Iterations and Martin’s Axiom

1. Two STEP ITERATIONS

We showed in lemma ?? that forcing with P x Q is equivalent to first forcing
with P to get M[G], and then forcing with Q over M[G] to get M[G][H]. This,
however, is not the most general case of a two step iteration as in this case we
are assuming Q € M. More generally we could have that P € M and Q € M[G].
Note that this breaks the symmetry between P and Q; we cannot force with Q first
now. We wish to describe this situation in more detail now; in particular, how
do we describe a two-step iteration as a single forcing over the ground model? To
motivate the definition of the partial order for the two-stage iteration, let Q = 7,
where 7 € MP. Let p e P with p |- (7 is a partial order). To be precise, T actually
abbreviates a triple of names {7g, 7<, T1), but it will be clear from the context what
we mean. We are assuming (without loss of generality) that all our partial orders
have maximal elements. It is easy to see that there is a 7/ € MP such that 1 |- (7'
is a partial order) and 1 | ((7 is a partial-order) — (77 = 7)). [Let A = A; U Ay
be a maximal antichain of p € P such that either p |- (7 is a partial order) (this
defines A;) or p |- 7 is not a partial-order). Let 7/ = {7} x A; U {p} x Az where
p is a any name such that 1 | (p is a partial-order)]. Thus, there will be no loss
of generality if we require that 1 |- (7 is a partial-order). Also, if ¢1,¢2 € Q and
¢1 < g2, there are 01,09 € dom(7) such that ¢; = (01)g, ¢2 = (02)¢, and there are
p1,p2 € P such that py IF (01 € 7), p2 IF (02 € 7), and ps - (01 <@ 02). With this
as motivation we now define two step iteration forcing.

Definition 1.1. Let M be a transitive model of ZF and P € M a partial order. Let
Q e MP be a name with 1p |- (Q is a partial-order). The two-step iteration forcing
P« Q is the partial order in M defined to be the set of all {p,7) such that p € P,
7€ dom(Q), and p I (7 € Q). The ordering of P Q is defined by (p1,71) < (p2,72)
iff p1 <p p2 and py I (11 < 72).

We assume there is a name 1g € dom(Q) such that 1p |- (1¢ is maximal in Q).
It is easy to see then that (1p,1g) is a maximal element of P = Q.

If G = P is M-generic and H € Qg is a filter on Qg in M[G], we define
G+HcCPxQ by (p,7)eGxH iff pe G and 7¢ € H. It is easy to see that G « H
is a filter:

Exercise 1. Show under the hypotheses above that G = H is a filter on P = Q.

Conversely, suppose F' < P x Q) is M-generic. Let G = {peP:(p,1g) € F}. Let
H < Q¢ be defined by H ={rg: 7€ dom(Q) Adpe P (p,7) € F}. We will verify
in the proof of the next theorem that G, H are filters on P, Qg respectively.

Theorem 1.2. Let M be a transive model of ZF and P * Q eM. If G< P is
M -generic and H < Q¢ is M[G] generic for Qc, then GxH is M generic for P«Q.
Conversely, if F < P« Q is M generic for P+ Q and G = {peP:(plg) € F},
H = {rg: 7 € dom(Q) A Ip € P (p,7) € F}, then G is M-generic for P, H is
M([G]-generic for Qg, and M[F] = M[G][H].
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Proof. First assume that F' € P = Q is M-generic and define G, H as above. To
see G is M-generic for P, let D = P be dense with D € M. Then F = {(p,7) €
P+Q:pe D} is dense in PxQ [given (q,0) € P x (), there is a p < ¢ with ¢ € D.
Then (p,7) € P*Q as p IF (1 € Q) and also (p,7) € E]. Let (p,7) € En F. Then
(p,1g) e F andsope D nG.

We check that H is a filter on @ = Qg. Suppose z,y € H. Say = = 17¢, y = 0g,
where (p,7) € F, (q,0) € F. Since F is a filter, let (r,7) < (p,7),(g,0) with
(r,m) € F. By definition of G, r € G. Also r |- (7 < 7), so g <@ Tg. Similarly,
g <@ 0g. Also, mg € H by definition of H. Next suppose € H and z < y. Say
& = 7¢ with (p,7) € F. Let y = o where o € dom(Q). Since ¢ <qg o¢ (and since
G is generic by the above) there is a ¢ € G with ¢ |- (1 < 0 A 0 € Q). Since F is a
filter, let (r,m) € F with (r,7) < (p,7),(¢,1q). Thenr I (r < 7)andr 7 <o
(asr<gq)sorl-nm<o. So, (r,m) < (r,0). As F is a filter, (r,0) € F. Thus, by
definition of H, y = o0¢g € H.

We next show H is M[G] generic for Q = Qc¢. Note that in M|[G], Q is a partial
order. Let D < Q be dense, where D € M[G]. Fix 0 € MP with D = 0g. Fix
also pg € P with pg I (o is dense in Q) We must show that 7¢ € D n H for some
7€ dom(Q). Let E = {(p,7) e PxQ:p I~ (T € 0)}. To see E is dense below
(po,1g) in P+ Q, let (q,p) € P+ Q with ¢ < po. So, ¢ I 3z (z € 0 Az < p).
Thus for some r < ¢ and 7 € dom(Q) we have 7 |- (1 € ¢ A ™ < p) (you can see
this by taking a generic containing ¢). Hence (r,7) € P Q and in fact (r,m) € E.
By definition, (r,7) < (g, p). So E is dense below (pg,1g). Since (po,1g) € F, it
follows that FnFE # . Let (p,7) € ENF. Then p € G and also p |- 7 € 0. Hence
Ta € og = D. Also 7¢ € H by definition of H.

We next show that ' = G« H. If (p,7) € F then (p,1g) € F and so p € G.
By definition of H, 7¢ € H. By definition of G «+ H, (p,7) € G *+ H. Suppose now
(p,7) € G+ H. Thus, p € G and 7¢ € H. By definition of G, (p,1g) € F. By
definition of H, 7¢ = mg where (¢,7) € F. Let r € G with r |- (7 = m). Thus,
(r,1g) € F. Since F is a filter, let (s,p) € F extend (p,1g), (¢,7), and (r,1q).
Since s-p<mand s -7 =7, sl p<7. Thus, (s,p) < (p,7), and since F is a
filter, it follows that (p,7) € F'.

Finally, it is clear that from F' we may define G, and then define H, so M[G][H] <
MI[F]. Since F = G = H, from G and H we may define F', so M[F] < M[G][H].
Thus, M[F] = M[G][H].

This completes one direction of the theorem. For the other direction, assume
now G < P is M-generic and H € Q = Q¢ is M[G]-generic. Let F = G+ H = P#Q.
As we showed already, F' is a filter on P = Q To see it is generic, let D < P = Q
be dense, with D € M. We must find a (p,7) € D with p € G and 7¢ € H. Let
E < Q = Q¢ be defined by F = {r¢:3Ipe G (p,7) € D}. Clearly E € M[G]. To
see E is dense in Q, let o € Q, where o € dom(Q). Let pI- (0 €Q), pe G. Let
A={qg<p:Ipedom(Q) ((g,p) € D A (q,p) < (p,0))}. Easily A is dense below p.
Let ¢ € G n A. Let p € dom(Q) be such that (¢,p) € D and (g, p) < (p, o). Since
ge G and q I+ (p < o), we have pg < 0g. By definition of E, pg € E. This shows
E is dense in Q. Let 7¢ € E n H. Then there is a p € G such that (p,7) € D, and
we are done. |



We next prove an important fact about preservation of k-c.c. under finite itera-
tions.

Lemma 1.3. Let x be a regular cardinal. Suppose P is k-c.c., and 1p I (Q 18 K-
c.c.). Then P = Q is k-c.c.

Proof. Suppose (pa,Ta), @ < Kk is an antichain in P = Q If G is generic for P and
Pa, P € G, then (7,)¢ and (75)¢ are incompatible in Qg. For if o¢ extended
them both, then we could get p € G with p I+ 0 < 7, and p - 0 < Tpeta. Since
G is a filter, we may assume p < po,pfS. But then (p,0) < (P, Ta), P < (p3,78),
a contradiction. Since QG is K-c.c., it follows that {a: p, € G} has size < k. This
shows that D = {p e P: 3 < k p IF Yo (p4 € G —>a< )} is dense in P. Let
A € P be maximal subject to being an antichain and A € D. Since D is dense, A
is a maximal antichain of P. For p € A, let 8(p) < k be as in the definition of D.
Since £ is regular and |A[ < , v = sup,e4 B(p) < k. This is a contradiction, as we
can take a generic G containing some p,, for @ > v (this generic must meet 4). O

Lemma 1.3 does not say that the product of k-c.c. partial orders is x-c.c. In fact,
it is independent of ZFC whether the product of two c.c.c. partial orders is c.c.c. We
will see below that under Martin’s axiom and —CH, the product of two c.c.c. partial
orders is c.c.c. On the other hand, CH implies that that there are two c.c.c. partial
orders whose product is not c.c.c. Such an example is more easily constructed from
the existence of a Suslin tree. Suppose T is a Suslin tree. We view T as a partial
order by x < y iff x > y, i.e., by reversing the tree order. Clearly T is still c.c.c.
viewed as a partial order this way. However, the partial order T" x T is not c.c.c.
To see this, first assume without loss of generality that 7' is pruned, and then that
T is splitting (by considering the subtree T" of T obtained by restricting to levels
i, 1 < wi, where every element of T at level «; has incompatible extensions at
level a;11). So assume T is splitting. For each x € T, let I(z), r(x) be incompatible
immediate extensions of x in T'. Then {(I(z), 7(x))}zer forms an antichain in T'x T'.

In fact, the next lemma characterizes when a product of k-c.c. partial orders is
K~C.C.

Lemma 1.4. Let P, Q be partial orders. Then P x Q is k-c.c. iff P is k-c.c. and
1p I+ (Q is k-c.c.).

Proof. One direction is immediate from lemma 1.3. Suppose that 1p £ (Q is -
c.c.). Let pe P and 7 € M* be such that p I [(7: & = Q) AVa < < & (7(a) L
7(8))]. For a < kK let po, < p and g, € Q be such that p, I+ 7(a) = ¢o. Let
A = {(Pasla)}ta<k- We show that A is an antichain in P x Q. Fix o < 3, and

suppose (7,q) < (Pa;qa), (P, qp). Then r |- 7(a) = go and r - 7(8) = ¢s, and
since r < p it follows that r I~ ¢, L gg, a contradiction. ([l

2. INTERMEDIATE EXTENSIONS

Suppose M is a transitive model of ZFC and M[G] is a generic extension of M.
Let N be a model of ZFC with M < N < M[G]. We show that we can “factor” the
extension through N, that is, get a two step iteration M < M[G;1] € M[G1][G2] =
M[G] with M[G1] = N. Also, if X € M[G] and X € M (e.g., X is a set of
ordinals), then there is a minimal transitive model M[X] of ZFC containing X,
and thus we can write M[G] = M[G1][G2] = M[X][G2] as a two-step iteration.



First we show the following lemma which shows we can do the factoring in
the case where N = M[G;] where G; is M-generic for a partial order which is
completely embedded into P.

Definition 2.1. Let M be a transitive model of ZFC, P, Q partial orders in M,
and e: P — Q a complete embedding which lies in M. For G € P, let Q/G = {q €

Q:Vpe G (e(p) I 9)}-

Lemma 2.2. Let M be a transitive model of ZFC, P, Q partial orders in M, and
e: P — Q a complete embedding in M. Let H < Q be M-generic for Q. Let
G = e Y(H). Then G is M generic for P, H € Q/G and is M|[G]-generic for Q/G.
Also, M[H] = M|G][H] (here M[G][H] refers to the extension of M[G] by forcing
with Q/G).

Proof. Since e: P — Q is complete, G = e !(H) is M-generic for P. Clearly
H < Q/G, since any g € H is compatible with e(p) for any p € G (since e(p) € H).
We show H is M|[G]-generic for Q/G. Let D < Q/G, with D € M[G], be dense in
Q/G. Fix 7 € MP with D = 7¢. Let pg € G, po I- (7 is dense in Q/G). Define

E={qeQ:peP3queQllpkdier)rlg<a)(g<elp)]h

We claim that E is dense below e(pg). To see this, let ¢1 < e(pg). Let p1 € P be
a reduction of ¢;. Then py I~ (¢1 € Q/G) [For let G’ be generic for P containing
p1. Let py € G', and we show e(ps) || ¢1. Let p3s € G with ps < p1,pe. Then
e(ps) < e(p2), and e(ps) || ¢1 since py is a reduction of ¢; and p3 < p;. Thus,
e(p2) || ¢1.] Since e(p1) || ¢1, e(p1) || e(po), and thus py || po (as e is complete). So
we may assume p; < pg. Also, p1 I+ (7 is dense in Q/G) Thus we can get ps, qo
with py IF (@2 € 7 < Q/G) and g2 < 1. Since pa - (@ € Q/G) it follows that
e(p2) || g2- Let q < e(p2),q2. Then g € E.

Let now g€ EnH. Let pe P and ¢; € Q witness g € E. Since ¢ < e(p), e(p) € H
and thus p € G. Also, ¢; € H. Since p € G and p I+ (¢4 € 7), we have ¢; € D. So,
¢1 € Hn D. This shows H is M[G]-generic for Q/G.

Finally, M[H] = M[G][H] is immediate since G € M[H]. O

We now state precisely our theorem on intermediate extensions.

Theorem 2.3. Let M be a transitive model of ZFC, P € M a partial order, and
let G < P be M-generic for P. Then if N is a transitive model of ZFC with
M < N < M[G], then there is a two stage iteration partial order Py Pg m M and
an M-generic Gy x Gy for Py %Py such that N = M[G4] and M[G] = M[G41][G2].
Also, if X € M[G] and X < M, then there is a smallest transitive model N of ZFC
containing M and X, and thus we have M = M[X] = M[G:1] € M[G1][G2] =
MI|G] for some two stage forcing Py # P, and generic Gy * Gs.

Remark 2.4. We need the hypothesis that X < M; the result is not true for
arbitrary X € M[G].

First consider the case where M < M|[G], where G is M-generic for P and
X € M[G], X < ON. Let B be the completion of P, so B is a complete Boolean
algebra and M[G] = M[G'] where G’ is M-generic for B. Thus, we may assume
that P is a complete Boolean algebra. Fix a 7 € M?P with X = 7. For a <
n = sup(X), define b, = [& € 7]. Let A < B be the complete subalgebra of B
generated by the b,. By this we mean A is the smallest subalgbra of B containing
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the b, and closed under the )| and [] operations of B (this easily exists). Let
H = G n A. The identity (inclusion) map i: A — B is a complete embedding,
and thus i71(G) = G n A = H is M generic for A. In particular, M[H] is a
model of ZFC. We show that M[H]| = M[X]. First, X € M[H], since a € X iff
bo € G iff b, € H (since b, € A). Next we show any transitive model N of ZFC
which contains X must contain H, and this finishes. Now, the subalgebra A can
be constructed as follows. Let Ag = {[ba]}. At limit stages let Ag =[], _5A,. At
successor steps, let Agi1 = Agu {—a:ae Ag} U {3 E: E € Ag} (here ) refers
to the supremum operation of B; we continue this construction until Ag = Agyq).
We show by induction on 8 that G n Ag lies in N (more precisely, we are actually
giving a definition by transfinite recursion in N of the function v — G n A,). For
B = 0 we have [b,] € G iff a € X. Since X € N, this shows G n Ay € N. For j
limit the inductive step is trivial. At successor steps we have —a € G iff a ¢ G, and
MEeGift Gn E # ¢ (recall that since B is a complete Boolean algebra, G is a
a generic ultrafilter on B). This gives a definition by transfinite recursion in N of
the function v — G n Ay, and shows in particular that G n A, € N for all . For
v large enough this gives G n A € N. Thus, M[H] = M[X]. The same argument
just given also works if X € M (with X € M[G)).

We next show that if N is any model of ZFC with M < N < M[G] then
N = M[H] for some generic extension M[H] of M. Let S = P(B) n N = PN (B).
For any X € N, there is a set of ordinals A(X) € N which “codes” X in that X
lies in any transitive model of ZF containing A(X). In particular, A(S) € N. By
the previous paragraph, M[A(S)] exists and M[A(S)] = M[H] for some generic
extension M[H] of M. Fix now X € N. Let A(X) be the complete subalgebra of
B constucted above so that M[A(X)] = M[A(X) n G] (this actually depends on
the choice of name for A(X), but this doesn’t matter). Since M[A(X)] € N, we
have A(X) n G e N. Thus, A(X) nG € S. This show X € M[S] = M[H]. Thus,
N c M[H] and so N = M[H].

We have shown that if N is a model of ZFC with M € N € M[G] then N =
MTJH] is a generic extension of M, and if X € M[G], X € M, then M[X] exists
and M[X] = M[H] is a generic extension. In both cases H is an M-generic for a
complete Boolean algebra which a complete subalgebra of B (where G is M generic
for B). Lemma 2.2 now finishes the proof of theorem 2.3.

3. GENERAL ITERATIONS

We now extend the discussion from two step iterations to iterations of general
length. Definition 1.1 shows how to unravel a two-step iteration into a partial
order in the ground model. We will use the same definition for successor steps
in the general definition. That is, an iteration P,,; of successor length will be
(isomorphic to) a partial order of the form Py # Q4 where Py, is an « length iteration
and Q, € M is a P, name with 1, |- (Qa is a partial order). There will actually be
a slight “notational” isomorphism involved. For example, an element of a three step
iteration would, by definition 1.1 iterated twice, be an element of the form {{z, y), 2),
whereas in our official definition we will take the elements to be sequences of length
3 (i.e., functions with domain 3).

The main question is what to do at limit ordinals, and there are a variety of
possibilities, all of which are useful in different arguments. Following Kunen we
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consider fairly general possibilites by allowing the “supports” of the conditions to
lie in a general ideal on «a. The precise definition follows.

Definition 3.1. Let M be a transitive model of ZF, « an ordinal of M, and
T < P(«) an ideal on « (possibly improper, that is, Z = P(«)) which lies in M. An
« stage iterated forcing is a pair of sequences in M of the form (Pg)s<a, <Qﬂ>5<a.
Each Pg will be a partial order in M (with a maximal element 1p,), and Qg is a
Ps name with 1p, I (Qgp is a partial order with maximal element 1@5)' Each Pg
will consist of p = {(p,)y<p which are sequences of length 5. The Py satisfy the
following inductive conditions.
(1) Py is a partial order in M.
(2) p={py)r<p+1 € Ppy1iff pIB € Pg, pg € dom(Qp), and p[B Ikp, (ps € Qp).
Ifp’ = (o), )y<p+1 € Pgy1 thenp < p"iff pt B <p, p'1Band p I-p, (s < ps)-
(3) For § limit, p = {py)y<p € Pg iff Vy < B ply € P, and the support of p is
in Z, where the support of p is defined by supp(p) = {vy < B: p, # 1Qw}'
For p,p’ € Pg, we have p < p' iff Vy < 8 (ply < p'17v)
We define 1p, to be the sequence (1 )y<p.

The final o stage iteration P, is determined from the sequence of Pg and Qg
for 8 < ~. We will thus frequently abbreviate the above definition by writing it as

(Ps,Qp)p<a-

Definition 3.2. We say an iteration is of finite support if Z is the ideal of finite sets,
of countable support if T is the ideal of countable sets (in M), and of full support if
Z="P(a).

Note that by properly choosing Z it is possible to mix the various types of
iterations. For example, we might have an iteration of length w-3 where we alternate
finite and full supports. then Z would be the ideal on w-3 of sets A such that Anw
and A N (w-2,w - 3) are finite.

The next definition gives a natural embedding eg, from Pg to P, when 8 < v <
a, and the following lemma shows this is a well-defined complete embedding. Thus,
a generic G, for the a length iteration P, induces generics Gz for all 8 < a.

Definition 3.3. Let (Ps, Qg)p<a be an o length iteration in a transitive model M
of ZF. Define, in M, for § < v < a the map eg,: Pg — P, by eg,(p) = ¢ where
q!B =pandfor f<n<~,qn) =1, .

Lemma 3.4. Let <P5,Q5>5<a € M be an « length iteration. Then for any B <
v < «, the map eg, s a well-defined one-to-one map from Pg to P, which is a
complete embedding.

Proof. Fix f < v < a (if B = v the result is trivial). Let p = {p,)n<p € Pg,
and let ¢ = egy(p). Clearly ¢ € P, since for any n < v, ¢ln I+ (1Qn € Q,,) (as
1p, I- (lQn € Qn)) Clearly egy is one-to-one.

We check that eg, is complete. It is trivial to check that if p < p’ then
egy(p) < ep,(p’). Suppose now p Lp, p’, and we show eg,(p) Lp, esy(p'). If

q < egy(p),epy(p'), then ¢! 8 < p,p/,sop || p. Thus, p L p" iff eg,(p) L eg(p).
Suppose now g = {py )<~ € P,. Let p = ¢ € Pg. We show that p is a reduction
of ¢ for eg,. Suppose p' = (p} )n<p < p. We must show that eg,(p’) || g. Define



7

r by ri8 = p and r|(y — 8) = ¢l(y — B). Clearly |3 € Pg. Since q € P,, a
straightforward induction on 7 € (v — ) shows that r|n € Pn and r|n < g7 (for
example, for the successor step: since ¢In I (p, € Qn) and 71 < ¢q[n by induction,
- (py € Qp). Thus, r}(n + 1) € P,y and trivially 7}(n + 1) < ¢ql(n + 1)).
Also, r < egy(p') since 7 = p'If and for n = B, rin I+ (p, < 1Qn)' Thus,

r < egy(p), g O

If <Pg,Q5>g<a € M is an « length iterated forcing, and G is M-generic for
P., then for 8 < a we will write G.g for the generic for Pg induced by G (so
G = G,). We also write G¢g for Gg11. We can also define for 8 < « the generic
Gp S (Qp)a-s- This is defined by Gg = {p(B)g_,: p € G<p}. Now, Pgyq is
isomorphic to Pg * Qg. Under this isomorphism, Gg corresponds to G * Gg [To
be explicit, the isomorphism 7: Pgi1 — Pg Qg is given by 7 (p) = (w18, 7(B)).]
From theorem 1.2 we have that Gg is M [G<g] generic for (Qg)@<ﬁ.

Finite and countable support iterations are frequently used, and we consider
some of the properties preserved under such iterations. First we show that k-c.c.
is preserved under finite support iterations.

Lemma 3.5. Suppose & is a regular cardinal of M, and (Pg, Q5>ﬁ<a s an « length

iteration using finite supports. Suppose for each f < « that 1p, I- (Qp is i c.c.).
Then P, is k-c.c. in M.

Proof. We show by induction on 5 < o that Pg is k-c.c. in M. If Pg is k-c.c., then
Psy1 is k-c.c. (in M) from lemma 1.3. Suppose now f is limit, and is least such
that Pg is not k-c.c. Let {p,},<x be an antichain of Pz. Let s, = supp(p,). Thus,
sy € B is finite. We may assume the s, form a A-system (note that if 8 < x this is
trivial) with root r < . Let v < 8 with 7 > sup(r). We claim that that p, [ form
an antichain in P, a contradiction. To see this, let p = {pe)e<p and ¢ = {o¢)e<p
be two elements of the antichain {p,},<.. Suppose p|vy and ¢|v were compatible,
say 7 < plv,qlv. Define v’ by

r(§) if&<ny

if £ =~ A& ¢ (supp(p) v supp(q))
p(§) if &=y A& esupp(p) —supp(q)
q(§) if =~ A & esupp(q) — supp(p)

Since 7 < pl7v,qly, a straightforward induction on ¢ shows that ' [{ € P¢ and
1€ < plE, ql€. Thus, ' < p,q, a contradiction. O

Corollary 3.6. A finite support iteration of c.c.c. forcings is c.c.c.

We now consider iterations with countable support. We would like to show that a
countable support iteration of countably closed forcings (i.e., 1p, I- Qﬁ is countably
close)) is countable closed, however, that is not true in complete generality. It is
true, however, if we choose the names Qﬂ for the partial orders in a reasonable
manner which, we will see, imposes no loss of generality.

Definition 3.7. Let M be a transitive model of ZF, P be a partial order, and
7w e MP. We say 7 is full if 7 = dom(7) x {1p} and for all p € P and 7 € MP, if
p I (7 € 7) then there is a 0 € dom(7) such that p I (7 = o).



If 1p |+ (7 is a partial order), then we say 7 is w-full is whenever p € P, o, €
dom(w) and p I+ (6, € T A 0py1 < 0,) for all n, then there is a o € dom(7) such
that p I (0 < oy,) for all n.

The next lemma shows that there is no loss of generality is using full names for
sets.

Lemma 3.8. Let M be a transitive model of ZFC and m € MP. Assume 1p |- (7 #
). Then there is a full name 7' such that 1p I (7 = 7).

Proof. Let 7' be the set of all (1p, ) where o € P(P x dom?(x)) and 1p |- (¢ € 7),
where z € dom? () iff 37 € dom(n) (z € dom(7)). Clearly 7/ € M® and is of the
desired form. It is also clear that 1 |- (7’ < ) [for any generic G, 7y, < mg since if
x € T, then « = o¢ for some o such that 1 |- (o € 7)]. To show 1 |- (7 < 7’) and
to show fullness it suffices to show that for any p € P and p € MP,if p I- (p € 7) then
for some o € dom(n’) we have p I- (p = o). Let p, p be as above, so p I (p € 7).
Let A < P be maximal subject to being an antichain and for all g € A either ¢ < p
and for some 7, € dom(w), ¢ I- (p = mg) or ¢ L p and for some 7, € dom(7w) we
have ¢ I+ (my € m). Clearly A is a maximal antichain of P. For each ¢ € A we will
define a name 7,, and then we will take o to be the union of all the 7,. Fix ge 4
and the corresponding 7, € dom(w). Let 7, = {{r,u): 3(s,uy € my (r < ¢,s)}. Let
0 =Jyen Tq- We must show that 1 |+ (o € m) and p I (0 = p). First, since A is an
antichain, for any ¢ € A we have ¢ | (0 = 7;). We also have ¢ |- (7, = my) [Let G
be generic containing ¢. If z € (7,) ¢, then = ug for some (r,u) € 7g, r € G, with
say r < s and (s,uy € my. Thus z = ug € (7y)g. If x € (74) g, then z = ug for some
(s,u) € my, where s € G. Let r < ¢,s. Then (r,u) € 7. Hence = ug € (7y)a.]
So, ¢ I+ (0 = my). Since A is a maximal antichain, this gives 1 |- (o € 7).

Next we show p I- (p = o). For any ¢ € A with ¢ < p we have ¢ I (0 = 7,;) as
above. But also, ¢ I (p = m,) by definition of A and m,. So, ¢ I (p = o) for all
g€ A with ¢ < p. Thus, p I+ (p = o). O

The previous lemma shows that there is no loss generality in using full names for
non-empty sets, in particular for the partial orders in an iterated forcing. The next
lemma shows that if we do this, and if the partial orders are forced to be countably
closed, then w fullness condition is satisfied.

Lemma 3.9. Suppose M is a transitive model of ZFC, P € M, m € M is a full
name for a non-empty set and 1lp |- (7 is a countably closed partial order). Then
w18 w-full for P.

Proof. Let p € P and suppose p |- (0p4+1 < 0y,) for all n. We follow the argument
of the previous lemma. Let A € P be maximal subject to being an antichain and
for all g € A either ¢ < p and there is a 74 € dom(r) such that ¢ I+ (Vn 7y < 0,,), or
g 1 p and for some 7, € dom(w) we have ¢ |- (7, € 7). Using the fact that 1 |- (7
is countably closed ) it follows that A is a maximal antichain of P. For each ¢ € A
we construct 7, as in the previous lemma, and then let ¢ = geA Tq a8 before.
Exactly as before, for g € A, ¢ (0 = 7;), and thus 1 | (o € ). Also, for all
g € A with ¢ < p we have ¢q I (Vn 7y < 0,,). Thus, p IF (¥n 0 < 0,,). By fullness,
since p |- (o € m), we have that for some o’ € dom(w) that p I (0 = ¢’). Hence,
pl- (Vn o' <oy). O
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Thus, in iterating countably closed forcings, there is no harm in assuming the w
fullness condition is satisfied. This next theorem shows that for countable support
iterations, this is enough to guarantee the iteration is countably closed.

Theorem 3.10. Let M be a transitive model of ZFC, and (Pg,Qds<a € M is an
a length iteration with countable supports. Suppose for each B < « that 1p, I~ (Qp
is countably closed ), and that Qg is w-full for Pg. Then P, is countably closed.

Proof. Work in M, and suppose p" = <pg> € P, are such that p,.1 < p, for all
n € w. We define p = {pg) € P, with p < p” for all n. Let S, = supp(p"),
and S = |J,, Sn.- So, S < a is countable. We define pg by induction on 3. Let
po € Py extend all of the p{j, which we can do as Py is countably closed. If § < «
is limit, let pIB = U7<Bp['y. Assume now plf is defined and plB < p™ |8 for all
n. If ¢S, let pg = 1, . Clearly in this case pl(B+1) <p"1(B+1) for all n.
Suppose now 3 € S. For each n we have p"*!|3 < p™|3 and p"*! |3 I- (ngr1 <

ps). So, pIB Ik Vn (ng < pj). By w-fullness there is a pg € dom(Qp) such
that pl B I Vn (ps < pj). This defines ps = p(B), and thus p[(B + 1). Clearly
pl(B+ 1) <p™(B+ 1) for all n. This defines p. By construction supp(p) € S, so
p € Py. Also, p < p" for all n. (]

4. MARTIN’S AXIOM

We introduce Martin’s axioms and use an iteration of finite support c.c.c. forcings
to show it is consistent (with —CH).

Definition 4.1. Let x be an infinite cardinal. MA(k) is the statement: if P is a
c.c.c. partial order and {Dg}a<x i a & size family of dense subsets of P, then there
is a filter G < P such that G n D, # & for all « < k. MA is the statement that
Vi < 2¥ MA(k).

The following simple lemma is important for the proof.

Lemma 4.2. MA(k) is equivalent to the statement that for any c.c.c. partial order
P = (k,<) on k, and any collection {Dy}a<x of dense subsets of P, there is a filter
G < Kk meeting all of the D,,.

Proof. Let Q = (Q, <g) be a c.c.c. partial order. Let P € @) with |P| = x and P
sufficiently closed. Specifically, we require:

(1) For all pe P and all a < &, there is a ¢ € D, with ¢ < p.

(2) If p,q € P are compatible in Q, then for some r € P we have r < p, q.
Let P = (P, <p) where <p=<q n(P x P). Let E, = D, n P for a < k. Thus, E,
is dense in P. Note that P is still c.c.c. by 2 (an antichain of P is also an antichain
of Q). Suppose G € P and G n E, # & for all @ < k. Let H < @ be the filter on
Q generated by G (i.e., H={qe Q:3Ire G (r < q)}). Then H n D, # & for all
a < K. (I

The following technical lemma will also be used.

Lemma 4.3. Let M be a transitive model of ZF, P, Q partial orders in M, and
e: P — Q a complete embedding in M. Let H € Q and G = e ' (H). For o € MP
we define €'(0) € MQ inductively by €' (c) = {{/(p),e(p)): {p,p) € a}. Then for all
o€ MP we have og = (¢/(0)) .
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Proof. By induction on 0. We have

¢(0))u ={e(p)u: Hp,p) € o (e(p) € H)}
={pc: Hp,p)eo (e(p) € H)}
={pc: Hp,pyeo (peG)}

=0qg

We are now ready to show the consistency of Martin’s axiom.

Theorem 4.4. Let M be a transitive model of ZFC and k a regular cardinal of
M with (2<F = k)M . Then there is a c.c.c. partial order P € M such that if G is
M -generic for P then M[G] satisfies MA+2¥ = k. In particular (since P preserves
cardinals), CON(ZFC) — CON(ZFC + MA + —CH).

Proof. We construct P as a x length iteration of c.c.c. forcings with finite support.
It will then follow from lemma 3.5 that P is c.c.c.. Thus P will preserve all cardinals
and cofinalities. In particular, k will be a regular cardinal of M[G]. Each stage Pa
(for @ < k) of the iteration will have size < x in M. The idea is to arrange so that
the iteration eventually forces with all possible P, names for c.c.c. partial orders
on some A < k, for all a < k.

Fix in M a bijection b: k — k x x with b~! increasing in each argument (so if
b(a) = (B,7) then 8,7 < a). As we define Pg (for S < k) we simultaneously fix an
enumeration {Qg},K,Q of the the P, nice names for a partial order on some A, < &,
that is, nice names such that such that

1p, I- (Qg is a c.c.c. partial order).

Assuming inductively that |Pg| < x and Pg is c.c.c., we can do this as there at most
Y2 (IPa]®)* = Kk many such names (this cardinality computed in M; we are also
implicitly using AC in M).

We now give the inductive definition of the Qa, and hence of the iteration (again,
the iteration will be of finite support). Suppose for 8 < « that Pg is defined, is c.c.c.
in M, and |Ps| < k. Let b(a) = (8,7). Let Qo = e’Ba(Qg), where ego: Pg — Py,
is the canonical embedding and efga is as in lemma 4.3. From lemma 4.3 we have
that 1p, I (Qu is c.c.c. ). Clearly Py, satisfies our inductive hypotheses (note
that in M we have |Qq| < Ay - |Pg| < k). The inductive hypotheses are satisfied at
limit o from lemma 3.5 (which show P,, is c.c.c.), and the finite support condition
(which gives that [Po| = > 5_, |Ps| < & by induction, as « is regular).

Let G be M-generic for P = P,. We claim that if A < x and x < A with
x € M[G], then for some a < k we have z € M[G<,]. To see this, let 0 € MP"
be a nice name for z. Clearly |0| < k. As k is regular, there is an a < £ and a
o’ € MP= such that e/,,.(0') = o. From lemma 4.3 we have that z = oG = (0/)g_,,.
So z € M[G<al

In particular, every x € P(w) n M[G] lies in some M[G<,]. Thus there are
at most Y, _ (|[Pa|¥)¥ = k (this computation done in M) many reals in M[G].
Thus, (2¥ < x)MIE]. Since cofinally often we force with the Cohen partial order,
we clearly have (2¢ > x)MI¢], Hence (2¢ = x)ML%],
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To show M[G] satisfies MA, it is enough to consider by lemma 4.2 a partial
order in M[G] of the form R = (), <g), where A < k. Fix dense sets {Ds}s<,
where p < k.

From the claim above, fix f < & such that R € M[G <] and {Ds}s5<, € M[G3].
Let ¢ € MP# be a nice P name for R. We may assume that 1p, |- (o is a c.c.c.
partial order) [Let p € Pg, p I (0 is a c.c.c. partial order). Let A € Pg be a maxiaml
antichain containing p. Fix a partial order T"in M. Let m, = o, and for ¢ € A,
qg#pletmy = T. From A and the g We construct a name ¢’ as in lemma 3.8 such
that p I- (¢/ = o) and 1pg I (¢’ is a c.c.c. partial order). We may assume then
that o’ is a nice name.] Let 7 < k be such that ¢’ = Qg, and let a be such that
b(a) = (8,7). Then Qq = €54 (0"). From lemma 4.3 we have (Qu)g.. = og_; = R.
From theorem 1.2, M[G«,] contains an M[G <, ]-generic for R. This generic meets
all the dense sets Dj, 0 < p, since they lie in M[G<g] € M[G<y]. Thus in M[G]
there is a filter meeting all of the dense sets Ds. O



