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Recursive Functions

1. Recursive functions

Recursive functions play an important role in the proof of the incompleteness
theorems, as well as in various other areas of mathematics (e.g., descriptive set
theory) and of course in computer science. Specifically, an important point in the
proof of the incompleteness theorem is that recursive functions are “representable”
within a certain weak theory F of arithmetic (to be defined later). Here, we first
introduce and study them for their own sake.

First, a few metamathematical comments. In this section, we work in a suffi-
ciently strong background metatheory in which we can speak of the natural num-
bers, or even subsets of natural numbers, and related notions. For example, we
could take ZFC as the background metatheory (though this is far more than we
need). When we speak of “the natural numbers” we mean the uniquely defined
structure as defined from this metatheory (e.g., the definition of the natural num-
bers within ZFC). If we view the following discussion as taking place in a back-
ground model of the metatheory axioms, then the notion of “natural numbers”
depends on this background model, that is, N is only unique up to choice of back-
ground model of the metatheory. In this following discussion, we will not explicitly
formalize this metatheory, but implicitly assume it suffices to define the objects we
discuss. In §2 we will more carefully introduce an axiomatization for the natural
numbers and establish connections between recursive functions and “representabil-
ity” in this system. This will be important for the proof of the incompleteness
theorem.

Definition 1.1. A total function f from ωn to ω is just a function f : ωn Ñ ω,
that is, with domain ωn. A partial function f from ωn Ñ ω is a function f : D Ñ ω
where D Ď ωn is the domain of the function.

The distinction between total and partial functions is important in the subject,
and we must be careful to specify what we are talking about if it is not clear from
the context.

Intuitively, a (total or partial) recursive function f : ωn Ñ ω is a function which
is machine computable. The collection of algorithms corresponds to the collection
of partial recursive recursive functions (as not every algorithm computes a total
function). One approach to the subject is to formalize this notion of a “machine
computation.” There are several simple machine models which can be taken as the
definition of machine computations such as Turing machines, register machines, etc.
This gives a natural and intuitive approach, however, it is somewhat cumbersome
to verify that all of the needed functions are computable in this manner.

On the other hand, one could take an approach which is even more removed
from the intuitive notions of computability, but which perhaps results in a yet more
concise and elegant presentation. Namely, one could define the recursive and semi-
recursive sets (we will define these in our approach below) as the the sets which are
∆1 and Σ1 respectively over Vω (the collection of hereditarily finite sets; again we
will define these notions below). Our approach is more axiomatic, but still closely
related to the basic intuition of computability. Along these lines, the reader will
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note that clause 3 (primitive recursion) is closely related to the programming notion
of a for loop, while clause 4 (minimalization) is closely related to the programming
notion of a while loop (these two programming notions would be used in practice
to implement these respective two clauses).

Although perhaps somewhat less intuitive than the approach involving machine
computability, our approach results in a more compact presentation, and also has
other advantages such as identifying the class of primitive recursive functions along
the way. Of course, it can be shown that all the various approaches define precisely
the same class of functions.

The fact that this class of functions (which ever approach one takes to defining
it) is the “right” notion of “computable function” is a philosophical statement
which is referred to as Church’s thesis. This is considered accepted orthodoxy
by current mainstream mathematics, but it is not inconceivable that this could
change in the future if more exotic physical computation methods are discovered.
We emphasize, though, that Church’s thesis plays no role in our mathematical
presentation. Definitions 1.2 and 1.3 below are precise and unambiguous, regardless
of one’s philosophical beliefs regarding Church’s thesis.

Definition 1.2. The collection of total recursive functions f : ωn Ñ ω (for some
n) is the smallest collection of functions satisfying the following:

(1) (simple functions) For any k P ω, the constant function fp~xq “ k is re-
cursive. The projection function fpx1, . . . , xnq “ xj is recursive, and the
successor function fpnq “ n` 1 is recursive.

(2) (composition) The class is closed under composition, that is, if fpx1, . . . , xnq
is recursive and g1px1, . . . , xmq, . . . , gnpx1, . . . , xmq are recursive then so is
hpx1, . . . , xmq “ fpg1p~xq, . . . gnp~xqq.

(3) (primitive recursion) The class is closed under primitive recursion. That is,
if gp~xq is recursive, and hpy, z, ~xq is recursive, then so is f defined recursively
by

fpn, ~xq “

#

gp~xq if n “ 0

hpfpn´ 1, ~xq, n´ 1, ~xq if n ą 0

(4) (restricted minimalization) The class is closed under minimalization. That
is, if gp~x, nq is recursive and for all ~x there is an n such that gp~x, nq “ 0,
then the function f defined by fp~xq “ µn pgp~x, nq “ 0q is recursive. Here
“µn” denotes “the least n.”

the call of functions that can be defined using just clauses (1)-(3) is called the class
of primitive recursive functions.

Note that all primitive recursive functions are total, that is, clauses (1)-(3) do
not lead out of the class of total functions.

Clause (4), if applied to a g that does not necessarily satisfy the hypothesis of (4),
may lead to a partial function. This suggests the following definition.

Definition 1.3. The collection of partial recursive functions is the smallest class
of partial function from ωn (for some n) to ω satisfying (1)-(3) above and
(41) (unrestricted minimalization) if gp~x, nq is partial recursive, then the partial
function f defined by fp~xq “ µn pgp~x, nq “ 0q is partial recursive. Here, fp~xq is
defined and equal to n if for all m ă n, gp~x,mq is defined and not equal to 0, and
gp~x, nq is defined and equal to 0.



3

Remark 1.4. In applying clauses 2 and 3 in Definition 1.3, the natural conventions
concerning the domains are used. In clause 2 (composition), hp~xq is defined iff all
of g1p~xq, . . . , gnp~xq are defined, and also fpg1p~xq, . . . , gnp~xqq is defined. Similarly,
in clause 3 (primitive recursion), fpn, ~xq is defined iff fp0, ~xq “ gp~xq is defined,
fp1, ~xq “ hpfp0, ~xq, 0, ~xq is defined, . . . , fpn, ~xq “ hpfpn´ 1, ~xq, n´ 1, ~xq is defined.

Remark 1.5. It is true, but not immediate from the definitions, that a partial
recursive function which is total is actually a total recursive function. We will see
this below.

For f a partial function we use the notation fp~xq Ó to mean fp~xq is defined.
It is natural to consider not just functions, but also relations. We thus make the

following definition.

Definition 1.6. A relation R Ď ωn is recursive iff the characteristic function
χR : ωn Ñ t0, 1u is recursive. Likewise, we say R is primitive recursive if χR is
primitive recursive.

We begin building a catalog of recursive functions.

Lemma 1.7. Addition and multiplication are (primitive) recursive.

Proof. The addition function fpn,mq “ n ` m can be defined by a primitive re-
cursion on m: fpn, 0q “ n, and for m ą 0, fpn,mq “ fpn,m ´ 1q ` 1. Likewise,
the multiplication function gpn,mq “ n ¨ m can be defined by: gpn, 0q “ 0 and
gpn,mq “ gpn,m ´ 1q ` m (using that ` is primitive recursive by the first sen-
tence). �

Lemma 1.8. The sign function sgpnq “

#

1 if n ą 0

0 if n “ 0
is (primitive) recursive.

Proof. Use a primitive recursion, sgp0q “ 0, and (for m ą 0) sgpmq “ hpsgpm ´

1q,m´ 1q where h is the constant 0 function. �

Lemma 1.9. The predecessor function pp0q “ 0, ppnq “ n´1 for n ą 0 is primitive
recursive.

Proof. The definition given shows it is primitive recursive (we are allowed to use
n´ 1 as an argument in the second case). �

Lemma 1.10. The non-negative subtraction function a´ b “

#

a´ b if a ě b

0 otherwise

is (primitive) recursive.

Proof. By a primitive recursion on b. a ´ 0 “ a and a ´ b “ ppa ´ pb ´ 1qq for
b ą 0. �

Lemma 1.11. The relations R“pm,nq Ø pm “ nq, Răpm,nq Ø pm ă nq, and
Rąpm,nq Ø pm ą nq are all (primitive) recursive.

Proof. χR“pm,nq “ 1 ´ ppm ´ nq ` pn ´mqq. Also, χRăpm,nq “ sgpn ´mq and
similarly for Rą. �

Lemma 1.12. The class of (primitive) recursive relations is closed under the
boolean operations ^, _,  .
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Proof. Let R,S be (primitive) recursive (for simplicity of notation, we assume R,S
are unary relations). Then χR^Spnq “ χRpnq ¨χSpnq. Also, χR_Spnq “ sgpχRpnq`
χSpnqq. Finally, χ Rpnq “ 1 ´ χRpnq. �

Note that the relations m ď n and m ě n are also therefore (primitive) recursive.

Lemma 1.13. A function defined by cases using recursive case conditions and re-
cursive functions is also recursive. Likewise for primitive recursive cases and func-
tions. More precisely, If R1, . . . , Rk are recursive (or primitive recursive) relations,
and f1, . . . , fk are recursive (or primitive recursive) functions, then the function

fpnq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

f1pnq if R1pnq

f2pnq if R2pnq
...

fkpnq if Rkpnq

fk`1pnq otherwise

is also recursive (primitive recursive). Here, in defining fpnq, we use the first case
that applies.

Proof.

χf pnq “ f1pnq ¨ χR1pnq ` f2pnq ¨ pχR2pnq´ χR1pnqq ` ¨ ¨ ¨

` fk`1pnq ¨ pp1 ´ χR1pnqq ¨ ¨ ¨´ χRk
pnqq.

�

Lemma 1.14. Recursive relations are closed under substitution of recursive func-
tions. That is, if R is a recursive relation and f is a total recursive function, then
R1pnq Ø Rpfpnqq is also recursive. The same is true for primitive recursive.

Proof. χR1pnq “ χRpfpnqq is a composition of two recursive (or primitive recursive)
functions. �

Recall a relation R is recursive iff its characteristic function χR is recursive. We
can also go from functions back to relations according to the following lemma.

Lemma 1.15. Let f : ωn Ñ ω be a (total) function. Then f is recursive iff its
graph Gf “ tp~n,mq : fp~nq “ mu is.

Proof. Suppose f is total recursive. then the graph Gf is a recursive relation since
χGf

p~n,mq “ χ“pfp~nq,mq is a composition of recursive functions.
Suppose next that f is total and Gf is a recursive relation, that is, χGf

is
recursive. Then fp~nq “ µm p1 ´ χGf

p~n,mq “ 0q. Note that χGf
is total and

@~n Dm p1 ´ χGf
p~n,mq “ 0. This shows that f is total recursive. �

Remark 1.16. Lemma 1.15 does not hold in its entirety for partial recursive func-
tions. If f is a partial recursive function, then its graph Gf need not be recursive
(i.e., ∆0

1) but only semirecursive (i.e., Σ0
1). We will define these notions below.

However, the other direction of Lemma 1.15 does still hold. That is, is f is a par-
tial function and Gf is recursive, then the proof of Lemma 1.15 still shows that f
is a partial recursive function (the minimalization operation in the proof is now no
longer always defined).
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We next show that the recursive relations are closed under bounded number
quantification, which we define next.

Definition 1.17 (bounded number quantification). Suppose Rpn1, . . . , nk,mq is
a recursive k ` 1-ary relation. If S Ď ωk is given by Spn1, . . . , nkq Ø Dm ď

ni Rpn1, . . . , nk,mq (for some fixed i), then we say S is obtained by a (single)
bounded existential quantification from R. Likewise, if we have Spn1, . . . , nkq Ø
@m ď ni Rpn1, . . . , nk,mq then we say S is obtained by a (single) bounded universal
quantification from R. In both cases we say S is obtained by a (single) bounded
quantification from R. We say S is obtained by bounded quantification from R (R
now k ` `-ary) is S is obtained from R by ` applications of these bounded number
quantifications.

For example, we might have

Rpn,mq Ø Da ď n @b ď a Dc ď m Spn,m, a, b, cq.

This R is obtained by applying three bounded number quantifiers to S.

Lemma 1.18. If S is recursive and R is obtained from S by bounded number
quantification, then R is recursive. Likewise for primitive recursive relations.

Proof. It is enough to assume R is obtained from S by a single bounded number
quantification. It is also enough to consider the bounded existential quantifier as
@m ď n S is equivalent to  Dm ď n  R (a direct proof for @m ď n is also easy to
give). So assume Rpn1, . . . , nkq Ø Dm ď ni Spn1, . . . , nk,mq, where S is recursive.
Then χR is given by a primitive recursion over ni (to ease notation, assume i “ 1):

χRp0, n2, . . . , nkq “ χSp0, n2, . . . , nk, 0q

χRpn1, n2, . . . , nkq “ sgpχRpn1 ´ 1, n2, . . . , nkq ` χSpn1, n2, . . . , nk, n1qq

�

A related fact is the following.

Lemma 1.19. Suppose R is recursive. Let f be total recursive. Then the function
g defined by

gpm, kq “

#

µn rpm ă n ď fpmqq ^Rpn, kqs if such an n exists

0 otherwise

is recursive. The same holds for R, f, g being primitive recursive.

Proof. When R, f are recursive the result follows easily from the closure of the re-
cursive functions under restricted minimalization. We must give a slightly different
argument for the primitive recursive case (which also works for the recursive case).

Note that gpmq “ hpm,m` 1, fpmqq where

hpm, a, bq “

#

µn rpa ď n ď bq ^Rpn, kqs if such an n exists

0 otherwise
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so it suffices to show that h is primitive recursive. We define h by a primitive
recursion on b as follows: hpm, a, 0q “ 0 and for b ą 0 we have

hpm, a, bq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

0 if b ă a

0 if pb “ aq ^  Rpaq

a if pb “ aq ^Rpaq

hpm, a, b´ 1q if pb ą aq ^ hpm, a, b´ 1q ‰ 0

0 if pb ą aq ^ hpm, a, b´ 1q “ 0^ pa “ 0q ^Rp0q

b if pb ą aq ^ hpm, a, b´ 1q “ 0^ pa “ 0^Rp0qq ^Rpbq

0 otherwise

Form Lemma 1.13 it follows that h is primitive recursive. �

The following lemma summarizes much of this discussion.

Lemma 1.20. The class of recursive relations contains “, ă, ą, and is closed
under complements, finite unions and intersections, bounded number quantification,
and substitution of recursive functions. Similarly the class of primitive recursive
relations is closed under these operations. Also, a function is recursive iff its graph
is recursive.

Continuing with our catalog of recursive functions and relations, we now show
that various coding and decoding functions and related notions are all recursive (in
fact, primitive recursive).

We let the exponentiation function Epm,nq, which we usually denote by mn,
be defined in the usual way, with the provision that Ep0, 0q “ 1. This function
is primitive recursive as it can be given by the following primitive recursion on n:
Epm, 0q “ 1, and for n ą 0, Epm,nq “ Epm,n´ 1q ¨m.

Let pp0q “ 2, pp1q “ 3, pp2q “ 5, . . . , and in general ppnq “ the next prime after
ppn´ 1q (we refer to ppiq as the “ith prime”).

Definition 1.21. For pa0, . . . , akq P ω
ăω let xa0, . . . , aky “ pa0`1

0 pa1`1
1 ¨ ¨ ¨ pak`1

k .
Let Seq “ tx~ay : ~a P ωăωu be the set of all codes of finite sequences. For n “
xa0, . . . , aky P Seq, let lhpnq “ k ` 1 be the length of the sequence coded by n, and
for n R Seq, let lhpnq “ 0. Define the binary decoding function pn, iq Ñ pnqi by
pnqi “ ai if n “ xa0, . . . , aky codes a sequence of length ą i, and pnqi “ 0 otherwise.

Clearly the map p~aq Ñ x~ay is one-to-one on ωăω.

Lemma 1.22. The function n ÞÑ ppnq and the set Seq are primitive recursive. For
any fixed k P ω, the function pa0, . . . , akq Ñ xa0, . . . , aky is primitive recursive. The
function lh and the decoding function pn, iq Ñ pnqi are primitive recursive.

Proof. First note that set of primes P is (primitive) recursive. This follows from
Lemma 1.20 as

P pnq Ø pn ą 1q ^  pDa ă n Db ă n pn “ a ¨ bq ^ pa ą 1^ b ą 1qq.

The next prime function i ÞÑ tpiq “least prime greater than i is also recursive as

tpiq “ µn rpP pnq ^ pn ą iqs.

Note that the minimalization operator here is always obtained, since there are
infinitely many primes.
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The prime function n ÞÑ ppnq is now recursive as it is given by a primitive
recursion: pp0q “ 2 and for n ą 0, ppnq “ tpppn´ 1qq.

To see the next prime function t and the prime function p are actually primitive
recursive we argue as follows. First, the function n ÞÑ n! is easily primitive recursive
(we define, as usual, 0! “ 1). We then have

tpmq “

#

µn pm ă n ď m!` 1q ^ P pnq if such an n exists

0 otherwise

We use here the fact that the next prime greater than m is always ď m!` 1 (since
all of the prime factors of m! ` 1 are relatively prime to m!, and hence greater
than m). From Lemma 1.19 it follows that the t function is primitive recursive.
[We note that it is actually a theorem of number theory (“Bertrand’s postulate”)
that there is always a prime between m and 2m for any m, but the trivial bound
m!` 1 suffices for the above argument.] The prime function ppmq is now given by
a primitive recursion: pp0q “ 2, and for m ą 0, ppmq “ tpppm´ 1qq. Thus both the
next prime function, and the nth prime function are primitive recursive.

