
Iterations and Martin’s Axiom

1. Two Step Iterations

We showed in lemma ?? that forcing with P ˆ Q is equivalent to first forcing
with P to get M rGs, and then forcing with Q over M rGs to get M rGsrHs. This,
however, is not the most general case of a two step iteration as in this case we
are assuming Q P M . More generally we could have that P P M and Q P M rGs.
Note that this breaks the symmetry between P and Q; we cannot force with Q first
now. We wish to describe this situation in more detail now; in particular, how
do we describe a two-step iteration as a single forcing over the ground model? To
motivate the definition of the partial order for the two-stage iteration, let Q “ τG,
where τ PMP. Let p P P with p , pτ is a partial orderq. To be precise, τ actually
abbreviates a triple of names xτQ, τď, τ1y, but it will be clear from the context what
we mean. We are assuming (without loss of generality) that all our partial orders
have maximal elements. It is easy to see that there is a τ 1 PMP such that 1 , pτ 1

is a partial orderq and 1 , ppτ is a partial-orderq Ñ pτ 1 “ τqq. [Let A “ A1 Y A2

be a maximal antichain of p P P such that either p , pτ is a partial orderq (this
defines A1) or p , τ is not a partial-orderq. Let τ 1 “ tτu ˆ A1 Y tρu ˆ A2 where
ρ is a any name such that 1 , pρ is a partial-orderq]. Thus, there will be no loss
of generality if we require that 1 , pτ is a partial-orderq. Also, if q1, q2 P Q and
q1 ď q2, there are σ1, σ2 P dompτq such that q1 “ pσ1qG, q2 “ pσ2qG, and there are
p1, p2 P P such that p1 , pσ1 P τq, p2 , pσ2 P τq, and p2 , pσ1 ďQ σ2q. With this
as motivation we now define two step iteration forcing.

Definition 1.1. Let M be a transitive model of ZF and P PM a partial order. Let
9Q PMP be a name with 1P , p 9Q is a partial-orderq. The two-step iteration forcing

P ˚ 9Q is the partial order in M defined to be the set of all xp, τy such that p P P ,

τ P domp 9Qq, and p , pτ P 9Qq. The ordering of P˚ 9Q is defined by xp1, τ1y ď xp2, τ2y
iff p1 ďP p2 and p1 , pτ1 ď τ2q.

We assume there is a name 1Q P domp 9Qq such that 1P , p1Q is maximal in 9Qq.

It is easy to see then that x1P ,1Qy is a maximal element of P ˚ 9Q.

If G Ď P is M -generic and H Ď 9QG is a filter on 9QG in M rGs, we define

G ˚H Ď P ˚ 9Q by pp, τq P G ˚H iff p P G and τG P H. It is easy to see that G ˚H
is a filter:

Exercise 1. Show under the hypotheses above that G ˚H is a filter on P ˚ 9Q.

Conversely, suppose F Ď P ˚ 9Q is M -generic. Let G “ tp P P : pp, 1Qq P F u. Let

H Ď 9QG be defined by H “ tτG : τ P domp 9Qq ^ Dp P P pp, τq P F u. We will verify

in the proof of the next theorem that G,H are filters on P, 9QG respectively.

Theorem 1.2. Let M be a transive model of ZF and P ˚ 9Q P M . If G Ď P is
M -generic and H Ď 9QG is M rGs generic for 9QG, then G˚H is M generic for P˚ 9Q.

Conversely, if F Ď P ˚ 9Q is M generic for P ˚ 9Q and G “ tp P P : pp, 1Qq P F u,
H “ tτG : τ P domp 9Qq ^ Dp P P pp, τq P F u, then G is M -generic for P, H is

M rGs-generic for 9QG, and M rF s “M rGsrHs.
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Proof. First assume that F Ď P ˚ 9Q is M -generic and define G, H as above. To
see G is M -generic for P, let D Ď P be dense with D P M . Then E “ tpp, τq P

P ˚ 9Q : p P Du is dense in P ˚ 9Q [given pq, σq P P ˚ 9Q, there is a p ď q with q P D.

Then pp, τq P P ˚ 9Q as p , pτ P 9Qq and also pp, τq P E]. Let pp, τq P E X F . Then
pp,1Qq P F and so p P D XG.

We check that H is a filter on Q “ 9QG. Suppose x, y P H. Say x “ τG, y “ σG,
where pp, τq P F , pq, σq P F . Since F is a filter, let pr, πq ď pp, τq, pq, σq with
pr, πq P F . By definition of G, r P G. Also r , pπ ď τq, so πG ďQ τG. Similarly,
πG ďQ σG. Also, πG P H by definition of H. Next suppose x P H and x ď y. Say

x “ τG with pp, τq P F . Let y “ σG where σ P domp 9Qq. Since τG ďQ σG (and since

G is generic by the above) there is a q P G with q , pτ ď σ ^ σ P 9Qq. Since F is a
filter, let pr, πq P F with pr, πq ď pp, τq, pq,1Qq. Then r , pπ ď τq and r , τ ď σ
(as r ď q) so r , π ď σ. So, pr, πq ď pr, σq. As F is a filter, pr, σq P F . Thus, by
definition of H, y “ σG P H.

