V., Hy,, and HOD

Recall that working in ZF (in fact, ZF—Power) we have previously defined V,
for all @« € ON. Recall that V,, consists of all sets of rank < « (remember V, is a
set). The next lemma shows what axioms of set theory hold in these sets.

Lemma 0.1. Assume ZF. Then for any limit ordinal « > w, V,, |= ZF— Replacement.
Assuming ZFC, for any limit ordinal o > w, V,, = ZFC— Replacement.

Proof. The empty set axiom holds in V,, as J € V,, and the statement ¢(x) =
—Jy € x is Ag so absolute. If z,y € V, then {z,y} in V, as « is a limit. Since
the statement ¢(z,y,2) = [t €z AryezAaVwe z (w~x v w~y)]is Ag, hence
absolute, it follows that V,, = pairing. The union axiom is similar. By downwards
absoluteness, foundation holds in any class (since we assuming foundation holds in
V), so it holds in V,,. Since a > w, w € V,,. As the statement ¢(z) =“c = w” is
absolute, V,, k= infinity. Extensionality holds in V,, as V, is transitive. If z € V,,
then P(x) € V,, as a is a limit. The statement ¢(z,y) = [y = P(x)], written out,
is II; and hence downwards absolute. Since v = ¢(x, P(z), it follows that V,, =
¢(x,P(x)). Hence V,, = Power set. To see comprehension, let ¢(x1,...,xn,y,2)
be a formula and let aq,...,a,,b € V,,. By comprehension in V applied to the
formula ¢V= (#,y, ) (which has the extra parameter V,, in it) there is set w such
that Vz (z € w <> 2z € b A ¢V=(ad,b,2)). Since b € V,,, we also have w € V,,. Hence
Vo EdwVz (z€w o z€bna ¢(ab,z)), and so V, | Comprehension. Finally,
suppose AC holdsin V. Let a € V,,. By AC in V, let < be a wellordering of a. Since
<€ PPP(a) and « is limit, <€ V,,. The statement ¢(x,y) = [y is a wellordering
ofz] is II;, and since it holds in V' it holds in V,,. Thus, V,, = AC. O

Thus, in ZF we can prove that there are set models for all of ZF except replace-
ment. More precisely, for any formulas ¢ of ZF—Replacement, ZF - Va(a > w A «
limit— ¢"=).

Corollary 0.2. ZF— Replacement i/ ZF.

Proof. Replacement clearly does not hold in V,,.5. Let ¢ be an instance of replace-
ment so that ZF  (—¢)"2. If ZF—Replacement  ZF, then there would be
finitely many axioms {11, ..., 1, } of ZF—Replacement such that {11,...,¥,} - ¢.
But, ZF - 1/)¥“'2 Ao ApYez and so ZF - ¢Ve2, a contradiction. (I

In the proof of corollary 0.2 we have implicitly assumed the consistency of ZF,
though we could get by just assuming the consistency of ZF—Replacement.

Exercise 1. Just assuming the consistency of ZF—Replacement, show that ZF —Replacement
t£ ZF. (hint: let ¢ be the instance of replacement which gives the existence of w - 2.

If ZF—Replacement £ ¢, we’re done, so assume ZF—Replacement - ¢. Now follow

the above prove for this ¢.)

Exercise 2. Let 1, ..., ¢, } be axioms of ZF. Show that ZF—Replacement U{t1, ..., ¥, } £
ZF. (hint: Working in ZF, show that there is a least limit ordinal & > w such that

Vo =1 A -+« A1y, Argue then that there must be a smaller limit ordinal 8 < «

such that Vg =91 A -+ Ady,.)

We now define another family of sets called the H,. If P is any property, we say
set = hereditarily has property P if every element of the transitive closure of x has
property P.
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Definition 0.3. (ZFC) Let x be an infinite regular cardinal. H, is the collection of
sets which hereditarily have size less than k, that is, every element of the transitive
closure of x has cardinality < k.

We first give a simple reformulation of the definition.
Lemma 0.4. For all sets x, x € Hy iff |trcl(z)| < k.

Proof. Clearly if |trcl(x)| < k then € H,. Suppose now x € H,. Recall cl,(z)
is defined by: clp(z) = z, cly11(x) = cly(x) U (Ucl,(x)). If we assume inductively
that |cl,(2)| < &, then cl,41(z) is a < k union of sets each of which has size < k
by definition of Hy. Since k is regular, it follows that |cl,+1(z)| < k. Finally,
trel(z) = |, cln(x) and using the regularity of s again we have |trcl(z)| < . O

The definition of H, shows it is a class, but we now show that is in fact a set.
Lemma 0.5. For all infinite regular cardinals k, H,; S V.

Proof. Suppose z ¢ V,;, so |z| = k. We know from lemma ?? that for every a < ||,
there is a y € trcl(x) such that |y| = «. This clearly forces |trcl(x)| = &, so
r¢ H,. O

One could give another proof of lemma 0.5 as follows. Let z € H,. Using
AC, let A < £k be the cardinality of trcl(x), and let f: A — {z} U trcl(x) be
a bijection. Define the relation E on A by aES iff f(a) € f(8). Thus, (A, E)
“codes” the set {z} U trcl(z). Clearly A\,E € V,,. Let 7 be the collapse map for
(A, E). We show by induction on F that for all « € A that w(a) € V,;. We have
m(a) = {m(B): B € A\ A fEa}. By induction, each m(8) in the above expression is
in V., so m(a) < V. Since & is regular and A < &, m(a) < V,, for some v < &, and
hence m(a) € V41 € V,.. In particular, x € V..

Note that if z € H,, then to show z € H, it is enough to show that |z| < k.
Also, since each ordinal is transitive, clearly H, n ON = k.

The next lemma shows that ZFC—Power holds in the H,.

Lemma 0.6. (ZFC) For every axiom ¢ of ZFC—Power, ZFC'\ V& [k regular —
pt=].

Proof. We work in ZFC. Let k be an infinite regular cardinal. We show that all
the axioms of ZFC except power hold in H,. Note for the following arguments that
by definition H,; is transitive. Foundation holds in H, as it holds in any set or
class. Clearly, J € H,, and by absoluteness then H, satisfies the emptyset axiom.
If xz,y € Hy, then [{z,y}| < w < K, so {z,y} € H,. By absoluteness, H, satisfies
the pairing axiom. If x € H,, then vz < trcl(z), so trcl(ux) < trel(z), ansd so
[trcl(u(a))] < Jtrel(x)| < k. Thus, u(z) € H,. By absoluteness, H,; satisfies the
union axiom. Since kK > w, w € H, as we noted above. By absoluteness, H, satisfies
the infinity axiom. Since H, is transitive, it satisfies extensionality (if x # y are in
H,, then there is a z € x, say, with z ¢ y. By transitivity, z € Hy).

To show comprehension, let ¢(z1, ..., z,,y, z) be a formula, and let aq, ..., a,, w €
H,. We must show that Jv € H, Yy € H, (y € v < (y € w A ¢=(@,y,w))). By
comprehension in V applied to the formula ¢f~(Z,y,2), there is a v € V such
that Vy (y € v < (y € w A ¢H+(@,y,w))). In particular, Vy € H, (y € v <
(y € w A ¢f=(@,y,w))). Thus, it suffices to observe that v € H,, which follows as
v € w € H, (any subset of an element of Hy is in Hy).
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To show replacement, let ¢(x1, ..., T, y, 2,w) be a formula, ay,...,a,, A € H,,
and assume (Yy € A 3z ¢(d,y,2, A))7=. Thus, Vy € A 3z € H, ¢~(d,y, 2, A).
Applying replacement in V to the formula [¢f~ A z € H,], there is a set B such
that Vy € A3z € Bn € H,, ¢~ (d,y,z, A). By AC, thereis a B’ € B with |B| < |4]
such that Vy € A 3z € B'n € H,, ¢"~(d,y, 2, A). Since B’ € H, and |B'| < &, we
have B’ € H,. Thus, 3B Yye A3z € B ¢(ad,y,z, A))7~.

Finally, to see AC holds in H,, let a € H,,. By AC in V| let < be a wellordering
of a. Since <€ a X a, | < | < k. Easily <<€ H,, as every ordered pair {(z,y) is in
H, if x,y e Hi. So, << H,, and hence <€ H,. By downwarda absoluteness, (< is
a wellordering) = . O

Corollary 0.7. ZFC—Power \/ Power.

Proof. Similar to the proof of corollary 0.2, using now the fact that ZFC  (— Power)He1.

O

Lemmas 0.1, 0.6 are stated and proved in the metatheory, however me may
formalize their statements and proofs within ZFC. Lemma 0.6, for example, then
becomes the statement ZF - YaVn ((a > w limit A 8(n) — p(n, V,,))) where 6 is the
formula which represents the relation R(n) < n codes an axiom of ZF—Replacement.
[The only thing slightly problematic in the formalizations is where we consider the
relativizations ¢¥*, ¢H~. But lemma ?? gives us a formula p which expresses the
formalizations of these notions, e.g., the formalization of (,,)V~ is the statement
p(n. Vi) ]

Here p is the set satisfaction formula of lemma ??. Likewise, lemma 0.6 when for-
mailzed becomes the statement ZFC | VkVn ((k an uncountable regular cardinal) A
0'(n) — p(n, Hy))), where now &' represents R’ (n) <> n codes an axiom of ZF—Power.

The completeness theorem of first order logic may also be formailzed within
ZFC (or ZF for countable theories, which we consider here). It then becomes the
statement that ZF - VT' € w (CON(T') < IM V¥n € T p(n, M)). Using this, we
may reformulate the formalzed lemmas 0.1, 0.6 as consistency results as follows.

Corollary 0.8. ZFC+ CON(ZFC — Replacement).
Corollary 0.9. ZFC'+ CON(ZFC — Power).

From Godel’s theorem, we know that ZFC (£ CON(ZFC), but these corollaries
show that if we weaken ZFC a bit, we can prove its formal consistency within ZFC.

We showed that H,, < V,; for all infinite regular k. When does equality hold?
Now V,, € H, iff Va < k (V,, € H,;) (since if V, € H, then any subset of V, is in
H,). Since each V,, is transitive, this is then equivalent to Vo < k (|V,] < k). By
definition of the 3 function, |V,4+o| = 3(a). So, Vi, = H, if Ya < k J(a) < k.
Now J(a) = a, so J(a+1) = 2/ for all a. Thus, for V, to equal H, we must have
VYA < k 2% < k. Since & is assumed regular, we must then have that x is strongly
inaccessible. Conversely, if k is strongly inaccessible, the following exercise shows
this condition is satisfied.

Exercise 3. Show that if « is strongly inaccessible then Vo < £ (3(a) < k).
We thus have:
Fact 0.10. For all infinite regular cardinals k, H, = V,; iff k is strongly inaccessible.

Corollary 0.11. ZFC ¥/ 3k (k is strongly inaccessible).
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Proof. It ZFC + 3k (k is strongly inaccessible), then from the formalized lem-
mas 0.6, 0.1 we would have ZFC ~ 3k Vn (6(n) — p(n, H,)) where 0 represents
R(n) < 0, € ZFC, and p again is the set satisfaction formula. By the formal-
ized completeness theorem, this would give ZFC - CON(ZFC), a contradiction to
Godel’s theorem. d

Note that the proof of corollary 0.11 actually showed the following.
Corollary 0.12. ZFC+ 3k (k is strongly inaccessible) — CON(ZFC).

We sometimes state corollary 0.12 by saying that ZFC+3k (k is strongly inaccessible)
has a greater consistency strength that ZFC.

Exercise 4. Show corollary 0.11 without using Gédel’s theorem. [Hint: Suppose
ZFC + 3k (k is strongly inaccessible), and let ¢y, ...,1, be a finite fragment of
ZFC such that {¢1,...,9¥,} - 3k (k is strongly inaccessible). Working in ZFC, let
K be the least strongly inaccessible cardinal. Use lemmas 0.6, 0.1 and an absolute-
ness argument to show that there is a strongly inaccessible A < &.]

V. and H, are sets which we showed satisfy certain fragments of ZFC. We now
consider a certain class, HOD, which we show (assuming ZFC) satisfies all of ZFC.
In fact, HOD will be a transitive class containing all of the ordinals, a so-called
inner model of ZFC.

We would like to say a set x is ordinal-definable if there is a formula ¢(z1, . .., z,,y)
and ordinals aj, ..., a, such that z is the unique set  such that ¢(aq, ..., an,y).
We would then define HOD to be the sets which are hereditarily ordinal defin-
able. The problem with this is that this definition, at least the way it is stated,
is not a legitimate formula of set theory, i.e., doesn’t really seem to define a
class. The problem, as we mentioned before, is that we cannot define formual
satisfaction over classes, only over sets. However, the reflection theorem pro-
vides a way to circumvent this logical problem. For any formula ¢ and ordinals
a1, ..., 0y, the reflection theorem says that there is a 8 > max{ai,...,a,} such
that Vy € Vg (¢(@,y)"? < ¢(&,y)). Thus, there should be no loss of generality in
interpreting our formulas in the Vg. This suggests the following definition.

Definition 0.13. OD is the class defined by:
z€O0D < 3eONday,...,a, < B IncwVye Vs [(y = x) < p(n,{a,y), V)]
where p is the formula for set satisfaction from lemma ?7. Also,
x € HOD & Vy € trcl(z) (y € OD).

Note that the quantification over aq,...,«a, should really be expressed as a
quantification over sets z = (a1, ..., a,) coding the sequence.

Our remarks above concerning the reflection theorem now easily give the follow-
ing.

Lemma 0.14. Let ¢(x1,...,2n,y) be a formula of set theory. Then
ZF - VYay,...,an € ONVz [Vy (y = 2 « ¢(d,y)) — y € OD].

By definition HOD is transitive, and it trivially contains all of the ordinals. The
next theorem shows that working in ZF we can show that HOD satisfies ZFC. We
will need th following ordring on the finite sequences of ordinals.



Definition 0.15. The Godel ordering <g on ON=¥ is defined by:

log,y .. yan) <g {Biy..., Pm)y < max{ay,...,a,} <max{f1,...,0m}
v (max{ay,...,a,} = max{f1,...,Bm} An<m)
v (max{ay,...,an} =max{f1,...,Bm} An=mA & <jex ﬁ),

where <jex denotes lexicographic order.
The following lemma is clear from the definition.

Lemma 0.16. The Gddel ordering is a class wellordering of ON<“, all of whose
initial segments are sets.

Theorem 0.17. For all azioms ¢ of ZFC, ZF - ¢"OP,

Proof. Foundation holds in HOD, as it holds in any class with the e relation. Exten-
sionality holds as HOD is transitive. Consider pairing. Let z,y € HOD. Fix n € w,
a1,...,a, € ON, and 1 € ON such that Vz € V3 [(z ~ z) < p(n,{&,y), Vs),and
similarly let m, v1,...,7k, B2 witness y € HOD. Then,

ze{z,y} «Jw [w = Vg, A p(n, (& 2),w)] v Iw [w= Vg, A p(m,F,z),w)]

The righthand is a formula in set theory with ordinal parameters n, m, &, ¥, f1,
Ba. Thus, {z,y} € OD. Since {z,y} < HOD, we have {z,y} € HOD.

Infinity holds in HOD by absoluteness, since w € HOD (HOD contains all the
ordinals).

