proved, and thus limn→∞
r logn

− log Vn,r(m)
exists and equals

κr, i.e.,

Dr(m) = lim
n→∞

r log n

− log Vn,r(m)
= κr.

Note that if qr = κr
r+κr

, by Lemma 3.2, we have β(qr) = rqr, and then Dr = β(qr)
1−qr . Thus the

proof of the theorem is complete.

We would like to close this section with a class of examples of summable Hölder families of
functions which fulfill our assumptions. Assume that an infinite conformal iterated function
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system S = {ϕi}i∈I is co-finitely (or hereditarily) regular. Let κ : X → R be an arbitrary
Hölder continuous function. Fix s > θS. For every i ∈ I define

f (i)(x) = κ(x) + s log |ϕ′i(x)|.
Then F := {f (i)}i∈I is a summable Hölder family of functions for which (7) holds, and in
consequence, Theorem 3.1 is true.

References

[B] M.F. Barnsley, Fractals everywhere, Academic Press, Harcourt Brace & Company, 1988.
[BP] R. Benedetti, C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, Berlin, 1992.
[F] K.J. Falconer, Techniques in fractal geometry, Chichester: Wiley, 1997.
[F1] K.J. Falconer, The multifractal spectrum of statistically self-similar measures, Journal of Theoretical

Probability, Vol 7, No. 3, 681-701, 1994.
[GL1] S. Graf and H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in

Mathematics 1730, Springer, Berlin, 2000.
[GL2] S. Graf and H. Luschgy, The Quantization dimension of self-similar probabilities, Math. Nachr., 241

(2002), 103-109.
[H] J. Hutchinson, Fractals and self-similarity, Indiana Univ. J., 30 (1981), 713-747.
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