Note that n P Seq Ø @p ď n @q ď n rpp, q are prime ^ p ă q ^ q|nq Ñ p|ns.
Since the dividing relation is clearly primitive recursive (using Lemma 1.20), this
shows Seq is also. For any fixed k, the function pa0, . . . , akq Ñ xa0, . . . , aky is clearly
primitive recursive. We have

lhpnq “ µk ď n rpn R Seq^ k “ 0q _ pn P Seq^ ppkq - ns.
which shows the lh function is primitive recursive. Finally,

pnqi “ µk ď n rpn R Seq^ k “ 0q _ pn P Seq^ i ě lhpnq ^ k “ 0q

_ pn P Seq^ i ă lhpnq ^ ppiqk`1 | n^ ppiqk`2 - nqs.

which shows the function pn, iq ÞÑ pnqi is primitive recursive. �

Exercise 1. Suppose g and h are primitive recursive and f is defined from them
by the following total recursion:

fp0,~aq “ gp~aq

fpn` 1,~aq “ hpxfp~a, 0q, . . . , fp~a, nqy,~a, nq.

Show that f is primitive recursive. [hint: show that the function f 1pn,~aq “
xfp0,~aq, . . . , fpn,~aqy is primitive recursive.]

1.1. Recursive sets, functions, and definability. In this section we introduce
a definability hierarchy for sets of integers, and place the recursive sets in this
hierarchy. This hierarchy will involve definability over the structure of the natural
numbers. We continue to work in a sufficiently strong background metatheory so
that all of our various notions (e.g., N, make sense).

Let us consider the first-order language L “ p¨,`, E, S,ă, 0q with logical symbols
whose intended meaning is multiplication, addition, exponentiation, the successor
function (i.e., Spnq “ n ` 1), the usual ordering on the natural numbers, and a
constant symbol for the 0 element. We call this the language of arithmetic.

We introduce a hierarchy of formulas and sets.

Definition 1.23. We say a formula φpx1, . . . , xnq is ∆0 if it is built-up through
the following:

(1) All atomic formulas (in the language of number theory) are ∆0.
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(2) ∆0 is closed under the boolean connectives.
(3) (closure under bounded quantification) If ψpx1, . . . , xn`1q P ∆0, then so is

φ “ Dxn`1 ď xj ψpx1, . . . , xn, xjq (where 1 ď j ď n) and so is φ “ @xn`1 ď

xj ψpx1, . . . , xn, xjq.

Thus, ∆0 formulas are the formulas which contain only bounded number quan-
tification. The following lemma is a useful normal form for ∆0 formulas.

Lemma 1.24. Every ∆0 formula ϕ is logically equivalent to a ∆0 formula ψ of
the form ψpx1, . . . , xkq “ Dy1 ď z1 ¨ ¨ ¨ @y` ď z` σpx1, . . . , xk, y1, . . . , y`q where σ
is quantifier-free., That is, ψ has the form a string of bounded number quantifiers
followed by a quantifier-free formula. Here z1 P tx1, . . . , xku, z2 P tx1, . . . , xk, y1u,
etc.

Proof. It is enough to show that if ψ1 and ψ2 are in the normal form, then ψ1_ψ2 is
logically equivalent to a ψ is the normal form. Say ψ1p~xq “ Dy1 ď x1 ψ

1
1p~x, y1q, and

ψ2p~xq “ @z1 ď x1 ψ
1
2p~x, z1q, where ψ11, ψ12 are in the normal form and have smaller

length that ψ1, ψ2 respectively. By changing the quantified variable (alphabetic
variant) we may assume that z1 ‰ y1. But then ψ1 _ ψ2 is logically equivalent to

Dy1 ď x1 @z1 ď x1 rψ
1
1p~x, y1q _ ψ

1
2p~x, z1qs

By induction, ψ11 _ ψ
1
2 is logically equivalent to a ∆0 formula in normal form, and

we are done. �

The higher level formulas are defined inductively as follows.

Definition 1.25. For n ě 1, we say φ P Σn if it is of the form φ “ Dx1 . . . Dxn ψ,
where ψ P Πn´1, and φ P Πn if it is of the form φ “ @x1 . . .@xn ψ where ψ P Σn´1

(we interpret Σ0, Π0 as being ∆0).

Note that the negation of a Σn (or Πn) formulas is logically equivalent to a Πn

(or Σn) formulas.

Exercise 2. Show that if ϕ, ψ are Σn formulas, then ϕ^ψ and ϕ_ψ are logically
equivalent to Σn formulas. Likewise for Πn. [hint: follow the proof of Lemma 1.24.]

The above definitions of formula classes are purely syntactic. We now use them
to introduce complexity classes for sets of integers.

Definition 1.26. We say a set A Ď ω is ∆0
0 if there is a ∆0 formula ϕ which defines

it, that is, for all n P ω, n P A Ø N |ù φpnq. We say A is Σ0
n (or Π0

n) if there is a
Σn (resp. Πn) formula φ which defines it. We say A is ∆0

n if it is both Σ0
n and Π0

n.
We say a set A Ď ω is arithmetic if A is Σ0

n for some n.

We now turn to the connection between the notion of recursive and definability
in the arithmetic hierarchy.

Lemma 1.27. Every ∆0
0 set A Ď ω is primitive recursive.

Proof. Since the function ¨,`, E, S and the relation ă are all primitive recursive,
this follows immediately from Lemma 1.20. �

Consider again the functions and relations pertaining to our coding and decoding
operations. The relations P (set of primes) and Seq are easily ∆0

0. The next prime
function t easily has a ∆0

0 graph. For the other functions, it is helpful to have the
following technical definition.
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Definition 1.28. An m P ω is good if it is of the form m “ 21 ¨32 ¨ ¨ ¨ ¨pi`1
i for some

i P ω.

Lemma 1.29. The G of good integers in ∆0
0.

Proof. We have

m P GØ 2|m^ 4 - m^ @p, q, a ă m rpP ppq ^ P pqq ^ pp ă qq ^ pq|mq

^ @p ă r ă q  P prqq Ñ ppa|mØ qa`1|mqs

�

The graph Gp of the function i ÞÑ ppiq “ ith prime can be written as

Gppi, pq Ø Dm ď 2pi`1q3 rGpmq ^ P ppq ^ pi`1|m^ pi`2 - ms

We use the fact that 21 ¨ 32 ¨ ¨ ¨ ¨ ppiqi`1 ď 2pi`1q3 as ppiq ď 2i`1. Let us denote

this function as bpiq “ 2pi`1q3 as it will appear several times. Note that the expres-
sion inside the brackets is ∆0. The graph of the length function can be similarly
expressed.

plhpnq “ iq Ø Dm ď bpiq rpn R Seq^ i “ 0q _Gpmq

^ Dp, q ă m pP ppq ^ P pqq ^ pi | m^ pi`1 - m^ p | n^

qi`1 | m^ qi`2 - m^ q - nqs
Again, the expression inside the square brackets is ∆0. Finally, we have

ppnqi “ kq Ø Dm ď bpiq rpn R Seq^ k “ 0q _Gpmq

^ Dp ă m pP ppq ^ pi`1 | m^ pi`2 - m^ pk`1 | n^ pk`2 - nqs

_ @m ă nn`2 rGpmq Ñ  Dp ă m pP ppq ^ pi`1 | mqu ^ pi “ 0qs

We will show that the recursive subsets of ωk are precisely the ∆0
1 subsets.

Lemma 1.30. Every ∆0
1 subset of ω is recursive.

Proof. Let A Ď ω be ∆0
1, and let ϕ, ψ be Σ1 formulas in the language of number

theory such that for all n P ω, n P aØ ϕNpnq Ø  ψNpnq. Say ϕpmq Ø Dn ϕ1pm,nq,
ψpmq Ø Dn ψ1pm,nq where ϕ1, ψ1 are ∆0 formulas. From Lemma 1.27, the relation

Rpm,nq, Spm,nq are primitive recursive, where Rpm,nq Ø ϕ1
N
pm,nq and likewise

for S and ψ1.
Let fpmq “ µn rRpm,nq _ Spm,nqs. For any m, note that there is always an n

such that Rpm,nq or Spm,nq holds as either ϕNpmq or ψNpmq. Thus, f is a total
recursive function. We then have

χApmq “ χRpm, fpmqq

which shows that A is recursive. �

To show the other containment of Lemma 1.30, and for other arguments, we
need the notion of a code of a partial recursive function, and a computation witness.
Suppose f is a total or partial recursive function. For simplicity we assume f is
unary. We first define the notion of a code for a recursive function. Following is an
inductive definition of the set C Ď ω of codes for the partial recursive functions,
along with as assignment map e ÞÑ fe for e P C which assigns the partial recursive
function fe to e.
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Definition 1.31. The set C Ď ω of codes for the partial recursive functions and
the assignment map e ÞÑ fe are defined inductively through the following cases
(note that the second component peq1 of the sequence is declaring the arity of the
function).

(1) e “ x0, 1y P C, and fe is the unary successor function, fepaq “ a` 1.
(2) e “ x1, k,my P C and feis the k-ary constant function m.
(3) e “ x2, k, `y P C if ` ď k. fe is the k-ary projection onto the `th coordinate,

that is fepa1, . . . , akq “ a`.
(4) e “ x3, k, `, py P C where ` P C, p P Seq, @i ă lhppq pppqi P C^pppqiq1 “ kq,

and lhppq “ p`q1. fe is the function defined by composition from f “ f`
and g1 “ fppq0 , . . . , gn “ fppqn´1

where n “ lhppq.
(5) e “ x4, k, `, py P C where `, p P C, p`q1 “ k ´ 1, ppq1 “ k ` 1. fe is the

function defined by primitive recursion from g “ f` and h “ fp.
(6) e “ x5, k, `y where p`q1 “ k`1. fe is the function defined by minimalization

from the function g “ f`.

An immediate induction on the inductive definition of partial recursive function
shows that for any partial recursive function f , there is an e P C such that fe “ f
(that is, fe and f have the same domains, and are equal on their domains).

Lemma 1.32. The set C of codes of partial recursive functions is recursive, in
fact, primitive recursive.

Proof. The idea is to witness e is in C by an integer f coding a sequence of length
e`1. Each component pfqi will be 0 or 1. pfqi “ 1 will stand for the assertion that
i P C. Whenever pfqi “ 1, then either i P C by virtue of clauses 0, 1, or 2 above,
or i has the form of clauses 3, 4, or 5, and the integers smaller than i which need
to be in C are given value 1 by f . Note that if f codes a sequence of length e` 1,

with each element of the sequence in t0, 1u, then f ď 22pe`1q2 ă 2pe`1q3 “ bpeq.
More formally,

e P C Ø Df ď bpeq rf P Seq^ lhpfq “ e` 1^ @i ď e ppfqi ď 1q ^ pfqe “ 1

^ @i ď e pfqi “ 1 Ñ

i “ x0, 1y

_ Dk,m ď i pi “ x1, k,myq

_ Dk, ` ď i pp` ď kq ^ i “ x2, k, `yq

_ Dk, `, p ď i pi “ x3, k, `, py ^ p P Seq^ pfq` “ 1^ @i ă lhppq

ppfqppqi “ 1^ pppqiq1 “ k ^ lhppq “ p`q1

_ rsimilarly for clauses 5 and 6s.

From the closure properties of the primitive recursive relations it follows that C is
primitive recursive. In fact, from the previous computations, we see that this may
be written in the form

e P C Ø Du ď bpeq ru “ 2pi`1q3 ^ ψpe, uqs

where ψ is ∆0, as all of the quantifiers in ψ are bounded by u. �

Lemma 1.33. If A Ď ω is recursive, then A P ∆0
1.
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Proof. Since ω ´ A is also recursive, it suffices to show that A P Σ0
1. Let f “ χA,

so f is total recursive and takes values in t0, 1u. The proof is similar to that of
Lemma 1.32 in that we must “unravel” the inductive definition of f . Thus, we will
write

m P AØ Du rSeqpuq ^ “u codes a computation witness that fpmq “ 1”s

We will write the formal definition of a computation witness below. More generally,
we define a relation W pe,m, n, uq which says that u is a computation witness that
fep~mq “ n. Here we use this notation: let m1 denote the value 0 if m R Seq, and
if m P Seq then m1 “ xpmq1, . . . , pmqlhpmq´1y. That is, we drop the first element
pmq0 from the sequence coded by m, and then recode. Thus, if m codes an input
sequence pn, ~xq, then m1 will code ~x.

Exercise 3. Show that m1 ă m and the relation Rpm, kq Ø pk “ m1q is ∆0
0.

The idea is that the computation witness must contain all of the integers needed
to verify that the correct value has been computed. For example, if the function f
is computed by a primitive recursion from g and h (as in Definition 1.3), then the
integer u will witness fpa, ~xq “ b if u contains witnesses for fp0, ~xq “ gp~xq, fp1, ~xq “
hpfp0, ~xq, 0, ~xq, up through fpa, ~xq “ hpfpa ´ 1, ~xq, a ´ 1, ~xq. The computation
witness u will be a sequence with puqj “ xe,m, ny for all j ă lhpuq. The sequence
xe,m, ny will “witness” that fep~mq “ n. Being a correct witness will require,
inductively, that certain other witnesses are present.

We now precisely define the relationW pē, m̄, n̄, uq which gives the set of pē, m̄, n̄, uq
for which ē P C, m̄ P Seq, and u is a computation witness that fēp ~̄mq “ n̄.

We have:

W pē, m̄, n̄, uq Ø pē P Cq ^ Seqpm̄q ^ Seqpuq ^ Dj̄ ă u ppuqj̄ “ xē, m̄, n̄yq^

p@e,m, n ď u @j ă lhpuq tpuqj “ xe,m, ny Ñ

re “ x0, 1y ^ lhpmq “ 1^ pn “ pmq0 ` 1qs

_ rDp, q ď u e “ x1, p, qy ^ lhpmq “ p^ n “ qs

_ rDp, q ď u e “ x2, p, qy ^ lhpmq “ p^ n “ pmqqs

_ rDp, q, r ď u e “ x3, p, q, ry ^ lhpmq “ p^ Dt ď u

pSeqptq ^ lhptq “ lhprq ^ @i ă lhptq Dj ă lhpuq

ppuqj “ xprqi,m, ptqiyq ^ Dj ă lhpuq ppuqj “ xq, t, nyqqs

_ rDp, q, r ď u e “ x4, p, q, ry ^ lhpmq “ p^ Dt ď u pSeqptq

^ lhptq “ pmq0 ` 1^ Dj ă lhpuq ppuqj “ xq,m
1, ptq0yq ^ @i ď pmq0

Dj ă lhpuq ppuqj “ xr, xptqi´1, i´ 1,m1y, ptqiyq ^ n “ ptqpmq0qs

_ rDp, q ď u e “ x5, p, qy ^ lhpmq “ p

^ Dt ď bpuq pSeqptq ^ lhptq “ n` 1^ Dj ă lhpuq ppuqj “ xq, x~m, ny, 0yq

^ @r ă n Dj ă lhpuq ppuqj “ xq, x~m, ry, ptqjy ^ ptqj ‰ 0qqsuq

�

Using again the fact that good sequences of length i` 1 are bounded by bpiq “

2pi`1q3 , (the best bound here is not important), our computation of the set C of
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codes, the computations of the coding and decoding operations, and the above
computation of W , we see that W can be expressed in the form

W pē, m̄, n̄, uq Ø Dv ď bpuq pv “ bpuq ^ ψpē, m̄, n̄, u, vqq

where ψ is ∆0. For example, “lhpmq “ p” in the above formula for W is replaced
by Db ď v pb “ upmq ^ D` ă b r¨ ¨ ¨ sq, where r¨ ¨ ¨ s is as the previous computation of
the lh function.

If A Ď ω is recursive, then we have χA “ fe for some e. We then have

m P AØ Du W pe,m, 1, uq

Ø Du Dv ď bpuq rv “ bpuq ^ ψpe,m, 1, u, vqs

Ø Dv Du ď v rv “ bpuq ^ ψpe,m, 1, u, vqs

where ψ is ∆0. Thus A P Σ0
1, and likewise ω ´A P Σ0

1, so A P ∆0
1.

We thus have:

Theorem 1.34. Every ∆0
0 set is primitive recursive, and the recursive subsets of

ω are exactly the ∆0
1 subsets.

The Σ0
1 sets occur frequently enough to warrant their own terminology.

Definition 1.35. A set A Ď ω is called semi-recursive or recursively enumerable
or computably enumerable if it is Σ0

1.

It follows immediately from Theorem 1.34 that a set is recursive iff both A
and its complement ω ´ A are computably enumerable. The term “computably
enumerable” derives from (2) of the following characterization.

Lemma 1.36. The following are equivalent for a non-empty A Ď ω:

(1) A is Σ0
1.

(2) A is the range of a total recursive function.
(3) A is the domain of a partial recursive function.

Proof. Suppose A is the range of the total recursive function f “ fe : ω Ñ ω. Then

n P AØ Dm Du W pe,m, n, uq

which shows A P Σ0
1. similarly, if A “ dompfeq (where fe is partial recursive), then

m P AØ Dn Du W pe,m, n, uq

which shows A P Σ0
1.

Suppose next that A P Σ0
1. Say n P A Ø Dm ψNpn,mq where ψ is ∆0. Let

Rpn,mq be the (primitive) recursive relation defined by ψ. Fix n0 P A. Let

fpkq “

#

pkq0 if Rppkq0, pkq1q

n0 otherwise

The f is total recursive and A “ ranpfq. Also, if we define

gpnq “ µm Rpn,mq

then g is partial recursive and A “ dompgq. �

The above analysis also yields the following Kleene normal form theorem for
recursive functions.
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Theorem 1.37. Let f be a partial recursive function. Then there are primitive
recursive functions h, g such that

fpmq “ hpµk gpm, kq “ 0q

Proof. Let f “ fe. Let gpm, kq “

#

0 if W pe,m, pkq0, pkq1q

1 otherwise
. Let hpkq “ pkq0.

Then the desired equation holds. �

As an immediate corollary we have.

Corollary 1.38. If f is a partial recursive function (according to Definition 1.3)
which is a total function, then f is total recursive (according to Definition 1.2).

We also record the following fact, which say that there is a universal Σ0
1 set.

Theorem 1.39. There is a Σ0
1 set U Ď ω ˆ ω such that for every Σ0

1 set A Ď ω
there is an e P ω with A “ Ue “ tm : Upe,mqu.