We next show H is M rGs generic for Q “ 9QG. Note that in M rGs, Q is a partial
order. Let D Ď Q be dense, where D P M rGs. Fix σ P MP with D “ σG. Fix

also p0 P P with p0 , pσ is dense in 9Qq. We must show that τG P D XH for some

τ P domp 9Qq. Let E “ tpp, τq P P ˚ 9Q : p , pτ P σqu. To see E is dense below

pp0,1Qq in P ˚ 9Q, let pq, ρq P P ˚ 9Q with q ď p0. So, q , Dx px P σ ^ x ď ρq.

Thus for some r ď q and π P domp 9Qq we have r , pπ P σ ^ π ď ρq (you can see

this by taking a generic containing q). Hence pr, πq P P ˚ 9Q and in fact pr, πq P E.
By definition, pr, πq ď pq, ρq. So E is dense below pp0,1Qq. Since pp0,1Qq P F , it
follows that F XE ‰ H. Let pp, τq P EXF . Then p P G and also p , τ P σ. Hence
τG P σG “ D. Also τG P H by definition of H.

We next show that F “ G ˚ H. If pp, τq P F then pp,1Qq P F and so p P G.
By definition of H, τG P H. By definition of G ˚H, pp, τq P G ˚H. Suppose now
pp, τq P G ˚ H. Thus, p P G and τG P H. By definition of G, pp, 1Qq P F . By
definition of H, τG “ πG where pq, πq P F . Let r P G with r , pτ “ πq. Thus,
pr, 1Qq P F . Since F is a filter, let ps, ρq P F extend pp, 1Qq, pq, πq, and pr, 1Qq.
Since s , ρ ď π and s , π “ τ , s , ρ ď τ . Thus, ps, ρq ď pp, τq, and since F is a
filter, it follows that pp, τq P F .

Finally, it is clear that from F we may defineG, and then defineH, soM rGsrHs Ď
M rF s. Since F “ G ˚H, from G and H we may define F , so M rF s Ď M rGsrHs.
Thus, M rF s “M rGsrHs.

This completes one direction of the theorem. For the other direction, assume
now G Ď P is M -generic and H Ď Q “ 9QG is M rGs-generic. Let F “ G˚H Ď P˚ 9Q.

As we showed already, F is a filter on P ˚ 9Q. To see it is generic, let D Ď P ˚ 9Q
be dense, with D P M . We must find a pp, τq P D with p P G and τG P H. Let

E Ď Q “ 9QG be defined by E “ tτG : Dp P G pp, τq P Du. Clearly E P M rGs. To

see E is dense in Q, let σG P Q, where σ P domp 9Qq. Let p , pσ P Qq, p P G. Let

A “ tq ď p : Dρ P domp 9Qq ppq, ρq P D^ pq, ρq ď pp, σqqu. Easily A is dense below p.

Let q P G X A. Let ρ P domp 9Qq be such that pq, ρq P D and pq, ρq ď pp, σq. Since
q P G and q , pρ ď σq, we have ρG ď σG. By definition of E, ρG P E. This shows
E is dense in Q. Let τG P E XH. Then there is a p P G such that pp, τq P D, and
we are done. �
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We next prove an important fact about preservation of κ-c.c. under finite itera-
tions.

Lemma 1.3. Let κ be a regular cardinal. Suppose P is κ-c.c., and 1P , p 9Q is κ-

c.c.q. Then P ˚ 9Q is κ-c.c.

Proof. Suppose ppα, ταq, α ă κ is an antichain in P ˚ 9Q. If G is generic for P and

pα, pβ P G, then pταqG and pτβqG are incompatible in 9QG. For if σG extended
them both, then we could get p P G with p , σ ď τα and p , σ ď τbeta. Since
G is a filter, we may assume p ď pα, pβ. But then pp, σq ď ppα, ταq, p ď ppβ , τβq,

a contradiction. Since 9QG is κ-c.c., it follows that tα : pα P Gu has size ă κ. This

shows that D “ tp P P : Dβ ă κ p , @α ppα P 9G Ñ α ă β̌qu is dense in P. Let
A Ď P be maximal subject to being an antichain and A Ď D. Since D is dense, A
is a maximal antichain of P. For p P A, let βppq ă κ be as in the definition of D.
Since κ is regular and |A| ă κ, γ “ suppPA βppq ă κ. This is a contradiction, as we
can take a generic G containing some pα for α ą γ (this generic must meet A). �

Lemma 1.3 does not say that the product of κ-c.c. partial orders is κ-c.c. In fact,
it is independent of ZFC whether the product of two c.c.c. partial orders is c.c.c. We
will see below that under Martin’s axiom and  CH, the product of two c.c.c. partial
orders is c.c.c. On the other hand, CH implies that that there are two c.c.c. partial
orders whose product is not c.c.c. Such an example is more easily constructed from
the existence of a Suslin tree. Suppose T is a Suslin tree. We view T as a partial
order by x ď y iff x ěT y, i.e., by reversing the tree order. Clearly T is still c.c.c.
viewed as a partial order this way. However, the partial order T ˆ T is not c.c.c.
To see this, first assume without loss of generality that T is pruned, and then that
T is splitting (by considering the subtree T 1 of T obtained by restricting to levels
αi, i ă ω1, where every element of T at level αi has incompatible extensions at
level αi`1). So assume T is splitting. For each x P T , let lpxq, rpxq be incompatible
immediate extensions of x in T . Then tplpxq, rpxqquxPT forms an antichain in TˆT .

In fact, the next lemma characterizes when a product of κ-c.c. partial orders is
κ-c.c.

Lemma 1.4. Let P , Q be partial orders. Then P ˆQ is κ-c.c. iff P is κ-c.c. and
1P , pQ̌ is κ-c.c.q.

Proof. One direction is immediate from lemma 1.3. Suppose that 1P . pQ̌ is κ-
c.c.q. Let p P P and τ P MP be such that p , rpτ : κ̌Ñ Q̌q ^ @α ă β ă κ pτpαq K
τpβqqs. For α ă κ let pα ď p and qα P Q be such that pα , τpαq “ qα. Let
A “ tppα, qαquαăκ. We show that A is an antichain in P ˆ Q. Fix α ă β, and
suppose pr, qq ď ppα, qαq, ppβ , qβq. Then r , τpαq “ qα and r , τpβq “ qβ , and
since r ď p it follows that r , qα K qβ , a contradiction. �

2. Intermediate Extensions

Suppose M is a transitive model of ZFC and M rGs is a generic extension of M .
Let N be a model of ZFC with M Ď N ĎM rGs. We show that we can “factor” the
extension through N , that is, get a two step iteration M ĎM rG1s ĎM rG1srG2s “

M rGs with M rG1s “ N . Also, if X P M rGs and X Ď M (e.g., X is a set of
ordinals), then there is a minimal transitive model M rXs of ZFC containing X,
and thus we can write M rGs “M rG1srG2s “M rXsrG2s as a two-step iteration.
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First we show the following lemma which shows we can do the factoring in
the case where N “ M rG1s where G1 is M -generic for a partial order which is
completely embedded into P.

Definition 2.1. Let M be a transitive model of ZFC, P, Q partial orders in M ,
and e : P Ñ Q a complete embedding which lies in M . For G Ď P, let Q{G “ tq P
Q : @p P G peppq ‖ qqu.

Lemma 2.2. Let M be a transitive model of ZFC, P, Q partial orders in M , and
e : P Ñ Q a complete embedding in M . Let H Ď Q be M -generic for Q. Let
G “ e´1pHq. Then G is M generic for P, H Ď Q{G and is M rGs-generic for Q{G.
Also, M rHs “M rGsrHs (here M rGsrHs refers to the extension of M rGs by forcing
with Q{G).

Proof. Since e : P Ñ Q is complete, G “ e´1pHq is M -generic for P. Clearly
H Ď Q{G, since any q P H is compatible with eppq for any p P G (since eppq P H).
We show H is M rGs-generic for Q{G. Let D Ď Q{G, with D P M rGs, be dense in

Q{G. Fix τ PMP with D “ τG. Let p0 P G, p0 , pτ is dense in Q̌{ 9Gq. Define

E “ tq P Q : Dp P P Dq1 P Q rpp , q̌1 P τq ^ pq ď q1q ^ pq ď eppqqsu.

We claim that E is dense below epp0q. To see this, let q1 ď epp0q. Let p1 P P be

a reduction of q1. Then p1 , pq1 P Q{ 9Gq [For let G1 be generic for P containing
p1. Let p2 P G

1, and we show epp2q ‖ q1. Let p3 P G with p3 ď p1, p2. Then
epp3q ď epp2q, and epp3q ‖ q1 since p1 is a reduction of q1 and p3 ď p1. Thus,
epp2q ‖ q1.] Since epp1q ‖ q1, epp1q ‖ epp0q, and thus p1 ‖ p0 (as e is complete). So

we may assume p1 ď p0. Also, p1 , pτ is dense in Q{ 9Gq. Thus we can get p2, q2
with p2 , pq̌2 P τ Ď Q̌{ 9Gq and q2 ď q1. Since p2 , pq̌2 P Q̌{ 9Gq it follows that
epp2q ‖ q2. Let q ď epp2q, q2. Then q P E.

Let now q P EXH. Let p P P and q1 P Q witness q P E. Since q ď eppq, eppq P H
and thus p P G. Also, q1 P H. Since p P G and p , pq̌1 P τq, we have q1 P D. So,
q1 P H XD. This shows H is M rGs-generic for Q{G.

Finally, M rHs “M rGsrHs is immediate since G PM rHs. �

We now state precisely our theorem on intermediate extensions.

