
Vκ, Hκ, and HOD

Recall that working in ZF (in fact, ZF´Power) we have previously defined Vα
for all α P ON. Recall that Vα consists of all sets of rank ă α (remember Vα is a
set). The next lemma shows what axioms of set theory hold in these sets.

Lemma 0.1. Assume ZF. Then for any limit ordinal α ą ω, Vα |ù ZF´Replacement.
Assuming ZFC, for any limit ordinal α ą ω, Vα |ù ZFC´Replacement.

Proof. The empty set axiom holds in Vα as H P Vα and the statement φpxq “
 Dy P x is ∆0 so absolute. If x, y P Vα then tx, yu in Vα as α is a limit. Since
the statement φpx, y, zq “ rx P z ^ y P z ^ @w P z pw « x _ w « yqs is ∆0, hence
absolute, it follows that Vα |ù pairing. The union axiom is similar. By downwards
absoluteness, foundation holds in any class (since we assuming foundation holds in
V ), so it holds in Vα. Since α ą ω, ω P Vα. As the statement φpxq ““x “ ω” is
absolute, Vα |ù infinity. Extensionality holds in Vα as Vα is transitive. If x P Vα,
then Ppxq P Vα as α is a limit. The statement φpx, yq “ ry “ Ppxqs, written out,
is Π1 and hence downwards absolute. Since v |ù φpx,Ppxq, it follows that Vα |ù
φpx,Ppxqq. Hence Vα |ù Power set. To see comprehension, let φpx1, . . . , xn, y, zq
be a formula and let a1, . . . , an, b P Vα. By comprehension in V applied to the
formula φVαp~x, y, zq (which has the extra parameter Vα in it) there is set w such
that @z pz P w Ø z P b ^ φVαp~a, b, zqq. Since b P Vα, we also have w P Vα. Hence
Vα |ù Dw @z pz P w Ø z P b ^ φp~a, b, zqq, and so Vα |ù Comprehension. Finally,
suppose AC holds in V . Let a P Vα. By AC in V , let ă be a wellordering of a. Since
ăP PPPpaq and α is limit, ăP Vα. The statement φpx, yq “ ry is a wellordering
ofxs is Π1, and since it holds in V it holds in Vα. Thus, Vα |ù AC. �

Thus, in ZF we can prove that there are set models for all of ZF except replace-
ment. More precisely, for any formulas φ of ZF´Replacement, ZF $ @αpα ą ω^α
limitÑ φVαq.

Corollary 0.2. ZF´Replacement & ZF.

Proof. Replacement clearly does not hold in Vω¨2. Let φ be an instance of replace-
ment so that ZF $ p φqVω¨2 . If ZF´Replacement $ ZF, then there would be
finitely many axioms tψ1, . . . , ψnu of ZF´Replacement such that tψ1, . . . , ψnu $ φ.

But, ZF $ ψVω¨21 ^ ¨ ¨ ¨ ^ ψVω¨2n , and so ZF $ φVω¨2 , a contradiction. �

In the proof of corollary 0.2 we have implicitly assumed the consistency of ZF,
though we could get by just assuming the consistency of ZF´Replacement.

Exercise 1. Just assuming the consistency of ZF´Replacement, show that ZF´Replacement
& ZF. (hint: let φ be the instance of replacement which gives the existence of ω ¨ 2.
If ZF´Replacement & φ, we’re done, so assume ZF´Replacement $ φ. Now follow
the above prove for this φ.)

Exercise 2. Let ψ1, . . . , ψnu be axioms of ZF. Show that ZF´ReplacementYtψ1, . . . , ψnu &
ZF. (hint: Working in ZF, show that there is a least limit ordinal α ą ω such that
Vα |ù ψ1 ^ ¨ ¨ ¨ ^ ψn. Argue then that there must be a smaller limit ordinal β ă α
such that Vβ |ù ψ1 ^ ¨ ¨ ¨ ^ ψn.)

We now define another family of sets called the Hκ. If P is any property, we say
set x hereditarily has property P if every element of the transitive closure of x has
property P .

1



2

Definition 0.3. (ZFC) Let κ be an infinite regular cardinal. Hκ is the collection of
sets which hereditarily have size less than κ, that is, every element of the transitive
closure of x has cardinality ă κ.

We first give a simple reformulation of the definition.

Lemma 0.4. For all sets x, x P Hκ iff |tr clpxq| ă κ.

Proof. Clearly if |tr clpxq| ă κ then x P Hκ. Suppose now x P Hκ. Recall clnpxq
is defined by: cl0pxq “ x, cln`1pxq “ clnpxq Y pYclnpxqq. If we assume inductively
that |clnpxq| ă κ, then cln`1pxq is a ă κ union of sets each of which has size ă κ
by definition of Hκ. Since κ is regular, it follows that |cln`1pxq| ă κ. Finally,
tr clpxq “

Ť

n clnpxq and using the regularity of κ again we have |tr clpxq| ă κ. �

The definition of Hκ shows it is a class, but we now show that is in fact a set.

Lemma 0.5. For all infinite regular cardinals κ, Hκ Ď Vκ.

Proof. Suppose x R Vκ, so |x| ě κ. We know from lemma ?? that for every α ă |x|,
there is a y P tr clpxq such that |y| “ α. This clearly forces |tr clpxq| ě κ, so
x R Hκ. �

One could give another proof of lemma 0.5 as follows. Let x P Hκ. Using
AC, let λ ă κ be the cardinality of tr clpxq, and let f : λ Ñ txu Y tr clpxq be
a bijection. Define the relation E on λ by αEβ iff fpαq P fpβq. Thus, pλ,Eq
“codes” the set txu Y tr clpxq. Clearly λ,E P Vκ. Let π be the collapse map for
pλ,Eq. We show by induction on E that for all α P λ that πpαq P Vκ. We have
πpαq “ tπpβq : β P λ ^ βEαu. By induction, each πpβq in the above expression is
in Vκ, so πpαq Ď Vκ. Since κ is regular and λ ă κ, πpαq Ď Vγ for some γ ă κ, and
hence πpαq P Vγ`1 Ď Vκ. In particular, x P Vκ.

Note that if x Ď Hκ, then to show x P Hκ it is enough to show that |x| ă κ.
Also, since each ordinal is transitive, clearly Hκ XON “ κ.

The next lemma shows that ZFC´Power holds in the Hκ.

Lemma 0.6. (ZFC) For every axiom φ of ZFC´Power, ZFC $ @κ rκ regular Ñ

φHκs.

Proof. We work in ZFC. Let κ be an infinite regular cardinal. We show that all
the axioms of ZFC except power hold in Hκ. Note for the following arguments that
by definition Hκ is transitive. Foundation holds in Hκ as it holds in any set or
class. Clearly, H P Hκ, and by absoluteness then Hκ satisfies the emptyset axiom.
If x, y P Hκ, then |tx, yu| ă ω ă κ, so tx, yu P Hκ. By absoluteness, Hκ satisfies
the pairing axiom. If x P Hκ then Yx Ď tr clpxq, so tr clpYxq Ď tr clpxq, ansd so
|tr clpYpxqq| ď |tr clpxq| ă κ. Thus, Ypxq P Hκ. By absoluteness, Hκ satisfies the
union axiom. Since κ ą ω, ω P Hκ as we noted above. By absoluteness, Hκ satisfies
the infinity axiom. Since Hκ is transitive, it satisfies extensionality (if x ‰ y are in
Hκ, then there is a z P x, say, with z R y. By transitivity, z P Hκ).

To show comprehension, let φpx1, . . . , xn, y, zq be a formula, and let a1, . . . , an, w P
Hκ. We must show that Dv P Hκ @y P Hκ py P v Ø py P w ^ φHκp~a, y, wqqq. By
comprehension in V applied to the formula φHκp~x, y, zq, there is a v P V such
that @y py P v Ø py P w ^ φHκp~a, y, wqqq. In particular, @y P Hκ py P v Ø
py P w ^ φHκp~a, y, wqqq. Thus, it suffices to observe that v P Hκ, which follows as
v Ď w P Hκ (any subset of an element of Hκ is in Hκ).
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To show replacement, let φpx1, . . . , xn, y, z, wq be a formula, a1, . . . , an, A P Hκ,
and assume p@y P A Dz φp~a, y, z, AqqHκ . Thus, @y P A Dz P Hκ φHκp~a, y, z, Aq.
Applying replacement in V to the formula rφHκ ^ z P Hκs, there is a set B such
that @y P A Dz P BX P Hκ φ

Hκp~a, y, z, Aq. By AC, there is a B1 Ď B with |B1| ď |A|
such that @y P A Dz P B1X P Hκ φ

Hκp~a, y, z, Aq. Since B1 Ď Hκ and |B1| ă κ, we
have B1 P Hκ. Thus, pDB @y P A Dz P B φp~a, y, z, AqqHκ .

Finally, to see AC holds in Hκ, let a P Hκ. By AC in V , let ă be a wellordering
of a. Since ăĎ a ˆ a, | ă | ă κ. Easily ăĎ Hκ, as every ordered pair xx, yy is in
Hκ if x, y P Hκ. So, ăĎ Hκ, and hence ăP Hκ. By downwarda absoluteness, pă is
a wellorderingqHκ . �

Corollary 0.7. ZFC´Power & Power.

Proof. Similar to the proof of corollary 0.2, using now the fact that ZFC $ p PowerqHω1 .
�

Lemmas 0.1, 0.6 are stated and proved in the metatheory, however me may
formalize their statements and proofs within ZFC. Lemma 0.6, for example, then
becomes the statement ZF $ @α@n ppα ą ω limit^θpnq Ñ ρpn, Vαqqq where θ is the
formula which represents the relationRpnq Ø n codes an axiom of ZF´Replacement.
[The only thing slightly problematic in the formalizations is where we consider the
relativizations φVκ , φHκ . But lemma ?? gives us a formula ρ which expresses the
formalizations of these notions, e.g., the formalization of pθnq

Vκ is the statement
ρpn, Vκq.]

Here ρ is the set satisfaction formula of lemma ??. Likewise, lemma 0.6 when for-
mailzed becomes the statement ZFC $ @κ@n ppκ an uncountable regular cardinalq^
θ1pnq Ñ ρpn,Hκqqq, where now θ1 representsR1pnq Ø n codes an axiom of ZF´Power.

The completeness theorem of first order logic may also be formailzed within
ZFC (or ZF for countable theories, which we consider here). It then becomes the
statement that ZF $ @T Ď ω pCONpT q Ø DM @n P T ρpn,Mqq. Using this, we
may reformulate the formalzed lemmas 0.1, 0.6 as consistency results as follows.

Corollary 0.8. ZFC $ CONpZFC´ Replacementq.

Corollary 0.9. ZFC $ CONpZFC´ Powerq.

From Gödel’s theorem, we know that ZFC & CONpZFCq, but these corollaries
show that if we weaken ZFC a bit, we can prove its formal consistency within ZFC.

We showed that Hκ Ď Vκ for all infinite regular κ. When does equality hold?
Now Vκ Ď Hκ iff @α ă κ pVα P Hκq (since if Vα P Hκ then any subset of Vα is in
Hκ). Since each Vα is transitive, this is then equivalent to @α ă κ p|Vα| ă κq. By
definition of the i function, |Vω`α| “ ipαq. So, Vκ “ Hκ iff @α ă κ ipαq ă κ.
Now ipαq ě α, so ipα`1q ě 2|α| for all α. Thus, for Vκ to equal Hκ we must have
@λ ă κ 2λ ă κ. Since κ is assumed regular, we must then have that κ is strongly
inaccessible. Conversely, if κ is strongly inaccessible, the following exercise shows
this condition is satisfied.

Exercise 3. Show that if κ is strongly inaccessible then @α ă κ pipαq ă κq.

We thus have:

Fact 0.10. For all infinite regular cardinals κ, Hκ “ Vκ iff κ is strongly inaccessible.

Corollary 0.11. ZFC & Dκ pκ is strongly inaccessibleq.
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Proof. If ZFC $ Dκ pκ is strongly inaccessibleq, then from the formalized lem-
mas 0.6, 0.1 we would have ZFC $ Dκ @n pθpnq Ñ ρpn,Hκqq where θ represents
Rpnq Ø θn P ZFC, and ρ again is the set satisfaction formula. By the formal-
ized completeness theorem, this would give ZFC $ CONpZFCq, a contradiction to
Gödel’s theorem. �

Note that the proof of corollary 0.11 actually showed the following.

Corollary 0.12. ZFC` Dκ pκ is strongly inaccessibleq $ CONpZFCq.

We sometimes state corollary 0.12 by saying that ZFC`Dκ pκ is strongly inaccessibleq
has a greater consistency strength that ZFC.

Exercise 4. Show corollary 0.11 without using Gödel’s theorem. [Hint: Suppose
ZFC $ Dκ pκ is strongly inaccessibleq, and let ψ1, . . . , ψn be a finite fragment of
ZFC such that tψ1, . . . , ψnu $ Dκ pκ is strongly inaccessibleq. Working in ZFC, let
κ be the least strongly inaccessible cardinal. Use lemmas 0.6, 0.1 and an absolute-
ness argument to show that there is a strongly inaccessible λ ă κ.]

Vκ and Hκ are sets which we showed satisfy certain fragments of ZFC. We now
consider a certain class, HOD, which we show (assuming ZFC) satisfies all of ZFC.
In fact, HOD will be a transitive class containing all of the ordinals, a so-called
inner model of ZFC.

We would like to say a set x is ordinal-definable if there is a formula φpx1, . . . , xn, yq
and ordinals α1, . . . , αn such that x is the unique set x such that φpα1, . . . , αn, yq.
We would then define HOD to be the sets which are hereditarily ordinal defin-
able. The problem with this is that this definition, at least the way it is stated,
is not a legitimate formula of set theory, i.e., doesn’t really seem to define a
class. The problem, as we mentioned before, is that we cannot define formual
satisfaction over classes, only over sets. However, the reflection theorem pro-
vides a way to circumvent this logical problem. For any formula φ and ordinals
α1, . . . , αn, the reflection theorem says that there is a β ą maxtα1, . . . , αnu such
that @y P Vβ pφp~α, yq

Vβ Ø φp~α, yqq. Thus, there should be no loss of generality in
interpreting our formulas in the Vβ . This suggests the following definition.

Definition 0.13. OD is the class defined by:

x P OD Ø Dβ P ON Dα1, . . . , αn ă β Dn P ω @y P Vβ rpy « xq Ø ρpn, x~α, yy, Vβqs

where ρ is the formula for set satisfaction from lemma ??. Also,

x P HOD Ø @y P tr clpxq py P ODq.

Note that the quantification over α1, . . . , αn should really be expressed as a
quantification over sets z “ xα1, . . . , αny coding the sequence.

Our remarks above concerning the reflection theorem now easily give the follow-
ing.

Lemma 0.14. Let φpx1, . . . , xn, yq be a formula of set theory. Then

ZF $ @α1, . . . , αn P ON @x r@y py « xØ φp~α, yqq Ñ y P ODs.

By definition HOD is transitive, and it trivially contains all of the ordinals. The
next theorem shows that working in ZF we can show that HOD satisfies ZFC. We
will need th following ordring on the finite sequences of ordinals.
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Definition 0.15. The Gödel ordering ăG on ONăω is defined by:

xα1, . . . , αny ăG xβ1, . . . , βmy Ø maxtα1, . . . , αnu ă maxtβ1, . . . , βmu

_ pmaxtα1, . . . , αnu “ maxtβ1, . . . , βmu ^ n ă mq

_ pmaxtα1, . . . , αnu “ maxtβ1, . . . , βmu ^ n “ m^ ~α ălex
~βq,

where ălex denotes lexicographic order.

The following lemma is clear from the definition.

Lemma 0.16. The Gödel ordering is a class wellordering of ONăω, all of whose
initial segments are sets.

Theorem 0.17. For all axioms φ of ZFC, ZF $ φHOD.

Proof. Foundation holds in HOD, as it holds in any class with the ε relation. Exten-
sionality holds as HOD is transitive. Consider pairing. Let x, y P HOD. Fix n P ω,
α1, . . . , αn P ON, and β1 P ON such that @z P Vβ rpz « xq Ø ρpn, x~α, yy, Vβq,and
similarly let m, γ1, . . . , γk, β2 witness y P HOD. Then,

z P tx, yu ØDw rw “ Vβ1 ^ ρpn, x~α, zy, wqs _ Dw rw “ Vβ2 ^ ρpm, x~γ, zy, wqs

The righthand is a formula in set theory with ordinal parameters n, m, ~α, ~γ, β1,
β2. Thus, tx, yu P OD. Since tx, yu Ď HOD, we have tx, yu P HOD.

Infinity holds in HOD by absoluteness, since ω P HOD (HOD contains all the
ordinals).

Consider the union axiom. Let x P HOD, and fix witnesses n, ~α, β. Then

z P YxØ Dw Dy rw “ Vβ ^ y P w ^ ρpn, x~α, yy, wq ^ Du P ypz P uqs.

Again, the righthand side is a formula with ordinal parameters n, ~α, β, and so
Yx P OD. Since Yx Ď tr clpxq Ď HOD, this shows Yx P HOD. By absoluteness,
HOD satisfies the union axiom.

To show comprehension, let φpx1, . . . , xn, y, zq be a formula, and a1, . . . , an, A P
HOD. We must show that B P HOD, where

B “ tz P A : φHODpa1, . . . , an, A, zqu.

Note that B exists in V by comprehension in V . Then,

x “ B Ø @z rz P B Ø Du1, . . . un Dv pu1 “ a1 ^ ¨ ¨ ¨ ^ un “ an ^ v “ A

^ φHODpu1, . . . , un, v, zqqs,

where in place of “u1 “ a1” we use a formula with only ordinal parameters (the
witnesses for a1 P HOD) and likewise for the other ai and A. This shows B P

OD, and since B Ď HOD we have B P HOD. Clearly, p@z pz P B Ø z P A ^
φpa1, . . . , an, A, zqqq

HOD, and so HOD satisfies comprehension.
To show power set, let x P HOD. Let α P ON be large enough so that Ppxq P Vα.

Note that Vα P OD (it is definable from α). Since HOD is a class, y “ VαXHOD P

OD as well, and so y P HOD. Clearly p@z pz Ď x Ñ z P yqHOD, so HOD satisfies
power set.

To show replacement, let φpx1, . . . , xn, y, z, wq be a formula, a1, . . . , an, A P

HOD, and assume p@y P A Dz φp~a, y, z, AqqHOD. Let α P ON be such that
@y P A Dz P Vα φp~a, y, z, AqqHOD. As Vα P OD, B “ Vα X HOD P HOD. Then
p@y P A Dz P B φp~a, y, z, AqqHOD.
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Finally, to show AC holds in HOD, let x P HOD. Every y P x is in HOD and
has a witness sequence n, ~α, β. To compare two elements y, z of x, we take the ăG
least witnesses for y and z, and compare them in the ăG ordering. In more detail,
define a wellordering of x by:

y ă z Ø y P x^ z P x^ Dn P ω Dx~αy P ONăω Dβ1 P ON

Dm P ω Dx~γy P ONăω Dβ2 P ON

r@u pu « y Ø Dw pw « Vβ1 ^ ρpn, x~α, uy, wqqq

^ @xn1, ~α1, β11y ăG xn, ~α, β1y  @u pu « y Ø Dw pw « Vβ11 ^ ρpn
1, x~α1, uy, wqqqs

^ r@u pu « z Ø Dw pw « Vβ2
^ ρpm, x~γ, uy, wqqq

^ @xm1, ~γ1, β12y ăG xm,~γ, β2y  @u pu « z Ø Dw pw « Vβ12 ^ ρpm
1, x~γ1, uy, wqqqs

^ xn, ~α, β1y ăG xm,~γ, β2y

Here for “y P x” we substitute an appropriate formula with only ordinal parameters,
and likewise for z P x.

Easily ă is a wellordering, and the above formula shows ăP OD. Since ăĎ

HOD, we have ăP HOD, and by downwards absoluteness pă is a wellordering of
xqHOD. �

Corollary 0.18. If ZF is consistent, then so is ZFC.

Proof. Suppose ZF is consistent, but ZFC is not. Then ZF $  AC. Let ψ1, . . . , ψn
be finitely many axioms of ZF such that tψ1, . . . , ψnu $  AC. From theorem 0.17,

ZF $ ψHOD
1 ^ ¨ ¨ ¨ ^ ψHOD

n . Hence, ZF $ p ACqHOD. But, ZF $ ACHOD from
theorem 0.17, a contraction to the consistency of ZF. �

Thus, the axiom of choice cannot introduce a contradiction into mathematics,
unless one was already present. This is a significant statement in view of the many
“pathological” sets that may be constructed with AC. For eaxample, with AC a
standard construction gives a non-measurable set of reals, and it can be shown that
AC is necessary for the construction (more on this later).

Finally, we note that although corollary 0.18 was proved in the meta-theory, the
argument is readily formalized, which gives the following version of the corollary.

Corollary 0.19. CONpZFq $ CONpZFCq.

Thus, the theories ZF and ZFC have the same consistency strength.


