
The c.u.b. Filter and Silver’s Theorem

1. Ideals and Filters

We first recall the standard notions of ideal and filter.

Definition 1.1. An ideal on a set X is a collection I ⊆ P(X) of subsets of X
satisfying:

(1) If A ∈ I and B ⊆ A, then B ∈ I.
(2) If A,B ∈ I, then A ∪B ∈ I.

We say the ideal I is proper if X /∈ I (equivalently I 6= P(X)).

We think of an ideal as a notion of smallness for the subsets of X; those subsets
of X which are in I are the small ones.

The “dual” notion is the concept of a filter:

Definition 1.2. A filter on a set X is a collection F ⊆ P(X) of subsets of X
satisfying:

(1) If A ∈ F and B ⊇ A, then B ∈ F .
(2) If A,B ∈ F , then A ∩B ∈ F .

We say the filter F is proper if ∅ /∈ F (equivalently F 6= P(X)).

Recall than an ultrafilter on a set X is a maximal filter. Equivalently, an ul-
trafilter is a filter F with the property that for every A ∈ P(X), either A ∈ F or
X − A ∈ F . It is a standard fact that from the axiom of choice one may extend
any filter on a set X to an ultrafilter.

Exercise 1. Show that I ⊆ P(X) is an ideal iff F = {A : X −A ∈ I} is a filter.

We say an ideal I is κ-additive if whenever α < κ and {Aβ}β<α is an α sequence
of members of I, then

⋃
β<αAβ ∈ I. The dual notion would be: a filter F is

κ-additive if whenever α < κ and {Aβ}β<α is an α sequence of members of F , then⋂
β<αAβ ∈ I. Note that κ-additive refers to closure under less than κ unions (or

intersections).
The notions of ideal and filter are thus interchangeable, and we will pass back

and forth between the two. For I an ideal (or F a filter), we sometimes call the
sets A ∈ I (or sets A such that X − A ∈ F) “measure zero.” We call the A such
that X − A ∈ I (or A ∈ F) “measure one.” If neither A ∈ I nor X − A ∈ I, we
say A is “positive.”

Exercise 2. Show that for any ideal (or filter) there is a largest λ ∈ CARD such
that I is λ-additive. We call this the additivity of the ideal (or filter).

Exercise 3. Let κ be a cardinal and let I be the ideal of subsets of κ which have
size < κ. Identify the additivity of this ideal.

If I is an ideal (or filter) on a set X, an antichain is a collection {Aα} of I-
positive subsets of X such that Aα ∩ Aβ ∈ I for all α 6= β. We say the ideal is
λ-saturated if all anti-chains have size < λ. The saturation of the ideal, sat(I) is
the largest λ such that I is λ-saturated (which is easily well-defined).

If I is an ideal (or F a filter) on a set X, and S ⊆ X is positive, then define
the notion of the ideal (or filter) restricted to S, which we denote by I|S (or F|S),
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and defined by I|S = (I ∩ P(S)) ∪ (X − S) (that is we declare complement of S
to be in the restricted ideal, i.e, the restricted ideal “lives” on S). Equivalently,
F|S = {A ∩ S : A ∈ F}.

2. Boolean Algebras

Definition 2.1. A Boolean algebra is a set B with two distinguished elements 0
and 1 and two binary operations +, ·, and one unary operations A 7→ A. The
axioms are:

(commutative laws) a+ b = b+ a, a · b = b · a.
(associative laws) a+ (b+ c) = (a+ b) + c, a · (b · c) = (a · b) · c.
(distributive laws) a · (b+ c) = a · b+ a · c, a+ (b · c) = (a+ b) · (a+ c).
(identity laws) a+ a = a, a · a = a.
(de Morgan’s laws) a+ b = a · b, a · b = a+ b.
(negation laws) a+ a = 1, a · a = 0.
(0, 1 laws) 0 + a = a, 0 · a = 0, 1 + a = 1, 1 · a = a.

In analogy with set operations, we sometimes write ∨ for + and ∧ for · in a
Boolean algebra. We also sometimes write ac for a. The axioms imply all of the
usual set identities.

Exercise 4. Show that in any Boolean algebra a = a. Show that a+ a · b = a and
a · (a+ b) = a. Show that a · b = a iff a+ b = b iff a · (b) = 0.

We write a ≤ b in a Boolean algebra to denote a ·b = a, or equivalently, a+b = b.
We also write a− b for a · (b). We have a ≤ b iff b ≤ a.

The concepts of ideal, filter, ultrafilter generalize naturally from P(X) to any
Boolean algebra.

Definition 2.2. An ideal on the Boolean algebra B is a collection I ⊆ B satisfying:

(1) If a ∈ I, and b ≤ a then b ∈ sI.
(2) If a, b are in I, then a+ b ∈ I.

The ideal I is proper if 1 /∈ I.
A filter on the Boolean algebra B is a collection F ⊆ B satisfying:

(1) If a ∈ F , and a ≤ b then b ∈ sF .
(2) If a, b are in F , then a · b ∈ F .

The filter F is proper if 0 /∈ F . An ultrafilter on B is a maximal filter.

It is straightforward to check that a filter F on a Boolean algebra B is an ultra-
filter iff for ever a ∈ B either a ∈ F or a ∈ F . With AC, every filter on a Boolean
algebra can be extended to an ultrafilter (the proof is the same as that for filters
on P(X).

If X is any set, then all B ⊆ P(X) which contains ∅, X, and is closed under
finite unions, finite intersections, and complements is a Boolean algebra under the
operations of union, intersection, and complement. We call such a B an algebra of
subsets of X. Conversely, Stone’s theorem says any boolean algebra is isomorphic
to an algebra of subsets of some set X:

Theorem 2.3. (ZFC) Every Boolean algebra is isomorphic to an algebra of subsets
of some set X.
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Proof. Let B be a Boolean algebra. Let X = {u : u is an ultrafilter on B}. Define
π : B → P(X) by π(a) = {u ∈ X : a ∈ u}. Let S = ran(π). We claim that π
is a Boolean algebra isomorphism between B and the algebra of sets S. Clearly
π(0) = ∅ and π(1) = X. That S is a field of sets and π is a homomorphism (i.e.,
preserves the Boolean operations) follows from the equations: π(a ·b) = π(a)∩π(b),
π(a+ b) = π(a) ∪ π(b), π(a) = X − π(a). For example, the first equation says a · b
is in an ultrafilter iff a and b are. It is immediate from the definition that this in
fact holds for all filters. For the second equation, note that π(a), π(b) ⊆ π(a + b)
as a, b ≤ a + b. If u ∈ π(a + b) but u /∈ π(a) and u /∈ π(b), then since u is
an ultrafilter, u ∈ π(a) and u ∈ π(b). Since u is a filter, u ∈ π(a · b), and so
u ∈ π((a · b) · (a + b)) = π(0) = ∅. The third equation follows from the fact that
any ultrafilter must contain either a or a. It remains to show that π is one-to-one.
Suppose a 6= b. Without loss of generality a � b (since if a ≤ b and b ≤ a then
a = a · b = b). So, a − b 6= 0. Let u be an ultrafilter on B with a − b ∈ u. Then
u ∈ π(a) but u /∈ π(b). �

Definition 2.4. A Boolean algebra B is complete is for every A ⊆ B, a least upper
bound, l.u.b.(A) for the elements of A under ≤ exists. Equivalently, for every A
the greatest lower bound g.l.b.(A) exists. We also write Σ(A), sup(A) for l.u.b.(A)
and Π(A), inf(A) for g.l.b.(A). A Boolean algebra is said to be κ-complete if Σ(A),
Π(A) exists for all A of size < κ.

For example, P(X) is a complete Boolean algebra. On the other hand, P(ω)/FIN
is not complete, where FIN denotes the ideal of finite subsets of ω. To see this, let
An be disjoint infinite subsets of ω whose union is ω. Then {[An]}n∈ω does not
have a least upper bound.

The notions of κ-additive and κ-saturated generalize from ideals on a set X (i.e.,
the Boolean algebra P(X)) to arbitrary Boolean algebras:

Definition 2.5. An ideal I on a κ-complete Boolean algebra B is said to be κ-
additive if Σ(A) ∈ I whenever A ⊆ I and |A| < κ. A Boolean algebra is κ-
saturated if every antichain in B has size < κ. sat(B) is the largest κ such that B
is κ-saturated.

Thus, an ideall I on κ is λ-saturated iff the Boolean algebra P(κ)/I is λ-
saturated.

We will be mainly interested in complete Boolean algebras. For complete Boolean
algebras it is a theorem that sat(B) is a regular cardinal.

3. The c.u.b. Filter

We introduce now a specific filter of basic importance called the c.u.b. filter (the
corresponding ideal is called the non-stationary ideal).