Proof. Define
Upe,mq Ø Dk W pe,m, pkq0, pkq1q.

Clearly U P Σ0
1 and from (3) of Lemma 1.36 we have that U is universal. �

Finally in this section we mention some of the properties of the arithmetical
pointclasses.

Theorem 1.40. For n ě 1 the Σ0
n sets are closed under finite unions and intersec-

tions, existential number quantification, bounded universal number quantification
(i.e., @n ď m), and recursive substitution (i.e., if f is total recursive and R P Σ0

n,
then so is R1pnq Ø Rpfpnqq).

Similarly, the Π0
n sets are closed under finite unions and intersections, universal

number quantification, existential number quantification, and recursive substitution.
The ∆0

n (for n ě 1) classes are closed under finite unions and intersections,
complements, bounded number quantification, and substitution by total recursive
functions.

All of the Σ0
n, Π0

n classes have universal sets.

Proof. We consider the case Σ0
n. Closure under existential number quantification is

obvious. Consider a bounded universal number quantification, say Bpnq Ø @m ď

n Apn,mq where A P Σ0
n. Thus, Bpnq Ø @m ď n Dk Cpn,m, kq, where C P Π0

n´1

(recursive if n “ 1). Using our coding functions we can then write Bpnq Ø Dl @m ď

n Cpn,m, plqkq. By induction this shows B is Σ0
n. The finite union and intersection

cases are easy (as in Exercise 2). Closure under recursive substitution follows from
the fact that a recursive substitution into a recursive relation results in a recursive
relation (from the closure properties of recursive relations), and the fact that a
recursive relation is ∆0

1. The closure properties for ∆0
n follow from those for Σ0

n

and Π0
n. �

Exercise 4. Show that the classes ∆0
n cannot have universal sets. [hint: if U Ď

ωˆω were ∆0
n and universal for the ∆0

n subsets of ω, then “diagonalize” out of the
class of ∆0

n sets by defining n P AØ pn, nq R U ].

Exercise 5. Show that a universal Σ0
n or Π0

n set cannot be ∆0
n [hint: follow the

diagonal argument of the previous exercise. If the universal set U were ∆0
n, show

that the set A above would be in ∆0
n, but not a section of U .]
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2. Representability in arithmetic

There is a close relationship between recursive sets and functions and simply
definable sets in models of arithmetic. This connection is important for the proof
of the incompleteness theorem, and we now make it precise. First, though, we need
to clarify what we mean when we speak of “the natural numbers” or “a model
of arithmetic.” The reader will no doubt see that we should have (in principle)
addressed this point earlier, since we have been referring to the natural numbers
repeatedly in our discussion of recursive functions.

Up to this point (and for a while longer), we have implicitly been working in
an unspecified metatheory, that is, background axiom system which axiomatizes
the rules for the objects (e.g., the natural numbers) with which we have been
dealing. We have taken for granted that this metatheory suffices to establish the
basic properties of the natural numbers (e.g., unique factorization into primes) that
we have used. This background metatheory could be taken to bell of ZFC set theory,
but we will argue later that a much weaker theory (a fragment of Peano Arithmetic)
suffices. We will continue to work informally in this background metatheory for now,
but we will be discussing formal axiom systems for arithmetic and formal proofs
from these axioms. In particular, we will introduce below a finite set of axioms
F and discuss proofs from F. Thus, within the background metatheory we are
discussing formal proofs from F of certain sentences in the first-order logic of the
language of number theory. We will take the formal language of number theory as
the language L “ p¨,`, E, S,ă,0q with logical symbols for multiplication, addition,
exponentiation, the successor function (i.e., Spnq “ n ` 1), the usual ordering on
the natural numbers, and a constant symbol for the 0 element (the least element
in the ordering). Note that we must be careful to separate the formal statements
we are discussing from objects and statements in the metatheory. For example, 0
will denote the least element of the natural numbers (whose properties are given
by the axioms in the metatheory) while 0 will denote the constant term in the
formal language of number theory. To illustrate, we might make the statement
“for every n ą 0, there is a proof from F of the sentence Snp0q ff 0.” Here
the “for every n ą 0” is a statement in the metatheory, while “Snp0q ff 0” is
a formal sentence in L. We will use 0, “ for statements in the metatheory, and
0, « in the formal theory. Both the metatheory and the formal sentences in L
will have quantifiers, variables, and the symbols `, ¨, but this should be enough
to avoid confusion between the metatheory and the formal theory (we could, if
desired, further the notational distinction by using different symbols for addition
in the metatheory and the addition symbol in the formal language). For most
purposes it is not extremely important to identify the optimal set of axioms A for
the background metatheory (though we will do so later).

We now introduce a formal theory for the natural numbers. One standard ax-
iomatization for the natural numbers is the so-called Peano axiom scheme, which
we denote PA. This is a first-order theory in the language L above. It will actually
suffice to establish all of the properties of the natural numbers in the metatheory
that we will need as well. We will for now, however, continue to work informally in
the (unspecified) metatheory and view this axiom system (and its fragment F) as a
form system which are studying within the metatheory. It may help the reader to
temporarily take the background metatheory as ZFC, to avoid confusion with the
formal theory.
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The following axiom scheme PA is the Peano axioms for the natural numbers. It
consists of a finite set of axioms F (sometimes called the Frege subsystem) together
with an infinite schema of induction axioms. We present the axiom scheme in
the language L “ t`, ¨, E, S,ă,0u mentioned above, but note that the language
consisting of just ` and ¨ would suffice (the other functions, relations, and 0 can
be defined from ` and ¨ within the version of the Peano axiom scheme mentioning
only the axioms for these two function). It simplifies things a little to have these
extra symbols in the language, however.

Definition 2.1. The Peano axiom scheme is the following set of sentences in the
language of number theory.
(Successor Axioms)
@x  pSpxq « 0q.
@x @y pSpxq « Spyq Ñ x « yq

(Order axioms)
@x  px ă 0q
@x @ypx ă y _ x « y _ y ă xq.
@x @y px ă Spyq Ø x ď yq

(Addition axioms)
@x px` 0 « xq
@x @y x` Spyq « Spx` yq.

(Multiplication axioms)
@x x ¨ 0 « 0.
@x @y x ¨ Spyq « x ¨ y ` x

(Exponentiation axioms)
@x xE0 « Sp0q
@x @y xESpyq « pxEyq ¨ x

(Induction axioms)
For every formula φpxq the axiom rφp0q ^ @x pφpxq Ñ φpx` 1qqs Ñ @x φpxq

We let PA denote the Peano axioms scheme, and let F denote PA minus the
induction axioms. Thus, F is a finite set of axioms. Note that F just says that the
various functions and relations are correctly computed at Spyq from their values at
y. As we said above, we could get by, in defining the Peano axioms, with just the
addition and multiplication axioms for F.

Exercise 6. Let F 1 be the version of PA in the language L1 “ t`, ¨0u consisting of
the addition, multiplication, and zero axioms together with the induction axioms.
Define ă by x ă y iff Dz pz ‰ 0 ^ y « x ` zq. Show from F 1 that ă satisfies the
order axioms.

Exercise 7. Show that PA proves the following stronger induction axiom: let
φpx1, . . . , xnq be a formula. Then

@x1 ¨ ¨ ¨ @xn´1 rφpx1, . . . , xn´1,0q ^ @xn pφpx1, . . . , xnq Ñ φpx1, . . . , xn´1, xn ` 1qs

Ñ @xn φpx1, . . . , xnqs.

The following notions of representability is important for the proof of the incom-
pleteness theorem.

Definition 2.2. Let R Ď ωk. We say R is representable in F if there is a formula
ϕpx1, . . . , xkq in the language of number theory such that for all a1, . . . , ak P ω we
have
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(1) If Rpa1, . . . , akq then F $ ϕpSa1p0q, . . . , Sakp0qq.
(2) If  Rpa1, . . . , akq then F $  ϕpSa1p0q, . . . , Sakp0qq.

We make a similar definition for functions.

Definition 2.3. Let f : ωk Ñ ω. We say f is representable in F if its graph
is representable. That is, there is a formula ϕpx1, . . . , xk, yq in the language of
number theory such that for all a1, . . . , ak P ω we have

(1) If fpa1, . . . , akq “ b then F $ ϕpSa1p0q, . . . , Sakp0q, Sbp0qq.
(2) If fpa1, . . . , akq ‰ b then F $  ϕpSa1p0q, . . . , Sakp0q, Sbp0qq.

Our first goal is to show that all recursive relations and (total) recursive functions
are representable in F .

Exercise 8. Show that every representable relation or function is recursive.

An important technical point is that representability of functions coincides with
a seemingly stronger concept which we now define.

Definition 2.4. A (total) function f : ωk Ñ ω is strongly representable if there is
a formula φpx1, . . . , xk, yq such that for all a1, . . . , ak,

(1) F $ φpSa1p0q, . . . , Sakp0q, Sfp~aqp0qq and also
(2) F $ r@z pφpSa1p0q, . . . , Sakp0q, zq Ñ z « Sfp~aqp0qqs.

Clearly strong representability implies representability. We show that the con-
verse holds, but first a simple technical lemma.

Lemma 2.5. For any n P ω, F $ @z pz ď Snp0q Ñ z « 0_ z « Sp0q _ ¨ ¨ ¨ _ z «
Snp0qq.

Proof. By induction on n. The result holds for n “ 0 since F $ pz ď 0 Ñ z « 0q
as F $ @z  pz ă 0q. Assume the result holds for n and assume z ď Sn`1p0q. If
z ă Sn`1p0q “ SpSnp0qq, then F proves that z ď Snp0q, in which case by induction
F proves z « 0_ ¨ ¨ ¨ _ z « Snp0q. Thus, F $ z « 0_ ¨ ¨ ¨ _ z « Sn`1p0q. �

Lemma 2.6. If f is representable, then it is strongly representable.

Proof. Suppose φpx, yq represents f : ω Ñ ω. Define

ψpx, yq “ rφpx, yq ^ @w ă y  φpx,wqs.

We claim that ψ strongly represents f . Fix n P ω, and let m “ fpnq. By assump-
tion, F $ φpSnp0q, Smp0qq. We must show that F $ @w ă Smp0q  φpSnp0q, wq.
Work within F, and assume w ă Smp0q. From lemma 2.5 we can deduce pw «

0 _ w « Sp0q _ ¨ ¨ ¨ _ w « Sm´1p0qq. Since φ represents f we have that F $

 φpSnp0q,0q, . . . , F $  φpSnp0q, Sm´1p0qq. From these two statements it follows
that F $ @w ă Smp0q  φpSnp0q, wq. Thus, F $ ψpSnp0q, Smp0qq.

Working within F, assume now ψpSnp0q, zq, so @w ă z  φpSnp0q, wq. Since
F $ φpSnp0q, Smp0qq, we may deduce that z ď Smp0q (we use that fact that
F $ pz ă Smp0q _ z « Snp0q _ z ą Smp0qq). So we may deduce z « 0_ ¨ ¨ ¨ _ z «
Smp0q. Since F $  φpSnp0q,0q, . . . , F $  φpSnp0q, Sm´1p0qq, we may deduce
z « Smp0q. �

The main result in this section is that the representable relations and functions
are exactly the recursive ones.
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Lemma 2.7. Let t be a closed term, that is, a term containing no free variables.
Then there is an n P ω such that F $ t « Snp0q.

Proof. By induction on the term t. If t “ 0 this is trivial. If t “ Spuq this is also
trivial as F $ u « Snp0q for some n by induction, and SpSnp0qq “ Sn`1p0q. If
t “ u`v, then by induction it suffices to show that F $ Snp0q`Smp0q « Sn`mp0q.
This, in turn, is proved by induction on n, say, with the inductive step given by
F $ SpSn´1p0qq`Smp0q « SpSn´1p0q`Smp0qq « SpSn`m´1p0qq “ Sn`mp0q. The
result for terms of the form t “ u ¨ v follows similarly from F $ Snp0q ¨ Smp0q «
Sn¨mp0q which is proved by induction, using the result for addition. The inductive
step is given by

F $ pSnp0q¨SpSm´1p0qqq « Snp0q¨Sm´1p0q`Snp0q « Snm´np0q`Snp0q « Snmp0q.

The result for exponentiation is similar. �

Lemma 2.8. If ϕ is quantifier free then the relation R defined by ϕ is representable
in F, in fact, it is represented by the same formula ϕ.

Proof. First consider the case ϕ is atomic. For this it suffices to show that if t, u
are closed terms then F $ t ă u iff tN ă uN and and likewise F $ pt « uq iff
tN “ uN. We consider first the the « case. By Lemma 2.7 there are n,m P ω
such that F $ t « Snp0q and F $ u « Smp0q. It suffices to show that if n “ m
then F $ Snp0q « Smp0q and if n ‰ m then F $  pSnp0q « Smp0qq. The
first is trivial. For the second, we prove by induction on mintn,mu that if n ‰ m
then F $  pSnp0q « Smp0qq. If mintn,mu “ 0, this follows from the first successor
axiom. Otherwise, by induction F $  pSn´1p0q « Sm´1p0qq. The second successor
axiom then gives that F $  pSnp0q « Smp0qq.

We now consider the ă case. Again by Lemma 2.7 there are n,m P ω such
that F $ t « Snp0q and F $ Smp0q. It suffices to know that if n ă m then F $
Snp0q ă Smp0q and otherwise F $  pSnp0q ă Smp0qq. First we show by induction
on m ą n that F $ Snp0q ă Smp0q. For m “ n ` 1, F $ Snp0q ă Sn`1p0q “
SpSnp0qq follows from the axiom of F @x @y px ă Spyq Ø x ď yq which implies
@x px ă Spxqq. Assuming the result is true for m, that is F $ pSnp0q ă Smp0qq, the
same axiom then shows that F $ pSnp0q ă SpSmp0qq “ Sm`1p0qq. Assume now
that n ě m. Working in F, assume towards a contradiction that Snp0q ă Smp0q.
From lemma 2.5 we have F $ Snp0q « 0_ ¨ ¨ ¨ _ Snp0q « Sm´1p0q. However, from
the equality case we know that F $  pSnp0q « 0q, . . . ,F $  pSnp0q « Sm´1p0qq.
This is a contradiction.

If R is representable by ϕ, and S is representable by ψ, then it is easy to see
that R^ S is representable by ϕ^ ψ, and likewise for R_ S and  R.

�

Lemma 2.9. If ϕ P ∆0 then the relation R defined by ϕ is representable in F, in
fact it is represented by the same formula ϕ.

Proof. It suffices to show that if Rpx, yq is representable by ϕpx, yq, then Spnq Ø
Dm ď n Rpn,mq is representable by ψpxq “ Dy py ď x ^ ϕpx, yqq. Let n P ω,
and first suppose Spnq. Thus there is an m ď n such that Rpn,mq. Thus, F $

ϕpSnp0q, Smp0qq. From lemma 2.8, F $ Smp0q ď Snp0q. Hence, F $ Dy py ď
Snp0q ^ ϕpSnp0q, yq, that is, F $ ψpSnp0qq.

Assume now that n P ω and  Spnq, hence for all m ď n we have  Rpn,mq.
From lemma 2.5, F $ @y py ď Snp0q Ñ y « 0 _ ¨ ¨ ¨ _ y « Snp0qq. Since φ
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represents R we also have F $  ϕpSnp0q,0q, . . . ,F $  ϕpSnp0q, Snp0qq. These
two statements logically imply @y py ď Snp0q Ñ  pϕpSnp0q, yq. Thus, F $  Dy ď
Snp0q pϕpSnp0q, yqq, that is, F $  ψpSnp0qq and we are done. �

The next theorem is the result we need on the representability of recursive func-
tions.

Theorem 2.10. Every recursive relation and every total recursive function is rep-
resentable in F.

Proof. Let R Ď ω be recursive (we assume R is unary for convenience). From
Theorem 1.34 we have Σ1 formulas ϕ, ψ such that n P RØ ϕNpnq Ø  ψNpnq. Say
ϕpxq “ Dy ϕ1px, yq, ψpxq “ Dy ψ1px, yq where ϕ1, ψ1 are ∆0.

Let ρpxq be the Σ1 formula:

ρpxq “ Dy rϕ1px, yq ^ @z ă y p ϕ1px, yq ^  ψ1px, yqqs

“ Dy χpx, yq

We show that ρ represents R. From Lemma 2.9, the relations R1, S1 defined by ϕ1

and ψ1 are representable, in fact by ϕ1 and ψ1 themselves (though this last fact is
not important). Likewise, χ represents the relation it defines over N.

Suppose first that n P R, so ϕNpnq and  ψNpnq. Let m be least such that

ϕ1
N
pn,mq. Then for allm1 ă m we have ϕ1

N
pn,m1q, and of course also ψN

pn,m1q.
By the representability of the relations defined by ϕ1 and ψ1 we have that for
all m1 ă m that F $  ϕ1pSnp0q, Sm

1

p0qq and F $  ψ1pSnp0q, Sm
1

p0qq. Also,
from Lemma 2.5, F $ @z pz ă Smp0q Ñ pz « 0 _ ¨ ¨ ¨ _ z « Sm´1p0qq. It
follows that F $ @z ă Smp0q p ϕ1pSnp0q, zq ^  ψpSnp0q, zqq. Since we also have
F $ ϕ1pSnp0q, Smp0qq we have that F $ χpSnp0q, Smp0qq. This statement logically
implies the statement Dz χpSnp0q, zq “ ρpSnp0qq, so F $ ρpSnp0qq.

Suppose next that n R R, and let m be least so that ψNpmq. Exactly as in the
previous paragraph we have F $ ψ1pSnp0q, Smp0qq and

F $ @z ă Smp0q p ϕ1pSnp0q, zq ^  ψ1pSnp0q, zqq.

We must show that F $  ρpSnp0qq. It suffices to derive a contradiction from F
and ρpSnp0qq “ Dy χpSnp0q, yq. So, assume F and χpSnp0q, yq. From χpSnp0q, yq
it follows that @z ă y r ψ1pSnp0q, zqs. Since F $ ψ1pSnp0q, Smp0qq, it follows
that y ď Smp0q (we use here the fact that F proves that ă is a linear order). From
Lemma 2.5 it follows that F $ py « 0_¨ ¨ ¨_y « Smp0qq. But by representability of
the relation defined by ϕ1 we have F $  ϕ1pSnp0q,0q, . . . , F $  ϕ1pSnp0q, Smp0qq.
From these facts it follows that F $  ϕ1pSnp0q, yq, and so F $  χpSnp0q, yq, a
contradiction.

�

3. Incompleteness

In this section we prove several versions of the Gödel incompleteness theorem.
First we define a coding of the formulas of number theory into the integers. Fix a
bijection π between the finitely many symbols of the language (including the logical
symbols) excluding the (infinitely many) variable symbols and the set t0, 1, . . . , n0´

1u. Extend π to the variables by πpxkq “ n0`k. Then π is a bijection between the
logical symbols and the integers, and the relation Rpa, bq Ø πpxaq “ b is clearly
recursive.
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Definition 3.1. If φ “ s0s1, . . . , sk is a string of symbols in the language of number
theory, then the Gödel code of φ is defined by #pφq “ xπps0q, . . . , πpskqy P ω.

We will use in the following arguments the fact that certain relations and (total)
functions on the integers are recursive. In fact, all of the relations and functions
we need are primitive recursive. These facts can be easily checked from the closure
properties of recursive functions of §1.

The next result is the key technical lemma for the incompleteness results. It says,
in effect, that we may construct self-referential formulas. The formulas attempt to
refer to themselves by referring to the Gödel codes of themselves.

Lemma 3.2. Let θpxq be a formula in the language of number theory with one free
variable x. Then there is a sentence σ (in the language of number theory) such that
F $ pσ Ø θpS#σp0qqq.

Proof. Let f : ω Ñ ω be the primitive recursive function defined as follows. If n is
the code of a formula ψ with one free variable, then fpnq is the code of the sentence
ψpS#ψp0qq. Otherwise, let fpnq “ 0. Let ρpx, yq strongly represent f in F. Let τ
be the formula

τ “ Dx1 pρpx0, x1q ^ θpx1qq.

Note that τ has one free variable, x0. Let n “ #τ . Let σ “ τpS#τ p0qq. Let m “

fpnq, which is the code for τpS#τ p0qq “ σ. We show that σ works. Working within
F, first assume σ. Thus, Dx1 pρpS

#τ p0q, x1q ^ θpx1qq. By strong representability,
F $ @x1 pρpS

#τ p0q, x1q Ñ x1 « Smp0qq. These two sentences logically imply
θpSmp0qq, that is, θpS#σp0qq.

Assume next θpS#σp0qq, that is, θpSmp0qq. Since F $ ρpSnp0q, Smp0qq by rep-
resentability, we may deduce Dx1 pρpS

np0q, x1q ^ θpx1qq. Thus, we may deduce
τpSnp0qq, that is, σ. �

We now state the first version of the incompleteness theorem. We call a set of
sentences T recursive if t#φ : φ P T u is recursive. The reader will note that the
sentence σ constructed in the following proof is a formalization of the statement
“this sentence is not provable.”

Theorem 3.3. Let T be a consistent, recursive set of sentences in the language of
number theory which contains F. Then T is incomplete, that is, there is a sentence
σ such that T 0 σ and T 0  σ.

Proof. Towards a contradiction assume that T is complete. Let R “ t#φ : T $ φu.
We claim that R is recursive. This is because we may check if n P R by enumerating
all possible deductions from T and checking at each step if it is a deduction from
T of either φ (the formula with code n) or a deduction of  φ. We output a 1 if
for the least such deduction we encounter it is a deduction of φ. Checking if an
integer codes a valid deduction from T is recursive, using the assumption that T is
recursive. This algorithm will always terminate by our completeness assumption.
The answer will be correct as T is consistent.

Let θ represent  R in F . Let σ be the sentence of lemma 3.2 applied to θ. Thus,
F, and hence T proves the statement

σ Ø θpS#σp0qq.
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Let n “ #σ. If Rpnq, then F $  θpSnp0qq, and so T $  σ. Thus,  Rpnq,
a contradiction. If  Rpnq, then F $ θpSnp0qq, and so T $ σ. Hence Rpnq, a
contradiction. �

Theorem 3.3 was proved by contradiction, and thus does not actually produce
a concrete sentence σ which is independent of T . With a little extra argument we
can do this. First we give the argument due to Gödel which shows this under a
slightly stronger hypothesis.

Definition 3.4. We say T is ω-consistent if there is no formula φpxq such that for
all n P ω, T $  φpSnp0qq but T $ Dx φpxq.

Of course, an ω-consistent theory is consistent, but the converse is not true. An
ω-inconsistent theory is one that has no standard model.

For T a recursive set of sentences in the language of number theory, let RT
be the relation defined by RT pa, bq iff b is the code of a deduction from T of the
formula with code a. RT is clearly recursive. Let ρpx, yq strongly represent R
in F. Let θpxq “  Dy ρpx, yq, and let σ1 “ σ1pT q be the sentence such that
F $ σ1 Ø θpS#σ1p0qq from lemma 3.2.

Theorem 3.5. Let T be an ω-consistent, recursive set of sentences in the language
of number theory which contains F. Then T 0 σ1 and T 0  σ1.

Proof. The proof is similar to theorem 3.3. Assume first that T $ σ1. Let n “ #σ1.
Let m code a deduction of σ1 from T . Thus, T $ ρpSnp0q, Smp0qq (in the notation
above). This logically implies  θpSnp0qq, and thus T $  σ1. This contradicts the
assumption that T is consistent (note: this case only used the consistency of T ).

Assume next that T $  σ1. Thus, T $  θpSnp0qq, and so T $ Dy ρpSnp0q, yq.
Since T 0 σ1 from the previous paragraph, we know that for all m P ω that
 RT pn,mq, and hence T $  ρpSnp0q, Smp0qq. This contradicts the ω-consistency
of T . �

The extra hypothesis of ω-consistency, though minor, is slightly annoying. An
improvement of theorem 3.5, due to Rosser, shows that it is actually unnecessary.
Let RT pa, bq and ρpx, yq be as above. Let g : ω Ñ ω be a recursive function such
that if a is the code of φ, then gpaq is the code of  φ. Let ηpx, yq strongly represent
g. Let τpxq be the formula

τ “ @y pρpx, yq Ñ Dz ă y Dw pηpx,wq ^ ρpw, zqqq

Let σ2 “ σ2pT q be the sentence from lemma 3.2 for this τ .

Theorem 3.6. Let T be a consistent, recursive set of sentences in the language of
number theory which contains F. Then T 0 σ2 and T 0  σ2.

Proof. Let n “ #σ2. Assume first T $ σ2. Let m code a deduction of σ2 from T .
So, T $ ρpSnp0q, Smp0qq. Also, T $ @y pρpSnp0q, yq Ñ Dz ă y Dw pηpSnp0q, wq ^
ρpw, zqqq. These statements logically imply Dz ă Smp0q Dw pηpSnp0q, wq^ρpw, zqq.
We violate the consistency of T by showing T $ @z ă Smp0q @w pηpSnp0q, wq Ñ
 ρpw, zqq. From lemma 2.5 it is enough to fix k ă m and show that T $

@w pηpSnp0q, wq Ñ  ρpw, Skp0qqq. By strong representability of η, it is enough

to show that T $  ρpSn
1

p0q, Skp0qq, where n1 is the code for  σ2. Since T is con-
sistent and T $ σ2 by assumption, T 0  σ2, and so  Rpn1, kq. By representability,

T $  ρpSn
1

p0q, Skp0qq and we are done.
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Assume next that T $  σ2. Let again n1 “ # σ2, and let now m code a
deduction from T of  σ2. So, T $ ρpSn

1

p0q, Smp0qq. Since T $  σ2 we also
have T $ Dy pρpSnp0q, yq ^ @z ă y @w pηpSnp0q, wq Ñ  ρpw, zqqq. To violate the
consistency of T it is enough to show that T 1 “ TYtαu is inconsistent, where αpyq “

pρpSnp0q, yq ^ @z ă y @w pηpSnp0q, wq Ñ  ρpw, zqqq. Since T $ ηpSnp0q, Sn
1

p0qq,
it follows that T 1 $ y ď Smp0q (we use here the order axiom of F which gives y ď
Smp0q or y ą Smp0q). From lemma 2.5 it is enough to show that each k ď Smp0q
that T 2 “ T Y tpρpSnp0q, Skp0qq ^ @z ă Skp0q @w pηpSnp0q, wq Ñ  ρpw, zqqqu
is inconsistent. This is clearly the case, however, since for all such k we have
T $  ρpSnp0q, Skp0qq since by consistency Rpn, kq holds (recall we are assuming
T $  σ2). �

Note that the sentences σ1, σ2 of the Gödel theorems are Π1 sentences in the
language of number theory [For σ2 we must replace the Dw quantifier by a bounded
quantifier. This can easily be done as there is a simple primitive recursive bound
for the function g, in the notation just before Theorem 3.6].

Thus, incompleteness arises for sentences having only one unbounded number
quantifier.

The incompleteness theorems as we stated them apply to theories in the language
of number theory, however it is not difficult to see that they consequently apply
to theories in which we can “interpret” the theory F. To make this precise, let
L denote the language of number theory, and L1 a first-order language (e.g., the
language of set theory). Suppose we have formulas αN, α`, α¨, αE , αă, αS , α0 of
L1. αN is intending to define a “copy” of N, and the other formulas, α` for example,
are intending to define the corresponding function, relation, or constant symbol on
this copy. Let T 1 be a theory (set of sentences) in L1, for example T 1 might be the
axioms of ZFC. Suppose T 1 proves that Dx αNpxq (i.e., the copy of N is non-empty)
and also for each of the axioms ψ of F, T 1 $ ψ1 where ψ1 is the interpretation of
ψ into L1 using the α formula in a natural way. For example, an atomic formula
of the form x` py ¨ zq « w is replaced by Dz1Dz2 pαNpz1q ^ αNpz2q ^ α¨py, z, z1q ^

α`px, z1, z2q^z2 « wq. In this way, each formula ψ of number theory is replaced by
a formula ψ1 of L1 such that if F $ ψ then T 1 $ ψ1. Of course, T 1 may prove more
about its copy of N than does F, for example, if L1 is the language of set theory
and αN ““x P ω,” (and the other α are defined in the usual way these functions
etc. are defined in set theory), then ZFC proves much more about N than F does,
in particular ZFC proves that all of the Peano axioms hold in N.

At any rate, if T 1 proves all of the ψ1 for ψ P F, then all of the proofs of
the incompleteness results given above for L may be carried over immediately for
theories extending T 1. Since F is finite, it follows that there is a finite T 1 which
suffices to prove all of the ψ1.

For example, let ZFC1 denote the finite subset of ZFC which suffices to prove all
of the ψ1 for ψ P F. We then have:

Theorem 3.7. Let T be a recursive, consistent theory in the language of set theory
which extends the finite fragment ZFC1. Then T is incomplete. Moreover, there is
a Π1 sentence σ2 “ σ2pT q such that T 0 σ2 and T 0  σ2.

Proof. Define Rpa, bq and ρpx, yq as in theorem 3.6. Let ρ1px, yq be the interpreta-
tion of ρ into the language of set theory. Thus, if Rpa, bq then F $ ρpSap0q, Sbp0qq
and so T $ ρ1a,b and likewise for  Rpa, bq, where ρ1a,b denotes the interpretation of
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ρpSap0q, Sbp0qq. The proof is now essentially identical to theorem 3.6 using ρ1 in
place of ρ. �

Lastly, we discuss the second Gödel incompleteness theorem. We now consider
theories T which may be in the language of number theory, or set theory, etc., for
which we have an interpretation of N as above. Let Rpbq iff b codes a deduction
from T of a logical contradiction, say Dx px ff xq. Let ρpxq represent R in F, and let
CONT be the sentence  Dx ρ. If T is in set theory, say, then we let CONT be the
interpretation of this sentence into the language of set theory. The second version
of the incompleteness theorem say that if T is recursive, consistent, and sufficiently
strong (but we need more that T contains F now), then T 0 CONT . It is enough to
have T contain PA (even a smaller fragment of it, say Π1-induction), but we state
the result now for theories extending ZFC.

Theorem 3.8. Let T be a recursive, consistent theory in the language of set theory
extending ZFC. Then T 0 CONT .

Proof. Let σ1 be the sentence from the first version of the Gödel incompleteness
theorem, so T 0 σ1 (recall this direction only used the consistency of T ). The proof
of this (theorem 3.5) was presented in the metatheory. That is, in the metatheory
we showed that if T is consistent, then T 0 σ1. Closer examination of the proof
reveals that the only properties of the integers used in the proof are theorems of
PA. Certainly, however, they are all theorems of ZFC. Thus, this argument in the
metatheory, when formalized, becomes the statement that ZFC $ pCONT Ñ φq,
where φ is the formalization of the statement “there does not exist a proof of σ1

from T .” However, this formalization is just the statement τpS#σ1p0qq (using the
notation of theorem 3.5), and this is T provably equivalent to σ1 (more precisely,
the interpretations of these statements into the language of set theory). Thus,
ZFC $ pCONT Ñ σ1q. It follows that ZFC 0 CONT from theorem 3.5. �

4. Hilbert’s 10th Problem

We let Z` denote the set of positive integers. Our goal in this section is to show
that there is a 4th degree polynomial

ppx1, . . . , xkq P Zrx1, . . . , xks

such that the statement “Da1, . . . ak P Z` ppa1, . . . , akq “ 0” is independent of
ZFC. This displays a conection between logic, set theory and number theory, and
has deep implications for Diophantine analysis.

By “polynomial” we will henceforth mean an element p P Zrx1, . . . , xks for some
k ě 0, that is, our polynomials have integer coefficients (i.e., they may be negative).

Definition 4.1. A relation R Ď Zk` is Diophantine if there is a polynomial

ppx1, . . . , xk, y1, . . . , y`q

such that for all a1, . . . , ak P Zk` we have

pa1, . . . , akq P RØ Db1, . . . , b` P Z` ppa1, . . . , ak, b1, . . . , b`q “ 0.

That is, ~a P R iff pp~a, ~yq P Zry1, . . . , y`s has a positive integer root.
Since the formula ppx1, . . . , xkq “ 0 is clearly ∆0 (moving the negative terms

to the other side of the equation this becomes an atomic formula), it is immediate
that every Diphantine set is Σ0

1. Our main theorem will be that the converse holds.
Specifically, our main theorem is the following.
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Theorem 4.2. Every Σ0
1 relation S Ď pZ`qn is Diophantine.

Moreover, the proof will be constructive in the sense that it will give us a pro-
cedure for transforming a Σ1 formula ϕ in the language of number theory into a
polynomial pϕ such that the Σ0

1 set defined by ϕ has a diophantine representation
given by pϕ. This will allow us to make a connection with the Gödel incompleteness
theorem and produce a specific polynomial such that statement that is has a root
is independent of ZFC. By an algebra trick (credited to Skolem) we are able to
reduce any diophantine problem down to a 4th degree one, which will give the final
theorem.

Theorem 4.2 was proved in 1970 by Matiyasevic, and built upon earlier work of
sereral people including Davis, Putnam, and J. Robinson. Our presentation will
largely follow the 1973 paper of Davis [?].

We first note, according to the following lemma, that the requirement that the
roots of the polynomial be positive, instead of just arbitrary integers, is for conve-
nience and doesn’t change the diophantine sets.

Lemma 4.3. A relation R Ď Zk` is Diophantine according to Definition 4.1 iff there

is a polynomial p1 such that for all ~a P Zk` we have ~a P RØ D~b P Z` p1p~a,~bq “ 0.

Proof. Suppose first that R Ď Zk` is Diophantine according to Definition 4.1, that is,

for some ` and some p P Zrx1, . . . , xk, y1, . . . , y`s we have ~a P R iff D~b P Z` pp~a,~bq “
0. for each variable yj we introduce 4 variables wj1, . . . , w

j
4 and let

p1px1, . . . , xk, y1, . . . , y`, . . . , w
j
1, w

j
2, w

j
3, w

j
4, . . . q

be the k ` `` 4`-ary polynomial given by

p1 “ p1` pw1
1q

2 ` pw1
2q

2 ` pw1
3q

2 ` pw1
4q

2 ´ y1q
2 ` ¨ ¨ ¨

` p1` pw`1q
2 ` pw`2q

2 ` pw`3q
2 ` pw`4q

2 ´ y`q
2 ` pppx1, . . . , xk, y1, . . . , y`qq

2

Using Lagrange’s theorem that an integer n is ě 0 iff it can be written as the sum
of 4 squares of integers, we see that for any ~a that pp~a, ~yq has a root in Z`` iff

p1p~a, ~y, ~wq has a root in Z5`.
Suppose next that R Ď Zk` is represented in the Z-sense, that is, there is a

polynomial p1px1, . . . , xk, y1, . . . , y`q such that for all ~a P Zk` we have ~a P R iff

D~b P Z` p1p~a,~bq “ 0. For each variable yj we introduce two variables zj , wj and let
ppx1 . . . , xk, z1, . . . , z`, w1, . . . , w`q be the polynomial

p “ pz1 ´ w1q
2 ` ¨ ¨ ¨ ` pz` ´ w`q

2 ` pp1px1, . . . , xk, z1 ´ w1, . . . , z` ´ w`qq
2.

Since every integer is a difference of two positive integers, pp~a, ~y, ~zq has a root in
the positive integers iff p1p~a, ~yq has a root in the integers. �

We now begin the process of showing Σ0
1 relaions are Diophantine.

Lemma 4.4. The class of Diophantine relations is closed under X, Y, DZ` .

Proof. Suppose R Ď Zr`, S Ď Zs` are Diophantine and represented by the polyno-
mials ppx1, . . . , xr, y1, . . . , y`q, qpx1, . . . , xs, z1, . . . , zmq. Then R X S is represented
by the polynomial t “ p2 ` q2 and R Y S is represented by u “ p ¨ q. The relation
T Ď Zr´1

` given by T px1, . . . , x̂j , . . . xrq Ø Dxj Rpx1, . . . , xrq is represented by

p1px1, . . . , x̂j , . . . , xr, z1, y1, . . . , y`q “ ppx1, . . . , z1, . . . , xr, y1, . . . , y`q,
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where the variable z1 is substituted for xj in p.
�

We can rephrase Lemma 4.4 as saying that the collection of formulas ϕ in the
language of number theory which define (over Z`) Diophantine relations is closed
under ^, _ and Dxj .

Lemma 4.5. For any polynomials pp~xq, qp~xq, the relations defined by the formulas
pp~xq « qp~xq and pp~xq ă qp~xq are Diophantine.

Proof. The relationR Ď Zk` defined by pp~xq « qp~xq is represented by the polynomial
pp~xq ´ qp~xq. The relation S defined by pp~xq ă qp~xq is represented by the formula
qp~xq ´ pp~xq ´ y. �

From Lemmas 4.4 and 4.5 it follows that the relations defined by the formulas
pp~xq ď qp~xq, pp~xq ff qp~xq are also Diophantine. It further follows that the collection
of relations on Z` defined over N by quantifier-free formulas in the language L1 “
p`, ¨,ă, S,0q (note: we have omitted exponentiation) are Diophantine. That is, if
ϕpx1, . . . , xkq is a quantifier-free formula in L1 the set

R “ tpa1, . . . , akq P Zk` : ϕNpSa1p0q, . . . , Sakp0qqu

is Diophantine.

Definition 4.6. We say a function f : Zk` Ñ Z` is Diophantine iff its graph Gf Ď

Zk`1
` is Diophantine. More generally, we say a function f : Zk` Ñ Z is Diophantine

if Gf X Zk`1
` is Diophantine.

Lemma 4.7. The collection of Diophantine relations is closed under substitution
by Diophantine functions.

Proof. Let R Ď Zk` be Diophantine and f1pz1, . . . , z`q, . . . , fkpz1, . . . , z`q are Dio-
phantine functions, where for notational convenience we have assumed all the fj
have the same arity and use the same variables (the general case is similar). Let
Spz1, . . . , z`q iff Rpf1p~zq, . . . , fkp~zqq. Say f, . . . , fk are represented by p1, . . . , pk.
Then S is defined by the formula

ϕpz1, . . . , z`q “ Dw1, . . . wk rpf1p~zq “ w1q ^ ¨ ¨ ¨ ^ pfkp~zq “ wkq ^Rpw1, . . . , wkqs

From Definition 4.6 and Lemma 4.4 it follows that S is Diophantine. �

It is immediate that all polynomials are Diophantine functions.
To complete the proof that every Σ0

1 relation is Diophantine it suffices to show
two things: (1) The exponentiation finction nEm “ nm is Diophantine, and (2) The
class of formulas defining Diophantine relations is closed under bounded existential
and universal quantification.

The bounded existential quantification case follows from the above lemmas as
ϕpx1, . . . , xkq “ Dy ď xj ψpx1, . . . , xk, yq is equivalent to Dy rpy ď xjq^ψpx1, . . . , xk, yqs,
and the result follows by Lemma 4.4.

The exponentiation and bounded universal quantification cases, however, require
much more work. The first main step is to reduce bounded universal quantification
down to showing some specific functions are Diophantine, an argument to Davis
and Putnam. This uses the Chinese remainder theorem (CRT), and is similar to
arguments used by Gödel in his pairing functions.

Definition 4.8. We let f1pn,mq “
`

n
m

˘

, f2pnq “ n!, and f3pa, b, nq “
śn
i“1pa` ibq.
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The following lemma reduces the problem of showing Σ0
1 sets are Diophantine

to showing the specific function of Definition 4.8 are Diophantine.

Lemma 4.9. Assume the functions of Definition 4.8 are Diophantine. Then the
collection of Diophantine relations is closed under bounded universal quantification.

Proof. Let Rpy, x1, . . . , xnq Ø @k ď y Spy, k, x1, . . . , xnq where S is Diophantine.
So, for some polynomial P we have:

Rpy, x1, . . . , xnq Ø @k ď y Spy, k, x1, . . . , xnq

(1)

Ø @k ď y Dy1, . . . , ym rP py, k, x1, . . . , xn, y1, . . . , ymq “ 0s(2)

Ø Du @k ď y Dy1, . . . , ym ď u rP py, k, x1, . . . , xn, y1, . . . , ymq “ 0s(3)

We first get a polynomial bpy, u, x1, . . . , xnq bounding |P py, k, x1, . . . , xn, y1, . . . , ymq|
whenever k ď y and y1, . . . , ym ď u. Namely, if P “

ř

t is sum of monomials of the
form t “ cyakbxr11 ¨ ¨ ¨x

rn
n y

s1
1 ¨ ¨ ¨ y

sm
m , then let b “ y`u`

ř

|c|ya`bus1`¨¨¨`smxr11 ¨ ¨ ¨x
rn
n .

Note that bpy, u, ~xq ą y, bpy, u, ~xq ą u as well.
Suppose first that for some y, x1, . . . , xn and u that

@k ď y Dy1, . . . , ym ď u P py, k, x1, . . . , xn, y1, . . . , ymq “ 0.

For each k ď y, let y
pkq
1 , . . . , y

pkq
m ď u be such that

P py, k, ~x, y
pkq
1 , . . . , ypkqm q “ 0.

Let t “ bpy, u, ~xq!. Consider the y numbers p1` tq, p1` 2tq, . . . , p1` ytq. These are
pairwise relatively prime since any prime divisor of p1`itq and p1`jtq would divide
pj´iqt where pj´iq ď y ď bpy, u, ~xq and so would divide t, and thus divide 1, a con-

tradiction. By the CRT, let a1, . . . am be such that ai ” y
pkq
i mod p1`ktq for each

i “ 1, . . . ,m, and each k “ 1, . . . , y. Note that if we define c by
śy
k“1p1`ktq “ 1`ct,

then c ” k mod p1`ktq for all k “ 1, . . . , y. This is because p1`ctq ” 0 ” p1`ktq
mod p1 ` ktq, and so ct ” kt mod p1 ` ktq. Since pt, 1 ` ktq “ 1, this gives c ” k

mod p1 ` ktq. We thus have P py, c, ~x, a1, . . . , amq ” P py, k, ~x, y
pkq
1 , . . . , y

pkq
m q “ 0

mod p1`ktq for each k “ 1, . . . , y, and thus P py, c, ~x, a1, . . . , amq ” 0 mod p1`ctq.

Also, for each ai and each k “ 1, . . . , y we have ai ” y
pkq
i ď u mod p1` ktq and

thus
śu
j“1pai´ jq ” 0 mod p1`ktq. Thus,

śu
j“1pai´ jq ” 0 mod p1` ctq. Thus,

we have shown one direction of the following claim.

Claim. For any y, u, ~x we have

@k ď y Dy1, . . . , ym ď u rP py, k, x1, . . . , xn, y1, . . . , ymq “ 0s

Ø Dc, t, a1, . . . , amrt “ bpy, u, ~xq!^ 1` ct “
y
ź

k“1

p1` ktq ^ p1` ctq|
u
ź

j“1

pa1 ´ jq

^ ¨ ¨ ¨ ^ p1` ctq|
u
ź

j“1

pam ´ jq ^ p1` ctq|P py, c, ~x, a1, . . . , amqs

For the other direction, fix y, u, ~x, and suppose c, t, a1, . . . , am witness the right-
hand side of the above claim. As above, the p1 ` ktq, for 1 ď k ď y, are pairwise
reatively prime, and c ” k mod p1`ktq for all these k. Since p1`ctq|

śu
j“1pai´ jq

for each 1 ď i ď m, we have that for each 1 ď k ď y and each prime factor
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of 1 ` kt that there is a j ď u such that ai ” j mod p. Since p must be rel-

atively prime to t, and t “ bpy, u, ~xq!, this gives that p ą bpy, u, ~xq. Let y
pkq
i

denote such a j. Since also c ” k mod p1 ` ktq, we have c ” k mod p. Thus,

P py, k, ~x, y
pkq
1 , . . . , y

pkq
m q ” 0 mod p. But, P py, k, ~x, y

pkq
1 , . . . , y

pkq
m q ă bpy, u~xq ă p,

and so P py, k, ~x, y
pkq
1 , . . . , y

pkq
m q “ 0.

From this the lemma follows, since
śy
k“1p1` ktq “ f3p1, t, yq, and for a ą u` 1

that
śu
j“1pa´ jq “ f3pa´ u´ 1, 1, uq. �

Our next task is to show that the functions of Definition 4.8 are Diophantine
given that the exponential function pn,mq ÞÑ nm is Diophantine. We first show
that f1pn,mq “

`

n
m

˘

is Diophantine, from which the other two will follow.

Lemma 4.10. Assume the exponential function is Diophantine. Then the function
f1pn,mq “

`

n
m

˘

is Diophantine.

Proof. We show that for all m ď n and all u ą 2n that
ˆ

n

m

˙

” t
pu` 1qn

um
u mod u

Fix such m ď n and u ą 2n. Then

pu` 1qn

um
“

ˆ

n

m

˙

` up
n
ÿ

i“m`1

ˆ

n

i

˙

ui´m´1q `

m´1
ÿ

i“0

ˆ

n

i

˙

ui´m.

It suffices to show that
řm´1
i“0

`

n
i

˘

ui´m ă 1. Since
řn
i“0

`

n
i

˘

“ p1 ` 1qn “ 2n, we

have
řm´1
i“0

`

n
i

˘

ui´m ă 1
u

řm´1
i“0

`

n
i

˘

ď 2n

u ă 1.
This shows that f1 is Diophantine since we now have

k “

ˆ

n

m

˙

Ø Du, v, w rv “ 2n ^ u ą v ^ w “ t
pu` 1qn

um
u

^ pk ă uq ^ k ” w mod us

Note that w “ t
pu`1qn

um u iff wum ď pu`1qn ă pw`1qum. Since the function n ÞÑ 2n

is Diophantine by assumption, this show that f1 is also. �

Lemma 4.11. Assume the exponential function is Diophantine. Then the function
f2pnq “ n! is Diophantine.

Proof. We claim that if u ą p2nqn`1, then n! “ t
un
`

u
n

˘ u. To see this, note that

un
`

u
n

˘ “ un
n!

upu´ 1q ¨ ¨ ¨ pu´ n` 1q
“ n! rp1´

1

u
qp1´

2

u
q ¨ ¨ ¨ p1´

n´ 1

u
qs´1

ě n!.

On the other hand,

n! rp1´
1

u
qp1´

2

u
q ¨ ¨ ¨ p1´

n´ 1

u
qs´1 ď n! rp1´

n

u
q´1sn ď n! p1`

2n

u
qn

“ n! r1`
n
ÿ

i“1

ˆ

n

i

˙ˆ

2n

u

˙i

sn ď n! r1`
2n

u

n
ÿ

i“1

ˆ

n

i

˙

s ď n!`
2n

u
2nn!

ď n!`
2n

u
2nnn ă n!` 1.
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This shows the claim, and from this the lemma follows by a straightforward com-
putation as at the end of Lemma 4.10, using now that Lemma 4.10 gives that f1 is
Dipohantine. �

Lemma 4.12. Assume the exponential function is Diophantine. Then the function
f3pa, b, nq “

śn
i“1pa` ibq is Diophantine.

Proof. Let M “ bpa`nbqn`1, so M ą f3pa, b, nq and pb,Mq “ 1. Since pb,Mq “ 1,
there is a q ăM such that qb ” a mod M . Then,

f3pa, b, nq “
n
ź

i“1

pa` ibq ”
n
ź

i“1

pqb` ibq mod M

“ bnpq ` 1qpq ` 2q ¨ ¨ ¨ pq ` nq “ bnn!

ˆ

q ` n

q

˙

mod M

So, f3pa, b, nq is the unique integer less than M which is congruent to bnn!
`

q`n
q

˘

mod M .
This again easily shows that f3 is Diophantine, namely,

k “ f3pa, b, nq Ø Du, v, w,M, q rM “ bpa` nbqn ` 1^M |pqb´ aq ^ u “ n!

^ v “

ˆ

q ` n

n

˙

^ w “ bn ^ pk ăMq ^M |pk ´ wuvqs.

�

To summarize, from Lemmas 4.9, 4.10, 4.11, and 4.12 we have shown the follow-
ing theorem.

Theorem 4.13. Assume the exponential function is Diophantine. Then every Σ0
1

set S Ď pZ`qn is Diophantine.

5. The exponential function

To complete the proof of Theorem 4.2 it suffuces to show the following theorem.

Theorem 5.1. The exponential function nEm “ nm on Z2
` is Diophantine.

The proof of theorem 5.1 is difficult and will occupy the rest of this section. This
theorem was proved by Matiyasevic in 1970, and gave the solution to Hilbert’s 10th
problem. To show the exponential function is Diophantine, as we will see, it suffices
to show that something with exponential-like growth is Diophantine. Matiyasevic
originally used the Fibonacci sequence, but here we will use the set of solutions to
Pell’s equations which somewhat simplifies the arguments, though the main ideas
are the same.

Readers may note that some of the arguments we give concerning the solutions
to Pell’s equations are actually special instances of much more general results in
algebraic number theory. However, we give elementary arguments here to keep the
arguments self-contained.

Definition 5.2. For a positive integer d, the corresponding Pell equation is

x2 ´ dy2 “ 1

where we regard x, y P N.



28

Of course, it make little difference whether we regard x, y and as ranging over N
or Z, as the solutions over Z are just those obtained from the solutions over N by
possibly changing the signs of x and/or y.

Note that one solution is just px, yq “ p1, 0q. If we let d “ a2´1 for some integer
a ą 1, then we also have the solution px, yq “ pa, 1q. We will henceforth take d of
this form, that is, d “ a2 ´ 1.

We first characterize the set of solutions to Pell’s equations. Note that if we
consider Qp

?
dq, then px, yq is a solution to Pell’s equation iff the element x` y

?
d

has norm 1, where Npx`y
?
dq “ px`

?
dqpx´

?
dq “ x2´dy2. It is a general fact,

true in any number field, that the norm is a multiplicitive function (the norm of z,
in general, is the product π1pzqπ2pzq ¨ ¨ ¨πnpzq where the πi are the automorphisms
of the field over Q). In our case, we see can see by a direct elementary computation
that this is the case, namely:

px2 ´ dy2qpu2 ´ dv2q “ pxu` dyvq2 ´ dpxv ` yuq2.

Thus, if px, yq and pu, vq are solutions to Pell’s equation, then so is pxu`dyv, xv`
yuq. Replacing y by ´y we see that pxu´ dyv, xv ´ yuq is also a solution.

Since a`
?
d is a solution, it follows that if we let pa`

?
dqn “ xn` yn

?
d, then

pxn, ynq is a solution. We show next that these are all of the non-negative solutions
to the equation.

Let px, yq be a solution with x, y ě 0. Clearly x ` y
?
d ě 1. Let n be such

that pa `
?
dqn ď x ` y

?
d ă pa `

?
dqn`1. Multiplying through by pa ´

?
dqn we

get 1 ď x1 ` y1
?
d ă a`

?
d where px1, y1q is a solution. Taking reciprocals we get

1 ě x1 ´ y1
?
d ą a´

?
d, or ´1 ď ´x1 ` y1

?
d ă ´a`

?
d. Adding these equations

gives 0 ď 2y1
?
d ă 2

?
d or 0 ď y1 ă 1, so y1 “ 0. So, x1 “ 1, and x1 ` y1

?
d “ 1 and

so x` y
?
d “ pa`

?
dqn.

We summarize this analysis into the following lemma.

Lemma 5.3. Let a ą 0 and d “ a2´ 1. The non-negative (i.e., x, y ě 0) solutions
to Pell’s equation x2 ´ dy2 “ 1 are exactly the pairs of the form pxn, ynq where

xn ` yn
?
d “ pa `

?
dqn for some n ě 0. The general solutions are of the form

p˘xn,˘ynq. Furthermore

xm˘n “ xmxn ˘ dymyn(4)

ym˘n “ ˘xmyn ` ymxn(5)

In, particular, taking n “ 1 and n “ ´1, we have the following forward and
backward recurrence formulas for the xm, ym:

(6) xm`1 “ axm ` dym, ym`1 “ xm ` aym.

(7) xm´1 “ axm ´ dym, ym´1 “ ´xm ` aym.

We also have the following second-order recurrence equations for the xm and ym
separately:

xm`1 “ 2axm ´ xm´1(8)

ym`1 “ 2aym ´ ym´1(9)

Proof. Equation 4 follows from

xm`n`ym`n
?
d “ pa`

?
dqm`n “ pa`

?
dqmpa`

?
dqn “ pxm`

?
dymqpxn`

?
dynq.
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Equation 5 similarly follows from pa`
?
dqm´npa`

?
dqn “ pa`

?
dqm, which gives

xm´n`ym´n
?
d “ pa`

?
dqm´n “ pa`

?
dqmpa´

?
dqn “ pxm`

?
dymqpxn´

?
dynq.

To see equations 8, 9, note that these holds for m “ 1, as the first three solutions
are p1, 0q, pa, 1q, and pa2`d, 2aq “ p2a2´ 1, 2aq, which satisfy these equations, and
inductively we then have:

xm`2 ´ 2axm`1 ` xm “ paxm`1 ` dym`1q ´ 2apaxm ` dymq ` paxm´1 ` dym´1q

“ apxm`1 ´ 2axm ` xm´1q ` dpym`1 ´ 2aym ` ym´1q

“ 0

with similar equations holding for the ym (note, as the above equations show, that
once a linear recurrence relations such as 8, 9 hold for the first three terms, they
must automatically hold for all the terms in view of equations 6). �

Note that we may phrase the first-order recurrence relations for the xm, ym in
matrix form as

ˆ

xm`1

ym`1

˙

“

ˆ

a d
1 a

˙ˆ

xm
ym

˙

An immediate consequence of the first-order recurrence relations is the following.

Lemma 5.4. For all m we have:

(1) xm ě am.
(2) ym ě m, and for m ě 1, ym ě am´1.

Proof. These follow immediately by induction from the first-order recurrence rela-
tions. �

An immediate consequence of the second-order recurrence relations is the fol-
lowing.

Lemma 5.5. For all m we have:

(1) ym ” m mod pa´ 1q.
(2) ym ” m mod 2.

Proof. Proceding inductively, and noting that a ” 1 mod pa ´ 1q, we have ym “

2aym´1 ´ ym´2 ” 2pm ´ 1q ´ pm ´ 2q “ m mod pa ´ 1q. Likese, the recurrence
realtion shows ym ” ym´2 mod 2, and the second result follows. �

We now investigate the number theoretic properties of the solutions. We will see
that the xn and the yn terms each satisfy certain delicate properties.

Lemma 5.6. The non-negative solutions pxn, ynq of Pell’s equation satisfy the
following.

(1) For all n, pxn, ynq “ 1.
(2) For all m,n we have ym � yn iff m � n.

Proof. If p � xn, p � yn, then p � px2
n ´ dy2

nq “ 1, a contradiction, so pxn, ynq “ 1.
This result also follows from the backward recurrence equation 7, since if p � xn,
p � yn, then equation 7 shows that p � xn´1 and p � yn´1, so we inductively
conclude that p � y1 “ 1, a contradiction.

Fix m, and we show by induction on k that ym � ykm. The case k “ 1 is trivial,
and we have ypk`1qm “ xkmym`xmykm so since ym � ykm by induction we see that
ym � ypk`1qm.
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Finally, suppose m - n, say n “ km ` r where 0 ă r ă m. Then yn “

xkmyr ` xrykm. If ym � yn, then since ym � ykm we see that ym � pxkmyrq.
Since pxkm, ykmq “ 1, and so pxkm, ymq “ 1, we have that ym � yr. This a contra-
diction as ym ą yr (clearly from equation 6, the xn and yn are strictly increasing
sequences). �

Lemma 5.6 says that ym � yt iff m � t. The next lemma tells us when y2
m � yt.

Lemma 5.7. For all m, t we have that y2
m � yt iff mym � t.

Proof. We have

pxmk ` ymk
?
dq “ pa`

?
dqmk “ pxm ` ym

?
dqk “

k
ÿ

i“0

ˆ

k

i

˙

xk´im yimp
?
dqi

So,

ymk “
k
ÿ

i“1
i odd

ˆ

k

i

˙

xk´1
m yimd

pi´1q{2 ” kxk´1
m ym mod y3

m.

So, setting k “ ym we have ymym ” 0 mod y2
m. It follows from Lemma 5.6 that

if mym � t then y2
m � yt.

Suppose next that y2
m � yt. From Lemma 5.6 we have that m � t, say t “ mk.

The above equation gives that yt “ ymk ” kxk´1
m ym mod y3

m. so, ym � kxk´1
m .

Since pxm, ymq “ 1, we have ym � k, so mym � t. �

We now establish some properties of the xm.

Lemma 5.8. x2km˘j ” p´1qkxj mod xm.

Proof. For k “ 1 we have

x2m˘j “ xmxm˘j ` dymym˘j

” dymp˘xmyj ` ymxjq mod xm

” dy2
mxj mod xm

“ px2
m ´ 1qxj mod xm

” ´xj mod xm

Proceeding inductively we now have:

x2pk`1qm˘j “ x2mx2km˘j ` dy2my2km˘j

” p´1qx0p´1kqxj ` dy2my2km˘j mod xm

“ p´1qk`1xj ` dpymxm ` xmymqy2km˘j

” p´1qk`1xj mod xm

�

For given xm and i ď m, we now investigate when xj ” xi mod xm. We first
show that the representatives mod xm of x0, . . . x2m are all distinct, except in one
rather trivial exceptional case.
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Lemma 5.9. Suppose i ď j ď 2m and xi ” xj mod xm (m ą 0). Then i “ j
unless a “ 2, m “ 1, i “ 0, j “ 2 (in which case x0 “ 1, x1 “ 2, and x2 “ 7).

Proof. Consider x0, . . . , xm´1, and note that xm´1 ď
1
2xm since xm “ axm´1 `

dym´1. Unless a “ 2 and ym´1 “ 0 (i.e., m “ 1), we must have strict inequality.
Since xm`j “ x2m´pm´jq ” ´xm´j mod xm, we have that xm`1, . . . , x2m are
equivalent to ´xm´1, . . . ,´x1 mod xm. If strict inequality holds then then these
two sets of values are disjoint, and the result follows. For xm´1 to equal 1

2xm we
must have that xm is even, a “ 2, m “ 1, and we must have i “ m ´ 1 “ 0,
j “ m` 1 “ 2. �

Lemma 5.10. Let i ď m, and suppose xj ” xi mod xm. Then j ” ˘i mod 4m
unless a “ 2, m “ 1 and i “ 0.

Proof. Suppose xj ” xi mod xm, where i ď m. Let j1 “ j mod 4m. Then
xj ” xj1 mod xm by Lemma 5.9 and so xj1 ” xi mod xm. If j1 ď 2m, then by
Lemma 5.9 we have j1 “ i (or else we are in the exceptional case). Otherwise,
j1 “ 4m ´ k where k ă 2m. Then xj1 ” xk mod xm and xk ” xi mod xm.
From Lemma 5.9 we have k “ i (or else the exceptional case) and so j ” j1 ” ´i
mod 4m. �

The above lemmas give properties of the xm, ym for a particular value of a (recall
d “ a2´1). We need also a simple lemma relating the solutions for different values
of a.

Lemma 5.11. If a ” b mod k then xmpaq ” xmpbq mod k and ympaq ” ympbq
mod k.

Proof. This is true for m “ 0, 1 as x1paq “ a, and then follows immediately for
m ą 1 from the second-order recurrence relations. �

Finally, a technical lemma relating xnpaq, ynpaq and the the exponential function
yn. We will use this the exponential function is Diophantine from the fact (which
we will establish first) that the functions pa,mq ÞÑ xmpaq, ympaq are Diophantine.

Lemma 5.12. xnpaq ´ ynpaqpa´ yq ” yn mod 2ay ´ y2 ´ 1.

Proof. x0paq´y0paqpa´yq “ x0paq “ 1, and x1paq´y1paqpa´yq “ a´pa´yq “ y.
Also

xm`1paq ´ ym`1paqpa´ yq “ 2apxmpaq ´ ympaqpa´ yqq ´ pxm´1paq ´ pa´ yqym´1q

” 2aym ´ ym´1 “ ym´1p2ay ´ 1q

” ym´1y2 “ ym`1 mod 2ay ´ y2 ´ 1.

�

Theorem 5.13. The function fpa, kq “ xkpaq is Diophantine.

Proof. For fixed a and k, consider three solutions px, yq, pz, wq, pu, vq to the Pell’s
equations:

x2 ´ pa2 ´ 1qy2 “ 1(10)

z2 ´ pb2 ´ 1qw2 “ 1(11)

u2 ´ pa2 ´ 1qv2 “ 1(12)
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where we require that b ” 1 mod 4y, and b ą 1 (we will require more on b below).
That is, we require

(13) b “ 1` 4ky

Say px, yq “ pxipaq, yipaqq, pz, wq “ pxjpaq, yjpaqq, and pu, vq “ pxnpaq, ynpaqq.
The idea is to make b a sufficiently large base, require yjpbq to be congruent to

k mod b ´ 1, and so mod 4y, (so j ” k mod 4y), and then try to require that j
be equal to i as best we can. Specifically, we will require that j be congruent to i
mod 4y (more or less) so that i ” k mod 4y. We will require that k ď y and this
will give i “ k.

So, let us require that k ď y:

(14) y “ k ` e´ 1

and w ” k mod 4y:

(15) w “ k ` 4pd´ 1qy

Since w ” j mod b´ 1 (and so mod 4y), this says that j ” k mod 4y. Let us
also suppose that b ” a mod xnpaq, that is,

(16) b “ a` qu

This gives xjpbq ” xjpaq mod xnpaq. Let us then add the requirement that xjpbq ”
xipaq mod xnpaq, that is:

(17) z “ x` cu

This then gives that xjpaq ” xipaq mod xnpaq. We will have i ď n shortly, and so
by Lemma 5.10 we have j ” ˘i mod 4n (note that k ď y so i ‰ 0, so we are not in
the exceptional case of Lemma 5.10). We add the requirement that pyipaqq

2 | ynpaq:

(18) v “ `y2

From Lemma 5.7 this gives yipaq | n (and so i ď n). Hence, j ” ˘i mod 4yipaq.
Since j ” k mod 4y, this gives i ” k mod 4y. Since i, k ď y (recall i ď yipaq),
this says i “ k, and so x “ xkpaq.

Summarizing, we have shown that for any a, k that if there is a solution exists
to the equations (10)–(18), then x “ xkpaq.

For the other direction, consider pxkpaq, ykpaqq, that is, take i “ k in the above
notation. Let px, yq “ pxkpaq, ykpaqq. So, (10) is satisfied. Let n “ 2ky and let
pu, vq “ pxnpaq, ynpaqq, so y2 | v. So, (12) and (18) are satisfied. By the CRT let
b ą 1, a be such that b ” 1 mod 4y and b ” a mod u. Note here that if a prime
p divides y then p | v and so p - u (as pu, vq “ 1). Also, since n ie even, ynpaq “ v
is even, so u is odd. So, p4y, uq “ 1 so we may apply the CRT to get b. This
satisfies (13) and (16). Let pz, wq “ pxkpbq, ykpbqq, so (11) is satisfied. We have
k ď y “ ykpaq, so (14) holds. Also, w “ ykpbq ” k mod pb ´ 1q and so w ” k
mod 4y and so (15) holds. Finally, z “ xkpbq ” xkpaq “ x mod u since b ” a
mod u. Thus, (17) holds.

This completes the proof of Theorem 5.13.
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�

Theorem 5.14. The exponential function fpn, kq “ nk is Diophantine.

Proof. We must show that the relation m “ nk is Diophantine. The idea is to use
Lemma 5.12 to relate the exponential function nk to the solution pxkpaq, ykpaqq for
a large enough base a. Fix for the moment n, k, and consider pxkpaq, ykpaqq (we will
specify a momentarily). From lemma 5.12 we have that nk ” xkpaq ´ pa´ nqykpaq
mod 2an´ n2 ´ 1. Thus, to equations (10)–(18) we add the equation

(19) px´ pa´ nqy ´mq2 “ pf ´ 1q2p2an´ n2 ´ 1q2

which says that m ” nk mod 2an´ n2 ´ 1 (we will have momentarily that a ą 1;
also we square both sides since we may have x´ pa´ nqy ´m “ ˘`p2an´ n2 ´ 1q
for some ` P N). We consider a w ą n, k, so we add the equation

(20) w “ n` h “ k ` `

Suppose now that a is itself of the form a “ xjpwq and the corresponding yjpwq is
divisible by w ´ 1. That is, we add the equation

(21) a2 ´ pw2 ´ 1qpw ´ 1q2z2 “ 1

This requires a to be xjpwq and pw ´ 1q | yjpwq. Thus, from Lemma 5.5 we
have j ” yjpwq ” 0 mod w ´ 1, so pw ´ 1q | j and thus j ě w ´ 1. Hence
a “ xjpwq ě wj ě ww´1 ą nk. We require that m ă 2an ´ n2 ´ 1 by adding the
equation

(22) m` g “ 2an´ n2 ´ 1

So, we now have m ” nk mod 2an ´ n2 ´ 1 and m ă 2an ´ n2 ´ 1. To conclude
m “ nk it suffices to show that nk ă 2an ´ n2 ´ 1 as well. Since a ą nk we
have 2an ´ n2 ´ 1 ą nk. To see this, note that if n “ 1 then a ą nk “ 1, so
2an ´ n2 ´ 1 ě 4 ´ 1 ´ 1 “ 2 ą 1 “ nk. So assume n ą 1. Then 2an ´ n2 ´ 1 ą
nk`1 ` pnk`1 ´ n2 ´ 1q ě pnk ` 1q ` pnk`1 ´ n2 ´ 1q ě nk ` pnk`1 ´ n2q ě nk.

We have shown so far that if m,n, k are such that there is a solution to the
equations (10)–(22), then m “ nk.

For the other direction, suppose m “ nk. Let w ą n, k and let a “ xw´1pwq,
and note that yw´1pwq ” w´1 ” 0 mod w´1. Then a ą 1 and pw´1q | yw´1pwq
so we have yw´1pwq “ pw ´ 1qz which satisfies equation (21). Since w ą n, k we
can satisfy (20). We again have that a ě ww´1 ą nk and so 2an ´ n2 ´ 1 ą nk

and so we can satisfy (22). Set x “ xkpaq, y “ ykpaq. Then from Lemma 5.12
we have that (19) can be satisfied. Since x “ xkpaq and y “ ykpaq, we can satisfy
equations (10)–(18). �

This completes the proof of Theorem 4.2.
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6. Independence and Undecidability

We now connect Theorem 4.2 with independence and the Gödel incompleteness
theorem, and with the notion of undecidability. The phrase “decidable” refers to
there being an algorithm (a “decision process”) for computing whether the property
holds. Of course, this is just the notion of the set in question (when coded as a set
of natural numbers) being recursive, that is ∆0

1.
In Exercise 5 it was shown that the universal Σ0

1 set is not ∆0
1 (and a similar

statement holds for all the Σ0
n, Π0

n). Let us expand this discussion a bit. Let
U Ď ω ˆ ω be the universal Σ0

1 of Theorem 1.39. So, U P Σ0
1 and for every Σ0

1 set
A Ď ω we have A “ Ue “ tn : Upe, nqu for some e.

Lemma 6.1. U R ∆0
1.

Proof. Suppose U P ∆0
1. Let A “ te :  Upe, equ. Since ∆0

1 is closed under comple-
ments and substitution by recursive functions (the function e ÞÑ pe, eq is recursive),
we have that A P ∆0

1. Since U is universal, this gives that A “ Ue0 for some e0.
But then e0 P A iff  Upe0, e0q (definition of A) iff  e0 P A (since A “ Ue0), a
contradiction. �

The following theorem gives the “undecidability” version of Hilbert’s 10th prob-
lem.

Theorem 6.2. There is no algorithm which takes as input a polynomial p P
Ť

k Zrx1, . . . , xns and decides if pp~xq has a root in Zk. In fact, there is one partic-
ular polynomial p0px, y, z1, . . . , zkq such that there is no algorithm which takes as
input pa, bq P Z2 and decides if p0pa, b, ~zq has an integer root for the ~z.

Proof. Let U Ď ω ˆ ω be the universal Σ0
1 set. From Theorem 4.2 there is

a polynomial ppx, y, z1, . . . , zkq such that for all pa, bq P Z2 we have Upa, bq iff
Dz1, . . . , zk ppa, b, ~zq “ 0. Since U R ∆0

1 (i.e., is not recursive), there is no algorithm
for computing membership in u, and thus there can be no algorithm for deciding if
ppa, b, ~zq has an integer root. �

By combining Theorem 4.2 with the Gödel incompleteness theorem we may
present the Hilbert’s 10th problem result as an independence result.

Theorem 6.3. There is a polynomial p P Zrz1, . . . , zks (for some k) such that
the statement Dz1, . . . , zk P Z pp~zq “ 0 is independent of ZFC. That is, it is not
provable in ZFC whether or not this polynomial has an integer root.

Proof. Let U Ď ω ˆ ω again be the universal Σ0
1 set. Let ϕ be the statement

 CONpZFCq, which is a Σ1 statement in the language of arithmetic. Let A “ tn P
ω : ϕu. Note that since ϕ is a sentence, A is either H or ω, but we cannot prove in
ZFC which case holds. However, A is the Σ0

1 set defined by ϕ. The proofs of the
closure properties of ∆0

1 and the definition of U show that there is an e0 such that
Apnq Ø Upe0, nq, and this equivalence is provable in ZFC (in fact, in PA). If we
let p be the polynomial representing U again, then we have Apnq iff ppe0, n, ~zq has
an integer root, so

ZFC $ pϕØ Dy D~z ppe0, y, ~zq “ 0q.

Since ϕ is independent of ZFC (assuming the consistency of ZFC) we have that the
statement Dy D~z ppe0, y, ~zq “ 0 is also independent of ZFC. �
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Theorem 6.3 produces a polynomial p (with integer coefficients) of some degree
and some dimension (number of variables) such that it is independent of ZFC
whether p has an integer root. A natural question is how small can we make the
degree and/or the dimension of the polynomial. The following general result shows
that every Diophantine problem is equivalent to a 4th degree one. This result is
attributed to Skolem.

Theorem 6.4. Let ppx1, . . . , xkq be a polynomial (with integer coefficients). Then
there is a polynomial qpx1, . . . , xk, y1, . . . , y`q of degree 4 such that p has an integer
root iff q has an integer root.

Proof. Let ppx1, . . . , xkq “
ř

sip~xq where each si is a monomial. Consider a mono-
mial term s “ sps1, . . . , xkq “ xa11 ¨ ¨ ¨xakk . For each such s we introduce several new
variables. First, for each of the variable xi, we introduce variable yi,1, yi,2, . . . , yi,ai .
Let

qs,i “ pyi,1 ´ xiq
2 ` pyi,2 ´ xiyi,1q

2 ` ¨ ¨ ¨ ` pyi,ai ´ xiyi,ai´1q
2.

Thus, qs,i “ 1 asserts that yi,j “ xji for j ď ai (we could be more efficient here

by using binary representation for ai and just building up the powers pxiq
2m

). We
then introduce the variables z1, . . . , zk and let

rs “ pz1 ´ y1,a1q
2 ` pz2 ´ z1y2,a2q

2 ` ¨ ¨ ¨ ` pzk ´ zk´1yk,akq
2.

Thus, rs “ 0 asserts that z1 “ xa11 , z2 “ xa11 xa22 , . . . , zk “ xa11 ¨ ¨ ¨xakk “ s.
We then let q “

ř

s,i qsi `
ř

s rs. Note that q is of degree 4 and pp~xq “ 0 iff

D~y D~z qp~x, ~y, ~zq “ 0. �

7. The Paris-Harrington theorem

We begin by recalling the Erdös-Rado partition notation. We let κλ denote the
set of increasing functions f from λ to κ.

Definition 7.1. We write κÑ pδqλρ to mean for every partition F : κλ Ñ ρ there is

a H Ď κ with |H| ě δ which is homogeneous for F , that is, Dα ă ρ @f P Hλ pF pfq “
α.

Note that the property κ Ñ pδqλρ implies the property κ Ñ pδ1qλ
1

ρ1 for δ1 ď δ,

λ1 ď λ, and ρ1 ď ρ.
Extending the definition slightly, we say κ Ñ pδqăλρ if for every partition F of

κăλ “
Ť

αăλ κ
α into ρ pieces, there is a set H Ď κ of size δ such that for each

α ă λ, F is constant on Hα.
The Paris-Harrington theorem states that a certain partition property in not

provable in PA, though it is provable in ZFC. This partition property concens
finitary partitions, and the partition property it concerns is a strengthening of the
classical Ramsey theorem, which we discuss below. Although these are partition
properties of the natural numbers, more general partition properties play a large
role in logic and set theory in general. We therefore briefly discuss some general
facts about partition properties.

First, the following theorem says that any partition property with an infinite
exponent is inconsistent with choice.

Theorem 7.2 (ZFC). For all κ, κ9 pωqω2 .
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Proof. Consider the equivalence relation on κω defined by f ” g iff Dn P ω @m ě

n pfpmq “ gpmqq. Using AC, Let S Ď κω be a selector for thie relation (i.e., S
contains exactly one element from each equivalence class). Consider the partition
F : κω Ñ 2 given by F pfq “ 1 iff the least n such that @m ě n fpmq “ gpmq
is odd, where tgu “ S X rf s is the unique element of S equivalent to f . suppose
H Ď κ was infinite and homogeneous for F . Let a0 ă a1 ă ¨ ¨ ¨ be an infinite
increasing sequence of elements from H. Let fpnq “ a2n. Let g “ S X rf s. Let n
be least so that @m ě n fpmq “ gpmq. But we then change f to f 1 by defining
f 1pnq “ a2n`1 to make n ` 1 the least point of eventual agreement (this does not
change the equivalence class of f and so the representative g does not change). So,
H is not homogeneous. �

So, with AC we can only consider finite-exponent partition properties (or slight
variations). However, without AC, much stronger partiton properties are possible,
and these play an important role in determinacy theory. For example a theorem of
Martin is that ω1 Ñ pω1q

ω1 (when the subscript is omitted, it is understood to be
2).

Definition 7.3. κ has the strong partition property if κ Ñ pκqκ. κ has the weak
partition property if κÑ pκqăκ.

In a model of determinacy, there are many cardinals κ with the strong partition
property, but there are no such cardinals in a model of ZFC by theorem 7.2.

Definition 7.4. κ is a Ramsey cardinal if κ Ñ pκqăω. κ is weakly compact if κ is
uncountable and κÑ pκq2.

We note that ω is not Ramsey as can be seen by consider the partition F : ωăω Ñ
ω given by F pn1, . . . , nkq “ 1 iff k P tn1, . . . , nku (here we identify f P ωăω with
a finite subset of ω, written in increasing order). Thus, every Ramsey cardinal in
uncountable, and thus is weakly compact.

The next theorem shows that weakly compact cardinals are inaccessible, and
thus cannot be shown to exist in ZFC.

Theorem 7.5. Every weakly compact cardinal is strongly inaccessible. That is, κ
is a regular limit cardinal (weakly inaccessible) and if α ă κ then 2α ă κ (a strong
limit cardinal).

Proof. To see κ is regular, suppose λ “ cofpκq ă κ. Let f : λ Ñ κ be increasing
and cofinal. Partition κ2 by F pα, βq “ 1 iff ranpfq X pα, βq ‰ H. There cannot be
a homogeneous set H Ď κ for F of size κ. for on the one hand we can always fine
α ă βin H with ranpfq X pα, βq ‰ H by taking β sufficiently large. On the other
hand, since |H| “ κ ą λ, one of the intervals rfpγq, fpγ ` 1qq must have ą λ many
points of H in it. In particular, we can find α ă β in H X pfpγq, fpγ ` 1qq, which
says F pα, βq “ 0.

To finish, we need to show that if λ ă κ then 2λ ă κ. Suppose 2λ ě κ. Let
tAαuαăκ be a κ sequence of distinct subseteq of λ. We consider the partition
F : κ2 Ñ 2 defined as follows. Let α ă β ă κ. Let δpα, βq be the least ordinal less
than λ such that δpα, βq P ∆pAα, Aβq. We set F pα, βq “ 1 iff δpα, βq P Aα. Let
H Ď κ be homogeneous for F of size κ.

Suppose first that for α ă β in H we have F pα, βq “ 0. For each α ă κ, let
apα, iq be the ith element of Aα (this is defined for i ă o.t.pAαq). The homogeneity
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of H gives that for α ă β in H that apα, 0q ě apβ, 0q, past the unique point, if any,
where Aγ “ H. Thus there is an ap0q ă λ and a γ0 ă κ such that for α ą γ0 in H
we have apα, 0q “ ap0q. That is, we have stabilized the first element of the sets Aα.
Past the unique point, if any, in H where Aγ “ tap0qu we have that for α ă β in
H that apα, 1q ě apβ, 1q. This give a ap1q ă λ and a γ1 ă κ such that for α ą γ1

in H we have apα, 1q “ ap1q, that is, we have stabilized the first two elements of
Aα. In general suppose that i ă λ and for all j ă i we have defined γj ă κ and
apjq ă λ such that for all α ą γi in H and we have apα, jq “ apjq. Since κ is
regular, γ “ supjăi γj ă κ. The above argument then produces a γi ă κ, γi ą γ,
and an apiq ă λ such that for all α ą γi in H we have apα, iq “ apiq. If now α ă β
are in H and α, β ą supiăλ γi, then Aα “ Aβ , a contradiction.

Suppose next that on the homogeneous side we have F pα, βq “ 1. Then for
α ă β in H we have apα, 0q ď apβ, 0q. Either there is a γ0 ă κ such that for all
α ă γ0 in H we have apα, 0q “ apβ, 0q or else there is a κ size subset of H on which
apα, 0q is strictly increasing (using here that κ is regular). The latter case cannot
occur, as this a map α ÞÑ apα, 0q from a set of size κ to a set of size λ. So, we may
assume γ0 and ap0q are defined. Continuing, as the previous case, we define γi, apiq
for all i ă λ, which is a contradiction as in the first case. �

Remark 7.6. The proof of Theorem 7.5 shows that for all κ that 2κ 9 pκ`q2.

We now turn to partition properties on the integers. We first state the “infini-
tary” version of Ramsey’s theorem.

Theorem 7.7 (Infinite Ramsey Theorem). For all n, k P ω, ω Ñ pωqnk .

Proof. We proceed by induction on n. The case n “ 1 is trivial. Assume the result
for exponent n ´ 1, and let F : ωn Ñ k be a given partition. Let a0 P ω and let
Fa0 : pω ´ pa0 ` 1qqn´1 Ñ k be defined by Fa0pi1, . . . , in´1q “ F pa, 0, i1, . . . , in´1q.
By the n ´ 1 case, there is an Ha0 Ď ω ´ pa0 ` 1q which is homogeneous for
Fa0 . Let a1 P Ha0 . Define Fa1 : pHa0 ´ pa1 ` 1qqn´1 Ñ k by Fa1pi1, . . . , in´1q “

F pa1, i1, . . . , inq. Let Ha2 Ď Ha0 ´ pa1 ` 1q be homogeneous for Ha1 . Continuing
in this manner we define H 1 “ a0 ă a1 ă a2 ă ¨ ¨ ¨ with the property that if ~a,
~b P Hn and minp~aq “ minp~bq, then F p~aq “ F p~bq. This defines a map g from H 1 to
k (gpaiq “ F p~aq for any ~a P H with minp~aq “ ai). We may fix an infinite H Ď H 1

which fixes that value of g. H is then clearly homogeneous for F . �

We next state the “finitary” version of Ramsey’s theorem, and show that it
follows from the infinite version by a compactness argument.

Theorem 7.8 (Finite Ramsey Theorem). For all n, k,m, there is an ` so that
`Ñ pmqnk .

Proof. Fix n, k,m, and suppose that for all ` the stated property fails. For each
`, let F` : `n Ñ k be a partiton without a homogeneous set of size m. For `1 ď `,
let F`1,` be the restriction of F` to p`1qn. Since for any `1 there are only finitely
many partitions of p`1qn into k pieces, we have that for any `1, tF`1,` : l P ωu is
finite. It follows that there is a sequence a0 ă a1 ă a2 ă ¨ ¨ ¨ such that for all
i ă j ă k we have Fai,aj “ Fai,ak [given a0 ă ¨ ¨ ¨ ă ak and Hk Ď ω ´ pak ` 1q
such that for all `1 ă `2 in Hk we have Fak,a`1 “ Fak,a`2 , let ak`1 P Hk, and

then get Hk`1 Ď Hk ´ pak`1 ` 1q which fixes Fak`1,` for all ` P Hk`1]. Let
fk be the common value of Fak,a` for ` ą k. Thus, the fk union to a partition
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f : ωn Ñ k. From Theorem 7.7, let H Ď ω be an infinite homogeneous set for f .
Let k be large enough so that |H X ak| ě m. Then H X ak is homogeneous for
f � pakqm “ Fak`1

� pakqm, and so homogeneous for Fak`1
. This contradicts the

definition of Fak`1
. �

The statement of the finite Ramsey theorem is a sentence in the language of
arithmetic, but the proof given above did not take place in arithmetic (i.e., from
the axiom system PA) since it passed through the infinite Ramsey theorem 7.7 which
talks about Ppωq. The finite Ramsey theorem can be proved in PA, however, by
re-working the above argument. We give this modified argument next.

Theorem 7.9. The statement of the finite Ramsey theorem, @n, k,m D` r`Ñ pmqnk s
is provable in PA.

Proof. Fix k, and let ϕpnq be the statement that @m D` for all partitons F : p`qn Ñ
k, there is a homogeneous set of size m. We prove ϕpnq by induction on n. For
n “ 1 we can take ` “ pm´ 1qk` 1. So, working in PA, assume ϕpnq and we show
ϕpn` 1q. We follow the proof of Theorem 7.7.

Let rpa, bq, assumed defined for a ď n, be the least ` so that for all partitions
F : p`qa Ñ k there is a homogeneous set of size b. Let rn be the function rnpmq “
rpn,mq. Note that rnp1q “ n. Let

` “ r1n ˝ r
1
n ˝ ¨ ¨ ¨ ˝ r

1
np1q

where the functions r1n are composed mk ` 1 times, and r1n “ rn ` 1. That is,

let rn`1pmq “ r1
pmk`1q
n p1q, where the superscript denotes composition. Let ` “

r1n`1pmq, and suppose F : p`qn`1 Ñ k. Let H´1 “ `, and let a0 “ 0 be the least
element of H´1. As in 7.7 we consider the partition Fa0 : pH´1 ´ pa0 ` 1qqn Ñ k

by Fa0pi1, . . . , in´1q “ F pa0, i1, . . . , in´1q. Since ` “ rn`1p1q “ r1
pmk`1q
n p1q “

rnpr
1pmkq
n p1qq ` 1, we get a homogeneous set H0 for Fa0 of size r1

pmkq
n p1q ` 1. Let

a1 be the least element of Ha0 , so Ha0 ´ pa1 ` 1q has size at least r1n
pmkq

p1q.
Continuing, as in 7.7 we obtain a0 ă a1 ă ¨ ¨ ¨ ă amk which are “min homoge-

neous” as in 7.7. From this set we may, as in 7.7, extract a homogeneous set of size
m (we now have a coloring of these mk ` 1 points into k colors, so there must be
a homogeneous set of size m). �

Thus, working in PA we have shown that the following function is well-defined.

Definition 7.10. For 1 ď n ď m and k ě 2, let rpn,m, kq be the least ` such that
`Ñ pmqnk .

We introduce the Ackermann hierarchy of fast-growing functions.

Definition 7.11. Let E0pnq “ n ` 1. Let Ek`1pnq “ Ek ˝ ¨ ¨ ¨ ˝ Ekpnq “ E
pnq
k pnq,

where the superscript denotes composition n times. Let Eωpnq “ Enpnq.

We will extend the Ackermann hierarchy further into the transfinite later. Note

that E1pnq “ 2n, E2pnq “ n2n « 2n, and E3pnq « 222¨¨¨
n

, a stack of exponentials
of height n. E4 is too large to write down in exponential notation.

The proof of Theorem 7.9 gives an estimate for the diagonal Ramsey function
rpn, n, nq of order Eωpnq. This, however, is not a very good estimate.

We now give an improved bound for rpn,m, kq due to Erdös-Rado (1952). Recall
that n ď m always and rpn, n, kq “ n.
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Theorem 7.12 (Erdös-Rado). For n ă m, rpn,m, kq ď kp
t´1
n´1q, where t “ rpn ´

1,m´ 1, kq ` 1.

Proof. Let t “ rpn ´ 1,m ´ 1, kq ` 1, and let ` “ kp
t´1
n´1q`1. Let F : p`qn Ñ k

be given. A set H Ď ` is called pn ´ 1q homogeneous if for all ~a, ~b P pHqn with

~a � n´1 “ ~b � n´1 we have F p~aq “ F p~bq. It suffices to show that there is an H Ď `
which is n ´ 1 homogeneous and |H| ě t. For say H “ ta1, . . . , atu, and consider
F 1 : pH ´tatuq

n´1 Ñ k, given by F 1pi1, . . . , in´1q “ F pi1, . . . , in´1, atq. There is an
H 1 Ď H of size |H 1| “ m´ 1 which is homogeneous for F 1. Then H “ H 1 Y tatu is
homogeneous for F , and |H| ě m.

We construct the elements a1 ă a2 ă ¨ ¨ ¨ ă at ă ` of an n´1 homogeneous set by
induction. Let ta1, . . . , an´1u “ t0, 1, . . . , n´2u. There is an Hn´1 Ď `´pan´1`1q
such that if a, b P Hn´1 then F pa1, . . . , an´1, aq “ F pa1, . . . , an´1, bq, and |Hn´1| ě
p`´n`1q

k ě `
k .

Suppose in general that at step i ě n´1 we have a1 ă ¨ ¨ ¨ ă ai and Hi Ď `´pai`
1q and for any ~a P ta1, . . . , aiu

n´1 and any p ă q in Hi we have F p~a, pq “ F p~a, qq.
Assume also Hn´1 Ě Hn Ě ¨ ¨ ¨ Ě Hi and aj P Hj´1 for all j ď n ´ 1. Let
ai`1 “ minpHiq. Let S be the set of ~a P ta1, . . . , ai`1u

n´1 with maxp~aq “ ai`1.
For each b P Hi ´ pai`1 ` 1q, we have gpbq “ xF p~a, bq : ~a P Sy P kS . So, we may

get Hi`1 Ď Hi ´ pai`1 ` 1q on which g is constant and |Hi`1| ě
|Hi|´1
k|S|

“
|Hi|´1

kp
i

n´2q
.

Thus, we can define a1 ă ¨ ¨ ¨ ă at provided

p¨ ¨ ¨ ppp
`´ n` 1

k
´ 1q

1

kp
n´1
n´2q

´ 1q
1

kp
n

n´2q
´ 1q ¨ ¨ ¨ q

1

kp
t´2
n´2q

ą 0

that is,

`´ n` 1

kp
n´2
n´2q`p

n´1
n´2q`¨¨¨`p

t´2
n´2q

ě
1

kp
n´1
n´2q`p

n´1
n´2q`¨¨¨`p

t´2
n´2q

`
1

kp
n

n´2q`p
n´1
n´2q`¨¨¨`p

t´2
n´2q

`¨ ¨ ¨`
1

kp
t´2
n´2q

,

which gives

` ě n` kp
n´2
n´2q ` kp

n´2
n´2q`p

n´1
n´2q ` ¨ ¨ ¨ ` kp

n´2
n´2q`p

n´1
n´2q`¨¨¨`p

t´3
n´2q.

So,

rpn,m, kq ď n` kp
n´2
n´2q ` kp

n´2
n´2q`p

n´1
n´2q ` ¨ ¨ ¨ ` kp

n´2
n´2q`p

n´1
n´2q`¨¨¨`p

t´3
n´2q

“ n` kp
n´1
n´1q ` kp

n
n´1q ` ¨ ¨ ¨ ` kp

t´2
n´1q

ď kp
t´1
n´1q.

To see the last inequality, note that if n “ 2 then

2` k1 ` k2 ` ¨ ¨ ¨ ` kt´2 “ 1`
kt´1 ´ 1

k ´ 1
ď 1` kt´1 ´ 1 “ kp

t´1
n´1q.

If n ě 3 then

n` kp
n´1
n´1q ` kp

n
n´1q ` ¨ ¨ ¨ ` kp

t´2
n´1q ď n` kp

t´2
n´1q`1

ď 2kp
t´2
n´1q`1

ď kp
t´2
n´1q`2

ď kp
t´1
n´1q.

Here we have used that n ď kn ď kp
t´2
n´1q`1 which holds provided t ´ 2 ě n, that

is provided fpn ´ 1,m ´ 1, kq ě n ` 1, which we easily have (as n ă m). Also,
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`

t´1
n´1

˘

´
`

t´2
n´1

˘

ě 2 for all t´ 2 ě n´ 1, which we have as
ˆ

t´ 1

n´ 1

˙

´

ˆ

t´ 2

n´ 1

˙

“
pt´ 2q ¨ ¨ ¨ pt´ n` 1qrpt´ 1q ´ pt´ nqs

pn´ 1q!

“ pn´ 1q
pt´ 2qpt´ 3q ¨ ¨ ¨ pt´ n` 1q

pn´ 1qpn´ 2q ¨ ¨ ¨ 2
ě n´ 1 ě 2

using again that t´ n` 1 ě 2.
�

In particular, we have the bound

Corollary 7.13.

(23) rpn,m, kq ď krpn´1,m´1,kqn´1

.

Proof. If n “ m this becomes n ď kpn´1qn´1

which easily holds (as k ě 2). If n ă m
this follows from Theorem 7.12 as

`

r
n´1

˘

ď rn´1.
�

From Equation 23 we see that the ramsey function grows roughly as E3. More
precisely, let gppq “ suptrpm,n, kq : m,n, k ď pu.

Claim. For large enough p we have gppq ď E3pp` 1q.

Proof. Let a ˚ b denote ab, a ˚ b ˚ c denote a ˚ pb ˚ cq, etc. From Corollary 7.13 we
get

gppq ď p ˚ p ˚ pp´ 1qp ˚ pp´ 2q ˚ p ˚ ¨ ¨ ¨ ˚ 3p ˚ 2p.

Note that a ˚ b “ ab ď 2ab “ 2 ˚ ab and c ¨ pa ˚ bq ď 2 ˚ pc` abq ď 2 ˚ pcabq provided
a, b, c ě 2.

gppq ď p ˚ p ˚ pp´ 1qp ˚ pp´ 2qp ˚ ¨ ¨ ¨ ˚ 3p ˚ 2p

ď 2 ˚ rp ¨ pp ˚ pp´ 1qp ˚ pp´ 2qp ˚ ¨ ¨ ¨ ˚ 3p ˚ 2pqss

ď 2 ˚ 2 ˚ p2rpp´ 1qp ˚ pp´ 2qp ˚ ¨ ¨ ¨ ˚ 3p ˚ 2p

ď 2 ˚ 2 ˚ 2 ˚ p3pp´ 1qrpp´ 2qp ˚ pp´ 3qp ˚ ¨ ¨ ¨ ˚ 3p ˚ 2ps

ď 2 ˚ 2 ˚ 2 ˚ 2 ˚ p4pp´ 1qpp´ 2qrpp´ 3qp ˚ pp´ 4qp ˚ ¨ ¨ ¨ ˚ 3p ˚ 2ps

ď 2 ˚ 2 ˚ 2 ˚ 2 ˚ ¨ ¨ ¨ ˚ 2 ˚ ppp´1pp´ 1qpp´ 2q ¨ ¨ ¨ p3pqp2pqq

where the last expression has p´1 2’s in the tower. The final expression is bounded
by 2 ˚ 2 ˚ p for large enough p. Thus, gppq ď E3pp` 1q.

�

We next introduce the Paris-Harrington partition property which is a strength-
ening of the finite Ramsey property.

Definition 7.14. The Paris-Harrington partition property for n, k,m is the state-
ment that there is an ` so that for all partition F : p`qn Ñ k there is a homogeneous
set H for F with |H| ě m and |H| ě minpHq.

We first show that the Paris-Harrington partition property is a theorem of ZFC.

Theorem 7.15. The Paris-Harrington partition property is a theorem of ZFC.
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Proof. We use a compactness argument as the proof of Theorem 7.8. Suppose the
principle fails for some n, k,m, which we fix. For all `, fix a partition F` : p`qn Ñ k
for which there is no homogeneous set H as desired. Ss in the proof of Theorem 7.8,
we may fix a sequence a sequence a0 ă a1 ă ¨ ¨ ¨ and partitions f0, f1, . . . , such
that for all k and all ` ą k we have that Fa` � pakqn “ fk. Let f “

Ť

k fk, so
f : pωqn Ñ k is a partition of pωqn. By the infinite Ramsey theorem, let H Ď ω be
infinite and homogeneous for f . Let i0 P H with i0 ě m. Fix i1 ă ¨ ¨ ¨ ă ip in H
with i1 ą i0 and p ě i0. Fix k large enough so that ak ą ip, and let ` ą k. Then
ti0, . . . , ipu is homogeneous for fk “ F` � pakqn, a contradiction as this set satisfies
the Paris-Harrington condition. �

We now head toward showing that the Paris-Harrington partition property is not
provable in PA. The approach uses the partition property to generate a sufficiently
rich set of indiscernibles for a model of arithmetic.

We call F : p`qn Ñ ` regressive if F pa1, . . . , anq ă a0. We call H Ď ` min-

homogeneous if whenever ~a, ~b are in pHqn and minp~aq “ minp~bq, then F p~aq “ F p~bq.
We show the Paris-Harrington partition property implies the following partition
property for regressive functions.

Definition 7.16 (regressive partition property). The regressive partition property
is the statement that for all m,n, k, s there is an ` such that if F1, . . . , Fk : p`qn Ñ `
are regressive, then there is an H Ď rs, `s with |H| ě m which is min-homogeneous
for each Fi.

First we show that the Paris-Harrington partition property implies the slightly
stronger version where we require that |X| ě minpHq`n`1, and also we can keep
minpHq ě s for given s.

Lemma 7.17. Assume the Paris-Harrington partition property (Definition 7.14).
Then for any m,n, k, s there is an ` such that for any F : p`qn Ñ k there is a
homogeneous H Ď rs, `s with |H| ě minpHq ` n` 1, |H| ě m.

Proof. Let ` be large enough so that for any G : p`qn Ñ k`1 there is a homogeneous
X with |X| ě minpXq and |X| ě s ` m ` 2n ` 1. Given now F : p`qn Ñ k,
define Gpa1, . . . , anq “ F pa1 ´ n ´ 1, . . . , an ´ n ´ 1q if all ai ě s ` n ` 1, and
Gp~aq “ k ` 1 otherwise. Let X be homogeneous for G with |X| ě minpXq and
|X| ě s`m`2n`1. Since |X| ě s`2n`1, there are at least n elements of X which
are ě s`n`1. So, we can find an n-tuple from X which does not have color k`1,
and so all n-tuples from X do not have color k`1. That is, minpXq ě s`n`1. Let
H “ ta´n´ 1: a P Xu, so H Ď rs, `s, and |H| “ |X| ě minpXq ě minpHq`n` 1.
Also, |H| “ |X| ě m. Clearly H is homogeneous for F as X is homomogeneous for
G. �

Theorem 7.18. Work in PA. Assume the Paris-Harrington partition property
(Definition 7.14). Then the regressive partition property (Definition 7.16) holds.

Proof. Assume the Paris-Harrington partition property holds. Fix m,n, k, s as in
the statement of the regressive partition property. Let ` be large enough so that for
any F : p`qn`1 Ñ 3k there is a a X Ď rs, `s with |X| ě m`n, |X| ě minpXq`n`1
which is homogeneous for F .
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Let now F1, . . . , Fk : p`qn Ñ ` be regressive. For each 1 ď i ď k, consider the
partition Gi : p`q

n`1 Ñ 3 given by

Gipa0, a1, . . . , anq “

$

’

&

’

%

0 if Fipa0, a1, . . . , an´1q ă Fipa0, a2, . . . , an´1, anq

1 if Fipa0, a1, . . . , an´1q “ Fipa0, a2, . . . , an´1, anq

2 if Fipa0, a1, . . . , an´1q ą Fipa0, a2, . . . , an´1, anq

LetG : p`qn`1 Ñ 3k be the partition given byGpa0, a1, . . . , anq “ xF1p~aq, . . . , Fkp~aqy.
Let X Ď rs, `s be homogeneous for G with |X| ě m`n and |X| ě minpXq`n` 1.
So, X is homogeneous for each Gi, and we claim that homogeneous color is 1
for all i. To see this, let x0, x1, . . . enumerate X, and consider the tuples ~aj “
px0, xj , xj`1, . . . , xj`n´1q. There are |X| ´ n ě minpXq ` n` 1´ n “ x0 ` 1 such
tuples, and Fip~ajq ă x0 for all j. So, we must have Fip~ajq “ Fip~aj1q for some j ‰ j1

(say j ă j1). However, we can get from px0, xj , . . . , xj`n´1q to px0, xj1 , . . . , xj1`n´1q

by a finite sequence of operations as in the definition of Gi (the first move is to
delete xj and add xj1`n´1). But then we would have Fipajq ă F paj1q (if the homo-
geneous color is 0), a contradiction (and similarly if the homogeneous color is 2).
So, for each i, the homogeneous color for Gi in 1.

This implies that X minus the n ´ 1 largest elements ty1, . . . , yn´1u of X is
min-homogeneous for each Fi. For if pa0, . . . , an´1q P X ´ ty1, . . . , yn´1u, then

Fipa0, a1, . . . , an´1q “ Fipa0, a2, . . . , an´1, y1q

“ Fipa0, a3, . . . , an´1, y1, y2q “ ¨ ¨ ¨

“ Fipa0, y1, . . . , yn´1q.

which shows X ´ ty1, . . . , yn´1u is min-homogeneous for each Fi. Clearly |X ´

ty1, . . . , yn´1u| ě m. �

We now use the regressive partition property to obtain a strong form of indis-
cernibles for models of arithmentic. We note that theorem 7.18 was proved in PA
and thus holds in any model of PA.

Definition 7.19. Let M be a model of PA, and let Γ be a finite set of formulas
in the language of arithmetic. We say I Ď |M| is a set of diagonal indiscernibles
for M if whenever ϕpu1, . . . , uk, v1, . . . , vnq P Γ, x0 ă x1 ă ¨ ¨ ¨ ă xn and x0 ă y1 ă

¨ ¨ ¨ ă yn are in I, and a1, . . . , ak ă x0 then

M |ù ϕp~a, x1, . . . , xnq Ø ϕp~a, y1, . . . , ynq.

Theorem 7.20. Asssume PA and the Paris-Harrington partition property. Then
for all m,n, k, k1, s and formulas Γ “ tϕipu1, . . . , uk, v1, . . . , vnquiďk1 in the language
of arithmetic, there is a set I of diagonal indiscernibles for ϕ1, . . . , ϕk1 with |I| ě m,
and minpIq ě s.

Proof. Fix m,n, k, k1, s and the set of formulas Γ of size k1. We may assume m ą

2n. From the finite Ramsey theorem, let p be large enough so that p Ñ pm `

nq2n`1
k1`1 . From the regressive Ramsey theorem, let ` be large enough so that if

F1, . . . , Fk : p`q2n`1 Ñ ` are regressive, then there is an X Ď rs, `s with |X| ě p
which is min-homogeneous for the Fi.

Define Fi : p`q
2n`1 Ñ ` as follows. Set Fipx0, x1, . . . , xn, xn`1, . . . , x2nq “ 0 if for

all ~a ă x0 we have

M |ù ϕjp~a, x1, . . . , xnq Ø ϕjp~a, xn`1, . . . , x2nq.
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for all j ď k1. Set also in this caseGpx0, . . . , x2n`1q “ 0. Otherwise, letGpx0, . . . , x2nq ď

k1 be the least such j, and let Fipx0, . . . , x2nq ă x0, for i ď k, be the ith coordinate
of the least ~a which violates this equation.

As the Fi are regressive, from the definition of `, there is a X Ď rs, `s with
|X| ě p which is min-homogeneous for the Fi. From the definition of p we get an
H Ď X with |H| ě m` n ą 3n on which G is constant.

Suppose first that the homogeneous value of G is j ‰ 0. Fix x0 ă x1 ă ¨ ¨ ¨ ă x3n

in pHq2n`1. Let ~a be the constant value of the Fip~xq for ~x P H with minp~xq “ x0.
Then if we let ~y “ x1, . . . , xn, ~z “ xn`1 . . . , x2n, and ~w “ x2n`1 . . . , x3n then we
have

M |ù ϕjp~a, ~yq= ϕjp~a, ~zq

M |ù ϕjp~a, ~yq= ϕjp~a, ~wq

M |ù ϕjp~a, ~zq= ϕjp~a, ~wq

which is a contradition as two of these must have the same truth value.
Suppose next that the homogeneous value for G is 0. Recall |H| ě m ` n. Let

z1, . . . , zn be the n largest elements of H. Let I “ H ´ tz1, . . . , znu. Then I is
a set of diagonal indiscernibles for Γ of size |I| ě m. To see they are diagonal
indiscernibles, note that if x0 ă x1 ă ¨ ¨ ¨ ă xn and x0 ă y1 ă ¨ ¨ ¨ ă yn are in I,
then for all ~a ă x0 and all j we have

M |ù ϕjp~a, x1, ¨ ¨ ¨ , xnq Ø ϕjp~a, z1, ¨ ¨ ¨ , znq Ø ϕjp~a, y1, . . . , ynq.

Thus I is the desired set of order indiscernibles for Γ. �

Recall that PA consists of finitely many algebraic axioms together with the
induction axioms. The induction axioms are equivalent to the axioms which assert,
for each formula ϕpxq, that if Dxϕpxq, then there is a least x such that ϕpxq. That
is, the axiom

Dxϕpxq Ñ Dxrϕpxq ^ @y ă x  ϕpyqs.

Note that if M is a model of PA, and N is an initial segment of M (i.e., N ĎM
and if a P N , b PM, and b ď a, then b PM) then for any ∆0 formula ϕpx1, . . . , xnq
and a1, . . . an P N ,

N |ù ϕpa1, . . . , anq ØM |ù ϕpa1, . . . , anq.

Lemma 7.21. Let M be a model of PA and I “ x0 ă x1 ă ¨ ¨ ¨ be a sequence
of diagonal indiscernibles (which are elements of M) for all formulas ϕ in the
language of number theory. Let N “ tx P M : Di px ď xiqu. Then N is closed
under addition, multiplication, exponentiation and is a model of PA.

Proof. Suppose a, b ă xi are elements of M. If a` b ě xi`1 then we can get c ď b
such that a ` c “ xi`1. But then the statement ϕpu1, u2, v1, v2, q “ u1 ` u2 “ v2

holds at pa, b, xi, xi`1q but not at pa, b, xi, xi`2q, a contradiction. So, of a, b ă xi,
then a` b ă xi`1. Thus, N is closed under addition.

If a, b ă xi but ab ě xi`1, then there is a c ď b and an d ď a such that
ac` d “ xi`1, where a, c, d ă xi. This again violates diagonal indiscernibility.

If a, b ă xi and ab ě xi`1, then there is a c ă b such that ac ă xi`1 but
ac ¨a ě xi`1. By the previous paragraph, ac ¨a ď xi`2. Since a, c ă xi, by diagonal
indiscernibility we have ac ¨ a ă xi`1, a contradiction.
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So, N is closed under addition, multiplication, and exponentiation. Thus, N is
a substructure of M. As we noted above, all ∆0 formulas are absolute between N
and M.

Suppose ϕp~y, wq “ @z1 Dz2 ¨ ¨ ¨ @z2m´1 Dz2m ψp~y, ~zq, where ψ is ∆0. By the
diagonal indiscernibility of ϕ and its subformulas, we get that for all xi0 P I and
~a, b ă xi0 that N |ù ϕp~a, bq iff

(24) @z1 ă xi1 Dz2 ă xi2 ¨ ¨ ¨ @z2m´1 ă xi2m´1
Dz2m ă xi2m ψp~a, b, ~zq

whenever i0 ă i1 ă ¨ ¨ ¨ ă i2m. Suppose now that ϕp~y, wq is as above, ~a P N
and N |ù Dw ϕp~a,wq. Let i0 be such that ~a,ă xi0 and for some b ă xi0 we have
N |ù ϕp~a, bq. Then for any i1 ă ¨ ¨ ¨ ă i2m greater than i0, and any b ă xi0 we have
N |ù ϕp~a, bq iff M |ù @z1 ă xi1 ¨ ¨ ¨ Dz2m ă xi2m ψp~a, b, ~zq. since M satisfies PA, in
M we can define the least b ă xi0 such that (24) holds. That is, we have a least
b P N such that N |ù ϕp~a, bq. This shows PA holds in N . �

It now follows that the Paris-Harrington partition property is not provable in
PA.

Theorem 7.22. The Paris-Harrington partition property is not provable in PA.

Proof. Suppose toward a contradiction that the Paris-Harrington partition property
was a theorem of PA. Let M be a non-standard model of PA. Let s P M be a
non-standard element. From Theorem 7.18 in M with k “ m “ n “ s, there
is an ` ą s such that p˚q: if F1, . . . , Fs are regressive functions on p`qs, then
there is min-homogeneous set H Ď rs, `s for the Fi of size ě s. Using PA in
M, let `0 ą s be the least such ` in M. From Theorem 7.20 in M, there is a set
txiuiăs Ď rs, `0s of diagonal indiscernibles for the first s formulas tϕjujăs, where
ϕj “ ϕjpu1, . . . , us, v1, . . . , vsq. Since s is non-standard, I “ x0 ă x1 ă ¨ ¨ ¨ is
an initial segment of txiuiăs, and I is a set of diagonal indiscernibles for all the
standard formulas ϕ. Let N be the initial segment of M determined by I. From
Lemma 7.21, N is a model of PA. Note that `0 RM. However, since N models PA,
which are are supposing proves the Paris-Harrington partition property, in N there
is an `1 satisfying p˚q. But `1 ă `0, and `1 also satisfies p˚q in M (as N is closed
under the coding of subsets of its integers, etc.). This contradicts the minimality
of `0. �


