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Overview

Recall the definition of a 2-coloring of a countable group G .

Definition
c : G → {0, 1} is a 2-coloring if

∀s ∈ G ∃T ∈ G<ω ∀g ∈ G ∃t ∈ T (c(gt) 6= c(gst)).

This definition was formulated independently by Pestov (c.f. paper
of Glasner and Uspenski).
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Significance of the definition.
Let E be the shift equivalence relation on X = 2G , given by the
action of G :

g · x(h) = x(g−1h).

Let F denote the free part of this space, that is,

x ∈ F iff ∀g 6= 1 (g · x 6= x).

1. Coloring property gives a marker compactness property.
(MCP) Let S0 ⊇ S1 ⊇ S2 ⊇ · · · be relatively closed complete
sections of F . Then

⋂

n Sn 6= ∅.

2. Coloring property is equivalent to a free orbit closure.
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Main Result

Theorem
Every countable group G has the 2-coloring property.

I First proof works for abelian, solvable groups.

I Second proof works for general groups.
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Other Combinatorial Reformulations

Other natural descriptive properties have combinatorial
reformulations in terms of the group G .

Definition
Colorings c1, c2 of G are orthogonal (c1 ⊥ c2) if

∃T ∈ G<ω ∀g1, g2 ∈ G ∃t ∈ T (c1(g1t) 6= c2(g2t)).

Fact
If x , y ∈ F , then x ⊥ y iff [x ] ∩ [y ] = ∅.
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Definition
A coloring c is minimal if

∀S ∈ G<ω ∃T ∈ G<ω ∀g ∈ G ∃t ∈ T ∀s ∈ S (c(s) = c(gts)).

Fact
x ∈ F is minimal iff [x ] is minimal
(i.e., for every y ∈ [y ] we have [x ] = [y ]).
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Extension of Result

Theorem
For every countable group G there is a perfect set of pairwise
orthogonal, minimal orbits in F .

In fact, we get more.....
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First consider the simplest case of G = Z.

The following is not the argument that works in general, but has
applications.

We define two sequences ai , bi from 2<ω. We will have
lh(ai) = lh(bi ). Can take bi = 1 − ai .

Each ai+1, (and bi+1) is a concatenation of ai ’s and bi ’s. (May
assume lh(ai ) > i + 1).

Let ai+1 = aibiaiaibi , bi+1 = biaibibiai .
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ai bi ai ai bi

ai+1

Let x be any concatenations of ai+1’s and bi+1’s. Then for
s = i + 1, can take T = {0, 1, . . . , 2lh(ai+1)}. to verify the
2-coloring property for this s.

To get a coloring, take any x such that for each i , x is a
concatenation of ai ’s and bi ’s.
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Easily modify to get a perfect set of pairwise orthogonal
2-colorings.

For example, for w ∈ 2ω define x(w) as above but using
ai+1 = aibiaiaicibi where

ci =

{

ai if x(i) = 0

bi if x(i) = 1

ai bi ai ai ci bi

ai+1
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Each x(w) has the following marker identification property:

(MIP) There is a finite A ⊆ Z such that for any k ∈ Z, whether
k · x is the start of an ai or bi is determined by k · x � A.

In fact A depends only on i , not on w .

If i is least such that w1(i) 6= w2(i), then x(w1) ⊥ x(w2) follows
from the marker identification property, using roughly Ai + |ai |.
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Extending To Other G

We can extend this method to show the following.

Theorem
Suppose Z E G. Then G has the 2-coloring property.
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proof sketch.

Let x1Z, x2Z, . . . be the cosets of Z in G = {g1, g2, . . . }. If g /∈ Z,
then g induces a fixed-point-free permutation πg on the cosets.
We use the algorithm above to color each coset xiZ with a
2-coloring ci . At step i , if gi ∈ Z then we define the ai , bi for each
coset as above. If gi /∈ Z then consider πi = πgi

. On each orbit of
πi , if πi(xZ) = yZ, then define the ai , bi for xZ and for yZ such
that the colorings will be orthogonal, and by a fixed set Ai (not
depending on x and y).
To see this works, for s ∈ G take cases as to whether s ∈ Z. If
s ∈ Z, the 2-coloring property is satisfied by the argument that
each cn is a 2-coloring. If s = gi /∈ Z, then for g ∈ xjZ, gs ∈ xkZ

for some j 6= k , and the set Ai witnesses the 2-coloring property for
g and gs (by the orthogonality of cj and ck).
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These methods give:

Corollary

Every abelian, and in fact, every solvable group has the 2-coloring
property.

This method can be used to show more, for example:

Theorem
Let Z E G. Then the set of 2-colorings of G is Π0

3-complete.

In summary, these methods show:

I Every abelian or solvable group has the 2-coloring property.

I If Z E G or S E G where S is infinite solvable, then G has the
2-coloring property.

I Show directly the free group Fn has the 2-coloring property.
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Two main ideas:

1. Get reasonable marker regions for general groups.

2. Exploit polynomial versus exponential growth.
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Marker Regions

Question

What kind of marker regions can we get for general groups?

Say a group G has regular markers if there are
E0 ⊆ E1 ⊆ E2 ⊆ · · · , each Ei an equivalence relation on G with
finite classes each of which is a translate by a fixed set Ai ⊆ G ,
and such that

⋃

i Ei = G × G .

Question

Which groups admit regular markers?
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For general groups we get the following marker structure.

Will have marker sets ∆1 ⊇ ∆2 ⊇ ∆3 ⊇ · · · (each ∆n ⊆ G ).

Will have F1 ⊆ F2 ⊆ F3 ⊆ · · · (each Fn ⊆ G finite).

I The ∆n translates of Fn are maximally disjoint.

I Each Fn will be a disjoint union of copies of F1, . . . ,Fn−1.

I (homogeneity) Within any copy γFn of Fn, the points in ∆k

(k ≤ n) are precisely the translates γ(∆k ∩ Fn) of the points
in Fn.

I (fullness) If a copy δFk intersects γFn (k ≤ n) then
δFk ⊆ γFn.
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Hn

Fn−1

γ1Fn−1

γ2Fn−1

λ1Fn−2

λ2Fn−2

Figure: The composition of Fn
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γFn

bn−1

an−1

λn
1Fn−1

bn−1

an−1

λn
2Fn−1

bn−1

an−1

λn
s(n)Fn−1

bn−1

an−1

λn
s(n)+1Fn−1

bn−1

an−1

λn
s(n)+2Fn−1

bn−1

an−1

λn
s(n)+3Fn−1

Figure: The labeling of the Fn−1 copies inside an Fn copy
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We define a coloring c =
⋃

cn, which will then be extended to the
2-coloring c ′.

c will color all points except those in

D =
⋃

n

∆n{λ
n
1, . . . , λ

n
s(n)}bn−1.

In extending cn−1 to cn we color the above points except for those
in ∆nλ

n
1, . . . ,∆bλ

n
s(n), and ∆n{an, bn} where:

an
.
= λn

s(n)+2 an−1

bn
.
= λn

s(n)+3 bn−1.
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γFn

bn−1 ?

an−1 0

λn
1Fn−1

bn−1 ?

an−1 0

λn
2Fn−1

bn−1 ?

an−1 0

λn
s(n)Fn−1

bn−1 1

an−1 1

λn
s(n)+1Fn−1

bn−1 0

an−1 ?

λn
s(n)+2Fn−1

bn−1 ?

an−1 0

λn
s(n)+3Fn−1

Figure: Extending cn−1 to cn.
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We extend c to c ′ by coloring the points of D so as to get a
2-coloring. Exploit polynomial versus exponential growth.

At stage n we extend c to points of ∆n{λ
n
1, . . . , λ

n
s(n)}bn−1 to take

care of coloring property for s = gn ∈ Hn.

Let g ∈ G and consider the pair g , gs. By maximal disjointness of
Fn copies, gf ∈ ∆n for some f ∈ FnF

−1
n . Done unless gsf ∈ ∆n.

In this case

gsf = gf (f −1sf ) ∈ (gf )FnF
−1
n HnFnF

−1
n .

So there are about |Hn|
5 many points to consider, and there 2s(n)

many “colors” available, where s(n) is linear in |Hn|.
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