Definition 3.1. If A ⊆ ON, then the closure of A, A, is the set of all α ∈ ON such
that ∀β < α ∃γ (β < γ ≤ α ∧ γ ∈ A). We cay A is closed if A = A.

It is easy to see that A consists of A together with the ordinals α which are limit
points of A, that is, α is a limit ordinal and A is unbounded in α. Thus, A is closed
iff it contains all its limit points.

The topological terminology is justified. We can put a topology on the ordinals
(order topology) by defining the basic open sets to be of the form (α, β) = {γ : α <
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γ < β} (together with {0} since 0 is the least element in the ordering of ordinals).
It is easily checked that is a base for a topology (in fact, this is true for any
linear ordering on any set). A neighborhood base at α consists of sets of the form
(β, α], where β < α. In this topology, the closure operation defined above is just
topological closure in the order topology.

Definition 3.2. Let α be a limit ordinal. We say C ⊆ α is c.u.b. is C is closed and
unbounded in α. If cof(α) > ω, then the c.u.b. filter on α, Cub(α) is defined to be
the collection of subsets of α which contain a c.u.b. set. The corresponding ideal
is denoted NS(α); the ideal of non-stationary subsets of α (terminology explained
below).

Exercise 5. Show that if cof(α) = ω then Cub(α) is not a filter.

We let P(κ)/NS denote the set of equivalence classes [A], for A ∈ P(κ), under
the equivalence relation A ∼ B iff A4B ∈ NS(κ). In fact, for any ideal I on κ we
may consider P(κ)/I. This forms a Boolean algebra.

Lemma 3.3. Suppose cof(α) > ω. Then Cub(α) is a filter, and is cof(α)-additive.
In fact, the intersection of < cof(α) many c.u.b. subsets of α is c.u.b..

Proof. By definition if A ∈ Cub(α) and B ⊇ A then B ∈ Cub(α). Suppose
δ < cof(α) and {Aβ}β<δ is a sequence of sets in Cub(α). Using AC, we may assume
that all of the Aβ are actually c.u.b. subsets of α, and show their intersection is
c.u.b.. Clearly

⋂
β<δ Aβ is closed. We must show it is unbounded in α. For each

β < δ, let fβ : α → α be given by fβ(γ) = the least element of Aβ which is > γ.
Fix η < α. Let η0 = η, and let ηn+1 = supβ<δ fβ(ηn). Note that ηn+1 < α as
cof(α) > δ. Since also cof(α) > ω, ηω = supn(ηn) < α. Each Aβ is unbounded in
ηω (as there is a point of Aβ between ηn and ηn+1 for any n), and thus ηω ∈ Aβ
for all β < δ. �

In discussing the c.u.b. filter Cub(α), there is actually no loss of generality is
assuming α is a regular cardinal. For assume cof(α) = κ. Let {γη}η<κ be a
continuous, increasing, cofinal sequence in α. By continuous we mean that for η
limit that γη = supη′<η γη′ . Let C = {γη : η < κ}. Then C is c.u.b. in α. The
map A 7→ A′ = {γη : η ∈ A} is a bijection between P(κ) and P(C) which preserves
the notion of c.u.b. since the γη are continuous. Thus we have an isomorphism
between P(κ)/Cub and P(C)/Cub. Finally, the map A 7→ A ∩ C is a Boolean
algebra isomprphism between P(α)/Cub and P(C)/Cub (the map is one-to-one
since C is c.u.b.). Thus, P(κ)/Cub ∼= P(α)/Cub as Boolean algebras. Thus, as far
as discussions concerning the c.u.b. filter are concerned, we may replace α by the
set C of size κ = cof(α).

Definition 3.4. Let κ be a cardinal and Aα ⊆ κ for α < κ. The diagonal inter-
section of the Aα is defined by OAα = {β < κ : ∀α < β (β ∈ Aα}. The diagonal
union is defined by 4Aα = {β < κ : ∃α < β (β ∈ Aα)}.

Definition 3.5. A filter F (or ideal I) is said to be normal if whenever Aα, α < κ,
are in F (or I), then OAα ∈ F (resp. 4Aα ∈ I).

Lemma 3.6. For every regular cardinal κ, the filter Cub(κ) is normal.

Proof. Assume Aα ∈ c.u.b.(κ) for all α < κ. Using AC, let Cα ⊆ Aα be c.u.b.. It
suffices to show that OCα is c.u.b. in κ. The diagonal intersection is easily closed,
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we show it is also unbounded. For each α < κ, let fα : κ→ κ be given by fα(η) =
least element of Cα greater than η. Let η0 < κ. Define ηn+1 = supα<ηn fα(ηn).
Let ηω = supn ηn. Note that if α < ηω, then for all n such that ηn > α, there is a
point of Cα between ηn and ηn+1, and hence ηω ∈ Cα. Thus, ηω ∈ OAα. �

An immediate but important consequence of this lemma is Fodor’s theorem. To
state it, we introduce the important notion of stationarity.

Definition 3.7. Let κ be a regular cardinal. Then S ⊆ κ is stationary if S∩C 6= ∅
for every c.u.b. C ⊆ κ.

Note that S being stationary is just saying that S is positive with respect to the
Cub filter on κ. That is, S is not in the corresponding ideal (which is why we called
this ideal the non-statioary ideal).

Theorem 3.8. (Fodor’s Theorem) Let κ be a regular cardinal, S ⊆ κ be stationary,
and f : S → κ be pressing down, that is, f(α) < α for all α ∈ S. Then there is a
stationary set S′ ⊆ S on which f is constant.

Proof. If not, then for all α ∈ S there is a set Aα ∈ Cub(κ) such that f(β) 6= α for
all β ∈ Aα ∩ S. From lemma 3.6, OAα ∈ Cub(κ) (for α /∈ S we may take Aα = κ),
and thus there is some β ∈ (OAα) ∩ S as S is stationary. Then f(α) < α and so
α ∈ Af(α) ∩ S, a contradiction to the definition of Af(α). �

Exercise 6. Let κ be regular and fα : κ → κ for all α < κ. Show that C = {β <
κ : ∀α < β (β is closed under fα)} is c.u.b. in κ.

If λ < κ are regular cardinals, then Sκλ = {α < κ : cof(α) = λ} is stationary in
κ. For example, for κ = ℵ2 this gives two disjoint stationary subsets of ℵ2, namely
Sω and Sω1

. We will show now more generally that any stationary subset S ⊆ κ
of a regular cardinal κ can be split into κ many disjoint stationary subsets. For
successor κ this is due to Ulam, and for limit κ to Solovay.

We consider first the successor case and prove a slightly more general result.

Theorem 3.9. (Ulam) Let κ be a successor cardinal and I a κ-additive ideal on
κ containing all the singletons. Then there is a κ size family of pairwise disjoint
I-positive subsets of κ.

Proof. Let κ = λ+. For each ρ < κ let fρ : λ → κ be a bijection. For each α < λ
and β < κ let Xα

β = {ρ > β : fρ(α) = β}. For each β < κ there is an α(β) < λ such

that X
α(β)
β /∈ I since I is κ-additive and

⋃
α<λX

α
β = κ − (β + 1), which is not in

I. For some α0 < λ we must have |{β : α(β) = α0}| = κ. If S = {β : α(β) = α0},
then for β1 6= β2 ∈ S we have Xα0

β1
∩Xα0

β2
= ∅. �

Corollary 3.10. If κ is a successor cardinal and S ⊆ κ is stationary, then S can
be split into κ many paiwise disjoint stationary subsets.

Proof. Consider I|S , the non-stationary ideal restricted to S. This is a κ-additive,
proper ideal containing all the singletons. From theorem 3.9, let Aα, α < κ, be a
κ sequence of pairwise disjoint I-positive subsets of κ. Then A′

α = Aα ∩ S form
a κ-sequence of pairwise disjoint I-positive subsets of S. We can enlarge one, if
necessary, so they union to S. �

If κ is a regular cardinal, and S ⊆ κ is stationary, we define the set of thin points
s̃ ⊆ S by α ∈ S̃ iff S ∩ α is not stationary in α.
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Lemma 3.11. Let κ be regular and S ⊆ κ be stationary and consist of limit ordi-
nals. Then S̃ is stationary.

Proof. Let C ⊆ κ be c.u.b.. Let α be the least limit point of C which is in S (which
exists as C ′ is also c.u.b.). If cof(α) > ω, then C ′ ∩ α is c.u.b. in α and is disjoint
from S, and so α ∈ S′. If cof(α) = ω, then there is an ω sequence of successor
ordinals cofinal in α, which also gives a c.u.b. subset of α missing S. �

We now prove the limit case of theorem 3.10. Actually, the proof (due to Solovay)
works for both limit and successor cardinals, and provides a different proof of
theorem 3.9.

Theorem 3.12. Let κ be a regular cardinal. Then every stationary S ⊆ κ can be
split into κ many pairwise disjoint stationary subsets.

Proof. Let κ be regular, and S ⊆ κ be stationary. Without loss of generality we may
assume S consists of limit ordinals. Let S̃ be the thin points of S. For each α ∈ S̃,
let ηαξ , ξ < cof(α), be an increasing continuous sequence with supremum α which

misses S. We claim that there is ξ such that for all δ < κ the set {α ∈ S̃ : ηαξ > δ}
is stationary. If not, then for each ξ there is a ρ(ξ) < κ and a c.u.b. set Cξ such

that for all α ∈ S̃ ∩ Cξ we have ηαξ < ρ(ξ) (if ηαξ is defined). Let C = OCξ, and let

D ⊆ C be c.u.b. and closed under the function ξ 7→ ρ(ξ). Since S̃ is stationary, let

α < β be two elements of S̃∩D. Then for each ξ ∈ cof(β)∩α we have ηβξ < α. This

shows that cof(β) ≥ α and that ηβα is defined and equal to α (since the sequence

ηβξ is continuous). By definition of the ηβξ , this shows α /∈ S̃, a contradiction.
Fix now ξ as in the claim. Note that α 7→ ηαξ is pressing down. For each γ < κ,

by the claim and Fodor’s theorem there is a τ(γ) > γ and a stationary set Sγ ⊆ S̃
such that ηαξ = τ(γ) for all α ∈ Sγ . Since κ is regular, there is a κ size set A ⊆ κ

such that τ(α) 6= τ(β) for α 6= β ∈ A. Then the sets Sδ = {α ∈ S̃ : ηαξ = τ(δ)}, for
δ ∈ A, are pairwise disjoint and stationary. �

4. Silver’s Theorem

We prove a theorem of Silver which shows a significant restriction on the con-
tinuum function at singular cardinals of uncountable cofinality.

Theorem 4.1. Let κ be a singular cardinal of uncountable cofinality. If the GCH
hols below κ (i.e., ∀λ < κ (2λ = λ+)), then it holds at κ as well.

Proof. Let κα, α < cof(κ) be an increasing, continuous sequence of cardinals cofinal
in κ. For A ⊆ κ consider the function fA with domain cof(κ) where FA(α) = A∩κα.
Since 2κα = κα+1, we may identify fA with a function satisfying f(α) ∈ κα+1.
Consider the collection F = {fA : A ⊆ κ} of all such functions. Note that this forms
an almost disjoint family of functions, that is, if A 6= B then ∃α < cof(κ) ∀β >
α (fA(β) 6= fB(β)).

Let g : cof(κ) → κ with g(α) < κα+1 for all α. Let Fg denote those f ∈ F
such that {α < cof(κ) : f(α) ≤ g(α)} is stationary. We claim that for any such
g, |Fg| ≤ κ. To see this, let πα : g(α) + 1 → κα be a bijection. If f ∈ Fg then
there is a stationary set Sf ⊆ cof(κ) and an ordinal δf < κ such that for all
α ∈ Sf , πα(f(α)) < δf (by Fodor’s theorem). Let hf : Sf → δf be the function
hf (α) = πα(f(α)). The map f 7→ (Sf , δf , hf ) is one-to-one on F since (Sf , δf , hf )
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determines f on S, which determines f ∈ F as F is an almost disjoint family. There
are at most 2cof(κ) < κ choices for Sf , κ many choices for δf , and supδ<κ δ

cof(κ) < κ
many choices for hf . Thus, |Fg| ≤ κ.

We now show that |F | ≤ κ+. We define a sequence fα ∈ F recursively so that
for β < α we have {ξ : fβ(ξ) < fα(ξ)} is stationary. Assume fβ has been defined
for β < α. If for every f ∈ F there is a β < α such that {ξ : f(ξ) ≤ fβ(ξ)}
is stationary, then stop the construction. Otherwise, let fα ∈ F be such that
∀β < α {ξ : fβ(ξ) < fα(ξ)} ∈ Cub(cof(κ)). In particular, for all β < α, {ξ : fβ(ξ) <
fα(ξ)} is stationary. fκ+ cannot be defined by the claim. Thus, we end with a
collection {fα}α<λ, where λ ≤ κ+. Every f ∈ F is then in some Ffα , and from the
claim it follows that |F | ≤ κ · λ ≤ κ+. �


