New Partition Properties under AD

S. Jackson

Department of Mathematics
University of North Texas
jackson@unt.edu

ESI Workshop
June, 2009, Vienna
We work in the theory $ZF + DC + AD$.

Recall the Erdős-Rado Partition notation.

Definition

$\kappa \rightarrow (\kappa)^\lambda$ if for every partition $\mathcal{P}: (\kappa)^\lambda \rightarrow \{0, 1\}$ of the increasing functions from λ to κ into two pieces, there is a homogeneous $H \subseteq \kappa$ of size κ.

We say κ has the **strong** partition property if $\kappa \rightarrow (\kappa)^\kappa$, and say κ has the **weak** partition property if $\kappa \rightarrow (\kappa)^\lambda$ for all $\lambda < \kappa$.

We usually use a reformulation of the partition property which uses c.u.b. homogeneous sets.

To state this, we need the notion of **type** of a function.
Definition
We say \(f: \alpha \rightarrow \text{On} \) has \textbf{uniform cofinality} \(\omega \) if there is an \(f': \alpha \times \omega \rightarrow \text{On} \) which is increasing in the second argument and
\[f(\beta) = \sup_n f'(\beta, n) \quad \text{for all } \beta < \alpha. \]

Definition
\(f: \alpha \rightarrow \text{On} \) is of the \textbf{correct type} if \(f \) is increasing, everywhere discontinuous, and of uniform cofinality \(\omega \).

We can likewise define uniform cofinality \(\omega_1, \omega_2, \text{etc.} \).
More generally, for any \(g : \alpha \rightarrow \text{On} \) we can define \(f \) having uniform cofinality \(g \): there is an

\[
f' : \{ (\beta, \gamma) : \beta < \alpha, \gamma < g(\beta) \}
\]

with \(f(\beta) = \sup_{\gamma} f'(\beta, \gamma) \).

We use frequently the “almost everywhere” versions of these notions with respect to some measure \(\mu \) on \(\text{dom}(f) \).
Partition Relations

Definition

\(\kappa \overset{\text{c.u.b.}}{\rightarrow} (\kappa)^{\lambda} \) iff for every partition \(\mathcal{P} \) of the function \(f : \lambda \rightarrow \kappa \) of the correct type, there is a c.u.b. \(C \subseteq \kappa \) which is homogeneous for \(\mathcal{P} \).

The ordinary and c.u.b. version of the partition relation are essentially equivalent:

Fact

\[
\kappa \overset{\text{c.u.b.}}{\rightarrow} (\kappa)^{\lambda} \Rightarrow \kappa \rightarrow (\kappa)^{\lambda}
\]

\[
\kappa \rightarrow (\kappa)^{\omega \cdot \lambda} \Rightarrow \kappa \overset{\text{c.u.b.}}{\rightarrow} (\kappa)^{\lambda}
\]
Definition

A \subseteq \omega^\omega is \kappa-Suslin if there is a tree T \subseteq \omega \times \kappa such that

A = p[T] = \{x : \exists f \in \kappa^\omega \in (x, f) \in [T]\}. Let S(\kappa) = the \kappa-Suslin sets.

\kappa is a Suslin cardinal if S(\kappa) - \bigcup_{\lambda<\kappa} S(\lambda) \neq \emptyset.

Theorem (Steel-Woodin)

The Suslin cardinals are closed below their supremum.

Assuming V = L(\mathbb{R}), there is a largest Suslin cardinal \delta_1^2 (Martin-Steel), and the Suslin cardinals are c.u.b. in \delta_1^2.
The first ω many Suslin cardinals are:

$$\lambda_1 = \omega, \; \delta^1_1 = \omega_1, \; \lambda_3 = \omega_\omega, \; \delta^1_3 = \omega_\omega^{\omega+1}, \; \lambda_5 = \omega_\omega^\omega, \; \delta^1_5 = \omega_\omega^\omega+1,$$

$$\ldots, \lambda_{2n+1}, \; \delta^1_{2n+1}, \ldots$$

Here $\delta^1_{2n+1} = (\lambda_{2n+1})^+$, and λ_{2n+1} is a cardinal of cofinality ω (Kechris).

Recall $\delta^1_{2n+2} = (\delta^1_{2n+1})^+$, and all the δ^1_n are regular (measurable).
Definition
Given an increasing, discontinuous sequence of cardinals $\{\kappa_i\}_{i<\theta}$ and a sequence of ordinals $\{\lambda_i\}_{i<\theta}$, we say a block function from $\vec{\lambda}$ to $\vec{\kappa}$ is a $\vec{f} = \{f_i\}_{i<\theta}$ where $f_i: \lambda_i \to \kappa_i - \sup_{j<i} \kappa_j$. A block c.u.b. set is a $\vec{C} = \{C_i\}_{i<\theta}$ where C_i is c.u.b. in $\kappa_i - \sup_{j<i} \kappa_j$.

We next define the polarized partition property.

Definition
$\vec{\kappa} \rightarrow (\vec{\kappa})\vec{\lambda}$ if for every partition \mathcal{P} of the block functions $\vec{f}: \vec{\lambda} \rightarrow \vec{\kappa}$ into two pieces, there is a block c.u.b. set \vec{C} homogeneous for \mathcal{P}.

For sequences of length 3 we will write $(\kappa_0, \kappa_1, \kappa_2) \rightarrow (\kappa_0, \kappa_1, \kappa_2)^{\lambda_0, \lambda_1, \lambda_2}$.
Main Results

Theorem (Apter, J, Löwe)

Let κ be an inaccessible Suslin cardinal. Then
$$(\kappa, \kappa^+, \kappa^{++}) \rightarrow (\kappa, \kappa^+, \kappa^{++})^{\kappa, \kappa, \kappa}.$$

This extends a result of Kechris for the countable exponent case.

Theorem

For all regular κ with $\delta^1_{2n+1} < \kappa < \delta^1_{2n+3}$ we have $\kappa \rightarrow (\kappa)^{\delta^1_{2n+1}}$ but $\kappa \nrightarrow (\kappa)^{\delta^1_{2n+2}}$.

Corollary

$\aleph_{\omega \cdot 2+1}$, $\aleph_{\omega^\omega+1}$ are regular cardinals without the weak partition property.
Application

In [Apter, J, Löwe] we used the first theorem to force over models of $\text{ZF} + \text{AD}$ to change the cofinalities of \aleph_1, \aleph_2, \aleph_3.

- There are 3 possibilities for \aleph_1. Namely, $\text{cof} = \omega$, r (regular, non-measurable), or m (measurable).
- There are 4 possibilities for \aleph_2, and 5 possibilities for \aleph_3.
- 13 of the 60 total possibilities are “trivially inconsistent.” For example, \aleph_1 regular, $\text{cof}(\aleph_2) = \aleph_1$, and $\text{cof}(\aleph_3) = \aleph_2$.

Theorem (Apter, J, Löwe)

Assuming suitable large cardinals, all of the remaining 47 cases are consistent with ZF.
Types of Suslin Cardinals

By a Lévy pointclass we mean a pointclass \(\Gamma \) closed under \(\exists^{\omega^\omega} \) or \(\forall^{\omega^\omega} \) (or both),

The Wadge hierarchy of Lévy pointclasses falls into projective hierarchies of 4 types.

We specialize to the Suslin pointclasses. The limit Suslin cardinals \(\kappa \) correspond to the bases of projective hierarchies.

Note that if \(\kappa \) is a limit Suslin cardinal then \(\Lambda = S(< \kappa) \) is a selfdual pointclass closed under quantifiers.

Also, \(o(\Lambda) = \delta(\Lambda) = \kappa \).
If $\text{cof}(\kappa) > \omega$, there is a nonselfdual pointclass Γ_S (Steel pointclass) of Wadge degree κ closed under \forall^ω, \land, with $\text{sep}(\check{\Gamma}_S)$. Also, $\text{scale}(\Gamma_S)$.

Fact (Steel)

If κ is regular, then Γ_S is closed under \lor, \land.

Wren κ is regular, we have boundedness of Δ_S sets with respect to Γ_S-norms on Γ_S-complete sets.
Type I $\text{cof}(\kappa) = \omega$. Let $\Sigma_0^\kappa = \bigcup_\omega (S(< \kappa))$. Then $\text{scale}(\Sigma_0^\kappa)$, $\text{scale}(\Pi_1^\kappa)$, $\text{scale}(\Sigma_2^\kappa)$, etc. The Suslin cardinals are $\kappa = \lambda_1^\kappa$, $\kappa^+ = \delta_1^\kappa$, λ_3^κ, δ_3^κ, etc.

Type II $\text{cof}(\kappa) > \omega$, Γ_S not closed under \lor.

Type III $\text{cof}(\kappa) > \omega$, Γ_S closed under \lor but not $\exists^\omega \forall^\omega \kappa$ necessarily regular).

Type IV $\text{cof}(\kappa) > \omega$, Γ closed under $\exists^\omega \forall^\omega$.

For κ an inaccessible Suslin cardinal we are in Type III or Type IV.

The Type I hierarchies will play an important role in the proof.
We fix the inaccessible Suslin cardinal \(\kappa \). Let \(C \subseteq \kappa \) be the c.u.b. set of limit Suslin cardinals. Let \(C_\omega \subseteq C \) be the points of cofinality \(\omega \).

\(\kappa \) has the strong partition property by Kechris-Kleinberg-Moschovakis-Woodin.

Let \(\mu \) be the \(\omega \)-cofinal, normal measure on \(\kappa \).

For \(\alpha \in C_\omega \), let \(\mu_\alpha \) be the \(\omega \)-cofinal, normal measure on \(\alpha^+ \). We have \(j_{\mu_\alpha}(\alpha^+) = \alpha^{++} \).
We have the following picture.

\[\Sigma_0^\alpha = \bigcup_{\lambda < \alpha} S(\lambda) \]

\[S(\alpha) = \Sigma_1^\alpha, \quad S(\alpha^+) = \Sigma_2^\alpha \]

\[\text{scale}(\Sigma_0^\alpha) \quad \text{scale}(\Pi_1^\alpha) \]
Plan of the proof

1. We show $[\alpha \mapsto \alpha^+]_\mu = \kappa^+$.
2. We show $\delta = [\alpha \mapsto \alpha^{+++}]_\mu \leq \kappa^{++}$.
3. We show for all $\theta < \omega_1$ that $(\kappa, \kappa^+, \delta) \rightarrow (\kappa, \kappa^+, \delta)^\theta$.
 It follows that δ is regular, so $\delta = \kappa^{++}$.
4. Finally, we show $(\kappa, \kappa^+, \delta) \rightarrow (\kappa, \kappa^+, \delta)^\kappa$
The Trees T^+ and T^{++}

We define two trees T^+ and T^{++} on $\omega \times \kappa$.

Lemma

For any $f: \kappa \to \kappa$ with $f(\alpha) < \alpha^+$ there is a $x \in \omega^\omega$ with T^+_x wellfounded and such that $\forall^* \alpha \; f(\alpha) < |T^+_x \upharpoonright \alpha|$.

Lemma

For any $f: \kappa \to \kappa$ with $f(\alpha) < \alpha^{++}$ there is a $x \in \omega^\omega$ with T^{++}_x wellfounded such that $\forall^* \alpha \; (f(\alpha) < [\beta \mapsto |T^{++}_x \upharpoonright \beta|]_{\mu(\alpha)})$.

The first lemma shows $[\alpha \mapsto \alpha^+]_{\mu} \leq \kappa^+$, and it follows easily that $[\alpha \mapsto \alpha^+]_{\mu} = \kappa^+$.

The second lemma shows that $\delta = [\alpha \mapsto \alpha^{++}]_{\mu} \leq \kappa^{++}$.
Construction of T^+

Fix a Γ-complete set P and a Γ-scale $\{\varphi_n\}_{n \in \omega}$ on P. We use $\varphi = \varphi_0$ to code ordinals $< \kappa$.

Say α is strongly reliable if for all $\beta < \alpha$:

$$\sup\{\varphi_n(x) : x \in P \land \varphi_0(x) \leq \beta\} < \alpha$$

The set of strongly reliable ordinals is c.u.b. in κ. Assume $C \subseteq$ strongly reliables.

Let

$$(x, y) \in R \iff (x, y \in P \land \varphi(x) < \varphi(y)).$$

and

$$(x, y) \in R^\alpha \iff (x, y \in P \land \varphi(x) < \varphi(y) < \alpha).$$
\[R^\alpha \in \Sigma_0^\alpha - \bigcup_{\lambda < \alpha} S(\lambda), \text{ and we uniformly have a } \Sigma_0^\alpha \text{ scale on } R^\alpha \] (essentially by restricting the scale \(\vec{\phi} \) to ordinals below \(\alpha \)).

Starting from this, we uniformly get \(\Sigma_1^\alpha \) universal sets \(B^\alpha \) and \(\Pi_1^\alpha \) sets \(Q^\alpha \) and \(\Pi_1^\alpha \) scales \(\vec{\psi}^\alpha \) on \(Q^\alpha \).

Definition

Let \(W = \{ x : \forall n \ (x)_n \in P \} \). \(x \in W \) will code the ordinal
\[|x| = \sup_n \varphi_0((x)_n). \]

The scale on \(P \) easily gives a scale on \(W \). Let \(T_W \) be the corresponding tree.
We first construct a tree U on $\omega \times \omega \times \kappa$ with the following properties:

1. If $x \in W$ and $|x| = \alpha \in C$, then $U_{x,y}$ is wellfounded iff the Σ_1^α relation coded by y is wellfounded.

2. For x, y as above, $|U_{x,y} \upharpoonright \alpha| \geq |B^\alpha_y|$, the Σ_1^α relation coded by y.

Key Point: For x, y as above, the entire tree $U_{x,y}$ is wellfounded (not just $U_{x,y} \upharpoonright \alpha$).

idea: U is constructed as in the proof of the Kunen-Martin theorem, but we use the components of the real x to verify the appropriate reals are in $B^{|x|}_y$.

S. Jackson
New Partition Properties under AD
Suppose \(f: \kappa \to \kappa \) and \(f(\alpha) < \alpha^+ \) for \(\alpha \in C \).

Consider the game \(G_f \):

\[
\begin{array}{c|c|c}
 & r & x, y \\
I & r & \\
II & x, y & \\
\end{array}
\]

II wins the run iff

\[
(r \in W) \rightarrow (x \in W \land B_y^{\vert x\vert} \text{ is wellfounded} \land \vert B_y^{\vert x\vert} \vert > f(\vert x\vert)).
\]
A boundedness argument shows that II has a winning strategy.

This suggests the following definition of the tree T^+ on $(\omega)^2 \times \kappa \times (\omega)^2 \times \kappa$:

$$(\sigma, r, \vec{\alpha}, x, y, \vec{\beta}) \in [T^+] \text{ iff:}$$

1. $(r, \vec{\alpha}) \in [T_W]$.
2. $\sigma(r) = (x, y)$
3. $(x, y, \vec{\beta}) \in [U]$.

Then T^+_σ is wellfounded and $|T^+_\sigma | \uparrow \alpha > f(\alpha)$ for μ almost all α.
Construction of T^{++}

We first construct a tree V on $(\omega)^2 \times \kappa$ with the following properties:

1. $(x, y) \in [V]$ iff $x \in W$ and for all n, $(y)_n$ codes a $\Sigma^1_{|x|}$ wellfounded relation $B_{(y)_n}^{|x|}$.

2. If $x \in W$, $|x| \in C$ then there is a c.u.b. $D \subseteq \alpha^+$ such that if $\gamma \in D$, $y \in \omega^\omega$ and for all n $(y)_n$ codes a $\Sigma^1_{|x|}$ wellfounded relation of rank $< \gamma$, then $V_{x,y} \upharpoonright \gamma$ is illfounded.

main point: We can translate the $\Pi^1_{|x|}$ statement asserting the wellfoundedness of the $B_{(y)_n}^{|x|}$ into Π^β_1 statements for any $\beta \geq |x|$ (use the $(x)_i$ as in the definition of U).
Suppose $x \in W$, $|x| = \alpha \in C$, and $g: \alpha^+ \rightarrow \alpha^+$. Play the game G_g:

\[
\text{I } z \quad \text{II } w
\]

II wins the run iff:

\[
(\forall n B^\alpha_{(z)_n} \text{ is wellfounded }) \rightarrow (B^\alpha_w \text{ is wellfounded } \land |B^\alpha_w| > g(\sup_{n} |B^\alpha_{(y)_n}|))
\]
By boundedness, II has a winning strategy τ for any G_g.

Suppose now $f : \kappa \to \kappa$ with $f(\alpha) < \alpha^{++}$.

Play the game G_f:

$$
\begin{array}{c|c}
| & r \\
\hline
| & x, \tau \\
\end{array}
$$

r, x will be in W and τ will be strategy for a game G_g where $[g]_{\mu_\alpha} > f(\alpha)$, where $\alpha = |x|$.
More precisely, II wins the run iff:

\[r \in W \rightarrow (x \in W \land |x| = \alpha \geq |y|) \]

\[\land \forall z \ [\forall n B^{\alpha}_{(z)_n} \text{ is wellfounded} \rightarrow \]

\[B^{\alpha}_{\tau(z)} \text{ is wellfounded} \land |B^{\alpha}_{\tau(z)}| \geq g(\sup_n |B^{\alpha}_{(z)_n}|) \]

for some \(g : \alpha^+ \rightarrow \alpha^+ \) with \([g]_{\mu_{\alpha}} \geq f(\alpha) \).
II has a winning strategy σ for any f, and this suggests the definition of T^{++}:

$$(\sigma, r, \vec{\alpha}, x, \tau, y, z, \vec{\beta}, \vec{\gamma}) \in T^{++} \text{ iff:}$$

1. $(r, \vec{\alpha}) \in [T_W]$.
2. $\sigma(r) = (x, \tau)$.
3. $(x, y, \vec{\beta}) \in [V]$.
4. $\tau(y) = z$.
5. $(x, a, \vec{\gamma}) \in [U]$.

The properties of U and V show that T^{++} has the desired property.
The countable exponent θ case.

Fix a bijection $\pi: \omega \cdot \theta \to \omega$.

We code cofinally in κ^+, κ^{++} many ordinals using sections of our trees: T^+_x, T^{++}_x.

Suppose \mathcal{P} is a partition of the block functions from $3 \times \theta$ to $(\kappa, \kappa^+, \kappa^{++})$.

Consider the game $G_{\mathcal{P}}$:

\begin{align*}
 I & : x, y, z \\
 II & : x', y', z'
\end{align*}
(1) If there is an \(j < \omega \cdot \theta \) such that \((x)_{\pi(j)} \notin P_0 \) or \((x')_{\pi(j)} \notin P_0 \), then player I wins iff for the least such \(j \), \((x)_{\pi(j)} \in P_0 \).

(2) Suppose next that there is an \(\alpha < \kappa \) such that one of the following holds.

(a) There is a \(j < \omega \cdot \theta \) such that either \(T^+_{(y)_{\pi(j)}} \upharpoonright \alpha \) or \(T^+_{(y')_{\pi(j)}} \upharpoonright \alpha \) is illfounded.

(b) There is a \(\beta < \alpha^+ \) and a \(j < \omega \cdot \theta \) such that either \(T^{++}_{(z)_{\pi(j)}} \upharpoonright \beta \) or \(T^{++}_{(z')_{\pi(j)}} \upharpoonright \beta \) is illfounded.

Let \(\alpha < \kappa \) be least such that (a) or (b) above holds. If (a) holds, let \(j \) be least such that (a) holds for \(\alpha \) and this \(j \). In this case, Player I wins provided \(T^+_{(y)_{\pi(j)}} \) is wellfounded. If (a) does not hold at \(\alpha \), but (b) does, let \((\beta, j) \) be lexicographically least such that (b) holds. Player I wins in this case provided \(T^{++}_{(z)_{\pi(j)}} \upharpoonright \beta \) is wellfounded.
Assume II has a winning strategy τ.

We define c.u.b. sets $C_0 \subseteq \kappa$, $C_1 \subseteq \kappa^+$, and $C_2 \subseteq \kappa^{++}$.

For example, to define C_2 we define for $\alpha \in C$, $\beta, \gamma < \alpha^+$ and $j < \omega \cdot \theta$:

$$A_{\alpha, \beta, \gamma, j} = \{(x, y, z) ; \forall j((x)_{\pi(j)} \in P_0 \land \varphi_0((x)_{\pi(j)}) < \alpha)$$

$$\land \forall \alpha' < \alpha \forall \beta < (\alpha')^+ \forall j(T^+_{(y)_{\pi(j)}} \upharpoonright \alpha \land T^{++}_{(z)_{\pi(j)}} \upharpoonright \beta \text{ are wellfounded})$$

$$\land \forall j \mid T^+_{(y)_{\pi(j)}} \upharpoonright \alpha \mid < \beta \land \forall (\beta', j') \leq \text{lex} (\beta, j) (\mid T^{++}_{(z)_{\pi(j)}} \upharpoonright \beta \mid \leq \eta)\}.$$
We have: \(A_{\alpha,\beta,\gamma,j} \in \Delta^\alpha_1 \).

Since \(\tau \) is winning for Player II, for each \((x, y, z) \in A_{\alpha,\beta,\eta,j} \), if \(\tau(x, y, x) = (x', y', z') \) then \(\forall (\beta', j') \leq_{\text{lex}} (\beta, j) \ T^{++}_{(z')\pi(j')} \upharpoonright \beta \) is wellfounded.

By boundedness,

\[
\rho_2(\alpha, \beta, \eta, j) := \sup \{|T^{++}_{(z')\pi(j')} \upharpoonright \beta| ; (x', y', z') \in \tau[A_{\alpha,\beta,\eta,j}] \wedge j' \leq j \} < \alpha^+.
\]

Let \(C^\alpha_2 \subseteq \alpha^+ \) be c.u.b. closed under \(\rho_2 \). The \(C^\alpha_2 \) lift to \(C_2 \subseteq \kappa^{++} \).
Exponent κ

We use generic codes (Kechris-Woodin) and the uniform coding lemma.

Let $U(Q, z, x, y)$ be universal for the syntactic class $\Sigma_1(Q)$, where Q is a binary predicate symbol.

Can take

$$U(Q, z, x, y) \leftrightarrow \exists w \ (S(z, \langle x, y, w \rangle) \land \forall n \ W(((w)_n)_0, ((w)_n)_1)).$$

where S is universal Σ_1^1.

Let R'_α code $\{(x, y) : \varphi(x) < \varphi(y) \leq \alpha\}$ and \leq version.

We write $U_z(R'_\alpha)(x, y)$ for $U(R'_\alpha, z, x, y)$.
Uniform Coding Lemma says that if $A \subseteq \omega^\omega \times \omega^\omega$ with $\text{dom}(A) = P$, then there is a $z \in \omega^\omega$ such that for all $\alpha < \kappa$, $U_z(R'_\alpha)$ is a choice subrelation for $A \upharpoonright P_{\leq \alpha}$.

Let $\overline{U}_z(R'_\alpha)$ be a uniformization of $U_z(R'_\alpha)$ (using scale $\{\varphi_n\}$).

For $\alpha < \kappa$, let α' be the next reliable (w.r.t. $\{\varphi_n\}$).

Let $G : \kappa^\omega \rightarrow \omega^\omega$ be a generic coding function. So for any $s \in \kappa^\omega$, $x = G(\alpha \triangleleft s) \in P$, $\varphi(x) \leq \alpha$, and if s enumerates an honest set then $|x| = \alpha$.
Given reals x, y, z we say:

1. **x codes a function** at $\alpha < \kappa$ if $|a| = \alpha$ implies
 \[\exists b \in P \overline{U}_x(R'_\alpha)(a, b). \]
 Also, if $|a| = |a'|$ then $|b| = |b'|$.

2. **y is good** at $\delta < \alpha \in C_\omega$ if $\forall^* a \in P_\delta \exists b \overline{U}_y(R'_\delta)(a, b)$ and
 $T^+_b \upharpoonright \alpha$ is wellfounded (good at α if good at all $\delta < \alpha$).

3. **z is good** at $\delta < \alpha \in C_\omega, \beta < \alpha^+$ if $\forall^* a \in P_\delta \exists b \overline{U}_z(R'_\delta)(a, b)$
 and $T^+_z \upharpoonright \beta$ is wellfounded (good at α if good at all $\delta < \alpha, \beta < \alpha^+$).

$f_x(\alpha) = \text{the unique value of } |b|$.

$g_y(\delta, \alpha) = \text{least } \gamma < \alpha^+ \text{ such that } \forall^* a \in P_\delta, |T^+_b \upharpoonright \alpha| \leq \gamma.$

$h_z(\delta, \alpha, \beta) = \text{least } \gamma < \alpha^+ \text{ such that } \forall^* a \in P_\delta, |T^{++}_b \upharpoonright \beta| \leq \gamma.$
I plays x, y, z, II plays x', y', z'.

Let α be least such that one of the following holds.

1. For some $\delta < \alpha$, y or y' is not good at (δ, α).
2. For some $\delta < \alpha$, $\beta < \alpha^+$, z or z' is not good at (δ, α, β).
3. x or x' does not code a function at α.

If (1) holds, then I wins iff for the least such δ, y is good at (δ, α).

Suppose (1) does not hold, but (2) holds. Then I wins iff for the lexicographically least pair (β, δ) we have z is good at δ, α, β. If (1) and (2) don't hold, but (3) holds, then I wins iff x codes an ordinal at α.

Otherwise, we have functions $f_x, f_x', g_y, g_y', h_z, h_z'$.

- f_x, f_x' together produce $F : \kappa \to \kappa$.
- g_y, g_y' together produce $G : \kappa \to \kappa^+$.
- h_z, h_z' together produce $H : \kappa \to \kappa^{++}$.

II wins the run in this case iff $P(F, G, H) = 1$.

From a winning strategy τ for II, say, we define the homogeneous sets $C_0 \subseteq \kappa$, $C_1 \subseteq \kappa^+$ and $C_1 \subseteq \kappa^{++}$.

S. Jackson New Partition Properties under AD