The c.u.b. Filter and Silver’s Theorem

1. IDEALS AND FILTERS
We first recall the standard notions of ideal and filter.

Definition 1.1. An ideal on a set X is a collection Z C P(X) of subsets of X
satisfying:

(1) f Ae Z and B C A, then B e Z.

(2) If A,B€Z, then AUB € T.

We say the ideal 7 is proper if X ¢ 7 (equivalently Z # P(X)).

We think of an ideal as a notion of smallness for the subsets of X; those subsets
of X which are in Z are the small ones.
The “dual” notion is the concept of a filter:

Definition 1.2. A filter on a set X is a collection F C P(X) of subsets of X
satisfying:

(1) If Ae F and B D A, then B € F.

(2) If A,B € F, then ANB € F.

We say the filter F is proper if §) ¢ F (equivalently F # P(X)).

Recall than an wultrafilter on a set X is a maximal filter. Equivalently, an ul-
trafilter is a filter F with the property that for every A € P(X), either A € F or
X — A e F. It is a standard fact that from the axiom of choice one may extend
any filter on a set X to an ultrafilter.

Exercise 1. Show that Z C P(X) is an ideal iff F = {A: X — A € T} is a filter.

We say an ideal Z is k-additive if whenever a < k and {4} s<, is an « sequence
of members of Z, then Jz_, Ag € Z. The dual notion would be: a filter F is
k-additive if whenever a < k and {Ag}g<q is an o sequence of members of F, then
N g<a Ap € L. Note that x-additive refers to closure under less than r unions (or
intersections).

The notions of ideal and filter are thus interchangeable, and we will pass back
and forth between the two. For Z an ideal (or F a filter), we sometimes call the
sets A € Z (or sets A such that X — A € F) “measure zero.” We call the A such
that X — A €T (or A € F) “measure one.” If neither A € Tnor X — A € 7, we
say A is “positive.”

Exercise 2. Show that for any ideal (or filter) there is a largest A € CARD such
that Z is A-additive. We call this the additivity of the ideal (or filter).

Exercise 3. Let k be a cardinal and let Z be the ideal of subsets of k¥ which have
size < k. Identify the additivity of this ideal.

If 7 is an ideal (or filter) on a set X, an antichain is a collection {A,} of Z-
positive subsets of X such that A, N Ag € 7 for all o # 3. We say the ideal is
A-saturated if all anti-chains have size < A. The saturation of the ideal, sat(Z) is
the largest A\ such that Z is A-saturated (which is easily well-defined).

If 7 is an ideal (or F a filter) on a set X, and S C X is positive, then define
the notion of the ideal (or filter) restricted to S, which we denote by Z|s (or F|s),
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and defined by Z;g = (ZNP(S)) U (X — S) (that is we declare complement of .S
to be in the restricted ideal, i.e, the restricted ideal “lives” on S). Equivalently,
Fls={ANS: Ae F}.

2. BOOLEAN ALGEBRAS

Definition 2.1. A Boolean algebra is a set B with two distinguished elements 0
and 1 and two binary operations +, -, and one unary operations A — A. The
axioms are:

(commutative laws) a+b=b+a,a-b="b-a.

associative laws) a + (b+c¢) = (a+b)+c,a-(b-¢c)=(a-b) -c

distributive laws) a- (b+¢)=a-b+a-c,a+ (b-¢c)=(a+b) - (a+c).

identity laws) a+a=a, a-a = a.

(
(
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(de Morgan’s laws) a+b=a-b,a-b=a+b.
(
(

negation laws) a+a=1,a-a=0.
0,1laws) 0+a=a,0-a=0,14a=1,1-a=a.

In analogy with set operations, we sometimes write V for + and A for - in a
Boolean algebra. We also sometimes write a® for @. The axioms imply all of the
usual set identities.

Exercise 4. Show that in any Boolean algebra a = @. Show that a +a-b = a and

a-(a+b)=a. Showthat a-b=aiff a+b=>biff a-(b) =0.
We write a < b in a Boolean algebra to denote a-b = a, or equivalently, a+b = b.
We also write a — b for a - (b). We have a < b iff b <a.

The concepts of ideal, filter, ultrafilter generalize naturally from P(X) to any
Boolean algebra.

Definition 2.2. An ideal on the Boolean algebra B is a collection Z C 5 satisfying:

(1) faeZ, and b < athen b € sI.
(2) Ifa, barein Z, then a + b € 7.

The ideal Z is proper if 1 ¢ 7.
A filter on the Boolean algebra B is a collection F C B satisfying:

(1) fa e F,and a < b then b € sF.
(2) If a, b are in F, thena-b e F.

The filter F is proper if 0 ¢ F. An ultrafilter on B is a maximal filter.

It is straightforward to check that a filter F on a Boolean algebra B is an ultra-
filter iff for ever a € B either a € F or a € F. With AC, every filter on a Boolean
algebra can be extended to an ultrafilter (the proof is the same as that for filters
on P(X).

If X is any set, then all B C P(X) which contains @), X, and is closed under
finite unions, finite intersections, and complements is a Boolean algebra under the
operations of union, intersection, and complement. We call such a B an algebra of
subsets of X. Conversely, Stone’s theorem says any boolean algebra is isomorphic
to an algebra of subsets of some set X:

Theorem 2.3. (ZFC) Every Boolean algebra is isomorphic to an algebra of subsets
of some set X.
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Proof. Let B be a Boolean algebra. Let X = {u: u is an ultrafilter on B}. Define
m: B — P(X) by w(a) = {u € X:a € u}. Let S = ran(w). We claim that 7
is a Boolean algebra isomorphism between B and the algebra of sets S. Clearly
7(0) = @ and 7(1) = X. That S is a field of sets and 7 is a homomorphism (i.e.,
preserves the Boolean operations) follows from the equations: 7(a-b) = w(a) N7 (b),
m(a+b) =7(a) Un(b), m(@) = X — w(a). For example, the first equation says a - b
is in an ultrafilter iff @ and b are. It is immediate from the definition that this in
fact holds for all filters. For the second equation, note that w(a),7(b) C w(a + b)
as a,b < a+b Ifuen(a+d) but u ¢ w(a) and u ¢ m(b), then since u is
an ultrafilter, v € 7(a@) and u € 7(b). Since u is a filter, u € 7(a - b), and so
u € m((@-b)-(a+b)) =m(0) =0. The third equation follows from the fact that
any ultrafilter must contain either a or @. It remains to show that 7 is one-to-one.
Suppose a # b. Without loss of generality a £ b (since if @ < b and b < a then
a=a-b="0). So,a—b+#0. Let u be an ultrafilter on B with a — b € u. Then
u € m(a) but u ¢ w(b). O

Definition 2.4. A Boolean algebra B is complete is for every A C B, a least upper
bound, l.u.b.(A) for the elements of A under < exists. Equivalently, for every A
the greatest lower bound g.1.b.(A) exists. We also write ¥(A4), sup(A) for Lu.b.(4)
and II(A), inf(A) for g.l.b.(A). A Boolean algebra is said to be k-complete if X(A),
TI(A) exists for all A of size < k.

For example, P(X) is a complete Boolean algebra. On the other hand, P(w)/FIN
is not complete, where FIN denotes the ideal of finite subsets of w. To see this, let
A, be disjoint infinite subsets of w whose union is w. Then {[A;]}ncw does not
have a least upper bound.

The notions of k-additive and k-saturated generalize from ideals on a set X (i.e.,
the Boolean algebra P(X)) to arbitrary Boolean algebras:

Definition 2.5. An ideal Z on a k-complete Boolean algebra B is said to be k-
additive if ¥(A) € Z whenever A C 7 and |A| < k. A Boolean algebra is k-
saturated if every antichain in B has size < k. sat(B) is the largest x such that B
is k-saturated.

Thus, an ideall Z on k is A-saturated iff the Boolean algebra P(k)/Z is -
saturated.

We will be mainly interested in complete Boolean algebras. For complete Boolean
algebras it is a theorem that sat(B) is a regular cardinal.

3. THE c.u.B. FILTER

We introduce now a specific filter of basic importance called the c.u.b. filter (the
corresponding ideal is called the non-stationary ideal).

Definition 3.1. If A C ON, then the closure of A, A, is the set of all & € ON such

that VB < a3y (B <y < a Ay € A). We cay A is closed if A= A.

It is easy to see that A consists of A together with the ordinals o which are limit
points of A, that is, « is a limit ordinal and A is unbounded in «. Thus, A is closed
iff it contains all its limit points.

The topological terminology is justified. We can put a topology on the ordinals
(order topology) by defining the basic open sets to be of the form (o, 8) = {y: a <
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v < B} (together with {0} since 0 is the least element in the ordering of ordinals).
It is easily checked that is a base for a topology (in fact, this is true for any
linear ordering on any set). A neighborhood base at « consists of sets of the form
(8, a], where 8 < a. In this topology, the closure operation defined above is just
topological closure in the order topology.

Definition 3.2. Let « be a limit ordinal. We say C' C « is c.u.b. is C'is closed and
unbounded in a. If cof(«) > w, then the c.u.b. filter on a, Cub(«) is defined to be
the collection of subsets of a@ which contain a c.u.b. set. The corresponding ideal

is denoted NS(«); the ideal of non-stationary subsets of « (terminology explained
below).

Exercise 5. Show that if cof(a) = w then Cub(«) is not a filter.

We let P(x)/NS denote the set of equivalence classes [A], for A € P(k), under
the equivalence relation A ~ B iff AAB € NS(k). In fact, for any ideal Z on x we
may consider P(x)/Z. This forms a Boolean algebra.

Lemma 3.3. Suppose cof(a) > w. Then Cub(e) is a filter, and is cof(a)-additive.
In fact, the intersection of < cof(a) many c.u.b. subsets of « is c.u.b..

Proof. By definition if A € Cub(a) and B O A then B € Cub(a). Suppose
§ < cof(ar) and {Ag}s<s is a sequence of sets in Cub(«). Using AC, we may assume
that all of the Ag are actually c.u.b. subsets of «, and show their intersection is
c.u.b.. Clearly ﬂ5<5 Apg is closed. We must show it is unbounded in a. For each
B < 6, let fg: @ — a be given by fg(y) = the least element of Ag which is > .
Fix n < a. Let no = n, and let 9,41 = supgs f3(nn). Note that 7,11 < a as
cof(a) > §. Since also cof(a) > w, N, = sup,(n,) < a. Each Ag is unbounded in
7M. (as there is a point of Ag between 7, and 7,41 for any n), and thus n, € Ag
for all 5 < 4. O

In discussing the c.u.b. filter Cub(«), there is actually no loss of generality is
assuming « is a regular cardinal. For assume cof(a) = k. Let {y,}n,<x be a
continuous, increasing, cofinal sequence in «. By continuous we mean that for 7
limit that v, = sup,, ., vy. Let C = {v,: 7 < x}. Then C is cu.b. in a. The
map A — A" = {v,: n € A} is a bijection between P(x) and P(C) which preserves
the notion of c.u.b. since the 7, are continuous. Thus we have an isomorphism
between P(x)/Cub and P(C)/Cub. Finally, the map A — AN C is a Boolean
algebra isomprphism between P(a)/Cub and P(C)/Cub (the map is one-to-one
since C' is c.u.b.). Thus, P(k)/Cub = P(«)/Cub as Boolean algebras. Thus, as far
as discussions concerning the c.u.b. filter are concerned, we may replace « by the
set C of size k = cof(a).

Definition 3.4. Let k be a cardinal and A, C k for a« < k. The diagonal inter-
section of the A, is defined by VA, = {8 < k: Va < § (8 € As}. The diagonal
union is defined by AA, = {f <k: Ja < B (B € Ad)}-

Definition 3.5. A filter F (or ideal Z) is said to be normal if whenever A,, a < &,
are in F (or Z), then VA, € F (resp. AA, € I).

Lemma 3.6. For every regular cardinal k, the filter Cub(k) is normal.

Proof. Assume A, € c.ub.(k) for all @ < k. Using AC, let C, C A, be c.u.b.. It
suffices to show that VC, is c.u.b. in k. The diagonal intersection is easily closed,
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we show it is also unbounded. For each « < k, let f,: kK — k be given by fu(n) =
least element of C, greater than n. Let 1y < . Define 1,41 = sup,., fa(1n)-
Let 7, = sup,, 7. Note that if a < 1, then for all n such that 7, > «, there is a
point of C, between 7, and 7,11, and hence 7, € C,. Thus, n, € VA,. [l

An immediate but important consequence of this lemma is Fodor’s theorem. To
state it, we introduce the important notion of stationarity.

Definition 3.7. Let  be a regular cardinal. Then S C « is stationary if SNC # ()
for every c.u.b. C C k.

Note that S being stationary is just saying that S is positive with respect to the
Cub filter on k. That is, S is not in the corresponding ideal (which is why we called
this ideal the non-statioary ideal).

Theorem 3.8. (Fodor’s Theorem) Let k be a regular cardinal, S C k be stationary,
and f: S — K be pressing down, that is, f(a) < « for all « € S. Then there is a
stationary set S" C S on which f is constant.

Proof. If not, then for all & € S there is a set A, € Cub(x) such that f(5) # « for
all 8 € A, N S. From lemma 3.6, VA, € Cub(k) (for a ¢ S we may take A, = k),
and thus there is some 5 € (VA,) NS as S is stationary. Then f(a) < a and so
a € Ay NS, a contradiction to the definition of Ay (). |

Exercise 6. Let x be regular and f,: k — « for all @ < k. Show that C' = {f <
k: Vo < B (8 is closed under f,)} is c.u.b. in &.

If A < k are regular cardinals, then S§ = {a < k: cof(a) = A} is stationary in
k. For example, for kK = Ny this gives two disjoint stationary subsets of N, namely
S, and S,,,. We will show now more generally that any stationary subset S C &
of a regular cardinal x can be split into x many disjoint stationary subsets. For
successor k this is due to Ulam, and for limit x to Solovay.

We consider first the successor case and prove a slightly more general result.

Theorem 3.9. (Ulam) Let k be a successor cardinal and I a k-additive ideal on
K containing all the singletons. Then there is a k size family of pairwise disjoint
T-positive subsets of k.

Proof. Let k = AT. For each p < k let f,: A — & be a bijection. For each a < A
and 8 <k let X§ = {p > B: f,(a) = B}. For each 8 < k there is an () < A such

that X3 ¢ 7 since 7 is #-additive and |, ., X§ = # — (8 + 1), which is not in
Z. For some ag < A we must have [{8: a(8) = ag}| = k. If S = {8: a(8) = o},
then for 81 # B2 € S we have X;‘f N Xg; = 0. O

Corollary 3.10. If x is a successor cardinal and S C k is stationary, then S can
be split into k many paiwise disjoint stationary subsets.

Proof. Consider Z;g, the non-stationary ideal restricted to S. This is a k-additive,
proper ideal containing all the singletons. From theorem 3.9, let A,, a < &, be a
k sequence of pairwise disjoint Z-positive subsets of k. Then A, = A, NS form
a k-sequence of pairwise disjoint Z-positive subsets of S. We can enlarge one, if
necessary, so they union to S. (]

If k is a regular cardinal, and S C  is stationary, we define the set of thin points
5C S by aeSiff SNa is not stationary in «.
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Lemma 3.11. Let k be reqular and S C k be stationary and consist of limit ordi-
nals. Then S is stationary.

Proof. Let C C k be c.u.b.. Let «a be the least limit point of C' which is in S (which
exists as C is also c.u.b.). If cof(a) > w, then C’' N is c.u.b. in «a and is disjoint
from S, and so a € S’. If cof(a) = w, then there is an w sequence of successor
ordinals cofinal in «, which also gives a c.u.b. subset of o missing S. (]

We now prove the limit case of theorem 3.10. Actually, the proof (due to Solovay)
works for both limit and successor cardinals, and provides a different proof of
theorem 3.9.

Theorem 3.12. Let k be a reqular cardinal. Then every stationary S C k can be
split into k many pairwise disjoint stationary subsets.

Proof. Let k be regular, and S C « be stationary. Without loss of generality we may
assume S consists of limit ordinals. Let S be the thin points of S. For each o € S,
let ng', & < cof(a), be an increasing continuous sequence with supremum « which
misses S. We claim that there is £ such that for all § < & the set {a € S ng > 0}
is stationary. If not, then for each £ there is a p(§) < k and a c.u.b. set C¢ such
that for all « € SN C¢ we have g < p(&) (if g is defined). Let C' = VC¢, and let
D C C be c.ub. and closed under the function & — p(€). Since S is stationary, let
o < B be two elements of SND. Then for each £ € cof(8) N we have ng < «. This
shows that cof() > a and that n° is defined and equal to a (since the sequence
77? is continuous). By definition of the 7]? , this shows a ¢ S, a contradiction.

Fix now £ as in the claim. Note that a ~— ng is pressing down. For each v < &,
by the claim and Fodor’s theorem there is a 7(y) > v and a stationary set S, C S
such that g = () for all a € S,. Since £ is regular, there is a r size set A C
such that 7(a) # 7(8) for a # B € A. Then the sets S5 = {a € S: ng = 7(d)}, for
6 € A, are pairwise disjoint and stationary. O

4. SILVER'S THEOREM

We prove a theorem of Silver which shows a significant restriction on the con-
tinuum function at singular cardinals of uncountable cofinality.

Theorem 4.1. Let k be a singular cardinal of uncountable cofinality. If the GCH
hols below k (i.e., YA < k (2 = AT)), then it holds at r as well.

Proof. Let k,, a < cof(k) be an increasing, continuous sequence of cardinals cofinal
in k. For A C & consider the function f4 with domain cof(x) where F4(a) = ANKq,.
Since 2% = kK,41, we may identify f4 with a function satisfying f(a) € Kat1-
Consider the collection F' = {f4: A C k} of all such functions. Note that this forms
an almost disjoint family of functions, that is, if A # B then Ja < cof(k) VS >
o (fa(8) £ f5(8)).

Let g: cof(k) = w with g(a) < Kq41 for all a. Let F, denote those f € F
such that {a < cof(k): f(a) < g(a)} is stationary. We claim that for any such
9, |[Fg| < k. To see this, let mo: g(a) + 1 — Ko be a bijection. If f € F, then
there is a stationary set Sy C cof(x) and an ordinal §; < & such that for all
a € Sy, mo(f(a)) < é¢ (by Fodor’s theorem). Let hy: Sy — 5 be the function
hy(e) = ma(f(e)). The map f — (Sf,05,hy) is one-to-one on F' since (Sy,d5, hy)
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determines f on S, which determines f € F as F' is an almost disjoint family. There
are at most 2°°f(") < k choices for S, k many choices for d¢, and sups. . §eofR) <
many choices for hy. Thus, |Fy| < k.

We now show that |F| < xT. We define a sequence f, € F recursively so that
for B < a we have {£: fg(§) < fa(§)} is stationary. Assume fg has been defined
for B < a. If for every f € F there is a 8 < « such that {£: f(§) < fz(&)}
is stationary, then stop the construction. Otherwise, let f, € F be such that
VB <a{&: f3(€) < fa(&)} € Cub(cof(k)). In particular, for all 5 < «, {&: f5(€) <
fa(&)} is stationary. f.+ cannot be defined by the claim. Thus, we end with a
collection {fo }a<x, where A < k™. Every f € F is then in some Fy,, and from the
claim it follows that |F| < k- A < k™. O