Theorem 2.3. Let M be a transitive model of ZFC, P P M a partial order, and
let G Ď P be M -generic for P. Then if N is a transitive model of ZFC with
M Ď N ĎM rGs, then there is a two stage iteration partial order P1 ˚ 9P2 in M and

an M -generic G1 ˚G2 for P1 ˚ 9P2 such that N “M rG1s and M rGs “M rG1srG2s.
Also, if X PM rGs and X ĎM , then there is a smallest transitive model N of ZFC
containing M and X, and thus we have M Ď M rXs “ M rG1s Ď M rG1srG2s “

M rGs for some two stage forcing P1 ˚ 9P2 and generic G1 ˚G2.

Remark 2.4. We need the hypothesis that X Ď M ; the result is not true for
arbitrary X PM rGs.

First consider the case where M Ď M rGs, where G is M -generic for P and
X P M rGs, X Ď ON. Let B be the completion of P, so B is a complete Boolean
algebra and M rGs “ M rG1s where G1 is M -generic for B. Thus, we may assume
that P is a complete Boolean algebra. Fix a τ P MB with X “ τG. For α ă
η
.
“ suppXq, define bα “ Jα̌ P τK. Let A Ď B be the complete subalgebra of B

generated by the bα. By this we mean A is the smallest subalgbra of B containing
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the bα and closed under the
ř

and
ś

operations of B (this easily exists). Let
H “ G X A. The identity (inclusion) map i : A Ñ B is a complete embedding,
and thus i´1pGq “ G X A “ H is M generic for A. In particular, M rHs is a
model of ZFC. We show that M rHs “ M rXs. First, X P M rHs, since α P X iff
bα P G iff bα P H (since bα P A). Next we show any transitive model N of ZFC
which contains X must contain H, and this finishes. Now, the subalgebra A can
be constructed as follows. Let A0 “ tJbαKu. At limit stages let Aβ “

Ť

γăβ Aγ . At

successor steps, let Aβ`1 “ Aβ Y t´a : a P Aβu Y t
ř

E : E Ď Aβu (here
ř

refers
to the supremum operation of B; we continue this construction until Aβ “ Aβ`1).
We show by induction on β that GXAβ lies in N (more precisely, we are actually
giving a definition by transfinite recursion in N of the function γ Ñ GXAγ). For
β “ 0 we have JbαK P G iff α P X. Since X P N , this shows G X A0 P N . For β
limit the inductive step is trivial. At successor steps we have ´a P G iff a R G, and
ř

E P G iff GX E ‰ H (recall that since B is a complete Boolean algebra, G is a
a generic ultrafilter on B). This gives a definition by transfinite recursion in N of
the function γ Ñ GXAγ , and shows in particular that GXAγ P N for all γ. For
γ large enough this gives GXA P N . Thus, M rHs “ M rXs. The same argument
just given also works if X ĎM (with X PM rGs).

We next show that if N is any model of ZFC with M Ď N Ď M rGs then
N “M rHs for some generic extension M rHs of M . Let S “ PpBq XN “ PN pBq.
For any X P N , there is a set of ordinals ApXq P N which “codes” X in that X
lies in any transitive model of ZF containing ApXq. In particular, ApSq P N . By
the previous paragraph, M rApSqs exists and M rApSqs “ M rHs for some generic
extension M rHs of M . Fix now X P N . Let ApXq be the complete subalgebra of
B constucted above so that M rApXqs “ M rApXq X Gs (this actually depends on
the choice of name for ApXq, but this doesn’t matter). Since M rApXqs Ď N , we
have ApXq XG P N . Thus, ApXq XG P S. This show X P M rSs “ M rHs. Thus,
N ĎM rHs and so N “M rHs.

We have shown that if N is a model of ZFC with M Ď N Ď M rGs then N “

M rHs is a generic extension of M , and if X P M rGs, X Ď M , then M rXs exists
and M rXs “ M rHs is a generic extension. In both cases H is an M -generic for a
complete Boolean algebra which a complete subalgebra of B (where G is M generic
for B). Lemma 2.2 now finishes the proof of theorem 2.3.

3. General Iterations

We now extend the discussion from two step iterations to iterations of general
length. Definition 1.1 shows how to unravel a two-step iteration into a partial
order in the ground model. We will use the same definition for successor steps
in the general definition. That is, an iteration Pα`1 of successor length will be

(isomorphic to) a partial order of the form Pα˚ 9Qα where Pα is an α length iteration

and 9Qα PM is a Pα name with 1α , p 9Qα is a partial orderq. There will actually be
a slight “notational” isomorphism involved. For example, an element of a three step
iteration would, by definition 1.1 iterated twice, be an element of the form xxx, yy, zy,
whereas in our official definition we will take the elements to be sequences of length
3 (i.e., functions with domain 3).

The main question is what to do at limit ordinals, and there are a variety of
possibilities, all of which are useful in different arguments. Following Kunen we
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consider fairly general possibilites by allowing the “supports” of the conditions to
lie in a general ideal on α. The precise definition follows.

Definition 3.1. Let M be a transitive model of ZF, α an ordinal of M , and
I Ď Ppαq an ideal on α (possibly improper, that is, I “ Ppαq) which lies in M . An

α stage iterated forcing is a pair of sequences in M of the form xPβyβďα, x 9Qβyβăα.

Each Pβ will be a partial order in M (with a maximal element 1Pβ
), and 9Qβ is a

Pβ name with 1Pβ
, p 9Qβ is a partial order with maximal element 1 9Qβ

q. Each Pβ
will consist of p “ xργyγăβ which are sequences of length β. The Pβ satisfy the
following inductive conditions.

(1) P0 is a partial order in M .

(2) p “ xργyγăβ`1 P Pβ`1 iff pæβ P Pβ , ρβ P domp 9Qβq, and pæβ ,Pβ
pρβ P 9Qβq.

If p1 “ xρ1γyγăβ`1 P Pβ`1 then p ď p1 iff pæβ ďPβ
p1æβ and p ,Pβ

pρβ ď ρ1βq.

(3) For β limit, p “ xργyγăβ P Pβ iff @γ ă β pæγ P Pγ and the support of p is
in I, where the support of p is defined by suppppq “ tγ ă β : ργ ‰ 1 9Qγ

u.

For p, p1 P Pβ , we have p ď p1 iff @γ ă β ppæγ ď p1æγq

We define 1Pβ
to be the sequence x1 9Qγ

yγăβ .

The final α stage iteration Pα is determined from the sequence of Pβ and 9Qβ
for β ă γ. We will thus frequently abbreviate the above definition by writing it as
xPβ , 9Qβyβăα.

Definition 3.2. We say an iteration is of finite support if I is the ideal of finite sets,
of countable support if I is the ideal of countable sets (in M), and of full support if
I “ Ppαq.

Note that by properly choosing I it is possible to mix the various types of
iterations. For example, we might have an iteration of length ω¨3 where we alternate
finite and full supports. then I would be the ideal on ω ¨3 of sets A such that AXω
and AX pω ¨ 2, ω ¨ 3q are finite.

The next definition gives a natural embedding eβγ from Pβ to Pγ when β ď γ ď
α, and the following lemma shows this is a well-defined complete embedding. Thus,
a generic Gα for the α length iteration Pα induces generics Gβ for all β ă α.

Definition 3.3. Let xPβ , 9Qβyβăα be an α length iteration in a transitive model M
of ZF. Define, in M , for β ď γ ď α the map eβγ : Pβ Ñ Pγ by eβγppq “ q where
qæβ “ p and for β ď η ă γ, qpηq “ 1 9Qη

.

Lemma 3.4. Let xPβ , 9Qβyβăα P M be an α length iteration. Then for any β ď
γ ď α, the map eβγ is a well-defined one-to-one map from Pβ to Pγ which is a
complete embedding.

Proof. Fix β ă γ ď α (if β “ γ the result is trivial). Let p “ xρηyηăβ P Pβ ,

and let q “ eβγppq. Clearly q P Pγ since for any η ă γ, qæη , p1 9Qη
P 9Qηq (as

1Pη
, p1 9Qη

P 9Qηq). Clearly eβγ is one-to-one.

We check that eβγ is complete. It is trivial to check that if p ď p1 then
eβγppq ď eβγpp

1q. Suppose now p KPβ
p1, and we show eβγppq KPγ eβγpp

1q. If
q ď eβγppq, eβγpp

1q, then qæβ ď p, p1, so p ‖ p1. Thus, p K p1 iff eβγppq K eβγpp
1q.

Suppose now q “ xρηyηăγ P Pγ . Let p “ qæβ P Pβ . We show that p is a reduction
of q for eβγ . Suppose p1 “ xρ1ηyηăβ ď p. We must show that eβγpp

1q ‖ q. Define
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r by ræβ “ p1 and ræpγ ´ βq “ qæpγ ´ βq. Clearly ræβ P Pβ . Since q P Pγ , a
straightforward induction on η P pγ ´ βq shows that ræη P Pη and ræη ď qæη (for

example, for the successor step: since qæη , pρη P 9Qηq and ræη ď qæη by induction,

ræη , pρη P 9Qηq. Thus, ræpη ` 1q P Pη`1 and trivially ræpη ` 1q ď qæpη ` 1q).
Also, r ď eβγpp

1q since ræβ “ p1æβ and for η ě β, ræη , pρη ď 1 9Qη
q. Thus,

r ď eβγppq, q. �

If xPβ , 9Qβyβăα P M is an α length iterated forcing, and G is M -generic for
Pα, then for β ď α we will write Găβ for the generic for Pβ induced by G (so
G “ Găα). We also write Gďβ for Găβ`1. We can also define for β ă α the generic

Gβ Ď p 9QβqGăβ
. This is defined by Gβ “ tppβqGăβ

: p P Gďβu. Now, Pβ`1 is

isomorphic to Pβ ˚ 9Qβ . Under this isomorphism, Gďβ corresponds to Găβ ˚Gβ [To

be explicit, the isomorphism π : Pβ`1 Ñ Pβ ˚ 9Qβ is given by πppq “ xπæβ, πpβqy.]