Consider the union axiom. Let z € HOD, and fix witnesses n, @, 5. Then

zevreo Jwiy[w=VzAryewn pn, & y,w) AJuey(zeu).

Again, the righthand side is a formula with ordinal parameters n, @, 5, and so
vz € OD. Since uz € trel(z) € HOD, this shows uz € HOD. By absoluteness,
HOD satisfies the union axiom.

To show comprehension, let ¢(z1,...,z,,y, 2) be a formula, and ay,...,a,, A€
HOD. We must show that B € HOD, where

B={ze A: ¢"°P(ay,...,an, A, 2)}.
Note that B exists in V' by comprehension in V. Then,
xr=BoVz[zeBouy,...up, 0 (up=a1 A Aty =a, Av=A

A d)HOD(ul’ s ,'LLn,'U,Z))],

)

where in place of “u; = a1” we use a formula with only ordinal parameters (the
witnesses for a; € HOD) and likewise for the other a; and A. This shows B €
OD, and since B € HOD we have B € HOD. Clearly, (Vz (z € B < z€ A A
dlay,...,an, A, 2)))HOP and so HOD satisfies comprehension.

To show power set, let € HOD. Let o € ON be large enough so that P(z) € V.
Note that V,, € OD (it is definable from «). Since HOD is a class, y = V,, nHOD €
OD as well, and so y € HOD. Clearly (Vz (2 € 2 — z € y)HOP, so HOD satisfies
power set.

To show replacement, let ¢(xq,...,2Tn,y,2z,w) be a formula, a1,...,a,, A €
HOD, and assume (Yy € A 3z ¢(d@,y,z,A))HOP. Let a € ON be such that
Vye A3dzeV, ¢ldy,z A))HOP. As V, € OD, B = V,, n HOD € HOD. Then
(Vye A3Ize B ¢(d,y, z, A))HOP.



Finally, to show AC holds in HOD, let x € HOD. Every y € = is in HOD and
has a witness sequence n, @, 5. To compare two elements y, z of x, we take the <g
least witnesses for y and z, and compare them in the <& ordering. In more detail,
define a wellordering of x by:
y<zoyexAzexAdnew Haye ONT 33, € ON

Im € w 37y e ON=¥ 33, € ON
Vu (v~ y < Jw (w~ Va, A p(n,{& uw,w)))
NG LB <a (ny @, By W (u sy o Fw (w s Vi A p(n, (@ u), w))]
A Ve (uxz o TJw (w s Vg, A plm, (7, u), w)))
A ' Byy <@ {m, 7, B2y —Vu (u~ z « Jw (w ~ Vg A p(m/, (7, u), w)))]
A <’ﬂ, 077 51> <a <TTL, ’?7 B2>
Here for “y € 2”7 we substitute an appropriate formula with only ordinal parameters,
and likewise for z € x.

Easily < is a wellordering, and the above formula shows <e OD. Since <C

HOD, we have <€ HOD, and by downwards absoluteness (< is a wellordering of
x)HOD. O

Corollary 0.18. If ZF is consistent, then so is ZFC.

Proof. Suppose ZF is consistent, but ZFC is not. Then ZF -+ —AC. Let ¥1,...,%,
be finitely many axioms of ZF such that {¢1,...,1¥,} - —AC. From theorem 0.17,
ZF - HOD Ao A HOD . Hence, ZF +— (—-AC)HOP. But, ZF ACHOD from
theorem 0.17, a contraction to the consistency of ZF. O

Thus, the axiom of choice cannot introduce a contradiction into mathematics,
unless one was already present. This is a significant statement in view of the many
“pathological” sets that may be constructed with AC. For eaxample, with AC a
standard construction gives a non-measurable set of reals, and it can be shown that
AC is necessary for the construction (more on this later).

Finally, we note that although corollary 0.18 was proved in the meta-theory, the
argument is readily formalized, which gives the following version of the corollary.

Corollary 0.19. CON(ZF) — CON(ZFC).
Thus, the theories ZF and ZFC have the same consistency strength.



