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Abstract. We deal with contracting finite and countably infinite iterated function sys-
tems acting on Polish spaces, and we introduce conformal Graph Directed Markov Systems
on Polish spaces. Sufficient conditions are provided for the closure of limit sets to be com-
pact, connected, or locally connected. Conformal measures, topological pressure, and
Bowen’s formula (determining the Hausdorff dimension of limit sets in dynamical terms)
are introduced and established. We show that, unlike the Euclidean case, the Hausdorff
measure of the limit set of a finite iterated function system may vanish. Investigating this
issue in greater detail, we introduce the concept of geometrically perfect measures and we
proved sufficient conditions. Geometrical perfectness guarantees the Hausdorff measure
of the limit set to be primitive. As a by–product of the mainstream of our investigations
we prove 4r–covering theorem for all metric spaces. It enables us to establish appropriate
co–Frostman type theorems.

1. Introduction

Iterated function systems (abbreviated to IFSs henceforth) arise in many natural con-
texts. They are often used to encode and generate fractal images, such as landscapes and
skyscapes, in computer games. They each generate, via a recursive procedure, a unique
fractal set called attractor or limit set. IFSs also play an important role in the theory of
dynamical systems. By dynamical system we mean a continuous map T from a metric
space X to itself, where, given x ∈ X, one aims at describing the eventual behavior of
the sequence of iterates (T nx)∞n=0. IFSs are in fact a generalization of the process of look-
ing at the backward trajectories of dynamical systems. A repeller in a dynamical system
sometimes coincides with the attractor of an associated IFS. For example, the middle-third
Cantor set attracts all the backward orbits of the tent map: T (x) = 3x if x ≤ 1/2 and
T (x) = 3(1− x) if x ≥ 1/2. This follows from the fact that the inverse branches of T are
precisely the generators ϕ1 and ϕ2 of an IFS. As dynamical systems often model physical
processes, the study of IFSs frequently turns out to be instrumental in describing real
systems.
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The systematic development of modern theory of iterated function systems began with
the works of Hutchinson [5], Falconer [4], Barnsley [2], Bandt and Graf [1], and Schief [17],
just to name a few. Their pioneering works in the 1980’s and 1990’s on finite IFSs concerned
systems consisting of similarities. In particular, the theory of finite IFSs was used in the
study of the complex dynamics of rational functions.

In the middle of the 1990’s, the need to investigate finite, and even infinite, IFSs that
comprise more general conformal maps arose. The foundations of that theory were laid
out by Mauldin and Urbański in [9]. Many new applications were also discovered. In 1999,
Mauldin and Urbański [10] applied the theory of infinite conformal IFSs to continued
fractions with restricted entries. Few years later, Kotus and Urbański [6] applied that
theory to obtain a lower estimate for the Hausdorff dimension of the Julia set of elliptic
functions, while Urbański and Zdunik [25] obtained similar results in the complex dynamics
of the exponential function. They further showed that the framework of conformal IFSs
is the right one to study the harmonic measure of various Cantor sets. Applications of
conformal IFSs to number theory, more precisely to the theory of continued fractions and
Diophantine approximations, were also developed by Urbański in [21], [22], [23], and [24].
Finally, Stratmann and Urbański [18] established extremality in the sense of Kleinbock,
Lindenstrauss and Barak Weiss, of conformal measures for convex co-compact Kleinian
groups.

A further generalization of the theory was achieved by Mauldin and Urbański [12] in
2003. This generalization relies on graphs. Indeed, every IFS can be thought of as a graph
with a single vertex and a countable set of self-loops. To the unique vertex is attached a
space X ⊂ Rd. The self-loops represent the generators of the IFS, each generator being a
contracting self-map of X. The limit set generated by all infinite paths on this graph is
also attached to the vertex. Mauldin and Urbański extended the theory of IFSs to graph
directed Markov systems (GDMSs). The graphs associated to these systems generally have
more than one, though finitely many, vertices. Moreover, they can have a countably infinite
set of edges between any two of their vertices. It turns out that a unique fractal set can
be associated with each vertex, and the limit set is the disjoint union of those sets. In
2007, Stratmann and Urbański [19] went one step further by laying the foundations to the
theory of pseudo-Markov systems. In contradistinction with GDMSs, the underlying graph
of these systems can have infinitely many vertices. They applied their work to infinitely
generated Schottky groups.

In all those works, the metric structure of the limit set J is usually described by its Haus-
dorff, packing and/or box-counting dimension(s). The Hausdorff dimension is particularly
interesting as it is characterized by the pressure function. The pressure function plays a
central role in thermodynamic formalism, which arose from statistical physics. For finite
systems which satisfy a certain separation property (the famous open set condition (OSC)),
the Hausdorff dimension of the limit set is simply the zero of the pressure function P (t),
that is, the unique t0 > 0 such that P (t0) = 0. This latter equation is sometimes called
Moran-Bowen formula. For infinite systems satisfying the OSC and a bounded distortion
property, Mauldin and Urbański [9] showed that a variant of Moran-Bowen formula holds:
the Hausdorff dimension of the limit set is the infimum of all t ≥ 0 for which P (t) ≤ 0.
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They also showed that a t-conformal measure exists if and only if P (t) = 0, and there is
at most one such t.

In this paper we propose to extend the theory of conformal iterated function systems
and their generalization, graph directed Markov systems to the context of Hilbert spaces.
Hilbert spaces carry enough geometric structure to allow us to define and meaningfully
consider conformal homeomorphisms. In particular a version of Liouville’s classification
theorem holds. To define conformal graph directed systems on Hilbert spaces is natural and
not too difficult. However when we investigate such systems a number of new geometric
and dynamical phenomena appear that differentiate them drastically from their finite–
dimensional counterparts. We now want to discuss these phenomena in greater detail
providing simultaneously a description of the content of our paper.

As a matter of fact we start our paper with even more general setting of iterated function
systems acting on complete metric spaces. Introducing the concept of asymptotically
compact systems we provide necessary and sufficient conditions for the closure of the limit
set to be compact. Several examples are given illustrating the case with compact and
non–compact closures J of the limit set J as well as various relations between J and J .

Sticking with topological issues we then turned our attention to the concept of connect-
edness. We established sufficient conditions for J to be a continuum. This condition is
significant even in the case of a compact phase space X or a finite alphabet. Our next
step was to look at local connectivity. If the alphabet is finite, then it is well–known that
connectivity of the limit set implies its local connectivity. As we demonstrate, in the case of
an infinite alphabet it is not the case any more. However we provide a sufficient conditions
for the closure of a limit set to be a locally connected continuum, and, using it we easily
conclude that the closure of the limit set of complex continued fractions iterated function
system, (see [9] for definition), is locally connected.

In Section 7 we introduce conformal Graph Directed Markov Systems in Hilbert spaces.
We define for them the concept of topological pressure, conformal measures, and thermo-
dynamical formalism. We are here in a position to apply the symbolic thermodynamic
formalism developed in [11] and [12]. In order to investigate geometric properties of limits
sets we need a covering theorem. We have been able to find in the literature only results
that pertain to Euclidean, or at best, to compactly bounded metric space. We prove the
4r–covering Theorem which implies the existing 5r–covering Theorem by reducing 5 to 4,
and what is much more important, by replacing boundedly compact metric spaces just by
metric spaces alone. Making substantial use of this covering theorem we prove co–Frostman
lemmas for both Hausdorff and packing measures on metric space. They provide sufficient
conditions for a metric space to have a positive, finite or infinite (generalized) Hausdorff
or packing measure, and in some literature, in the context of Euclidean spaces are referred
to as mass redistribution principle.

In the next section we establish Bowen’s formula. Following Schief’s paper [17] it has
been proved [13] that in the case of finite alphabet on Euclidean space the Open Set
Condition (OSC), the Strong Open Set Condition (SOSC) and positivity of Hausdorff
measure (with exponent equal to the Bowen’s parameter, the only zero of the pressure
function) are equivalent. Being still in Euclidean spaces but allowing the alphabet to be
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infinite all the equivalences fail. Example of infinite alphabet similarity systems with the
SOSC but vanishing Hausdorff measure were given in [9], whereas infinite similarity system
with the OSC but without the SOSC were constructed in [20]. In this paper we actually
demonstrate that the OSC is of rather marginal value in Hilbert space even in the case
of finite alphabet similarities. Namely, Bowen’s formula fails. However, with the SOSC
Bowen’s formula holds even if the alphabet is infinite.

The last section is devoted to investigate the behaviour of the Hausdorff measure Hh(J).
In the case of Euclidean spaces it is well–known that we have always 0 < Hh(J) < +∞.
However, as Example 10.1 shows, this is not longer the case in Hilbert spaces. In order
to deal with positivity of the Hausdorff measure we introduce the concept of geometri-
cal perfectness of a limit set, and we provide effective sufficient condition for IFS to be
geometrically perfect.

2. General setup

Graph directed Markov systems (GDMS) are based upon a directed multigraph and
an associated incidence matrix (V,E, i, t, A). The multigraph consists of a finite set V of
vertices and a countable (either finite or infinite) set of directed edges E and two functions
i, t : E → V . For each e, i(e) is the initial vertex of the edge e and t(e) is the terminal
vertex of e. The edge goes from i(e) to t(e). Also a function A : E × E → {0, 1} is given,
called an incidence matrix. The matrix A is an edge incidence matrix. It determines which
edges may follow a given edge. So, the matrix has the property that if Auv = 1, then
t(u) = i(v). We will consider finite and infinite walks through the vertex set consistent
with the incidence matrix. Thus, we define the set of infinite admissible words

E∞A = {ω ∈ E∞ : Aωiωi+1=1 for all i ≥ 1},

by E∗A we denote the set of all finite subwords of E∞A . Additionally, define the set E0
A as

the set composed of the empty word. We will drop the subscribe A when the matrix is
clear from context.

All elements of E∗A∪E∞A are called A–admissible words. If ω is A–admissible, then there
exists 0 ≤ n ≤ ∞ such that the length of ω is equal to n. We write then |ω| = n. The set
of all subwords of E∞A of length n ≥ 1 is denoted by En

A. If k ≤ |ω|, then ω|k = ω1 · · ·ωk.
We put [ω] = {τ ∈ E∞A : τ||ω| = ω}. Let ω, τ ∈ E∗A ∪ E∞A . If τ||ω| = ω, then we write ω ≤ τ .
By ω ∧ τ we denote the word υ ∈ E∗A ∪ E∞A with maximal length such that υ ≤ ω and
υ ≤ τ . If neither ω ≤ τ nor τ ≤ ω, then ω, τ are called incomparable.

As usual, σ : E∞A → E∞A denotes the left shift, i.e. σ(ω1ω2 . . .) = ω2ω3 . . .

Definition 2.1. The incidence matrix A is called finitely irreducible provided that there
exists a finite set Λ ⊂ E∗A such that:

∀ a ∈ E ∀ b ∈ E ∃ γ ∈ Λ aγb ∈ E∗A.

The matrix A is called finitely primitive if one can find Λ as above consisting of words with
the same length.
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Suppose now that for every v ∈ V is given a complete metrizable space Xv. Assume
{Xv}v∈V to be mutually disjoint and consider X = ⊕v∈VXv, the disjoint union of Xv,
v ∈ V , endowed with a complete metric ρ. We assume that the space (X, ρ) is bounded.

Definition 2.2. A collection S = {ϕe : Xt(e) → Xi(e) : e ∈ E} is a complete contracting
Markov system provided that all the maps ϕe, e ∈ E, are injective and closed and there is
s ∈ (0, 1) such that:

ρ(ϕe(x), ϕe(y)) ≤ sρ(x, y) ∀ e ∈ E, ∀x, y ∈ Xt(e).

The Markov system S is called rapidly decreasing provided that

(2.1) lim
e→∞

diam(ϕe(Xt(e))) = 0,

meaning that for every ε > 0 there exists a finite subset F of E such that

diam(ϕe(Xt(e))) < ε

for all e ∈ E \ F .
For every ω ∈ E∗A, say ω ∈ En

A, set

ϕω = ϕω1 ◦ · ◦ ϕωn : Xt(ωn) → Xi(ω1)

and note that this composition is well–defined.
The Markov system S is called pointwise finite if and only if

#{ω ∈ En
A : x ∈ ϕω(Xt(ω))} <∞ ∀n ≥ 1,∀x ∈ X.

The system S is called finitely irreducible (primitive) if and only if the matrix A is finitely
irreducible (primitive). The system S is called an iterated function system if and only if
the set of vertices V is a singleton and the incidence matrix A has no zeros.

Now, fix ω ∈ E∞A . Then the sequence (ϕω|n (Xt(ωn)))
∞
1 is descending, consists of closed

sets and diam(ϕω|n (Xt(ωn))) ≤ sn diam(Xt(ωn)) ≤ sn diam(X). Hence
⋂∞
n=1 ϕω|n (Xt(ωn)) is

a singleton, and denotes its only element by π(ω). We have thus defined a Lipschitz map

π : E∞A → X,

if E∞A is endowed with the metric ds(ω, τ) = s|ω∧τ |. The image of π, i.e. the set π(E∞A ),
is called the limit set of the system S and is denoted by JS . Note that if the system S is
pointwise finite, then

(2.2) JS =
∞⋂
n=1

⋃
ω∈EnA

ϕω(Xt(ωn)).

We now pass to describe JS , the closure of JS . Recall that for any indexed family F =
{Ft}t∈T of subsets of X, limF , the topological lim sup of F is defined as follows

x ∈ limF ⇔ ∀ ε > 0 ∃Tε ⊂ T #Tε ≥ ℵ0 ∀ t ∈ Tε Ft ∩B(x, ε) 6= ∅.
We set

∂S = lim {ϕe(Xt(e))}e∈E
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and for every a ∈ E,

∂S(a) = lim {ϕe(Xt(e)) : Aae = 1}e∈E ⊂ Xt(a)

and
Ja = π([a]) ⊂ Xi(a), J

−
a = π(

⋃
b:Aab=1

[b]) =
⋃

b:Aab=1

Jb ⊂ Xt(a).

We also put
∂S(ω) = ∂S(ω|ω|), J

−
ω = J−ω|ω| , ω ∈ E

∗
A,

and for every v ∈ V ,

Jv = π({ω ∈ E∞A : i(ω1) = v}) and ∂S(v) = Xv ∩ ∂S.
As a direct consequence of the rapid decreasing condition (2.1), we get the following.

Lemma 2.1. If S is rapidly decreasing, then for any a ∈ E and ω ∈ E∗A we have

ϕa(J
−
a ) = Ja, ∂S(a) = lim {ϕe(J−e ) : Aae = 1}e∈E ⊂ J−a , ∂S(ω) ⊂ J−ω .

From now onwards each Markov system considered is assumed to be finitely primitive.
We shall prove the following.

Proposition 2.1. If the system S is rapidly decreasing, then for every vertex v ∈ V , we
have

Jv = Jv ∪
⋃
ω∈E∗v

ϕω(∂S(ω)) ⊆ Jv ∪ ∂S(v),

where E∗v = {ω ∈ E∗A : i(ω) = v}.

Proof. The inclusion is obvious. Let us prove the equality part. Indeed, by Lemma 2.1,
for any ω ∈ E∗v we have

ϕω(∂S(ω)) ⊆ ϕω(J−ω ) ⊆ Ji(ω) = Jv.

Thus the ”⊇” part of the equality claimed is proved. In order to prove the reverse inclusion,
fix x ∈ Jv. Then there exists a sequence (ω(n))∞1 of elements of E∞A with i(ω(n)) = v, such
that x = lim

n→∞
π(ω(n)). For each k ≥ 0, define

Ek(x) = {ω(n)
|k : n ≥ k} (E0(x) = {∅})

and note that if τ ∈ Ek+1(x), then τ|k ∈ Ek(x). Thus the set {Ek(x) : k ≥ 0} is a tree
rooted at the vertex E0(x). We now distinguish two cases. First, suppose that there exists
k ≥ 1 such that Ek(x) has infinitely many elements. Then put

q := min{k ≥ 1 : Ek(x) is infinite}.
So, the set Eq−1(x) is finite and non-empty (although it may be equal to the singleton

{∅}). There thus exists τ ∈ Eq−1(x) ⊂ Eq−1
A and an infinite sequence (ω

(nj)
q )∞j=1 of distinct

elements of E such that τω
(nj)
q = ω

(nj)

|q for all j ≥ 1. Now note that

π(σ(q−1)(ω(nj))) = ϕ−1
τ (π(ω(nj)))
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and π(ω(nj)) ∈ Xi(τ). Since the map ϕ−1
τ : ϕτ (Xt(τ))→ Xt(τ) is a homeomorphism (as ϕτ is

closed), the sequence (π(σ(q−1)(ω(nj))))∞j=1 converges to ϕ−1
τ (x). Note then that ϕ−1

τ (x) ∈
∂S(τ), and therefore x ∈ ϕτ (∂S(τ)). As τ ∈ E∗v , we are done. Now suppose that Ek(x) is
finite for each k ≥ 1. Since, as mentioned above, these sets form a tree rooted at E0(x), it
follows from König’s Infinity Lemma that there exists an infinite path ω ∈ EN such that
ω|k ∈ Ek(x) for all k ≥ 0. So, ω ∈ E∞A , i(ω) = v and there exists an increasing sequence

(nk)
∞
1 such that ω|k = ω

(nk)
|k for all k ≥ 0. Hence π(ω), π(ω(nk)) ∈ ϕω|k (Xt(ωk)) for k ≥ 0.

Since lim
n→∞

diamϕω|k (Xt(ωk)) = 0, we conclude that x = lim
k→∞

π(ω(nk)) = π(ω) ∈ Jv. We are

done. �

Corollary 2.1. If the system S is rapidly decreasing, then

JS = JS ∪
⋃
ω∈E∗A

ϕω(∂S(ω)) ⊆ JS ∪ ∂S.

3. Compactness of JS.

Since JS = π(E∞A ) and π : E∞A → X is continuous, if the alphabet E is finite, then
the limit set (equal to its closure) is compact. In the case when the alphabet E is infinite
neither JS nor even JS need to be compact (see Examples 2.1 and 2.2). We provide in this
section verifiable necessary and sufficient conditions for the closure JS to be compact.

A set F ⊂ X is called attracting for S iff for every ε > 0, ϕe(Xt(e)) ⊆ N (F, ε) for all but
finitely many indices e ∈ E, where N (F, ε) = {y ∈ X : ∃x ∈ X, ρ(x, y) < ε}. Clearly

(3.1) ∂S ⊂ F.

Let us record the following straightforward fact.

Observation 3.1. If S is a rapidly decreasing sequence, then JS is an attracting set for
S.

Given two subsets A,B of X, we set

dist(A,B) = inf{ρ(a, b) : (a, b) ∈ A×B},
Dist(A,B) = inf{ε > 0 : A ⊆ N (B, ε)}

and
ρH(A,B) = max{Dist(A,B),Dist(B,A)}.

The number ρH(A,B) is called the Hausdorff distance from A to B. Restricted to the
family K(X), the compact subsets of X, ρH becomes a metric. The topology induced by
ρH coincides with the compact–open (Vietoris) topology. With this terminology we can
say that F ⊆ X is an attracting set for S if and only if lim

e→∞
Dist(ϕe(Xt(e)), F ) = 0.

The system S is called asymptotically compact iff it admits a compact attracting set.
Then

(3.2) ∂S 6= ∅.
We shall prove the followinig.
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Theorem 3.1. A rapidly decreasing system S is asymptotically compact iff JS is a compact
set.

Proof. Suppose first that the system S is asymptotically compact. We are going to show
that JS is compact. The proof parallels mostly the proof of Proposition 2.1 but we provide it
here in full for the convenience of the reader and since some details are different. It suffices
to show that any sequence (ω(n))∞1 has a subsequence (ω(nj))∞j=1 such that (π(ω(nj)))∞j=1

converges. For each k ≥ 0 define

Ek = {ω(n)
|k : n ≥ k}, (E0 = {∅})

and note that if τ ∈ Ek+1, then τ|k ∈ Ek. Then the set {Ek : k ≥ 0} is a tree rooted at
the vertex E0 = {∅}. We now distinguish two cases. First suppose that there exists k ≥ 1
such that Ek has infinitely many elements. Then put

q = min{k ≥ 1 : Ek is infinite}.
So, the set Eq−1 is finite and non-empty (although it may be equal to the singleton {∅}).
There thus exists τ ∈ Eq−1 ⊆ Eq−1

A and an infinite sequence (ω
(nj)
q )∞j=1 of distinct elements

of E such that τω
(nj)
q = ω(nj)|q for all j ≥ 1. Since the attracting set F is compact and since

lim
j→∞

Dist(ϕ
ω

(nj)
q

(X
t(ω

(nj)
q )

), F ) = 0, passing to a subsequence, we may assume without loss

of generality that there exists a point z ∈ F such that lim
j→∞

Dist(ϕ
ω

(nj)
q

(X
t(ω

(nj)
q )

), {z}) = 0.

But since π(σq−1(ω(nj))) ∈ ϕ
ω

(nj)
q

(X
t(ω

(nj)
q )

), we thus conclude that lim
j→∞

π(σq−1(ω(nj))) = z.

Since the map ϕτ : Xt(τ) → Xi(τ) is continuous, we therefore get that

lim
j→∞

π(ω(nj)) = lim
j→∞

ϕτ (π(σq−1(ω(nj)))) = ϕτ (z).

In particular, the sequence (π(ω(nj))∞j=1 converges, and we are done. Now, suppose that
the set Ek is finite for each k ≥ 1. Since, as mentioned above, these sets form a tree
rooted at E0, it follows from König’s Infinite Lemma that there exists an infinite path
ω ∈ EN such that ω|k ∈ Ek for all k ≥ 0. So, ω ∈ E∞A and there exists an infinite

sequence (nk)
∞
1 such that ω|k = ωnk|k for all k ≥ 0. Hence, π(ω), π(ω(nk)) ∈ ϕω|k (Xt(ωk)).

Since lim
k→∞

diam(ϕω|k (Xt(ωk)) = 0, we conclude that (π(ω(nk)))∞k=1 converges to π(ω). We are

done. The implication ”⇐” follows directly from Observation 3.1. The proof is complete.
�

Examples: We shall describe three simple examples about various relations between
JS and JS . Let H be a separable Hilbert space. Let B(0, 1) be the open ball in H centered

at 0 and with radius 1. Let S∞ = ∂B(0, 1) and let B(0, 1) = B(0, 1).

Example 3.1. Fix a countable set (zn)∞1 of points in B(0, 1) whose closure contains S∞.
One can then easily construct by induction a sequence (ϕn)∞1 of bijective similarities of H
with the following properties:

(a) ϕn(0) = zn;
(b) ϕn(B(0, 1)) ⊆ B(0, 1);



GRAPH DIRECTED MARKOV SYSTEMS ON HILBERT SPACES 9

(c) lim
n→∞

diam(ϕn(B(0, 1))) = 0;

(d) ϕi(B(0, 1)) ∩ ϕj(B(0, 1)) = ∅ whenever i 6= j;
(e) ‖ϕ′n‖ ≤ 1/2 for all n ≥ 1.

Then S = {ϕn : B(0, 1) → B(0, 1), n ≥ 1} forms an IFS satisfying all the requirements
of this section and JS ⊇ ∂S ⊇ S∞. Since S∞ is not compact, it follows that JS is not
compact and S is not asymptotically compact. Also JS  JS .

Example 3.2. Let (en)∞1 be an orthonormal basis inH. We can easily construct a sequence
(ϕn)∞1 of bijective similarities of H with the following properties:

(a) ϕn(0) = 1
2
en for all n ≥ 1;

(b) ϕn(B(0, 1)) ⊆ B(0, 1) ;
(c) lim

n→∞
diam(ϕn(B(0, 1))) = 0;

(d) ϕi(B(0, 1)) ∩ ϕj(B(0, 1)) = ∅ whenever i 6= j;
(e) ‖ϕ′n‖ ≤ 1/2 for all n ≥ 1.

Then S = {ϕn : B(0, 1)→ B(0, 1), n ≥ 1} forms an IFS satisfying all our requirements. It
follows from (a) and (c) that ∂S = ∅. It then follows from (3.2) that S is not asymptotically
compact, and, by Theorem 3.1, JS is not compact. It however follows from Corollary 2.1
that JS = JS .

Example 3.3. The same as Example 3.1 but (zn)∞1 is an arbitrary sequence of distinct
points such that lim

n→∞
zn exists, say is equal to z∞. Then {z∞} is a compact attracting set,

our system S is asymptotically compact, and therefore, in virtue of Theorem 3.1, JS is a
compact set.

4. Connectedness and local connectedness

4.1. Finite alphabet case. We assume here that that the set E is finite. Through the
section our graph directed system is assumed to be an iterated function system, that is
there is only one vertex and all entries of the matrix A are equal to 1. For all x, y ∈ JS let
n (x, y) ≥ 0 be the largest integer n ≥ 0 with the property that there exists ω ∈ En such
that x, y ∈ ϕω(JS).

Lemma 4.1. For every x ∈ JS , lim
y→x

n (x, y) = +∞.

Proof. Suppose for the contrary that for some x ∈ JS we have l := lim inf
y→x

n (x, y) < ∞.

Then there exists a sequence (yk)
∞
1 converging to x and such that n (x, yk) = l for all

k ≥ 1. For every k ≥ 1 there thus exists a word ω(k) of length l+ 1 such that x /∈ ϕω(k)(JS)
and yk ∈ ϕω(k)(JS). Since there are only finitely many words of length l + 1, passing to a
subsequence, we may assume without loss of generality, that all words ω(k) are equal, say,
to ω. So, x /∈ ϕω(JS) and yk ∈ ϕω(JS) for all k ≥ 1. Since yk → x and since the set ϕω(JS)
is closed, we conclude that x ∈ ϕω(JS). This contradiction finishes the proof. �

Theorem 4.1. The following conditions are equivalent:
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(a) JS has finitely many connected components;
(b) JS has finitely many arcwise connected components;
(c) JS is locally connected;
(d) JS is locally arcwise connected.

Proof. The strategy of the proof is to establish the following equivalences: (a) ⇔ (c),
(a) ∧ (c)⇔ (b) ∧ (d), (b)⇒ (a) and (d)⇒ (c).

(a)⇒ (c) Let J1, . . . , Jk be all the connected components of JS . Then all J1, . . . , Jk are
continua and JS = J1 ∪ . . . ∪ Jk. Fix ε > 0 and take n ≥ 0 so large that diamϕω(X) < ε

for all ω ∈ En. Since JS =
⋃k
j=1

⋃
|ω|∈En ϕω(Jj), since En is finite and since all sets are

compact connected, (c) follows directly from the Hahn–Mazurkiewicz–Sierpiński Theorem
(see [7])

(c)⇒ (a) Since JS is locally connected, all its connected components are open, and since
JS is compact, there can be only finitely many of them.

(b) ∧ (d)⇒ (a) ∧ (c) is obvious.
(a)∧(c)⇒ (b)∧(d) Since each connected component of JS is locally connected, in virtue

of Hahn–Mazurkiewicz–Sierpiński’s Theorem, it is arcwise connected and locally arcwise
connected. So (b) ∧ (d) is established. The implications (b) ⇒ (a) and (d) ⇒ (c) are
obvious. �

Theorem 4.2. Suppose JS has only finitely many connected components, say, J1, . . . , Jq.
Then q ≤ #En/2, where n ≥ 1 is so large that sn diam JS < min{dist(Ji, Jj) : i 6= j}.
Proof. Let J1, . . . , Jq be all the connected components of JS . If q = 1, there is nothing to
prove. So, suppose that q ≥ 2. Let n ≥ 1 be such that sn diam JS < min{dist(Ji, Jj) :
i 6= j}. Observe that for every ω ∈ En there exists k ∈ {1, . . . , q} such that ϕω(JS) ⊂ Jk.
Since Jk, k ∈ {1, . . . , q}, is a connected component, for every k ∈ {1, . . . , q} there exists
at least two distinct words, say, ω, ω

′ ∈ En such that the above condition holds. Hence
2q ≤ #En, which finishes the proof. �

4.2. Infinite alphabet case. In this section S = {ϕi : X → X, i ∈ I} is a contracting
pointwise finite rapidly decreasing iterated function system and X is assumed to be a
complete connected space. Define inductively the sequence of (Yn)∞0 of closed subsets of
X as follows:

(4.1) Y0 = X, Yn+1 =
⋃
i∈I

ϕi(Yn).

Lemma 4.2. The sequence (Yn)∞0 is descending and JS =
⋂∞
n=0 Yn.

Proof. First, let us prove by induction that the sequence (Yn)∞0 is descending. Indeed,
Y1 ⊆ X = Y0. So, suppose that Yn ⊆ Yn−1 for some n ≥ 1. Then

Yn+1 =
⋃
i∈I

ϕi(Yn) ⊆
⋃
i∈I

ϕi(Yn−1) = Yn.

So, we are done by induction. Now, let us establish the equality JS =
⋂∞
n=0 Yn. Indeed,

it follows from (2.2), that JS ⊆ Yn for all n ≥ 0. So, JS ⊆
⋂∞
n=0 Yn, and, as

⋂∞
n=0 Yn is
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closed, JS ⊆
⋂∞
n=0 Yn. In order to prove the reverse inclusion for every k ≥ 0 and every

x ∈ Yk \ JS consider the set

Ek(x) = {ω ∈ Ik : x ∈ ϕω(X)}.
We shall show that

(4.2) Ek(x) 6= ∅
for all x ∈ Yk \ JS and all k ≥ 0. Indeed E0(x) = {∅} 6= ∅. In order to proceed further by
induction, suppose that Ek(x) 6= ∅ for some k ≥ 0 and all x ∈ Yk \ JS . Take an arbitrary

x ∈ Yk+1 \ JS . Then x ∈
⋃
i∈I ϕi(Yk). So, either x ∈ ∂S or there exists i ∈ I such that

x ∈ ϕi(Yk). The former case is ruled out since x /∈ JS . In the latter case, there exists
z ∈ Yk such that x = ϕi(z). Since ϕi(JS) ⊂ JS and since x /∈ JS , we conclude that z /∈ JS .
Thus z ∈ Yk \ JS . Hence, by the induction hypothesis, Ek(z) 6= ∅. Take ω ∈ Ek(z).
Then x = ϕi(z) ∈ ϕi(ϕω(X)) = ϕiω(X). This means that iω ∈ Ek+1(x), in particular
Ek+1(x) 6= ∅. Our inductive proof is complete. Now, suppose for a contradiction that⋂∞
n=0 Yn\JS 6= ∅ and fix y ∈

⋂∞
n=0 Yn\JS . It then follows from (4.2) that y ∈

⋃
|ω|=k ϕω(X)

for all k ≥ 0. So, in view of (2.2), y ∈ JS , which is impossible. The proof is finished. �

Proposition 4.1. If JS is compact and all the sets Yn, n ≥ 1, are connected, then JS is
connected.

Proof. Suppose that JS is not connected. Then JS = A ∪ B, where A and B are disjoint
non-empty closed subsets of JS , hence of X. By the Urysohn Lemma there exist two open
(in X) disjoint sets U, V such that A ⊆ U and B ⊆ V . Hence JS ⊆ U ∪ V . Since JS is
compact, there exists ε > 0 such that

(4.3) JS ⊆ N (JS , ε) ⊆ U ∪ V.
Since the diameters of ϕω(X) converge to zero uniformly (exponentially) fast, and since
all of them intersect JS , there exists n ≥ 1 so large that Yn ⊆ B(JS , ε). It then follows
from (4.3) that Yn = (U ∩ Yn) ∪ (V ∩ Yn). Since, both U ∩ Yn and V ∩ Yn are non-empty
(A ⊆ U∩Yn, B ⊆ V ∩Yn) open subsets of Yn, we conclude that Yn is disconnected, contrary
to our hypothesis. We are done. �

The main result concerning connectedness of JS is the following.

Theorem 4.3. If JS is compact and there exists a transitive bijection ∗ : I → I such that
ϕi∗(JS) ∩ ϕi(JS) 6= ∅ for all i ∈ I, then JS is connected.

Proof. We shall show by induction that each set Yn (see (4.1)), n ≥ 0, is connected. Indeed
Y0 is connected since Y0 = X. Suppose Yn is connected for some n ≥ 0. Then all the sets
ϕi(Yn), i ∈ I, are also connected, and, as ϕi(Yn) ⊇ ϕi(JS), it follows from our hypothesis

that
⋃
i∈I ϕi(Yn) is connected. Thus Yn+1 =

⋃
i∈I ϕi(Yn) is connected. The inductive proof

is finished. Now, the proof of our theorem follows directly from Proposition 4.1. �

Corollary 4.1. If I = N, JS is compact, and ϕn(JS) ∩ ϕn+1(JS) 6= ∅ for all n ≥ 1, then
JS is connected.
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Corollary 4.2. If JS is compact and there exists a transitive bijection ∗ : I → I such that
ϕi∗(∂S) ∩ ϕi(∂S) 6= ∅ for all i ∈ I, then JS is connected.

Passing to local connectedness, we shall prove the following.

Theorem 4.4. Suppose that JS is compact, ∂S is a singleton, and there exists a transitive
bijection ∗ : I → I such that ϕi∗(JS) ∩ ϕi(JS) 6= ∅ for all i ∈ I, Then JS is a Peano
continuum (arcwise connected, locally arcwise connected compactum).

Proof. Notice that the hypothesis of our theorem equivalently means that we may bijec-
tively parameterize the alphabet I by the set of natural numbers N so that the transitive
bijection ∗ : I → I becomes the map N 3 n→ n+ 1 ∈ N. So, we may assume that I = N
and

ϕn(JS) ∩ ϕn+1(JS) 6= ∅.
In virtue of Corollary 4.1, JS is a continuum. We have,

(4.4) JS =
⋃
i∈I

ϕi(JS).

Fix ε > 0. Since JS is compact, there exists a finite set Iε = {1, 2, . . . , qε} ⊆ I such that

(4.5)
⋃

i∈I\Iε

ϕi(JS) = ∂S ∪
⋃

i∈I\Iε

ϕi(JS) ⊆ N (∂S, ε/2).

Set

(4.6) Jε =
⋃

i∈I\Iε

ϕi(JS).

We shall show by induction that for every n ≥ 1 there are two finite sets I
(1)
n ⊆⋃

0≤k≤n−1 I
k and I

(2)
n ⊂ In such that

(4.7) JS =
⋃

ω∈I(1)n

ϕω(Jε) ∪
⋃

ω∈I(2)n

ϕω(JS).

Indeed, for n = 1 take I
(1)
1 = ∅ and I

(2)
1 = Iε; (4.7) follows then from (4.4) and (4.6). So

suppose that (4.7) holds for some n ≥ 1. Then, it follows from (4.4) and (4.6) that⋃
ω∈I(2)n

ϕω(JS) =
⋃

ω∈I(2)n

ϕω

(
Jε ∪

⋃
i∈Iε

ϕi(JS)

)

=
⋃

ω∈I(2)n

ϕω(Jε) ∪
⋃

τ∈I(2)n ×Iε

ϕτ (JS).

Combining this and (4.7), we conclude the inductive reasoning by setting I
(1)
n+1 = I

(1)
n ∪ I(2)

n

and I
(2)
n+1 = I

(2)
n × Iε. Now, take n ≥ 1 so large that diam(ϕω(X)) < ε for all ω ∈ In. Then

all the terms in (4.7) corresponding to the set I
(2)
n are continua with diameters less than
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ε. All the sets ϕω(Jε), ω ∈ I(1)
n have also diameters less than ε in virtue of (4.5) and the

fact that ∂S is a singleton. But since Jε is a continuum (since all the sets ϕi(JS) are and

I \ Iε = {qε + 1, qε + 2, . . .}), so are all the sets ϕω(Jε), ω ∈ I
(1)
n . In consequence, (4.7)

provides a representation of JS as a union of finitely many continua with diameters less
than ε. Therefore JS is a locally connected continuum by Hahn–Mazurkiewicz–Sierpiński’s
Theorem and it is arcwise connected and locally arcwise connected by Mazurkiewicz–
Moore–Menger’s Theorem. The proof is complete. �

Example: We shall consider complex continued fractions (see [9]). Let I = {m + ni :
(m,n) ∈ N × Z}, where Z is the set of integers and N is the set of positive integers. Let
X ⊂ C be the closed disc centered at the point 1/2 with radius 1/2 and let V = B(1/2, 3/4).
For b ∈ I we define ϕb : V → V putting

ϕb(z) =
1

b+ z

Then JS is a Peano continuum. Indeed, observe that 0, 1 ∈ JS . Set A = ϕ1+i(0) and
B = ϕ1−i(0). Obviously A,B ∈ JS . Since for every b, b′ ∈ {1,−1, i,−i}, there exists
u ∈ ϕ({0, 1, A,B}) such that u ∈ ϕb(JS) ∩ ϕb′(JS), from Theorem 4.4 it follows that JS is
a Peano continuum.

Now, we shall prove the following partial converse of the last theorem.

Theorem 4.5. Set I = N. Suppose JS is compact, ∂S contains at least two points,
∂S ∩

⋃∞
n=1 ϕn(JS) = ∅ and ϕi(JS) ∩ ϕj(JS) 6= ∅ if and only if |i− j| ≤ 1. Then JS is not

a locally connected continuum, more precisely, JS fails to be locally connected at all points
of ∂S.

Proof. JS is connected by Corollary 4.1. Our hypothesis imply that for every k ≥ 1, the sets
F+
k =

⋃
n≥k+1 ϕn(JS) and F−k =

⋃k−1
n=1 ϕn(JS) are separated. Thus we have the following.

Claim. If Γ ⊆ JS is a connected set intersecting ϕi(JS) and ϕj(JS), then Γ∩ϕk(JS) 6= ∅
for all min{i, j} ≤ k ≤ max{i, j}.

Fix an arbitrary point x ∈ ∂S and then a point y ∈ ∂S \ {x}. In order to show that JS
is not locally connected at x it suffices to prove that for every ε > 0 there are two points
a, b ∈ JS ∩ B(x, ε) such that every connected set F ⊆ JS containing a and b, intersects
B(y, ε). And indeed, since x ∈ ∂S, there exists i ≥ 1 such that ϕi(JS) ⊆ B(x, ε). Since
y ∈ ∂S, there exists k > i such that ϕk(JS) ⊆ B(y, ε). Again, since x ∈ ∂S, there exists
j > k such that ϕj(JS) ⊆ B(x, ε). Now, fix a ∈ ϕi(JS) and b ∈ ϕj(JS). If now Γ ⊆ JS is
an arbitrary connected set containing a and b, then Γ ∩ ϕi(JS) 6= ∅ and Γ ∩ ϕj(JS) 6= ∅.
Hence, in view of the Claim, Γ∩ϕk(JS) 6= ∅. Thus Γ∩B(y, ε) 6= ∅. The proof is complete.
�

5. Strongly bounded multiplicity and F–conformal measures

In this entire section S = {ϕe : Xt(e) → Xi(e), e ∈ E} is rapidly decreasing finitely
primitive graph directed system. We do not mention bounded multiplicity here since we
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will formulate and we will need in the sequel a stronger property. A finite word ωτ ∈ E∗
is called a pseudo–code of an element x ∈ X if and only if ω, τ ∈ E∗A, ϕτ (Xt(τ)) ⊆ Xt(ω)

and x ∈ ϕω(ϕτ (Xt(τ))). Note that the word ωτ is not required to belong to E∗A. If we do
not want to specify the element x we simply say that ωτ is a pseudo–code.

Now, the system S is said to be of strongly bounded multiplicity provided that there
exists M ≥ 1 such that the number of elements of any collection of mutually incomparable
pseudo–codes of a point x ∈ X, is bounded above by M . Obviously, any system of strongly
bounded multiplicity is of bounded multiplicity. We now pass to describe and to examine
in some detail summable Hölder continuous families of functions. A family

F = {f (e) : Xt(e) → C}e∈E
is called Hölder continuous with an exponent β > 0 provided that all its members are
Hölder continuous with exponent β and the same positive constant. Precisely, there exists
ϑβ(F ) > 0 such that for all e ∈ E and all x, y ∈ Xt(e),

|f (e)(x)− f (e)(y)| ≤ ϑβ(F )ρβ(x, y).

Note that each Hölder continuous family with C replaced by R is a Hölder family in the
sense of Section 3.1 from [12].

The Hölder family F is called summable if F is real, i.e. f (e)(Xt(e)) ⊆ R for all e ∈ E
and ∑

e∈E

‖ exp(f (e))‖∞ =
∑
e∈E

exp( sup
x∈Xt(e)

(f (e))) <∞.

For every ω ∈ En
A, n ≥ 1 define the function SωF : Xt(ω) → R by

SωF =
n∑
j=1

f (ωj) ◦ ϕσjω.

Note that the sequence (n → log
∑

ω∈EnA
‖ exp(SωF )‖∞)∞1 is subadditive and define the

topological pressure P (F ) of F by setting

P (F ) = lim
n→∞

1

n
log

∑
ω∈EnA

‖ exp(SωF )‖∞.

The following lemma can be proved in exactly the same way as Lemma 3.1.2 in [12] with
slight obvious modifications.

Lemma 5.1. For all ω ∈ E∗A and all x, y ∈ Xt(ω), we have

|SωF (x)− SωF (y)| ≤ (1− sβ)−1ϑβ(F )ρβ(x, y).

(s ∈ (0, 1) is the contraction rate of the system S).

The amalgamated function f : E∞A → C induced by the family F is defined as follows

f(ω) = f (ω1)(π(σω)).
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Having the function f we may define the topological pressure of f by the formula

P (f) = lim
n→∞

1

n
logZn(f),

where

Zn(f) =
∑
ω∈EnA

exp( sup
τ∈[ω]∩E∞A

n−1∑
j=0

f(σj(τ))).

Our convention will be to use lower case letters for amalgamated functions induced by
Hölder continuous families of functions (referred to by upper case letters). A crucial fact
for us is the following straightforward lemma.

Lemma 5.2. If F is a Hölder continuous family of functions with an exponent β > 0, then
the amalgamated function f : E∞A → C is Hölder continuous with exponent β (assuming
that the symbol space E∞A is endowed with the metric ds).

This lemma permits us to apply the machinery of symbolic thermodynamic formalism
developed in Chapter 2 of [12]. Also, most of the arguments from Chapter 3 of this book
go through almost unaltered. Firstly, the same proof as that of Proposition 3.1.4 in [12]
gives the following.

Proposition 5.1. If F is a real Hölder continuous family, then P (F ) = P (f).

A Borel probability measure m on X is said to be F–conformal provided that m(JS) = 1
and the following two conditions are satisfied. For every e ∈ E and for every Borel set
A ⊆ Xt(e),

m(ϕe(A)) =

∫
A

exp(f (e)(x)− P (F ))m(dx)

and
m(ϕa(Xt(a)) ∩ ϕb(Xt(b))) = ∅

whenever a, b, e ∈ E and a 6= b. A straightforward argument shows that

m(ϕω(A)) =

∫
A

exp(SωF (x)− P (F )|ω|)m(dx)

for all ω ∈ E∗A and every Borel set A ⊆ Xt(ω), and

m(ϕτ (Xt(τ)) ∩ ϕω(Xt(ω)) = ∅
for all incomparable ω, τ ∈ E∗A. Recall that f : E∞A → R is the amalgamated function
induced by the summable Hölder continuous family F . Let Lf : Cb(E

∞
A ) → Cb(E

∞
A ) be

the corresponding Perron–Frobenius operator, i.e. the operator given by the formula

Lf (g(ω) = exp(−P (f))
∑
e∈E

Aeω1=1

g(eω) exp(f(eω)).

Let L∗f : C∗b (E∞A )→ C∗b (E∞A ) be the corresponding dual operator. The following result (for
all Hölder continuous summable potentials defined on the symbol space E∞A ) was proved
in Chapter 2 of [12].
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Theorem 5.1. There exists exactly one Borel probability measure mf on E∞A such that
L∗fmf = mf . There also exists exactly one Borel probability shift–invariant measure µf
on E∗A that is absolutely continuous with respect to mf . In addition µf is ergodic and the

Radon–Nikodym derivative
dµf
dmf

is a Hölder continuous function whose supremum is finite

and infimum is positive. The invariant measure µf is characterized in the space of Borel
probability measures on E∞A by the property that ∃C ≥ 1 ∀ω ∈ E∞A ∀n ≥ 1

C−1 ≤
µf ([ω|n ])

exp(Snf(ω)− P (f)n)
≤ C.

The same inequalities hold, perhaps with a different C ≥ 1, with µf replaced by mf .
The measure mf is referred to as the standard Gibbs state of f and µf as the invariant
Gibbs state of f . The main fact that we will need from this section is the following.

Theorem 5.2. Suppose that S is a contracting rapidly decreasing graph directed Markov
system with strongly bounded multiplicity. Suppose also that F is a summable Hölder
continuous family. Then mF := mf ◦ π−1 is the only F–conformal measure on X.

The proof of this theorem goes through exactly as the proof of Theorem 3.2.3 p. 58 in
[12]. One only needs to observe that each element of En has at least two different pseudo–
codes ωρ and ωτ (with some ω ∈ En

A) of length n+ q and then to apply strongly bounded
multiplicity to conclude that

⋂∞
k=1

⋃∞
n=k En = ∅.

6. Conformal mappings in Hilbert spaces

Let H be a separable Hilbert space with dim(H) ≥ 3. Let U ⊆ H be a non–empty open
set. A C4–differentiable 1–to–1 map ϕ : U → H is called conformal provided that for every
x ∈ H, the derivative ϕ′(x) : H → H is a bijective similarity map (a bijective isometry
followed by multiplication by a non–zero scalar). The (positive) similarity factor of ϕ′(x)
is denoted by |ϕ′(x)|. There are two distinguished classes of conformal maps: similarity
maps and inversions with respect to spheres. Given a ∈ H and r > 0, the inversion
Ia,r : H \ {a} → H \ {a} with respect to sphere S(a, r) := {x ∈ H : ‖x− a‖ = r} is given
by the formula

Ia,r(x) = a+ r2‖x− a‖−2(x− a),

that is Ia,r(x) is the only point different from x on the ray emanating from a and passing
through x such that ‖Ia,r(x)− a‖ · ‖x− a‖ = r2. It is easy to check that Ia,r is a conformal
map, that I2

a,r = Ia,r, meaning that Ia,r is an involution, and that

(6.1) |I ′a,r(x)| = r2‖x− a‖−2.

In the case when r = 1, we frequently write Ia for Ia,1. We also write I∞ for the identity
map on H. Inspecting the proof of Liouville’s Theorem for (finite dimensional) Euclidean
spaces (see [3], Sec. 5.2), we see that the following representation theorem holds.

Theorem 6.1. If U ⊆ H is a non–empty open connected set and ϕ : U → H is a conformal
map, then there is a unique quadruple (M,a, λ, b) such that

ϕ = SMλ,b ◦ Ia,
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where SMλ,b(z) = λM(z)+b is the similarity map determined by λ, b and a bijective isometry
M .

Denote the space of all conformal mappings on H by Cf (H). It then follows from
Theorem 6.1 and (6.1) that

|ϕ′(x)| = λ‖x− a‖−2

for all x ∈ H \ {a}. Copying word by word the proof of Theorem 4.1.3 from [12], p. 65,
we get the following.

Theorem 6.2. Suppose that Y is a bounded subset of the Hilbert space H and that W ⊆ H
is an open connected set containing Y such that dist(Y, ∂W ) = dist(Y,W c) > 0. Then there

exists a constant K̂ ≥ 1 such that for every conformal map ϕ : W → H, we have

||ϕ′(x)| − |ϕ′(y)|| ≤ K̂|ϕ′(x)|‖x− y‖

for all x, y ∈ Y . In particular,

K−1 ≤ |ϕ
′(y)|
|ϕ′(x)|

≤ K,

where K = 1 + K̂ diam(Y ).

7. Conformal Graph Directed Markov Systems

A subset F of a Banach space B is called Q–quasi–convex (Q ≥ 1) provided that for all
points x, y ∈ F there exists a polygonal line γ ⊆ F with end points x and y whose length
is bounded above by Q‖x− y‖. A subset of a Banach space B is called quasi–convex if it
is Q–quasi convex with some Q ≥ 1

Fix a separable Hilbert space H with dim(H) ≥ 3. A contracting (with contraction
rate s ∈ (0, 1) graph directed Markov system S = {ϕe : Xt(e) → Xi(e), e ∈ E} is called
conformal if the following conditions are satisfied:

(a) Xv is a closed bounded quasi–convex subset of H for all v ∈ V ;
(b) The incidence matrix A : E × E → {0, 1} is finitely primitive;
(c) S is rapidly decreasing;
(d) The Open Set Condition (OSC) holds, i.e. if i 6= j, then

ϕi(Int(Xt(i))) ∩ ϕj(Int(Xt(j))) = ∅;

(e) S is of strongly bounded multiplicity;
(f) For every v ∈ V there exist an open connected bounded set Wv containing Xv and

Ŵv containing N (Wv, ε) for some ε > 0 such that dist(Xv, ∂Wv) > 0, ϕe(Wt(e)) ⊆
Wi(e) and ϕ̂e(Wt(e)) ⊆ Ŵi(e) for all e ∈ E;

(g) For every e ∈ E, ϕe : Wt(e) → Wi(e) is a conformal map;
(h) For every e ∈ E, ‖ϕ′e‖ = sup{|ϕ′e(x)| : x ∈ Wt(e)} ≤ s.

Applying Theorem 6.2, we immediately get the following Bounded Distortion Property.
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Lemma 7.1. There exists a constant K ≥ 1 such that

K−1 ≤ |ϕ
′
ω(x)|
|ϕ′ω(y)|

≤ K

for all ω ∈ E∗A and all x, y ∈ Wt(ω) (decreasing Wv slightly if necessary).

Furthermore, the proof of Lemma 4.2.3 from [12] p. 72 repeats to give the following.

Lemma 7.2. There exists L ≥ 1 such that

| log |ϕ′ω(y)| − log |ϕ′ω(x)|| ≤ L‖x− y‖
for all ω ∈ E∗A and all x, y ∈ Wt(ω).

For every e ∈ E and every t ≥ 0 let

tl(e)(x) = t log |ϕ′e(x)|, x ∈ Xt(e).

Let
tL = {tl(e)}e∈E.

As an immediate consequence of Lemma 7.2 we obtain the following.

Lemma 7.3. Fore every t ≥ 0, tL is a Hölder continuous family with exponent 1. Its
amalgamated function tl : E∞A → R is given by the formula tl(ω) = t log |ϕ′ω1

(π(σω))|.

Since ‖ϕ′e‖ ≤ s < 1 for all e ∈ E, the set

FS = {t ≥ 0 : tL is summable}
is of the form [Θs,+∞) or (Θs,+∞) with some Θs ∈ [0,+∞]. Let P (t) := P (tL), i.e.

P (t) = lim
n→∞

1

n
log

∑
ω∈EnA

‖ϕ′ω‖t.

In view of Lemma 7.3, Theorem 5.1 produces a unique standard Gibbs state m̂t and a
unique invariant Gibbs state µ̂t for all t ∈ FS . As an immediate consequence of Theorem
5.2 we then get the following.

Theorem 7.1. For every t ∈ FS , mt := m̂t ◦ π−1 is the unique tL–conformal measure for
S, meaning that

mt(ϕω(A)) =

∫
A

e−P (t)|ω|‖ϕ′ω‖tdmt

for all ω ∈ E∗A and all Borel sets A ⊆ Xt(ω). If in addition τ ∈ E∗A is incomparable with ω,
then

mt(ϕω(Xt(ω)) ∩ ϕτ (Xt(τ))) = 0.

We also set µt := µ̂t ◦ π−1. If P (t) = 0, the tL–conformal measure mt is simply refered
to as t–conformal. The basic (purely symbolic) properties of the pressure function P (t)
are comprised in the following (compare Proposition 4.2.8 in [12]).

Proposition 7.1. It holds

(a) FS = {t ≥ 0 : P (t) < +∞},
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(b) The topological pressure function t→ P (t) is non–increasing on [0,+∞), strictly
decreasing on [ΘS ,+∞) to −∞, convex and continuous on FS (in fact real–
analytic on (ΘS ,+∞) but this is more involved and proved in Chapter 2 of [12]),

(c) P (0) = +∞ iff the set E is infinite.

Set

h = hS := inf{t ≥ ΘS : P (t) < 0} ≥ ΘS .

The system S is called finitary iff hS < +∞, otherwise it is called infinitary. As a direct
consequence of Proposition 7.1 and Theorem 7.1, we obtain the following.

Proposition 7.2. It holds

(a) There is at most one t ≥ 0 such that P (t) = 0. If such a t exists, then t = hS .
(b) There is at most one hS–conformal measure.

If P (hS) = 0, equivalently if an hS–conformal measure exists, the system S is called
regular. Otherwise (P (hS) < 0), it is called irregular.

8. A digression to geometric measure theory

In this section we collect, with proofs, some facts from the geometric measure theory
showing how geometric properties of ”abstract” measures affect the behavior of Hausdorff
and packing measures. We start with the 4r–covering theorem. In the literature we were
able to find the 5r–covering theorem, which in addition was formulated and proved for
compactly bounded metric spaces (see [8]). We prove it for all metric spaces. For every
ball B := B(x, r), we put r(B) = r and c(B) = x.

Theorem 8.1. (4r–Covering Theorem) Suppose (X, ρ) is a metric space and B is a family
of open balls in X such that sup{r(B) : B ∈ B} < +∞. Then there is a family B′ ⊆ B
consisting of mutually disjoint balls such that

⋃
B∈B B ⊆

⋃
B∈B′ 4B. In addition, if the

metric space X is separable, then B′ is countable.

Proof. Fix an arbitrary M > 0. Suppose that there is given a family B′M ⊆ B consisting
of mutually disjoint balls such that

(a) r(B) > M for all B ∈ B′M ,
(b)

⋃
B∈B′M

4B ⊇
⋃
{B : B ∈ B and r(B) > M}.

We shall show that there exists a family B′′M ⊆ B with the following properties:

(c) B′′M ⊆ F := {B ∈ B : 3M/4 < r(B) ≤M},
(d) B′M ∪ B′′M consists of mutually disjoint balls,
(e)

⋃
B∈B′M∪B

′′
M

4B ⊇
⋃
{B : B ∈ B and r(B) > 3M/4}.

Indeed, put

(8.1) B′′′M = {B ∈ F : B ∩
⋃

D∈B′M

D = ∅}.
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Consider B ∈ F \ B′′′M . Then there exists D ∈ B′M such that B ∩D 6= ∅. Hence, r(B) ≤
M < r(D), and in consequence,

ρ(c(B), c(D)) < r(B) + r(D) ≤M + r(D) < r(D) + r(D) = 2r(D),

and

B ⊆ B(c(D), r(B) + 2r(D)) ⊆ B(c(D), 3r(D)) = 3D ⊆ 4D.

Therefore,

(8.2)
⋃

B∈F\B′′′M

B ⊆
⋃

B∈B′M

4B.

So, if B′′′M = ∅ we are done with the proof by setting B′′M = ∅. Otherwise, fix an arbitrary
B0 ∈ B′′′M , and further by transfinite induction, Bα ∈ B′′′M such that

c(Bα) ∈ c(B′′′M) \
⋃
γ<α

8

3
Bγ

as long as the difference on the right-hand side above is nonempty. This procedure ter-
minates at some ordinal number λ. First, we claim that the balls (Bα)α<λ are mutually
disjoint. Indeed, fix 0 ≤ α < β < λ. Then c(Bβ) /∈ 8

3
Bα. So, ρ(c(Bβ), c(Bα)) ≥ 8

3
r(Bα) >

8
3
· 3

4
M = 2M and r(Bβ) + r(Bα) ≤ M + M = 2M. Thus Bβ ∩ Bα = ∅. Now, if B ∈ B′M

and 0 ≤ α < λ, then Bα ∈ B′′′M , and by (8.1), Bα ∩ B = ∅. Thus we proved item (d) with
B′′M = {Bα}α<λ. Item (c) is obvious since Bα ∈ B′′′M ⊆ F for all 0 ≤ α < λ. It remains to
prove item (e). By the definition of λ, c(B′′′M) ⊂

⋃
γ<λ

8
3
Bγ =

⋃
B∈B′′M

8
3
B. Hence, if x ∈ B

and B ∈ B′′′M , then there exists D ∈ B′′M such that c(B) ∈ 8
3
D. Therefore,

ρ(x, c(D)) ≤ ρ(x, c(B)) + ρ(c(B), c(D)) ≤ r(B) +
8

3
r(D)

≤M +
8

3
r(D) <

4

3
r(D) +

8

3
r(D) = 4r(D).

Thus, x ∈ 4D, and consequently,
⋃
B′′′M ⊆

⋃
D∈B′′M

4D. Combining this and (8.2), we get

that
⋃
B∈F B ⊆

⋃
B∈B′M∪B

′′
M

4B. This and (b) immediately imply (e). The properties (c),

(d) and (e) are established. Now, take S = sup{r(B) : B ∈ B} + 1 < +∞, and define
inductively the sequence (B′(3/4)nS)∞n=0 by declaring B′S = ∅ and B′(3/4)n+1S = B′(3/4)nS ∪
B′′(3/4)nS. Then

B′ =
∞⋃
n=0

B′(3/4)nS.

It then follows directly from (d) and our inductive definition that B′ consists of mutually
disjoint balls. It follows from (e) that

⋃
B∈B′ 4B ⊇

⋃
{B ∈ B : r(B) > 0} =

⋃
B. The first

part of our theorem is thus proved. The last part follows immediately from the fact that
any family of mutually disjoint open subsets of a separable space is countable. �
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Remark 1. Assume the same as in Theorem 8.1 (separability of X is not needed) and
suppose that there exists a finite Borel measure µ on X such that µ(B) > 0 for all B ∈ B′.
Then B′ is countable.

A function ϕ : [0,+∞) → [0,+∞) is called an evenly varying function if for all K > 0
there exists cϕ(K) ≥ 1 such that (cϕ(K))−1ϕ(t) ≤ ϕ(Kt) ≤ cϕ(K)ϕ(t) for all t ≥ 0.

We shall now derive several geometrical consequences of the 4r–Covering Theorem. In
the finite–dimensional case they are actually known in the literature (see [14] for instance).
They were formulated and proved for subsets of Euclidean spaces only (for further appli-
cations in forthcoming sections we extended them to Hilbert spaces) and with the help
of the Besicovitch Covering Theorem, which holds for finite–dimensional Euclidean spaces
only and whose proof is substantially more complicated than the proof of the 4r–Covering
Theorem.

Theorem 8.2. Let ϕ : [0,+∞)→ [0,+∞) be a continuous evenly varying function. Sup-
pose (X, ρ) to be an arbitrary metric space and µ a Borel probability measure on X. Fix
A ⊆ X. Assume that there exists c ∈ (0,+∞] (1/+∞ = 0) such that one of the following
holds.

(1) lim sup
r→0

µ(B(x, r))

ϕ(r)
≥ c

for all x ∈ A except for countably many perhaps. Then the Hausdorff measure Hϕ corre-
sponding to the function ϕ satisfies Hϕ(E) ≤ cϕ(8)µ(E)/c for every Borel set E ⊆ A. In
particular Hϕ(A) < +∞ (Hϕ(A) = 0 if c =∞)

(2) lim sup
r→0

µ(B(x, r))

ϕ(r)
≤ c < +∞

for all x ∈ A. Then µ(E) ≤ Hϕ(E) for every Borel set E ⊆ A. In particular Hϕ(A) > 0
whenever µ(E) > 0.

Proof. Since Hϕ on any countable set equals 0, we may assume without loss of generality
that E does not intersect the exceptional countable set. Fix ε > 0 and r > 0. Since µ is
regular there exists an open set G ⊇ E such that µ(G) ≤ µ(E)+ε. Further, for every x ∈ E
there exists r(x) ∈ (0, r) such that B(x, r(x)) ⊆ G and (c−1+ε)µ(B(x, r(x)) ≥ ϕ(r(x)) > 0.
By 4r–covering theorem and Remark 1 there exists a sequence {xk}∞k=1 such that

B(xi, r(xi)) ∩B(xj, r(xj)) = ∅ for i 6= j

and
∞⋃
k=1

B(xk, 4r(xk)) ⊇
⋃
x∈E

B(x, r(x)) ⊇ E.
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Hence

H
2r
ϕ (E) ≤

∞∑
k=1

ϕ(2 · 4r(xk)) ≤
∞∑
k=1

cϕ(8)ϕ(r(xk)) ≤ cϕ(8)
∞∑
k=1

(c−1 + ε)µ(B(xk, r(xk))

= cϕ(8)(c−1 + ε)µ(
∞⋃
k=1

B(xk, r(xk)) ≤ cϕ(8)(c−1 + ε)µ(G)

≤ cϕ(8)(c−1 + ε)(µ(E) + ε).

Passing with r → 0 we get,

Hϕ(E) ≤ cϕ(8)(c−1 + ε)(µ(E) + ε)

and since ε > 0 was arbitrary, we finally get

Hϕ(E) ≤ cϕ(8)c−1µ(E),

which finishes the first part of the proof.
Now, let us deal with the second part. Fix an arbitrary s > c. The function (for every

r > 0)

X 3 x 7→ µ(B(x, r))

ϕ(r)
Borel measurable.

For every k ≥ 1 consider the function

ϕk(x) = sup

{
µ(B(x, r)

ϕ(r)
: r ∈ Q ∩ (0, 1/k]

}
,

where Q are rational numbers. The above function is Borel–measurable as the supremum
of countably many measurable functions. Let

Ak = ϕ−1
k ((0, s]) for k ≥ 1.

Fix an arbitrary r ∈ (0, 1/k). Then pick rj ↘ r, rj ∈ Q. Since the function t 7→ µ(B(x, t))
is non–decreasing and the function ϕ is continuous, we get for every x ∈ Ak that

µ(B(x, r))

ϕ(r)
≤ lim

j→∞

µ(B(x, rj))

ϕ(rj)
≤ s.

Fix F ⊆ Ak, r < 1/k and {Fi}∞1 , a countable cover of F by sets contained in F and with
diameter less than r/2. For every i ≥ 1 pick xi ∈ Fi. Then Fi ⊂ B(xi, diam(Fi)). Hence

∞∑
i=1

ϕ(diam(Fi)) ≥ s−1

∞∑
i=1

µ(B(xi, diam(Fi))) ≥ s−1

∞∑
i=1

µ(Fi) ≥ s−1µ(F ).

Hence

Hϕ(F ) ≥ s−1µ(F ).

By our hypothesis
∞⋃
k=1

Ak ∩ A = A.
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Define inductively
B1 = A1 ∩ A

and

Bk+1 = Ak+1 ∩ (A \
k⋃
j=1

Aj ∩ A).

Obviously {Bk}∞1 consists of mutually disjoint sets and
∞⋃
k=1

Bk =
∞⋃
k=1

Ak = A.

Hence, if a measurable set E ⊆ A, then

Hϕ(E) =
∞⋃
k=1

Hϕ(E ∩Bk) ≥ s−1

∞∑
k=1

µ(E ∩Bk) = s−1µ(E).

Letting s↘ c finishes the proof. �

Theorem 8.3. Let ϕ : [0,∞)→ [0,∞) be a continuous evenly varying function. Suppose
(X, ρ) to be a metric space and µ a Borel probability measure on X. Fix A ⊂ X and
assume that there exists c ∈ (0,+∞], (1/+∞ = 0) such that one of the following holds.

(1) lim inf
r→0

µ(B(x, r))

ϕ(r)
≤ c for all x ∈ A.

Then µ(E) ≤ Pϕ(E) for every Borel set E ⊆ A, where Pϕ denotes the packing measure
corresponding to the gauge function ϕ. In particular, if µ(E) > 0, then Pϕ(E) > 0.

(2) lim inf
r→0

µ(B(x, r))

ϕ(r)
≥ c for all x ∈ A.

Then Pϕ(E) ≤ C−1µ(E) for every Borel set E ⊆ A. In particular, if µ(E) < +∞, then

Pϕ(E) < +∞.

The proof, analogous to the proof of the previous theorem, is omitted. As a consequence
of the above theorems we get this.

Theorem 8.4. Suppose (X, ρ) to be a metric space and µ a Borel probability measure on
X. Let A be a subset of X.

If µ(A) > 0 and there exists θ1 ≥ 0 such that

lim inf
r→0

log µ(B(x, r))

log r
≥ θ1 for all x ∈ A,

then HD(A) ≥ θ1, where HD denotes the Hausdorff dimension.
If there exists θ2 ≥ 0 such that

lim inf
r→0

log µ(B(x, r))

log r
≤ θ2 for all x ∈ A,

then HD(A) ≤ θ2.
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Proof. Fix an arbitrary 0 ≤ θ < θ1 (θ1 = 0 is obvious). Then for every x ∈ A there exists
R ∈ (0, 1) such that

log µ(B(x, r))

log r
≥ θ for r < R.

Hence we have

µ(B(x, r)) ≤ rθ

and consequently

lim sup
r→0

µ(B(x, r))

rθ
≤ 1.

This in virtue of Theorem 7.2 (2) gives Hθ(A) > 0, which, in turn, implies HD(A) ≥ θ.
Letting θ ↘ θ1 gives HD(A) ≥ θ1.

Now fix θ > θ2. Then for every x ∈ A there exists a sequence (rn)∞1 , rn → 0, such that

log µ(B(x, rn))

log rn
< θ.

Hence we have

µ(B(x, rn)) > rθn
and consequently

lim sup
n→∞

µ(B(x, rn))

rθn
≥ 1.

From Theorem 8.2 (1) we then get Hθ(A) < +∞. Hence HD(A) ≤ θ and since θ > θ2 was
arbitrary, we finally get HD(A) ≤ θ2. �

Recall that if ν is a finite Borel measure on X, then HD(ν), the Hausdorff dimension of
ν, is the minimum of Hausdorff dimensions of sets of full ν measure.

Corollary 8.1. Suppose that µ is a Borel probability measure on a metric space X. If
there exists θ1 ≥ 0 such that for µ-a.e. x ∈ X

lim inf
r→0

log µ(B(x, r))

log r
≥ θ1,

then HD(µ) ≥ θ1.
If there exists θ2 ≥ 0 such that for µ-a.e. x ∈ X

lim inf
r→0

log µ(B(x, r))

log r
≤ θ2,

then HD(µ) ≤ θ2.

Proof. Fix Y ⊆ X with µ(Y ) = 1. By the assumption there exists a Borel set A ⊆ Y
µ(A) > 0 and

lim inf
r→0

log µ(B(x, r))

log r
≥ θ1, for all x ∈ A.

From Theorem 8.4 it follows then that HD(Y ) ≥ HD(A) ≥ θ1. Hence HD(µ) ≥ θ1.
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To prove the second part note that by the assumption there exists Y ⊆ X such that
µ(Y ) = 1 and

lim inf
r→0

log µ(B(x, r))

log r
≤ θ2, for all x ∈ Y .

From Theorem 8.4 it follows then that HD(Y ) ≤ θ2. Since µ(Y ) = 1, we thus get HD(µ) ≤
HD(Y ) ≤ θ2, which finishes the proof. �

Corollary 8.2. If µ is a Borel probability measure on a metric space X, then

HD(µ) = essup lim inf
r→0

log µ(B(x, r))

log r
.

In particular, if there exists θ ≥ 0 such that

lim inf
r→0

log µ(B(x, r))

log r
= θ for µ-a.e. x ∈ X,

then HD(µ) = θ.

A Borel probability measure on a metric space X is called geometric with exponent t iff
there exists C ≥ 1 such that

C−1 ≤ µ(B(x, r))

rt
≤ C

for all x ∈ X and 0 < r ≤ 1.
As usually PD and BD denote the packing and box dimension, respectively. We have

the following theorem.

Theorem 8.5. Suppose X is a metric space and µ is a Borel probability geometric measure
on X with exponent t. Then

(a) µ, Ht and Pt are mutually equivalent. Furthermore,

0 < inf
dHt

dµ
≤ sup

dHt

dµ
< +∞ and 0 < inf

dPt

dµ
≤ sup

dPt

dµ
< +∞

and, in particular, 0 < Ht(X),Pt(X) < +∞.

(b) HD(X) = PD(X) = BD(X) = t.

Proof. (a) follows immediately from Theorems 8.2 and 8.3 (with A = X). Consequently
t = HD(X) = PD(X). To finish the proof it is enough to show that BD(X) ≤ t. And
indeed, let {(xi, r)}k1 be a packing of X (r ≤ 1). Then

krt =
k∑
i=1

rt ≤ C
k∑
i=1

µ(B(xi, r)) = Cµ

(
k⋃
i=1

B(xi, r)

)
≤ Cµ(X) = C.

Hence k ≤ Cr−t and P (X, r) ≤ Cr−t, where P (X, r) denotes the maximal number of balls
with radius r which are mutually disjoint. This gives (see Theorem from [14] for the first
equality sign)

BD(X) = lim sup
r→0

logP (X, r)

log(1/r)
≤ lim sup

r→0

logC − t log r

log(1/r)
= t,
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which finishes the proof. �

9. Hausdorff dimension

Again in this section S = {ϕe : Xt(e) → Xi(e), e ∈ E} is a conformal GDMS. We shall
prove the following.

Lemma 9.1. If t ≥ hS , then (with mt = mtL)

inf
x∈J

{
lim sup
r→0

mt(B(x, r))

rt

} {
= +∞ if P (t) < 0;
> 0 if P (t) = 0 (t = hS).

Proof. Fix x ∈ J and write x = π(ω), ω ∈ E∞A . Then

B(x,D−1‖ϕ′ω|n‖) ⊇ ϕω|n(Xt(ω|n))

for all n ≥ 1, where D comes from Bounded Distortion Property and quasi–convexity of
Xt(ω|n). Hence (as P (t) ≤ 0),

mt(B(x,D−1‖ϕ′ω|n‖)) ≥ mt(ϕω|n(Xt(ω|n))) ≥ e−P (t)nK−t‖ϕ′ω|n‖
tmt(Xt(ω|n))

= (DK−1)te−P (t)n(D−1‖ϕ′ω|n‖)
tmt(Xt(ω|n))

≥ (DK−1)te−P (t)n(D−1‖ϕ′ω|n‖)
t inf
v∈V
{mt(Xv)},

where the constant K comes from Bounded Distortion Property. Thus

lim sup
r→0

mt(B(x, r))

rt

{
= +∞ if P (t) < 0;
≥ (DK−1)hS infv∈V {mt(Xv)} if t = hS ,

and we are done. �

As a direct consequence of this lemma, Theorem 8.4, and Theorem 8.2, we get the
following.

Proposition 9.1. We have HD(JS) ≤ hS , Hh|JS << mh and Hh(JS) < +∞.

The fact that HD(JS) ≤ h and Hh(JS) < +∞ (if h ∈ FS) could have been obtained
directly, without invoking Theorems 8.4 and 8.2. As a direct consequence of Lemma 9.1
and Theorem 8.2, we also get the following.

Proposition 9.2. If the system S is irregular, then HhS (JS) = 0.

We shall prove the following.

Lemma 9.2. If the system S satisfies the strong open set condition, then for all t ∈
FS ∩ [0, hS ], we have

lim inf
r→0

mt(B(x, r))

rt

{
= 0 if t < h;
< +∞ if t = h and S is regular,

for all x ∈ Jt, where Jt is some Borel subset of JS with mt(Jt) = 1.
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Proof. Since S satisfies the strong open set condition, there exists x ∈ JS and R > 0
such that B(x, 2R) ⊆ IntHX. Since supp(µt) = supp(mt) = JS , we have mt(B(x,R)) ·
µt(B(x,R)) > 0. Hence µ̂t(π

−1(B(x,R))) > 0. Since the measure µ̂t is ergodic (with respect

to the shift map σ : E∞A 7→ E∞A ), there exists a Borel set Êt ⊆ E∞A such that µ̂t(Êt) = 1

and for every ω ∈ Êt there exists an unbounded increasing sequence (nj = nj(ω))∞j=1 of

positive integers such that σnj(ω) ∈ π−1(B(x,R)). Fix ω ∈ Êt. Then for all j ≥ 1, we
have

ϕω|nj
(B(π(σnj(ω)), R)) ⊇ B(π(ω), K−1R‖ϕ′ω|nj ‖).

Since B(π(σnj(ω)), R) ⊆ Xt(ωnj )
, we thus get from conformality of mt,

mt(B(π(ω), K−1R‖ϕ′ω|nj ‖)) ≤ e−P (t)nj‖ϕ′ω|nj ‖
tmt(B(π(σnj(ω), R)))

≤ e−P (t)nj‖ϕ′ω|nj ‖
t = e−P (t)nj(KR−1)t(K−1R‖ϕ′ω|nj ‖)

t.

Therefore,

lim inf
r→0

mt(B(π(ω), r))

rt

{
= 0 if t < hS (equivalently P (t) > 0);
≤ (KR−1)h if t = hS and S is regular (P (hS) = 0).

So, we are done by taking Jt = π(Êt). �

As an immediate consequence of this lemma and Theorem 8.3, we get the following.

Proposition 9.3. If the system S is regular and satisfies the strong open set condition,
then mh << Ph and Ph(JS) > 0.

10. Bowen’s Formula

In this section we prove a version of Bowen’s formula, which for finite alphabet system
says that if a system satisfies the SOSC, then Hausdorff dimension of the limit set is equal
to its Bowen’s parameter, i.e. the only solution h to the equation P (t) = 0. We want
to stress that this formula holds even though the corresponding Hausdorff measure Hh(J)
(even in the case of finite alphabet) may vanish (see Example 11.1)

Although h–dimensional Hausdorff measure may vanish, motivated by Theorem 2.6 in
[17] we shall prove the following.

Theorem 10.1. (Bowen’s formula for finite SOSC) If S = {ϕe : Xt(e) → Xi(e), e ∈ E} is
a finitely primitive graph directed Markov system satisfying the SOSC, then HD(JS) = h,
the only zero of the pressure function t→ P (t), t ∈ R.

Proof. Because of the SOSC there exists x ∈ JS ∩ IntX Then there exists τ ∈ E∗A such
that

(10.1) x ∈ ϕτ (Jt(τ)) ⊆ ϕτ (Xt(τ)) ⊆ IntXi(τ).

Consider the iterated function system

Sn = {ϕτω : ϕτ (Xt(τ))→ ϕτ (Xt(τ)), ω, |ω| = n, τωτ ∈ E∗A} for n ≥ 1.
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Because of (10.1) Sn satisfies the separation condition, and, because of primitivity of S,
Sn 6= ∅ for all n ≥ 1 large enough, say n ≥ q. Let Jn be the limit set of Sn. Clearly,
Jn ⊆ JS , and therefore, hn ≤ HD(JS) ≤ h, where hn = HD(Jn). It therefore suffices to
show that γ := supn≥1(hn) ≥ h. Since the system S is primitive, there exists a finite set
Λ ⊆ E∗A, consisting of words of the same length, say p ≥ 1, such that for all ω ∈ E∗A there
are αω, βω ∈ Λ such that ταωωβωτ ∈ E∗A. Put

ξ = min{‖ϕ′α‖ : α ∈ Λ} > 0.

For every n ≥ q let mn be the hn–conformal measure for the iterated function system Sn.
Fix n ≥ max{p, q}. We then have,

1 = mn+2p(Jn+2p) ≥ mn+2p(
⋃
ω∈EnA

ϕταωωβω(ϕτ (Xt(τ))))

=
∑
ω∈EnA

mn+2p(τϕαωωβω(ϕτ (Xt(τ)))

≥ K−hn
∑
ω∈EnA

‖ϕ′ταωωβω‖
hnmn+2p(ϕτ (Xt(τ))) = K−hn

∑
ω∈EnA

‖ϕ′ταωωβω‖
hn

≥ K−4hn
∑
ω∈EnA

‖ϕ′τ‖hn‖ϕ′αω‖
hn‖ϕ′ω‖hn‖ϕ′βω‖

hn ≥ (ξ2‖ϕ′τ‖K−4)hn
∑
ω∈EnA

‖ϕ′ω‖hn

≥ (ξ2‖ϕ′τ‖K−4)γ
∑
ω∈EnA

‖ϕ′ω‖γ.

Hence
∑

ω∈EnA
‖ϕ′ω‖γ ≤ (K4‖ϕ′τ‖−1ξ−2)γ, and therefore,

P (γ) = lim
n→∞

1

n
log

∑
ω∈EnA

‖ϕ′ω‖γ ≤ lim
n→∞

1

n
log((K4‖ϕ′τ‖−1ξ−2)γ) ≤ 0.

So, γ ≥ h and we are done. �

We finish this section with the proof of Bowen’s formula in the case when alphabet is
infinite.

Theorem 10.2. Suppose S = {ϕe : Xt(e) → Xi(e), e ∈ E} is a finitely primitive (the set E
can be infinite) graph directed Markov system satisfying the SOSC. Then

HD(JS) = sup{HD(JF ) : E ⊃ F − finite} = inf{t ≥ 0 : P (t) ≤ 0}.

Proof. Put η = sup{HD(JF ) : E ⊃ F − finite}, h = hS = inf{t ≥ 0;P (t) ≤ 0} and
ξ = HD(JS). Obviously, η ≤ ξ and, by Proposition 8.1, ξ ≤ h. It thus suffices to show
that h ≤ η. To do this, fix t > η. Then PF (t) < 0 for every finite subset F of E, and
therefore, by Theorem 2.1.5 in [12], P (t) = sup{PF (t) : E ⊃ F − finite} ≤ 0. Hence t ≥ h,
and consequently η ≥ h. We are done. �

Theorem 10.3. We have

HD(JS) = +∞⇐⇒ ΘS = +∞.
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If a system S = {ϕi}i∈I consists of similarities, then P (t) = log
∑

i∈I |ϕ′i|t. Therefore in
this case Theorem 10.3 takes on the following form.

Theorem 10.4. If S = {ϕi}i∈I consists of similarities, then we have

HD(JS) = inf{t ≥ 0 :
∑
i∈I

|φ′i|t ≤ 1}.

Example 10.1. We shall construct an infinite conformal iterated function system S sat-
isfying the OSC with the following properties.

(a) S satisfies the strong separation condition, so JS is a topological Cantor set, in
particular the topological dimension of JS is equal to zero.

(b) The system S is topologically thin.
(c) S consists of similarities.
(d) HD(JS) = +∞.

In order to start the construction take {rn}∞1 , a sequence of positive numbers less than
1/10 such that

(10.2)
∞∑
n=1

rtn = +∞

for all t ≥ 0. Let B = B(0, 1) be the open unit ball in the Hilbert space l2, and let {en}∞1
be an orthonormal basis. Define the maps ϕn : l2 7→ l2

ϕn(x) = rnx+ 4rnen.

If x ∈ B, then ‖ϕn(x)‖ ≤ ‖rnx‖+ ‖4rn‖ ≤ 5‖rn‖ ≤ 1/2. So

(10.3) ϕn(B) ⊆ B(0, 1/2) ⊆ B(0, 1/2).

Since in addition |ϕ′n(x)| = rn, we see that {ϕn : B 7→ B}∞1 is a system of similarities. We
shall check that S satisfies the strong separation condition. Indeed, if m 6= n, then for all
x, y ∈ B, ‖ϕm(x)− 4rmem‖ ≤ rm and ‖ϕn(y)− 4rnen‖ ≤ rn. Therefore,

‖ϕn(y)− ϕm(x)‖ ≥ ‖4rnen − 4rmem‖ − (rm + rn) = 4
√
r2
n + r2

m − (rm + rn)

≥ (2(rn + rm)− (rn + rm) = rn + rm.

Therefore, dist(ϕn(B), ϕm(B)) ≥ rn + rm > 0. Together with (10.3) this gives that S
satisfies the strong separation condition. Combining now Theorem 10.4 with (10.2), we
see that we are only left to prove item (b). But ϕn(B) ⊂ B(0, 5rn) for all n ≥ 1. Thus S
is asymptotically compact and ∂S(∞) = {0}. This means that S is topologically thin and
we are done.

This is an example, but in fact it gives a huge class of mutually distinct systems. Indeed,
the collection of sequences (rn)∞1 satisfying (10.2) and such that rn ≤ 1/10 for all n ≥ 1 is
of cardinality c. The set of systems S for which HD(JS) = +∞ is also big in a topological
sense. Indeed, in [URoy] the space of CIFS(X) of all conformal iterated function systems on
X was topologized in the following way. A sequence (Φ(n))∞1 of conformal iterated function
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systems on X is said to converge to a system Φ provided that the following conditions are
satisfied.

(a) ∀ i ∈ I Φ
(n)
i converges uniformly to Φi on X.

(b) ∀ i ∈ I (Φ
(n)
i )′ converges uniformly to (Φi)

′ on X.
(c) There exists C ≥ 1 such that for all n ≥ 1 large enough and all i ∈ I,

C−1 ≤ ‖(Φ
(n)
i )′‖
‖Φ′i‖

≤ C.

This endows CIFS(X) with the topology, called λ–topology, by declaring that a subset A
of CIFS(X) is closed if and only if all limits of sequences in A belong to A. In [15] the set
X was assumed to be a compact subset of a finite dimensional Euclidean space but it is
irrelevant for the definition of λ–topology and most of its properties established in [16] such
as normality, lack of metrizability, or even stronger, lack of the first axiom of countability.
Perhaps most important feature of λ–topology is that the Hausdorff dimension function
CIFS(X) 3 S 7→ HD(JS) is continuous. Again, this was established in [15] for X lying
in a finite–dimensional Euclidean space, but because of Theorem 10.3 is true for a Hilbert
space as well. We shall prove the following.

Theorem 10.5. The set CIFS∞(X) = {S ∈ CIFS(X) : HD(JS) = +∞} is closed and
open in the λ–topology.

Proof. Because of Theorem 10.3 and item (c) above the set CIFS∞(X) is closed. To prove
its openness, suppose that Sn ∈ CIFS(X)\CIFS∞(X) and that Sn → S in the λ–topology.
Then Θ§n is finite for all n ≥ 1 and, because of (c), ΘS = ΘSn for all n large enough. Thus
ΘS is finite, and by Theorem 10.3, S ∈ CIFS(X) \ CIFS∞(X). We are done. �

Motivated by the complex continued fraction system described in [9], we would like to
describe some special system whose elements are not similarities. We call the ccf–like
systems. Fix d = 1, 2, . . . ,∞. Let X = {x : ‖x ≤ 1} be a subset of Rd if d is finite and a
subset of the Hilbert separable space l2 if d = ∞. Let Id = Zd \ {0} if d < ∞ and let Id
be the set of all non–zero sequences (mn)∞1 ∈ ZN such that mn 6= 0 for finitely many n’s
only. Let i be the inversion with respect to the sphere ∂X = {x : ‖x‖ = 1}, i.e. i(x) is
the only vector different from x lying on the line passing through 0 and x and such that
‖i(x)‖ · ‖x‖ = 1, (i(0) =∞, i(∞) = 0). For every b ∈ Id let ϕb be defined by the formula

ϕb(x) = i(x+ b).

Clearly ϕb(X) ⊆ X, ‖ϕ′b(x)‖ ≈ ‖b‖−2 and ‖ϕb(x)‖ ≈ ‖b‖−1 for all b ∈ Id. We shall prove
the following.

Theorem 10.6. For every d, Sd = {ϕb : X 7→ X}b∈Id is a conformal iterated function
system satisfying the strong open set condition with the following properties.

(a) Sd is co–finitely (hereditarily) regular and ΘSd = d/2.
(b) HD(JSd) > d/2 if d is finite and HD(JS∞) =∞.
(c) JSd is a Peano (locally connected) continuum.
(d) Each system Sd is topologically thin and Sd(∞) = {0}.
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Proof. It is immediate from the definition that each Sd is a conformal iterated function
system satisfying the strong open set condition. Property (d) follows from the fact that
ϕb(X) ⊆ B(0, c‖b‖−1) with some constant C ≥ 1. Property (c) results from Theorem 3.4.
In order to prove (a) and (b) note that

Φ(t) =
∑
b∈Id

‖ϕ′b‖t ≈
∑
b∈Id

‖b‖−2t =
∞∑
k=0

∑
2k≤‖b‖<2k+1

‖b‖−2t

≈
∞∑
k=0

2−2tk#{b ∈ Id : 2k ≤ ‖b‖ < 2k+1}.

Now, if d = ∞, the the set {b ∈ Id : 2k ≤ ‖b‖ < 2k+1} is infinite for all k ≥ 1. Thus,
Φ(t) = ∞ for all t ≥ 0. This means that ΘSd = +∞ and (a) and (b) follow in this case
from applying Theorem 10.3. If d is finite, {b ∈ Id : 2k ≤ ‖b‖ < 2k+1} ≈ 2dk, and therefore,

Φ(t) ≈
∞∑
k=1

2k(d−2t).

Hence, ΘSd = d/2 and Φ(ΘSd) = +∞. Items (a) and (b) are established. �

11. Geometrically Perfect Property

In this section we investigate the behavior of the Hausdorff measure Hh(J). In the case
of Euclidean spaces it is well–known that we have always 0 < Hh(J) < +∞. However, as
Example 10.1 shows, this is not longer the case in Hilbert spaces. In order to deal with
positivity of the Hausdorff measure we introduce the concept of geometrical perfectness of
a limit set. The issue is complex enough already in the case of finite alphabet (in Hilbert
spaces) and throughout the whole section we assume the set of edges (alphabet) E is finite.
Unless specifically stated, we do not assume any GDMS appearing in this section to be of
strongly bounded multiplicity. The measure mh is the projection of m−h log |ϕ′ω1

◦σ| from the

symbol space, where h is uniquely determined by the requirement that P (h) = 0. Further
mh(B(x, r)) ≥ rh always holds.

Assume that the open set condition holds. We would like now to find sufficient conditions
for

mh(B(x, r)) ≤ Crh.

One sufficient condition is that the separation condition is satisfied, i.e. ϕi(X)∩ϕj(X) = ∅
if i 6= j.

Theorem 11.1. There exists a finite alphabet IFS (consisting of similarities) in a Hilbert
space satisfying the OSC but failing to satisfy the SOSC.

Proof. This is a slight modification of Schief’s example (see [17]). Let l2 = {(xn)∞−∞ ∈ RZ :∑+∞
−∞ x

2
n < +∞}. Let π1, π2 : Z → Z be bijections such that πi(n) = 2n + i, i = 1, 2, for
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all n ≥ 0. Further, let (en)+∞
−∞ be the standard orthonormal basis in l2. By ϕi : l2 → l2,

i = 1, 2, we denote the similarities given by the formulas

ϕi

(∑
n∈Z

xnen

)
=
∑
n∈Z

xn
2
eπi(n) for i = 1, 2.

For every n ∈ Z, let

Un =

{
x ∈ l2 : ‖x‖ < 2, 〈x, en〉 > 0,

〈x, en〉
‖x‖

> 1− 1

10

}
.

Further, let

G =
∞⋃
k=0

Uk.

Since ϕi(Un) ⊆ Uπi(n), we have ϕi(G) ⊆ G. Since Un ∩ Uk = ∅ for n 6= k, we thus get
ϕ1(G) ∩ ϕ2(G) = ∅. Hence the open set condition is satisfied. But since ϕ1 and ϕ2 have a
common fixed point, namely 0 = (. . . , 0, 0, 0, . . .), the SOSC fails. �

In a sharp contrast to the case of finite–dimensional Euclidean spaces, the Hausdorff
measure of the limit set of finite alphabet conformal, even similarity, IFS may vanish. The
example below shows it.

Example 11.1. There exists a finite alphabet IFS (consisting of similarities) in a Hilbert
space satisfying the SOSC with Hh(J) = 0, where h = HD(J).

Proof. Let ϕ2, ϕ2 : l1 → l2 be as in Theorem 11.1. Add ϕ3 : l2 → l2 given by the
formula ϕ3(x) = e0 + β(x − e0) = (1 − β)e0 + βx, 0 < β << 1. If β is sufficiently
small, then ϕ3(Un) = (1 − β)e0 + βUn ⊆ U0 ⊆ G and hence ϕ3(G) ⊆ U0 ⊆ G. Notice,
ϕ1(G)∪ϕ2(G) ⊆

⋃∞
n=1 Un. Hence ϕ3(G)∩(ϕ1(G)∪ϕ2(G)) = ∅. Thus, the OSC is satisfied.

Now, 0 ∈ J since ϕ1(0) = 0. Hence J 3 ϕ3(0) = (1− β)e0 ∈ U0 ⊆ G if β is small enough.
Thus J ∩G 6= ∅ and the SOSC is satisfied.

Let k be a positive integer and Ik = {1, 2}k. Let

I0
k = {(i1, . . . , ip) : p ≥ 1, ip = 3, (il, . . . , il+k−1) /∈ Ik for each l} ∪ {∅}.

We easily check that the following union is disjoint:

Ωk =
⋃
j∈Ik

⋃
i∈I0k

[ij].

Denote by r1, r2, r3 the similarity ratios of ϕ1, ϕ2, ϕ3, respectively. Let P be the unique
probability measure on Ω = {1, 2, 3}N such that

P([(i1, . . . , in]) = (ri1 · · · rin))
h.

Since for P–almost all elements (i1, i2, . . .) of Ω there is first sequence (3, j1, . . . , jk), where
jm are 1 or 2, we have P(Ωk) = 1. This, in turn, gives

1 = P(Ωk) =
∑
j∈Ik

∑
i∈I0k

rhi r
h
j = 2k(2−k)h

∑
i∈I0k

rhi ,
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where ri = ri1 · · · rin for i = (i1, . . . , in). Hence it follows that mh(Lk) = 1, where

Lk =
⋃
j∈Ik

⋃
i∈I0k

ϕij(J).

Since mh(J \Lk) = 0 and Hh, mh are mutually equivalent, we get Hh(J \Lk) = 0. Further,
we see that ⋃

j∈Ik

ϕj(J) ⊂ {x ∈ l2 : ‖x‖ ≤ 21−k}.

Hence

Lk ⊂
⋃
i∈I0k

ϕi({x ∈ l2 : ‖x‖ ≤ 21−k}),

which finally gives

Hh(J) = Hh(Lk) ≤
∑
i∈I0k

(22−kri)
h = 22−hk2−k2hk = 22−k,

which tends to zero as k tends to infinity. This completes the proof. �

Remark 2. Since Hh(J) = 0 and the SOSC holds, the limit set J from Example 11.1 is
not bi–Lipschitz equivalent to any self–conformal subset of a finitely–dimensional Euclidean
space.

Definition 11.1. A conformal graph directed system is called geometrically perfect pro-
vided ∃ C ≥ 1, ∀ x ∈ J , ∀ r > 0

(11.1) mh(B(x, r)) ≤ Crh.

Since we always have mh(B(x, r)) ≥ C−1rh, (0 < r ≤ 1) we see that the conformal mea-
sure of every geometrically perfect system is geometric, and as an immediate consequence
of Theorem 7.5 we get.

Theorem 11.2. Suppose X is a metric space and mh is the conformal measure of geomet-
rically perfect system. Then

(a) mh, Hh and Ph are mutually equivalent. Furthermore,

0 < inf
dHh

dmh

≤ sup
dHh

dmh

< +∞ and 0 < inf
dPh

dmh

≤ sup
dPh

dmh

< +∞

and, in particular, 0 < Hh(X),Ph(X) < +∞.

(b) HD(X) = PD(X) = BD(X) = h.

Theorem 11.3. Let S = {ϕe : Xi(e) → Xt(e), e ∈ E} be a primitive conformal graph
directed system (on a separable Hilbert space) with a finite set of edges E satisfying the
OSC. Suppose that ϕa(Xt(a))∩ϕb(Xt(b))∩ ∂X = ∅ for all a, b ∈ E, a 6= b. Then the system
S is geometrically perfect.
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Proof. Set Fa = ϕa(Jt(a)) ∩ ∂X for a ∈ E. Obviously Fa, a ∈ E, is a compact set. Since
Fa ∩ Fb = ∅ for a 6= b, a, b ∈ E and the set E is finite, there exists η0 > 0 such that

N (Fa, 2η0) ∩N (Fb, 2η0) = ∅ for a 6= b.

Since
ϕa(Jt(a)) ∩

⋃
b∈E\{a}

Fb = ∅ for a ∈ E,

we may find η ≤ η0 such that for every a ∈ E

(11.2) ϕa(Jt(a)) ∩
⋃

b∈E\{a}

N (Fb, η) = ∅.

Set Ha = N (Fa, η) for a ∈ E. Define KS = JS \
⋃
a∈E Ha and observe that K is a compact

set which satisfies

(11.3) KS ∩Xv ⊂ IntXv for v ∈ V .
Since K ∩Xv for v ∈ V is compact, we may find ε ∈ (0, η) such that

N (K ∩Xv, ε) ⊂ IntXv.

Fix r > 0, z ∈ JS and a ∈ E. Put B := B(z, εr/(2K)), where K is given by Theorem 5.2.
Let

Fa = {τ ∈ E∗A : τ|τ | = a, ϕτ (Jt(τ)) ∩B 6= ∅, ‖ϕ′τ‖ < r and ‖ϕ′τ|τ |−1
‖ ≥ r}.

Observe that the family Fa is an antichain which means that no two elements in Fa are
comparable. We are going to show that #Fa ≤ #E. For every τ ∈ Fa choose xτ ∈ Jt(τ)
such that ϕτ (xτ ) ∈ B. We will consider two cases.

Case 1: Assume that there exists l ∈ {2, . . . , |τ |} such that ϕτl ◦· · ·◦ϕτ|τ |(xτ ) /∈
⋃
a∈E Ha

for some τ ∈ Fa. Let p be the largest integer having the above property and let ω ∈ Fa
denote some word corresponding to p. We show that for every τ ∈ Fa we have

τ1 = ω1, τ2 = ω2, . . . , τp−1 = ωp−1.

Indeed, observe that

ϕω1 ◦ · · · ◦ ϕωp−1(IntXt(ωp−1)) ⊃ ϕω1 ◦ · · · ◦ ϕωp−1(B(ϕωp ◦ · · · ◦ ϕω|ω|(xω), ε)) ⊃ B.

On the other hand, from the OSC it follows that

ϕω1 ◦ · · · ◦ ϕωp−1(IntXt(ωp−1)) ∩ ϕτ1 ◦ · · · ◦ ϕτp−1(Xt(τp−1)) 6= ∅
for (τ1, . . . , τp−1) 6= (ω1, . . . , ωp−1). Hence

ϕτ (Jt(τ)) ∩B = ∅,
which is impossible. Suppose that #Fa ≥ #E + 1. Then there exist two sequences in Fa,
say, τ̂ and τ̃ such that τ̂ |p = τ̃ |p. Further, let k ≥ p be first such an integer that τ̂k 6= τ̃k.
By the definition of p we get that

ϕτ̂k ◦ · · · ◦ ϕτ̂τ̂ (xτ̂ ) ∈ Hτ̂k

and
ϕτ̃k ◦ · · · ◦ ϕτ̃τ̃ (xτ̃ ) ∈ Hτ̃k .
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Since dist(Hτ̂k , Hτ̃k) ≥ η > ε we get

ρ(ϕτ̂ (xτ̂ ), ϕτ̃ (xτ̃ )) > εr/K

which is impossible by the fact that both ϕτ̂ (xτ̂ ) and ϕτ̃ (xτ̃ ) intersect B. Hence it follows
that #Fa ≤ #E.

Case 2: Now assume that for every τ ∈ Fa and every l ∈ {2, . . . , |τ |} we have ϕτl ◦
· · · ◦ ϕτ|τ |(xτ ) ∈

⋃
a∈E Ha. Denote by F ba for b ∈ E the set of all τ ∈ Fa such that τ1 = b.

Suppose that there exist two different sequences in F ba, say, τ̂ and τ̃ . Let let k ≥ 2 be first
such an integer that τ̂k 6= τ̃k. Obviously,

ϕτ̂k ◦ · · · ◦ ϕτ̂τ̂ (xτ̂ ) ∈ Hτ̂k ,

ϕτ̃k ◦ · · · ◦ ϕτ̃τ̃ (xτ̃ ) ∈ Hτ̃k

and, analogously as in Case 1 we get

ρ(ϕτ̂ (xτ̂ ), ϕτ̃ (xτ̃ )) > εr/K,

by the fact that Hτ̂k 6= Hτ̃k . From this it follows that only one of the sequences τ̂ , τ̃ may
intersect B. Thus #F ba ≤ 1 and #Fa ≤ #E.

Since
B(z, εr/(2K)) ∩ JS ⊂

⋃
a∈E

⋃
τ∈Fa

ϕτ (Jt(τ)),

we get

mh(B(z, εr/(2K))) ≤
∑
a∈E

∑
τ∈Fa

mh(ϕτ (Jt(τ))) ≤
∑
a∈E

∑
τ∈Fa

‖ϕ′τ‖

≤ (#E)2rh.

Since r > 0 was arbitrary, the proof is complete. �

Remark 3. If the system S = {ϕe : Xt(e) → Xi(e), e ∈ E} with the finite set of edges E
satisfies the open set condition and ϕa(Xt(a)) ∩ ϕb(Xt(b)) ∩ ∂X = ∅ for all a, b ∈ E, a 6= b,
then S is of strongly bounded multiplicity.

Proof. We are going to show that the set Cx of mutually incomparable pseudo–codes of
every point x ∈ X is bounded above by #E. Fix x ∈ X. Let ω1ω2 . . . ωn ∈ Cx be a
pseudo–code of x with minimal length. Let y ∈ X be such that x = ϕω1 ◦ϕω2 ◦ . . .◦ϕωn(y).
If y ∈ IntX, then from the OSC it follows that every pseudo–code of x must be comparable
with ω1ω2 . . . ωn.

On the other hand, assume now that y ∈ ∂X and let i ∈ {1, . . . , n} be such that ϕωi ◦
ϕωi+1

◦ . . .◦ϕωn(y) ∈ ∂X and ϕωi−1
◦ϕωi ◦ . . .◦ϕωn(y) ∈ IntX. Then we see that ω1 . . . ωi−2

is comparable with every pseudo–code of Cx. Fix ωi−1 ∈ E. Then ωi . . . ωn is a pseudo–
code of z = ϕ−1

ωi−1
◦ . . . ◦ ϕ−1

ω1
(x) ∈ ∂X. From the condition ϕa(Xt(a)) ∩ ϕb(Xt(b)) ∩ ∂X = ∅

for all a, b ∈ E, a 6= b we obtain that all two pseudo–codes of z are comparable. Since
incomparable pseudo–codes differ only on ωi−1, the number of elements of Cx is less than
or equal to #E. �

As an immediate consequence of Theorem 9.1, we get the following.
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Corollary 11.1. Let S = {ϕe : Xt(e) → Xi(e), e ∈ E} be a primitive conformal graph
directed Markov system satisfying the OSC with the sets Xv being closed balls and with a
finite alphabet E. Then the system S is geometrically perfect.

Remark 4. Notice that the assumptions of the last corollary imply S to satisfy the SOSC.

Corollary 11.2. Let S = {ϕe : Xt(e) → Xi(e), e ∈ E} be a primitive conformal graph
directed Markov system satisfying the separation condition (ϕa(Xt(a))∩ϕb(Xt(b)) = ∅ when-
ever a 6= b, a, b ∈ E). Then S is geometrically perfect.

Proof. Replacing Xv, v ∈ V with B(Xv, ε) with ε > 0 so small that B(Xv, ε) ⊆ B(Xv, 2ε) ⊆
Wv and ϕa(B(Xt(a), 2ε)) ∩ ϕb(B(Xt(b), 2ε)) = ∅ whenever a, b ∈ E and a 6= b, we will also
have ϕe(Xt(e)) ∩ ∂Xi(e) = ∅. Consequently, all the hypothesis of Theorem 9.1 will be
satisfied, and we are done by an immediate application of this theorem. �
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