From theorem 1.2 we have that Gβ is M rGăβs generic for p 9QβqGăβ
.

Finite and countable support iterations are frequently used, and we consider
some of the properties preserved under such iterations. First we show that κ-c.c.
is preserved under finite support iterations.

Lemma 3.5. Suppose κ is a regular cardinal of M , and xPβ , 9Qβyβăα is an α length

iteration using finite supports. Suppose for each β ă α that 1Pβ
, p 9Qβ is κ̌ c.c.q.

Then Pα is κ-c.c. in M .

Proof. We show by induction on β ď α that Pβ is κ-c.c. in M . If Pβ is κ-c.c., then
Pβ`1 is κ-c.c. (in M) from lemma 1.3. Suppose now β is limit, and is least such
that Pβ is not κ-c.c. Let tpηuηăκ be an antichain of Pβ . Let sη “ suppppηq. Thus,
sη Ď β is finite. We may assume the sη form a ∆-system (note that if β ă κ this is
trivial) with root r Ď β. Let γ ă β with γ ą supprq. We claim that that pηæγ form
an antichain in Pγ , a contradiction. To see this, let p “ xρξyξăβ and q “ xσξyξăβ
be two elements of the antichain tpηuηăκ. Suppose pæγ and qæγ were compatible,
say r ď pæγ, qæγ. Define r1 by

r1pξq “

$

’

’

’

&

’

’

’

%

rpξq if ξ ă γ

1 9Qξ
if ξ ě γ ^ ξ R psuppppq Y supppqqq

ppξq if ξ ě γ ^ ξ P suppppq ´ supppqq

qpξq if ξ ě γ ^ ξ P supppqq ´ suppppq

Since r ď pæγ, qæγ, a straightforward induction on ξ shows that r1æξ P Pξ and
r1æξ ď pæξ, qæξ. Thus, r1 ď p, q, a contradiction. �

Corollary 3.6. A finite support iteration of c.c.c. forcings is c.c.c.

We now consider iterations with countable support. We would like to show that a
countable support iteration of countably closed forcings (i.e., 1Pβ

, 9Qβ is countably
closeq) is countable closed, however, that is not true in complete generality. It is

true, however, if we choose the names 9Qβ for the partial orders in a reasonable
manner which, we will see, imposes no loss of generality.

Definition 3.7. Let M be a transitive model of ZF, P be a partial order, and
π P MP. We say π is full if π “ dompπq ˆ t1Pu and for all p P P and τ P MP, if
p , pτ P πq then there is a σ P dompπq such that p , pτ “ σq.
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If 1P , pπ is a partial orderq, then we say π is ω-full is whenever p P P, σn P
dompπq and p , pσn P π ^ σn`1 ď σnq for all n, then there is a σ P dompπq such
that p , pσ ď σnq for all n.

The next lemma shows that there is no loss of generality is using full names for
sets.

Lemma 3.8. Let M be a transitive model of ZFC and π PMP. Assume 1P , pπ ‰
Hq. Then there is a full name π1 such that 1P , pπ “ π1q.

Proof. Let π1 be the set of all x1P, σy where σ P PpPˆ dom2
pπqq and 1P , pσ P πq,

where x P dom2
pπq iff Dτ P dompπq px P dompτqq. Clearly π1 P MP and is of the

desired form. It is also clear that 1 , pπ1 Ď πq [for any generic G, π1G Ď πG since if
x P π1G, then x “ σG for some σ such that 1 , pσ P πq]. To show 1 , pπ Ď π1q and
to show fullness it suffices to show that for any p P P and ρ PMP, if p , pρ P πq then
for some σ P dompπ1q we have p , pρ “ σq. Let p, ρ be as above, so p , pρ P πq.
Let A Ď P be maximal subject to being an antichain and for all q P A either q ď p
and for some πq P dompπq, q , pρ “ πqq or q K p and for some πq P dompπq we
have q , pπq P πq. Clearly A is a maximal antichain of P. For each q P A we will
define a name π̃q, and then we will take σ to be the union of all the π̃q. Fix q P A
and the corresponding πq P dompπq. Let π̃q “ txr, uy : Dxs, uy P πq pr ď q, squ. Let
σ “

Ť

qPA π̃q. We must show that 1 , pσ P πq and p , pσ “ ρq. First, since A is an

antichain, for any q P A we have q , pσ “ π̃qq. We also have q , pπ̃q “ πqq [Let G
be generic containing q. If x P pπ̃qqG, then x “ uG for some xr, uy P π̃G, r P G, with
say r ď s and xs, uy P πq. Thus x “ uG P pπqqG. If x P pπqqG, then x “ uG for some
xs, uy P πq, where s P G. Let r ď q, s. Then xr, uy P π̃q. Hence x “ uG P pπ̃qqG.]
So, q , pσ “ πqq. Since A is a maximal antichain, this gives 1 , pσ P πq.

Next we show p , pρ “ σq. For any q P A with q ď p we have q , pσ “ πqq as
above. But also, q , pρ “ πqq by definition of A and πq. So, q , pρ “ σq for all
q P A with q ď p. Thus, p , pρ “ σq. �

The previous lemma shows that there is no loss generality in using full names for
non-empty sets, in particular for the partial orders in an iterated forcing. The next
lemma shows that if we do this, and if the partial orders are forced to be countably
closed, then ω fullness condition is satisfied.

Lemma 3.9. Suppose M is a transitive model of ZFC, P P M , π P MP is a full
name for a non-empty set and 1P , pπ is a countably closed partial orderq. Then
π is ω-full for P.

Proof. Let p P P and suppose p , pσn`1 ď σnq for all n. We follow the argument
of the previous lemma. Let A Ď P be maximal subject to being an antichain and
for all q P A either q ď p and there is a πq P dompπq such that q , p@n πq ď σnq, or
q K p and for some πq P dompπq we have q , pπq P πq. Using the fact that 1 , pπ
is countably closed q it follows that A is a maximal antichain of P. For each q P A
we construct π̃q as in the previous lemma, and then let σ “

Ť

qPA π̃q as before.

Exactly as before, for q P A, q , pσ “ πqq, and thus 1 , pσ P πq. Also, for all
q P A with q ď p we have q , p@n πq ď σnq. Thus, p , p@n σ ď σnq. By fullness,
since p , pσ P πq, we have that for some σ1 P dompπq that p , pσ “ σ1q. Hence,
p , p@n σ1 ď σnq. �
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Thus, in iterating countably closed forcings, there is no harm in assuming the ω
fullness condition is satisfied. This next theorem shows that for countable support
iterations, this is enough to guarantee the iteration is countably closed.

Theorem 3.10. Let M be a transitive model of ZFC, and xPβ , 9Qβyβăα PM is an

α length iteration with countable supports. Suppose for each β ă α that 1Pβ
, p 9Qβ

is countably closed q, and that 9Qβ is ω-full for Pβ. Then Pα is countably closed.

Proof. Work in M , and suppose pn “ xρnβy P Pα are such that pn`1 ď pn for all

n P ω. We define p “ xρβy P Pα with p ď pn for all n. Let Sn “ suppppnq,
and S “

Ť

n Sn. So, S Ď α is countable. We define ρβ by induction on β. Let
ρ0 P P0 extend all of the ρn0 , which we can do as P0 is countably closed. If β ă α
is limit, let pæβ “

Ť

γăβ pæγ. Assume now pæβ is defined and pæβ ď pnæβ for all

n. If β R S, let ρβ “ 1 9Qβ
. Clearly in this case pæpβ ` 1q ď pnæpβ ` 1q for all n.

Suppose now β P S. For each n we have pn`1æβ ď pnæβ and pn`1æβ , pρn`1
β ď

ρnβq. So, pæβ , @n pρn`1
β ď ρnβq. By ω-fullness there is a ρβ P domp 9Qβq such

that pæβ , @n pρβ ď ρnβq. This defines ρβ “ ppβq, and thus pæpβ ` 1q. Clearly

pæpβ ` 1q ď pnæpβ ` 1q for all n. This defines p. By construction suppppq Ď S, so
p P Pα. Also, p ď pn for all n. �

4. Martin’s Axiom

We introduce Martin’s axioms and use an iteration of finite support c.c.c. forcings
to show it is consistent (with  CH).

Definition 4.1. Let κ be an infinite cardinal. MApκq is the statement: if P is a
c.c.c. partial order and tDαuαăκ is a κ size family of dense subsets of P, then there
is a filter G Ď P such that G XDα ‰ H for all α ă κ. MA is the statement that
@κ ă 2ω MApκq.

The following simple lemma is important for the proof.

Lemma 4.2. MApκq is equivalent to the statement that for any c.c.c. partial order
P “ xκ,ďy on κ, and any collection tDαuαăκ of dense subsets of P, there is a filter
G Ď κ meeting all of the Dα.

Proof. Let Q “ xQ,ďQy be a c.c.c. partial order. Let P Ď Q with |P | “ κ and P
sufficiently closed. Specifically, we require:

(1) For all p P P and all α ă κ, there is a q P Dα with q ď p.
(2) If p, q P P are compatible in Q, then for some r P P we have r ď p, q.

Let P “ xP,ďPy where ďP“ďQ XpP ˆ P q. Let Eα “ Dα X P for α ă κ. Thus, Eα
is dense in P. Note that P is still c.c.c. by 2 (an antichain of P is also an antichain
of Q). Suppose G Ď P and GX Eα ‰ H for all α ă κ. Let H Ď Q be the filter on
Q generated by G (i.e., H “ tq P Q : Dr P G pr ď qqu). Then H XDα ‰ H for all
α ă κ. �

The following technical lemma will also be used.

Lemma 4.3. Let M be a transitive model of ZF, P, Q partial orders in M , and
e : P Ñ Q a complete embedding in M . Let H Ď Q and G “ e´1pHq. For σ P MP

we define e1pσq PMQ inductively by e1pσq “ txe1pρq, eppqy : xρ, py P σu. Then for all
σ PMP we have σG “ pe

1pσqqH .
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Proof. By induction on σ. We have

e1pσqqH “te
1pρqH : Dxρ, py P σ peppq P Hqu

“ tρG : Dxρ, py P σ peppq P Hqu

“ tρG : Dxρ, py P σ pp P Gqu

“ σG

�

We are now ready to show the consistency of Martin’s axiom.

Theorem 4.4. Let M be a transitive model of ZFC and κ a regular cardinal of
M with p2ăκ “ κqM . Then there is a c.c.c. partial order P P M such that if G is
M -generic for P then M rGs satisfies MA`2ω “ κ. In particular (since P preserves
cardinals), CONpZFCq Ñ CONpZFC`MA` CHq.

Proof. We construct P as a κ length iteration of c.c.c. forcings with finite support.
It will then follow from lemma 3.5 that P is c.c.c.. Thus P will preserve all cardinals
and cofinalities. In particular, κ will be a regular cardinal of M rGs. Each stage Pα
(for α ă κ) of the iteration will have size ă κ in M . The idea is to arrange so that
the iteration eventually forces with all possible Pα names for c.c.c. partial orders
on some λ ă κ, for all α ă κ.

Fix in M a bijection b : κ Ñ κ ˆ κ with b´1 increasing in each argument (so if
bpαq “ pβ, γq then β, γ ď α). As we define Pβ (for β ă κ) we simultaneously fix an

enumeration t 9Qγβuγăκ of the the Pα nice names for a partial order on some λγ ă κ,
that is, nice names such that such that

1Pβ
, p 9Qγβ is a c.c.c. partial orderq.

Assuming inductively that |Pβ | ă κ and Pβ is c.c.c., we can do this as there at most
ř

λăκp|Pα|
ωqλ “ κ many such names (this cardinality computed in M ; we are also

implicitly using AC in M).

We now give the inductive definition of the 9Qα, and hence of the iteration (again,
the iteration will be of finite support). Suppose for β ď α that Pβ is defined, is c.c.c.

in M , and |Pβ | ă κ. Let bpαq “ pβ, γq. Let 9Qα “ e1βαp
9Qγβq, where eβα : Pβ Ñ Pα

is the canonical embedding and e1βα is as in lemma 4.3. From lemma 4.3 we have

that 1Pα
, p 9Qα is c.c.c. q. Clearly Pα`1 satisfies our inductive hypotheses (note

that in M we have | 9Qα| ď λγ ¨ |Pβ | ă κ). The inductive hypotheses are satisfied at
limit α from lemma 3.5 (which show Pα is c.c.c.), and the finite support condition
(which gives that |Pα| “

ř

βăα |Pβ | ă κ by induction, as κ is regular).
Let G be M -generic for P “ Pκ. We claim that if λ ă κ and x Ď λ with

x P M rGs, then for some α ă κ we have x P M rGďαs. To see this, let σ P MP

be a nice name for x. Clearly |σ| ă κ. As κ is regular, there is an α ă κ and a
σ1 PMPα such that e1ακpσ

1q “ σ. From lemma 4.3 we have that x “ σG “ pσ
1qGďα

.
So x PM rGďαs.

In particular, every x P Ppωq X M rGs lies in some M rGďαs. Thus there are
at most

ř

αăκp|Pα|
ωqω “ κ (this computation done in M) many reals in M rGs.

Thus, p2ω ď κqMrGs. Since cofinally often we force with the Cohen partial order,
we clearly have p2ω ě κqMrGs. Hence p2ω “ κqMrGs.
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To show M rGs satisfies MA, it is enough to consider by lemma 4.2 a partial
order in M rGs of the form R “ xλ,ďRy, where λ ă κ. Fix dense sets tDδuδăµ

where µ ă κ.
From the claim above, fix β ă κ such that R PM rGăβs and tDδuδăµ PM rGăβs.

Let σ P MPβ be a nice Pβ name for R. We may assume that 1Pβ
, pσ is a c.c.c.

partial orderq [Let p P Pβ , p , pσ is a c.c.c. partial orderq. Let A Ď Pβ be a maxiaml
antichain containing p. Fix a partial order T in M . Let πp “ σ, and for q P A,

q ‰ p let πq “ Ť . From A and the πq we construct a name σ1 as in lemma 3.8 such
that p , pσ1 “ σq and 1Pβ , pσ

1 is a c.c.c. partial orderq. We may assume then

that σ1 is a nice name.] Let γ ă κ be such that σ1 “ 9Qγβ , and let α be such that

bpαq “ pβ, γq. Then 9Qα “ e1βαpσ
1q. From lemma 4.3 we have p 9QαqGăα “ σGăβ

“ R.

From theorem 1.2, M rGďαs contains an M rGăαs-generic for R. This generic meets
all the dense sets Dδ, δ ă µ, since they lie in M rGăβs Ď M rGăαs. Thus in M rGs
there is a filter meeting all of the dense sets Dδ. �


