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Recursive Functions

1. RECURSIVE FUNCTIONS

Recursive functions play an important role in the proof of the incompleteness
theorems, as well as in various other areas of mathematics (e.g., descriptive set
theory) and of course in computer science. Specifically, an important point in the
proof of the incompleteness theorem is that recursive functions are “representable”
within a certain weak theory F of arithmetic (to be defined later). Here, we first
introduce and study them for their own sake.

First, a few metamathematical comments. In this section, we work in a suffi-
ciently strong background metatheory in which we can speak of the natural num-
bers, or even subsets of natural numbers, and related notions. For example, we
could take ZFC as the background metatheory (though this is far more than we
need). When we speak of “the natural numbers” we mean the uniquely defined
structure as defined from this metatheory (e.g., the definition of the natural num-
bers within ZFC). If we view the following discussion as taking place in a back-
ground model of the metatheory axioms, then the notion of “natural numbers”
depends on this background model, that is, N is only unique up to choice of back-
ground model of the metatheory. In this following discussion, we will not explicitly
formalize this metatheory, but implicitly assume it suffices to define the objects we
discuss. In §2 we will more carefully introduce an axiomatization for the natural
numbers and establish connections between recursive functions and “representabil-
ity” in this system. This will be important for the proof of the incompleteness
theorem.

Definition 1.1. A total function f from w” to w is just a function f: W™ — w,
that is, with domain w™. A partial function f from w™ — w is a function f: D — w
where D € w" is the domain of the function.

The distinction between total and partial functions is important in the subject,
and we must be careful to specify what we are talking about if it is not clear from
the context.

Intuitively, a (total or partial) recursive function f: w™ — w is a function which
is machine computable. The collection of algorithms corresponds to the collection
of partial recursive recursive functions (as not every algorithm computes a total
function). One approach to the subject is to formalize this notion of a “machine
computation.” There are several simple machine models which can be taken as the
definition of machine computations such as Turing machines, register machines, etc.
This gives a natural and intuitive approach, however, it is somewhat cumbersome
to verify that all of the needed functions are computable in this manner.

On the other hand, one could take an approach which is even more removed
from the intuitive notions of computability, but which perhaps results in a yet more
concise and elegant presentation. Namely, one could define the recursive and semi-
recursive sets (we will define these in our approach below) as the the sets which are
A1 and X respectively over V,, (the collection of hereditarily finite sets; again we
will define these notions below). Our approach is more axiomatic, but still closely
related to the basic intuition of computability. Along these lines, the reader will

1



note that clause 3 (primitive recursion) is closely related to the programming notion
of a for loop, while clause 4 (minimalization) is closely related to the programming
notion of a while loop (these two programming notions would be used in practice
to implement these respective two clauses).

Although perhaps somewhat less intuitive than the approach involving machine
computability, our approach results in a more compact presentation, and also has
other advantages such as identifying the class of primitive recursive functions along
the way. Of course, it can be shown that all the various approaches define precisely
the same class of functions.

The fact that this class of functions (which ever approach one takes to defining
it) is the “right” notion of “computable function” is a philosophical statement
which is referred to as Church’s thesis. This is considered accepted orthodoxy
by current mainstream mathematics, but it is not inconceivable that this could
change in the future if more exotic physical computation methods are discovered.
We emphasize, though, that Church’s thesis plays no role in our mathematical
presentation. Definitions 1.2 and 1.3 below are precise and unambiguous, regardless
of one’s philosophical beliefs regarding Church’s thesis.

Definition 1.2. The collection of total recursive functions f: w™ — w (for some
n) is the smallest collection of functions satisfying the following;:

(1) (simple functions) For any k € w, the constant function f(Z) = k is re-
cursive. The projection function f(z1,...,2,) = z; is recursive, and the
successor function f(n) = n + 1 is recursive.

(2) (composition) The class is closed under composition, that is, if f(z1,...,2,)
is recursive and g1 (21, ..., Tm),- -, gn(T1, ..., &y ) are recursive then so is
h(xla s 7xm) = f(gl(f)a < gn(f))

(3) (primitive recursion) The class is closed under primitive recursion. That is,
if g(Z) is recursive, and h(y, z, ) is recursive, then so is f defined recursively

by
o J9(@) ifn=0
f(n’x){h(f(n—l,a?),n—l,a?) ifn>0

(4) (restricted minimalization) The class is closed under minimalization. That
is, if g(&,n) is recursive and for all & there is an n such that g(#,n) = 0,
then the function f defined by f(Z) = un (g(Z,n) = 0) is recursive. Here
“un” denotes “the least n.”

the call of functions that can be defined using just clauses (1)-(3) is called the class
of primitive recursive functions.

Note that all primitive recursive functions are total, that is, clauses (1)-(3) do
not lead out of the class of total functions.

Clause (4), if applied to a g that does not necessarily satisfy the hypothesis of (4),
may lead to a partial function. This suggests the following definition.

Definition 1.3. The collection of partial recursive functions is the smallest class
of partial function from w™ (for some n) to w satisfying (1)-(3) above and

(4') (unrestricted minimalization) if g(#,n) is partial recursive, then the partial
function f defined by f(¥) = un (g(#,n) = 0) is partial recursive. Here, f(Z) is
defined and equal to n if for all m < n, g(Z,m) is defined and not equal to 0, and
g(Z,n) is defined and equal to 0.



Remark 1.4. In applying clauses 2 and 3 in Definition 1.3, the natural conventions
concerning the domains are used. In clause 2 (composition), h(Z) is defined iff all
of g1(Z),...,gn(%) are defined, and also f(g1(Z),...,gn(Z)) is defined. Similarly,
in clause 3 (primitive recursion), f(n,Z) is defined iff f(0,Z) = g¢(&) is defined,
f(1,2) = h(f(0,%),0,Z) is defined, ..., f(n,Z) = h(f(n —1,Z),n — 1, %) is defined.

Remark 1.5. It is true, but not immediate from the definitions, that a partial
recursive function which is total is actually a total recursive function. We will see
this below.

For f a partial function we use the notation f(Z) | to mean f(Z) is defined.
It is natural to consider not just functions, but also relations. We thus make the
following definition.

Definition 1.6. A relation R € w" is recursive iff the characteristic function
Xr: w" — {0,1} is recursive. Likewise, we say R is primitive recursive if xg is
primitive recursive.
We begin building a catalog of recursive functions.

Lemma 1.7. Addition and multiplication are (primitive) recursive.

Proof. The addition function f(n,m) = n + m can be defined by a primitive re-
cursion on m: f(n,0) = n, and for m > 0, f(n,m) = f(n,m — 1) + 1. Likewise,
the multiplication function g(n,m) = n - m can be defined by: ¢(n,0) = 0 and

g(n,m) = g(n,m — 1) + m (using that + is primitive recursive by the first sen-
tence). O

1 ifn>0

18 (primitive) recursive.
0 ifn=o /

Lemma 1.8. The sign function sg(n) = {

Proof. Use a primitive recursion, sg(0) = 0, and (for m > 0) sg(m) = h(sg(m —
1),m — 1) where h is the constant 0 function. O

Lemma 1.9. The predecessor function p(0) = 0, p(n) = n—1 for n > 0 is primitive
Tecursive.

Proof. The definition given shows it is primitive recursive (we are allowed to use
n — 1 as an argument in the second case). (]

a—b ifa=b

Lemma 1.10. The non-negative subtraction function a ~b = i
0 otherwise

is (primitive) recursive.

Proof. By a primitive recursion on b. a ~0 = a and a ~b = p(a ~ (b — 1)) for
b>0. O

Lemma 1.11. The relations R_(m,n) < (m = n), R.(m,n) & (m < n), and
R-(m,n) < (m > n) are all (primitive) recursive.

Proof. xr_(m,n) =1=((m =n)+ (n=m)). Also, xg_(m,n) = sg(n ~m) and
similarly for R-. O

Lemma 1.12. The class of (primitive) recursive relations is closed under the
boolean operations A, v, —.



Proof. Let R, S be (primitive) recursive (for simplicity of notation, we assume R, S
are unary relations). Then xgr.s(n) = xr(n)-xs(n). Also, xgr,s(n) = sg(xr(n) +
xs(n)). Finally, x—~r(n) = 1= xr(n). O

Note that the relations m < n and m > n are also therefore (primitive) recursive.

Lemma 1.13. A function defined by cases using recursive case conditions and re-
cursive functions is also recursive. Likewise for primitive recursive cases and func-
tions. More precisely, If Ry, ..., Ry are recursive (or primitive recursive) relations,
and f1,..., fx are recursive (or primitive recursive) functions, then the function

fe+1(n)  otherwise

is also recursive (primitive recursive). Here, in defining f(n), we use the first case
that applies.

Proof.

xf(n) = f1(n) - xr,(n) + fa(n) - (xR, (n) = xR, (0)) + -
+ fig1(n) - (1= xR, (1)) - = xR, (n).
([l

Lemma 1.14. Recursive relations are closed under substitution of recursive func-
tions. That is, if R is a recursive relation and f is a total recursive function, then
R'(n) « R(f(n)) is also recursive. The same is true for primitive recursive.

Proof. xr/(n) = xr(f(n)) is a composition of two recursive (or primitive recursive)
functions. O

Recall a relation R is recursive iff its characteristic function x g is recursive. We
can also go from functions back to relations according to the following lemma.

Lemma 1.15. Let f: w™ — w be a (total) function. Then f is recursive iff its
graph Gy = {(7i,m): f() = m} is.

Proof. Suppose f is total recursive. then the graph G is a recursive relation since
xa; (7, m) = x=(f(7), m) is a composition of recursive functions.

Suppose next that f is total and Gy is a recursive relation, that is, x¢g, is
recursive. Then f(7) = pum (1 = xg,(7,m) = 0). Note that x¢g, is total and
Vi 3m (1 = xg, (7, m) = 0. This shows that f is total recursive. O

Remark 1.16. Lemma 1.15 does not hold in its entirety for partial recursive func-
tions. If f is a partial recursive function, then its graph Gy need not be recursive
(i.e., AY) but only semirecursive (i.e., X7). We will define these notions below.
However, the other direction of Lemma 1.15 does still hold. That is, is f is a par-
tial function and G is recursive, then the proof of Lemma 1.15 still shows that f
is a partial recursive function (the minimalization operation in the proof is now no
longer always defined).



We next show that the recursive relations are closed under bounded number
quantification, which we define next.

Definition 1.17 (bounded number quantification). Suppose R(ni,...,ng,m) is
a recursive k + l-ary relation. If S < w” is given by S(ni,...,ng) < Im <
n; R(ni,...,ng,m) (for some fixed 7), then we say S is obtained by a (single)
bounded existential quantification from R. Likewise, if we have S(ny,...,ng) <
Vm < n; R(ny,...,ng,m) then we say S is obtained by a (single) bounded universal
quantification from R. In both cases we say S is obtained by a (single) bounded
quantification from R. We say S is obtained by bounded quantification from R (R
now k + f-ary) is S is obtained from R by ¢ applications of these bounded number
quantifications.

For example, we might have
R(n,m) & 3Ja < n Vb < aIe<m S(n,m,a,b,c).
This R is obtained by applying three bounded number quantifiers to S.

Lemma 1.18. If S is recursive and R is obtained from S by bounded number
quantification, then R is recursive. Likewise for primitive recursive relations.

Proof. Tt is enough to assume R is obtained from S by a single bounded number
quantification. It is also enough to consider the bounded existential quantifier as
Vm < n S is equivalent to —3m < n —R (a direct proof for ¥m < n is also easy to
give). So assume R(ny,...,ng) < Im < n; S(ny,...,ng,m), where S is recursive.
Then yg is given by a primitive recursion over n; (to ease notation, assume i = 1):

Xr(0,n9,...,n%) = xs(0,n2,...,nk,0)

XR(n1,n2, .- -,nk) = Sg(XR(m —1,ng,... ,nk) + Xs(n1,n2, e 7nkan1))

A related fact is the following.

Lemma 1.19. Suppose R is recursive. Let f be total recursive. Then the function
g defined by

un [(m <n < f(m)) A R(n, k)] if such an n exists
0 otherwise

g(m,k) = {

is recursive. The same holds for R, f, g being primitive recursive.

Proof. When R, f are recursive the result follows easily from the closure of the re-

cursive functions under restricted minimalization. We must give a slightly different

argument for the primitive recursive case (which also works for the recursive case).
Note that g(m) = h(m, m + 1, f(m)) where

pn [(a <n <b) A R(nk)] if such an n exists

h(m,a,b) = {

0 otherwise



so it suffices to show that h is primitive recursive. We define h by a primitive
recursion on b as follows: h(m,a,0) = 0 and for b > 0 we have

0 ifb<a
0 if (b=a) A —R(a)
a if (b=a) A R(a)
h(m,a,b) = < h(m,a,b—1) if (b>a) A h(m,a,b—1)#0
0 1f(b>a)/\h(mab—1)—0/\(a—0) R(0)
b if (b>a) A h(m,a,b—1)=0n —(a=0n R(0)) A R(b)
0 otherwise
Form Lemma 1.13 it follows that A is primitive recursive. (Il

The following lemma summarizes much of this discussion.

Lemma 1.20. The class of recursive relations contains =, <, >, and is closed
under complements, finite unions and intersections, bounded number quantification,
and substitution of recursive functions. Similarly the class of primitive recursive
relations is closed under these operations. Also, a function is recursive iff its graph
1S recursive.

Continuing with our catalog of recursive functions and relations, we now show
that various coding and decoding functions and related notions are all recursive (in
fact, primitive recursive).

We let the exponentiation function E(m,n), which we usually denote by m™,
be defined in the usual way, with the provision that E(0,0) = 1. This function
is primitive recursive as it can be given by the following primitive recursion on n:
E(m,0) =1, and for n > 0, E(m,n) = E(m,n—1)-m

Let p(0) =2, p(1) = 3, p(2) = 5,..., and in general p(n) = the next prime after
p(n — 1) (we refer to p(i) as the “i** prime”).

Definition 1.21. For (a,...,ax) € w<¢ let {ag,...,ax) = pioT'pyr+t.. pZ"H
Let Seq = {{@): @ € w=*} be the set of all codes of finite sequences. For n =
{ag, ..., axy € Seq, let Ih(n) = k + 1 be the length of the sequence coded by n, and
for n ¢ Seq, let Ih(n) = 0. Define the binary decoding function (n,i) — (n); by
(n); = a; if n = {ay, ..., ax) codes a sequence of length > i, and (n); = 0 otherwise.

Clearly the map (@) — (@) is one-to-one on w<¥

Lemma 1.22. The function n — p(n) and the set Seq are primitive recursive. For
any fixed k € w, the function (ag, . ..,ax) — {ag, ..., axy is primitive recursive. The
function lh and the decoding function (n,i) — (n); are primitive recursive.

Proof. First note that set of primes P is (primitive) recursive. This follows from
Lemma 1.20 as

Pn)o (n>1)A—~(Fa<ndb<n(n=a-b)A(a>1Arb>1)).
The next prime function ¢ — t(¢) =least prime greater than ¢ is also recursive as
1) = i [(P(n) & (n > i)].

Note that the minimalization operator here is always obtained, since there are
infinitely many primes.
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The prime function n — p(n) is now recursive as it is given by a primitive
recursion: p(0) = 2 and for n > 0, p(n) = t(p(n — 1)).

To see the next prime function ¢ and the prime function p are actually primitive
recursive we argue as follows. First, the function n — n! is easily primitive recursive
(we define, as usual, 0! = 1). We then have

H(m) un (m <n<m!+1) A P(n) if such an n exists
m) =
0 otherwise

We use here the fact that the next prime greater than m is always < m!+ 1 (since
all of the prime factors of m! + 1 are relatively prime to m!, and hence greater
than m). From Lemma 1.19 it follows that the ¢ function is primitive recursive.
[We note that it is actually a theorem of number theory (“Bertrand’s postulate”)
that there is always a prime between m and 2m for any m, but the trivial bound
m! + 1 suffices for the above argument.] The prime function p(m) is now given by
a primitive recursion: p(0) = 2, and for m > 0, p(m) = t(p(m — 1)). Thus both the
next prime function, and the nth prime function are primitive recursive.

Note that n € Seq & Vp < n Vg < n [(p,q are prime A p < g A q|n) — p|n].
Since the dividing relation is clearly primitive recursive (using Lemma 1.20), this
shows Seq is also. For any fixed k, the function (ao, ..., ax) — {ag, . .., ar) is clearly
primitive recursive. We have

Ih(n) = pk <n[(né¢Seq Ak =0)v (neSeqA pk)1tn].
which shows the lh function is primitive recursive. Finally,
(n);=pk<nl(n¢Seqnrnk=0)v(neSeqniz=lh(n)Ak=0)
v (neSeq Ai<1h(n) A p(i)** | n A p(i)F2 fn)).
which shows the function (n,i) — (n); is primitive recursive. O

Exercise 1. Suppose g and h are primitive recursive and f is defined from them
by the following total recursion:

£(0,d@) = g(a@)
f(n+1,a) = h({f(@,0),..., f(@n)),d,n).

Show that f is primitive recursive. [hint: show that the function f'(n,d) =
{f(0,d),..., f(n,d)) is primitive recursive.]

1.1. Recursive sets, functions, and definability. In this section we introduce
a definability hierarchy for sets of integers, and place the recursive sets in this
hierarchy. This hierarchy will involve definability over the structure of the natural
numbers. We continue to work in a sufficiently strong background metatheory so
that all of our various notions (e.g., N, make sense).

Let us consider the first-order language £ = (-, +, E, S, <, 0) with logical symbols
whose intended meaning is multiplication, addition, exponentiation, the successor
function (i.e., S(n) = n + 1), the usual ordering on the natural numbers, and a
constant symbol for the 0 element. We call this the language of arithmetic.

We introduce a hierarchy of formulas and sets.

Definition 1.23. We say a formula ¢(x1,...,x,) is Ag if it is built-up through
the following:

(1) All atomic formulas (in the language of number theory) are Ag.



(2) Ay is closed under the boolean connectives.

(3) (closure under bounded quantification) If ¢ (z1,...,zn41) € Ag, then so is
¢ =3rpt1 <z Y(21,...,20,2;) (Where 1 < j <n)andsois ¢ = Vo, <
xzj (a1, ..., Tn, xj).

Thus, Ag formulas are the formulas which contain only bounded number quan-
tification. The following lemma is a useful normal form for Ay formulas.

Lemma 1.24. Every Aqg formula ¢ is logically equivalent to a Ay formula v of

the form (x1,...,xr) = Jy1 < 21 --Vye < z¢ o(T1,..., Tk, Y1,...,Ye) where o
is quantifier-free., That is, 1V has the form a string of bounded number quantifiers
followed by a quantifier-free formula. Here z1 € {x1,...,2k}, 22 € {&1,..., 2k, Y1},
etc.

Proof. Tt is enough to show that if ¢/, and 15 are in the normal form, then 1 v ¥ is
logically equivalent to a 4 is the normal form. Say 11(Z) = Jy; < x1 ¥ (Z,y1), and
Yo (T) = V21 < 1 Y4(Z, 21), where ], ¥} are in the normal form and have smaller
length that w1, 1o respectively. By changing the quantified variable (alphabetic
variant) we may assume that z; # y;. But then ¢ v 15 is logically equivalent to

Iy < x1 V21 <z [V1(Z, 1) v (T, 21)]

By induction, ¥} v ¢4 is logically equivalent to a Ay formula in normal form, and
we are done. 0

The higher level formulas are defined inductively as follows.

Definition 1.25. For n > 1, we say ¢ € %, if it is of the form ¢ = 3z, ... 3z, V¥,
where 9 € I1,,_1, and ¢ € I, if it is of the form ¢ = Vx; ...Vx, ¥ where ¢p € ¥,,_4
(we interpret Yo, IIp as being Ay).

Note that the negation of a 3,, (or II,,) formulas is logically equivalent to a II,,
(or ¥,,) formulas.

Exercise 2. Show that if ¢, ¥ are ¥,, formulas, then ¢ A 9 and ¢ v ¥ are logically
equivalent to ¥, formulas. Likewise for II,,. [hint: follow the proof of Lemma 1.24.]

The above definitions of formula classes are purely syntactic. We now use them
to introduce complexity classes for sets of integers.

Definition 1.26. We say a set A € w is AJ if there is a Ay formula ¢ which defines
it, that is, for all n € w, n € A < N |= ¢(n). We say A is X0 (or 119) if there is a
¥, (resp. II,,) formula ¢ which defines it. We say A is A? if it is both £2 and II9.
We say a set A € w is arithmetic if A is $9 for some n.

We now turn to the connection between the notion of recursive and definability
in the arithmetic hierarchy.

Lemma 1.27. Every A set A € w is primitive recursive.

Proof. Since the function -, +, F, S and the relation < are all primitive recursive,
this follows immediately from Lemma 1.20. (]

Consider again the functions and relations pertaining to our coding and decoding
operations. The relations P (set of primes) and Seq are easily AJ. The next prime
function t easily has a AJ graph. For the other functions, it is helpful to have the
following technical definition.
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Definition 1.28. An m € w is good if it is of the form m = 2%.32... -pﬁ“ for some
1€ wW.

Lemma 1.29. The G of good integers in AY.
Proof. We have
meG o 2lmadtmaVp,qg,a<m[(P(p) A P(qg) A (p<q)n (glm)
AYp <1 < g =P(r)) = (p"lm < ¢**m)]

The graph G, of the function ¢ — p(i) = ith prime can be written as
Gyli.p) < Im < 20597 [G(m) A P(p) A p'|m A p™? fm]

We use the fact that 21 - 32... . p(i)i+t! < 20+D” as p(i) < 20+1. Let us denote
this function as b(i) = 2(+1? ag it will appear several times. Note that the expres-
sion inside the brackets is Ag. The graph of the length function can be similarly
expressed.
(Ih(n) =1i) < IMm < b(%) [(n ¢ Seq A7 =0) v G(m)
A3p.g<m (P(p) A P(g) Ap' | map™ fmap|nn
¢ mAgt?m A qtn)]
Again, the expression inside the square brackets is Ag. Finally, we have
((n); =k) < 3Im <b(i) [(n¢ Seq A k=0)v G(m)
~dp<m (P(p) Ap™ [ m ap™ tm A p*tt | n A ptt2 i n)]
v ¥m < n""2 [G(m) — =3p <m (P(p) A p"™ | m)} A (i =0)]
We will show that the recursive subsets of w* are precisely the AY subsets.

Lemma 1.30. Every A subset of w is recursive.

Proof. Let A < w be AY, and let ¢, ¢ be ¥; formulas in the language of number
theory such that for alln € w, n € a < ¢ (n) < —yN(n). Say p(m) < In ¥'(m,n),
Y(m) < In ’'(m,n) where ¢, 10’ are Ay formulas. From Lemma 1.27, the relation
R(m,n), S(m,n) are primitive recursive, where R(m,n) < ¢’ (m,n) and likewise
for S and .

Let f(m) = pun [R(m,n) v S(m,n)]. For any m, note that there is always an n
such that R(m,n) or S(m,n) holds as either ¢(m) or /(m). Thus, f is a total
recursive function. We then have

xa(m) = xr(m, f(m))

which shows that A is recursive. O

To show the other containment of Lemma 1.30, and for other arguments, we
need the notion of a code of a partial recursive function, and a computation witness.
Suppose [ is a total or partial recursive function. For simplicity we assume f is
unary. We first define the notion of a code for a recursive function. Following is an
inductive definition of the set C' € w of codes for the partial recursive functions,
along with as assignment map e — f. for e € C' which assigns the partial recursive
function f. to e.
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Definition 1.31. The set C' € w of codes for the partial recursive functions and
the assignment map e — f, are defined inductively through the following cases
(note that the second component (e); of the sequence is declaring the arity of the
function).

(1) e=<0,1y€e C, and f. is the unary successor function, f.(a) = a + 1.

(2) e=(1,k,mye C and f.is the k-ary constant function m.

3) e=2,k,tye Cifl <k. f.isthe k-ary projection onto the ¢th coordinate,
that is fe(aq,...,ax) = aq.

(4) e =(3,k,£,py e C where £ € C, p € Seq, Vi < lh(p) ((p); € C A ((p)i)1 = k),
and lh(p) = (€);. f. is the function defined by composition from f = f,
and g1 = f(p)or--->9n = f(p),_, Where n =1h(p).

(5) e = 4,k,l,py e C where {,pe C, ({);1 = k—1, (p)1 = k+ 1. feis the
function defined by primitive recursion from g = f, and h = f,.

(6) e =(5,k,£) where (£); = k+1. f. is the function defined by minimalization
from the function g = f.

An immediate induction on the inductive definition of partial recursive function
shows that for any partial recursive function f, there is an e € C such that f. = f
(that is, f. and f have the same domains, and are equal on their domains).

Lemma 1.32. The set C' of codes of partial recursive functions is recursive, in
fact, primitive recursive.

Proof. The idea is to witness e is in C' by an integer f coding a sequence of length
e+ 1. Each component (f); will be 0 or 1. (f); = 1 will stand for the assertion that
i € C. Whenever (f); = 1, then either i € C by virtue of clauses 0, 1, or 2 above,
or ¢ has the form of clauses 3, 4, or 5, and the integers smaller than ¢ which need
to be in C' are given value 1 by f. Note that if f codes a sequence of length e + 1,
with each element of the sequence in {0,1}, then f < 22(¢+D* < 2(e+1)” — p(¢),
More formally,
eeCodf <ble)[feSeqalh(f)=e+1aVi<e((f)i<) A(fle=1
AVZSe(f)ZZIH
1=40,1)
(i = <17 k, m>>
vk 0 <i ((E<k)ni={2k L))
vk, lp<i(i={,klpyrpeSeqn (f)e=1AnVYi<lh(p)
(N =1 A ((p)a)1 =k Alh(p) = (O

v [similarly for clauses 5 and 6].

vik,m<i

From the closure properties of the primitive recursive relations it follows that C is
primitive recursive. In fact, from the previous computations, we see that this may
be written in the form

eeC o Ju<ble) [u= 2(+D* Y(e,u)]

where 1 is A, as all of the quantifiers in v are bounded by u. O

Lemma 1.33. If A C w is recursive, then A€ AY.
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Proof. Since w — A is also recursive, it suffices to show that 4 € 9. Let f = x4,
so f is total recursive and takes values in {0,1}. The proof is similar to that of
Lemma 1.32 in that we must “unravel” the inductive definition of f. Thus, we will
write

me A« Ju [Seq(u) A “u codes a computation witness that f(m) = 17]

We will write the formal definition of a computation witness below. More generally,
we define a relation W (e, m,n,u) which says that u is a computation witness that
fe(m) = n. Here we use this notation: let m’ denote the value 0 if m ¢ Seq, and
if m € Seq then m’ = {(m)1,..., (M)in(m)—1)- That is, we drop the first element
(m)o from the sequence coded by m, and then recode. Thus, if m codes an input
sequence (n, ¥), then m’ will code &.

Exercise 3. Show that m’ < m and the relation R(m, k) < (k = m/') is AJ.

The idea is that the computation witness must contain all of the integers needed
to verify that the correct value has been computed. For example, if the function f
is computed by a primitive recursion from g and h (as in Definition 1.3), then the
integer u will witness f(a, Z) = b if u contains witnesses for f(0,Z) = g(&), f(1,Z) =
h(f(0,%),0,%), up through f(a,Z) = h(f(a — 1,%),a — 1,Z). The computation
witness v will be a sequence with (u); = {e,m,n) for all j < lh(u). The sequence
(e,m,ny will “witness” that f.(m) = n. Being a correct witness will require,
inductively, that certain other witnesses are present.

We now precisely define the relation W (e, m, 71, u) which gives the set of (e, m, 71, u)
for which e € C, m € Seq, and u is a computation witness that fz(m) = 7.

We have:

W (e,m,n,u) < (€€ C) A Seq(m) A Seq(u) A 3j < u ((u)
(Ve,m,n <uVj <lh(u) {(u); = (e,m,n) —
fe = (0,1) A Th(m) = 1 A (n = (m)o+ )]
Br.g<ue={1pq Alh(m)=pArn=q]
[Ap,g<ue={2,p,q¢) Anlh(m) =p An=(m),]
V[ﬂp,% <ue={,pqryalh(m)=pardt<u
(Seq(t) A In(t) =1h(r) A Vi < 1h(t) 35 < lh(u)

= <év m, ﬁ>) A

<

<

((w); =L(r)i,m, (t):)) A 3j <Ih(u) ((u); = {g,t,n)))]
v [, ¢, r <ue=-,p,qr)Alh(m)=pnaIt<u (Seq(t)
A () = (m)o +1 A 3j <Th(u) ((u); = {g,m’, (t)o)) A Vi < (m)o
3j <Ih(u) ((w); = {rd(t)imr,i—=1,m, (£))) An = (t)m),)]
v[3p,g <we={6,p,q) Alh(m) =p
A3t < b(u) (Seq(t) Alh(t) =n+1 A 3j <lh(u) ((uv); = {g,{M,n),0))
A Vr <n3j <lh(u) ((u); = {g,{m, ), (t);) ~ (t); # 0))]})
O

Using again the fact that good sequences of length ¢ + 1 are bounded by b(i) =
2(”1)3, (the best bound here is not important), our computation of the set C of
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codes, the computations of the coding and decoding operations, and the above
computation of W, we see that W can be expressed in the form

W(e,m,n,u) < Jv < b(u) (v=>bu) A (e m,n,u,v))

where 1) is Ag. For example, “lh(m) = p” in the above formula for W is replaced
by 3b < v (b=wu(m) A3 <b [ --]), where [---] is as the previous computation of
the 1h function.

If A € w is recursive, then we have y4 = f. for some e. We then have

me A« JuW(e,m,1,u)
< Ju v < b(u) [v = blu) A (e, m,1,u,v)]
o Jv Ju < v [v=>bu) Aie,m,1,u,v)]

where 1 is Ag. Thus A € X2{, and likewise w — A € X9, so A € AY.
We thus have:

Theorem 1.34. Every AY set is primitive recursive, and the recursive subsets of
w are exactly the AY subsets.

The X sets occur frequently enough to warrant their own terminology.

Definition 1.35. A set A € w is called semi-recursive or recursively enumerable
or computably enumerable if it is 2.

It follows immediately from Theorem 1.34 that a set is recursive iff both A
and its complement w — A are computably enumerable. The term “computably
enumerable” derives from (2) of the following characterization.

Lemma 1.36. The following are equivalent for a non-empty A € w:
(1) Ais X9,
(2) A is the range of a total recursive function.
(3) A is the domain of a partial recursive function.

Proof. Suppose A is the range of the total recursive function f = f.: w — w. Then
ne Ao Im IuW(e,m,n,u)

which shows A € Y. similarly, if A = dom(f.) (where f. is partial recursive), then
me A« In JuW(e,m,n,u)

which shows A € 30.
Suppose next that A € X{. Say n € A < Im ¥N(n,m) where ¢ is Ag. Let
R(n,m) be the (primitive) recursive relation defined by ¢. Fix ng € A. Let

Fk) = {(k)o if R((k)o, (k)1)

no otherwise
The f is total recursive and A = ran(f). Also, if we define
g9(n) = pm R(n,m)
then g is partial recursive and A = dom(g). O

The above analysis also yields the following Kleene normal form theorem for
recursive functions.



13

Theorem 1.37. Let f be a partial recursive function. Then there are primitive
recursive functions h, g such that

f(m) = h(pk g(m,k) =0)
0 if W(e,m,(k)o, (k)l)

1  otherwise
Then the desired equation holds. [l

Proof. Let f = f.. Let g(m,k) = Let h(k) = (k)o.

As an immediate corollary we have.

Corollary 1.38. If f is a partial recursive function (according to Definition 1.3)
which is a total function, then f is total recursive (according to Definition 1.2).

We also record the following fact, which say that there is a universal X{ set.

Theorem 1.39. There is a XY set U S w x w such that for every X9 set A € w
there is an e € w with A = U, = {m: U(e,m)}.

Proof. Define
U(e,m) « 3k W(e,m, (k)o, (k)1).
Clearly U € X and from (3) of Lemma 1.36 we have that U is universal. d

Finally in this section we mention some of the properties of the arithmetical
pointclasses.

Theorem 1.40. Forn > 1 the X2 sets are closed under finite unions and intersec-
tions, existential number quantification, bounded universal number quantification
(i.e., ¥n < m), and recursive substitution (i.e., if f is total recursive and R € X9,
then so is R'(n) < R(f(n))).

Similarly, the 11O sets are closed under finite unions and intersections, universal
number quantification, existential number quantification, and recursive substitution.

The A% (for n = 1) classes are closed under finite unions and intersections,
complements, bounded number quantification, and substitution by total recursive
functions.

All of the X0, TIY classes have universal sets.

Proof. We consider the case ¥0. Closure under existential number quantification is
obvious. Consider a bounded universal number quantification, say B(n) < ¥m <
n A(n,m) where A € 0. Thus, B(n) < Ym < n 3k C(n,m, k), where C € T1%_,
(recursive if n = 1). Using our coding functions we can then write B(n) <> 3 Vm <
n C(n,m, (I)x). By induction this shows B is X. The finite union and intersection
cases are easy (as in Exercise 2). Closure under recursive substitution follows from
the fact that a recursive substitution into a recursive relation results in a recursive
relation (from the closure properties of recursive relations), and the fact that a
recursive relation is AY. The closure properties for AY follow from those for X9

and I10. O

Exercise 4. Show that the classes AY cannot have universal sets. [hint: if U <
w x w were AY and universal for the AY subsets of w, then “diagonalize” out of the
class of A sets by defining n € A < (n,n) ¢ U].

Exercise 5. Show that a universal 39 or II2 set cannot be A? [hint: follow the
diagonal argument of the previous exercise. If the universal set U were AU, show
that the set A above would be in A%, but not a section of U]
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2. REPRESENTABILITY IN ARITHMETIC

There is a close relationship between recursive sets and functions and simply
definable sets in models of arithmetic. This connection is important for the proof
of the incompleteness theorem, and we now make it precise. First, though, we need
to clarify what we mean when we speak of “the natural numbers” or “a model
of arithmetic.” The reader will no doubt see that we should have (in principle)
addressed this point earlier, since we have been referring to the natural numbers
repeatedly in our discussion of recursive functions.

Up to this point (and for a while longer), we have implicitly been working in
an unspecified metatheory, that is, background axiom system which axiomatizes
the rules for the objects (e.g., the natural numbers) with which we have been
dealing. We have taken for granted that this metatheory suffices to establish the
basic properties of the natural numbers (e.g., unique factorization into primes) that
we have used. This background metatheory could be taken to bell of ZFC set theory,
but we will argue later that a much weaker theory (a fragment of Peano Arithmetic)
suffices. We will continue to work informally in this background metatheory for now,
but we will be discussing formal axiom systems for arithmetic and formal proofs
from these axioms. In particular, we will introduce below a finite set of axioms
F and discuss proofs from F. Thus, within the background metatheory we are
discussing formal proofs from F of certain sentences in the first-order logic of the
language of number theory. We will take the formal language of number theory as
the language £ = (-, +, E, S, <, 0) with logical symbols for multiplication, addition,
exponentiation, the successor function (i.e., S(n) = n + 1), the usual ordering on
the natural numbers, and a constant symbol for the 0 element (the least element
in the ordering). Note that we must be careful to separate the formal statements
we are discussing from objects and statements in the metatheory. For example, 0
will denote the least element of the natural numbers (whose properties are given
by the axioms in the metatheory) while 0 will denote the constant term in the
formal language of number theory. To illustrate, we might make the statement
“for every n > 0, there is a proof from F of the sentence S™(0) # 0.” Here
the “for every n > 0”7 is a statement in the metatheory, while “S™(0) % 0” is
a formal sentence in £. We will use 0, = for statements in the metatheory, and
0, ~ in the formal theory. Both the metatheory and the formal sentences in £
will have quantifiers, variables, and the symbols +,-, but this should be enough
to avoid confusion between the metatheory and the formal theory (we could, if
desired, further the notational distinction by using different symbols for addition
in the metatheory and the addition symbol in the formal language). For most
purposes it is not extremely important to identify the optimal set of axioms A for
the background metatheory (though we will do so later).

We now introduce a formal theory for the natural numbers. One standard ax-
iomatization for the natural numbers is the so-called Peano axiom scheme, which
we denote PA. This is a first-order theory in the language £ above. It will actually
suffice to establish all of the properties of the natural numbers in the metatheory
that we will need as well. We will for now, however, continue to work informally in
the (unspecified) metatheory and view this axiom system (and its fragment F) as a
form system which are studying within the metatheory. It may help the reader to
temporarily take the background metatheory as ZFC, to avoid confusion with the
formal theory.
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The following axiom scheme PA is the Peano axioms for the natural numbers. It
consists of a finite set of axioms F (sometimes called the Frege subsystem) together
with an infinite schema of induction axioms. We present the axiom scheme in
the language £ = {+,-, E, S, <,0} mentioned above, but note that the language
consisting of just + and - would suffice (the other functions, relations, and 0 can
be defined from + and - within the version of the Peano axiom scheme mentioning
only the axioms for these two function). It simplifies things a little to have these
extra symbols in the language, however.

Definition 2.1. The Peano axiom scheme is the following set of sentences in the
language of number theory.
(Successor Axioms)

Vo —(S(x) ~ 0).

Vo Yy (S(z) ~ S(y) » =z~ y)
(Order axioms)

VY —(z < 0)

VeVy(r <yvezr~yvy<cz).

Vo Vy (z < S(y) < z <y)
(Addition axioms)

Vo (x+0~2x)

Vo Yy 4+ S(y) ~ S(z + y).
(Multiplication axioms)

Vrz-0~0.

VeVyaz-S(y)~x-y+a
(Exponentiation axioms)

Vz 2E0 ~ S(0)

Vo Vy 2ES(y) = (xEy) - x
(Induction axioms)

For every formula ¢(z) the axiom [¢(0) A Va (¢(z) — ¢(z + 1))] — Vz ¢(z)

We let PA denote the Peano axioms scheme, and let F denote PA minus the
induction axioms. Thus, F is a finite set of axioms. Note that F just says that the
various functions and relations are correctly computed at S(y) from their values at
y. As we said above, we could get by, in defining the Peano axioms, with just the
addition and multiplication axioms for F.

Exercise 6. Let F’ be the version of PA in the language £ = {+,- 0} consisting of
the addition, multiplication, and zero axioms together with the induction axioms.
Define < by x <y iff 3z (z # 0 A y ~ z + z). Show from F’ that < satisfies the
order axioms.

Exercise 7. Show that PA proves the following stronger induction axiom: let
¢(r1,...,2,) be a formula. Then
Yoy - Vo, [o(z1, . @n_1,0) AV, (H(21,...,20) = O(T1, ..., Tp_1, 2y + 1)]
— VY, ¢(x1,...,2,)].
The following notions of representability is important for the proof of the incom-

pleteness theorem.

Definition 2.2. Let R < w®. We say R is representable in F if there is a formula
o(x1, ..., 2k) in the language of number theory such that for all aq,...,a; € w we
have
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(1) If R(aq,...,ax) then F - ¢(S*(0),...,S5%(0)).
(2) If —=R(a1,...,ar) then F = —p(591(0),...,5%(0)).

We make a similar definition for functions.

Definition 2.3. Let f: w® — w. We say f is representable in F if its graph
is representable. That is, there is a formula ¢(z1,...,2,y) in the language of
number theory such that for all aq,...,ar € w we have

(1) If f(ai,...,a) = b then F  ¢(S%(0),...,S5%(0),S*(0)).

(2) If f(ai,...,ax) # b then F - —¢(5%(0),...,5%(0),S°(0)).

Our first goal is to show that all recursive relations and (total) recursive functions
are representable in F.

Exercise 8. Show that every representable relation or function is recursive.

An important technical point is that representability of functions coincides with
a seemingly stronger concept which we now define.

Definition 2.4. A (total) function f: w* — w is strongly representable if there is
a formula ¢(z1,...,zk,y) such that for all aq,...,ag,

(1) F I ¢(5%(0),...,S5%(0),S7(@(0)) and also

(2) F I [Vz (6(5%(0),...,8%(0),2) — z ~ S7(@(0))].

Clearly strong representability implies representability. We show that the con-
verse holds, but first a simple technical lemma.

Lemma 2.5. Foranynew, FFYz (2<5"0) > z2~0vz~S0)v vz
S™(0)).

Proof. By induction on n. The result holds for n = 0 since F + (2 < 0 — 2z ~ 0)
as F - Vz —(z < 0). Assume the result holds for n and assume z < S"T1(0). If
z < 8"*1(0) = S(S™(0)), then F proves that z < S™(0), in which case by induction
F proves z~0v ---v 2z~ S"(0). Thus, F-2~0v--- vz~ S""(0). O

Lemma 2.6. If f is representable, then it is strongly representable.

Proof. Suppose ¢(z,y) represents f: w — w. Define

¢(3«"ay) = [¢($>y) AVw <y —'(b(.%‘,w)]

We claim that 1 strongly represents f. Fix n € w, and let m = f(n). By assump-
tion, F - ¢#(5™(0),S™(0)). We must show that F - Yw < §™(0) —¢(5™(0),w).
Work within F, and assume w < S™(0). From lemma 2.5 we can deduce (w
Ovw= S0)v- ---vw~ S"1(0)). Since ¢ represents f we have that F
-¢(5™(0),0),..., F = —=¢(S™(0),S™1(0)). From these two statements it follows
that F - Yw < S™(0) —=¢(S™(0),w). Thus, F - ¢ (5™(0),5™(0)).

Working within F, assume now (5™(0),2), so Yw < z —¢(S™(0),w). Since
F + ¢(S™(0),5™(0)), we may deduce that z < S™(0) (we use that fact that
FI (z<8™(0)vzaS"0)vz>S5"0))). So we may deduce z ~ 0 v -+ v z &
S™(0). Since F — —¢(S™(0),0),..., F  —¢(S™(0), 5™ 1(0)), we may deduce
z~ S™(0). O

The main result in this section is that the representable relations and functions
are exactly the recursive ones.
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Lemma 2.7. Let t be a closed term, that is, a term containing no free variables.
Then there is an n € w such that F +— t ~ S™(0).

Proof. By induction on the term ¢. If ¢ = 0 this is trivial. If ¢ = S(u) this is also
trivial as F + u ~ S™(0) for some n by induction, and S(S™(0)) = S"*1(0). If
t = u+wv, then by induction it suffices to show that F - S™(0)+S™(0) ~ S™*™(0).
This, in turn, is proved by induction on n, say, with the inductive step given by
F - S(S"1(0))+S5™(0) ~ S(S"~1(0)+S5™(0)) ~ S(S"*™~1(0)) = S**™(0). The
result for terms of the form ¢ = u - v follows similarly from F - S™(0) - S™(0) ~
S™™(0) which is proved by induction, using the result for addition. The inductive
step is given by

F 1 (5"(0)-S(S™71(0)) ~ §™(0)-S™71(0)+5"(0) ~ S"™"(0)+5"(0) ~ S™™(0).
The result for exponentiation is similar. O

Lemma 2.8. If ¢ is quantifier free then the relation R defined by o is representable
in F, in fact, it is represented by the same formula .

Proof. First consider the case ¢ is atomic. For this it suffices to show that if ¢, u
are closed terms then F ¢t < u iff tY < " and and likewise F (¢t ~ u) iff
tN = uN. We consider first the the ~ case. By Lemma 2.7 there are n,m € w
such that F ¢ ~ S™(0) and F  u ~ S™(0). It suffices to show that if n = m
then F — S™(0) ~ S™(0) and if n # m then F - —(S™(0) ~ S™(0)). The
first is trivial. For the second, we prove by induction on min{n, m} that if n # m
then F - —(5™(0) ~ S™(0)). If min{n, m} = 0, this follows from the first successor
axiom. Otherwise, by induction F - —(5"71(0) ~ S™~1(0)). The second successor
axiom then gives that F - —(5™(0) ~ S™(0)).

We now consider the < case. Again by Lemma 2.7 there are n,m € w such
that F -t ~ S™(0) and F - S™(0). It suffices to know that if n < m then F |-
S™(0) < S™(0) and otherwise F - —(S™(0) < S™(0)). First we show by induction
on m > n that F - S"(0) < S™(0). For m = n+ 1, F - S*(0) < S"*1(0) =
S(S™(0)) follows from the axiom of F Vz Vy (x < S(y) < = < y) which implies
Vo (z < S(z)). Assuming the result is true for m, that is F - (S™(0) < S™(0)), the
same axiom then shows that F — (S™(0) < S(S™(0)) = S™*1(0)). Assume now
that n > m. Working in F, assume towards a contradiction that S™(0) < S™(0).
From lemma 2.5 we have F - S™(0) ~ 0 v --- v §*(0) ~ S™~1(0). However, from
the equality case we know that F — —(S™(0) ~ 0), ..., F - —(5"(0) ~ S™~1(0)).
This is a contradiction.

If R is representable by ¢, and S is representable by ), then it is easy to see
that R A S is representable by ¢ A 1, and likewise for R v S and —R.

O

Lemma 2.9. If ¢ € Ay then the relation R defined by ¢ is representable in F, in
fact it is represented by the same formula .

Proof. Tt suffices to show that if R(x,y) is representable by ¢(z,y), then S(n) <
Im < n R(n,m) is representable by ¥ (z) = Jy (y < = A ¢(x,y)). Let n € w,
and first suppose S(n). Thus there is an m < n such that R(n,m). Thus, F
©(5™(0),5™(0)). From lemma 2.8, F - S™(0) < S™(0). Hence, F  Jy (y <
S™(0) A (S™(0),y), that is, F — 1(S™(0)).

Assume now that n € w and —S(n), hence for all m < n we have —R(n, m).
From lemma 2.5, F + Vy (y < S"(0) - y ~ 0v --- vy ~ S*(0)). Since ¢
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represents R we also have F - —¢(5™(0),0), ...,F - —¢(5™(0),S5™(0)). These
two statements logically imply Vy (y < S™(0) — —(p(5™(0),y). Thus, F - -3y <
S™(0) (¢(S™(0),y)), that is, F - —(5™(0)) and we are done. O

The next theorem is the result we need on the representability of recursive func-
tions.

Theorem 2.10. Fvery recursive relation and every total recursive function is rep-
resentable in F.

Proof. Let R € w be recursive (we assume R is unary for convenience). From
Theorem 1.34 we have ¥; formulas ¢, ¥ such that n € R < ¢"(n) < —¢N(n). Say
p(z) =3y ¢'(z,y), ¥(x) = Jy P'(x,y) where ¢', " are Ao.

Let p(z) be the ¥y formula:

p(x) =3y [¢'(x,y) A V2 <y (—¢'(2,y) A =Y (2,9))]
=y x(z,9)

We show that p represents R. From Lemma 2.9, the relations R/, S’ defined by ¢’
and v’ are representable, in fact by ¢’ and ¢’ themselves (though this last fact is
not important). Likewise, x represents the relation it defines over N.

Suppose first that n € R, so ¢"(n) and —¢N(n). Let m be least such that
¢ (n,m). Then for all m’ < m we have —¢'" (n, m’), and of course also —™ (n, m’).
By the representability of the relations defined by ¢’ and v’ we have that for
all m' < m that F — —¢/(57(0), 5™ (0)) and F  —¢/(S™(0), 5™ (0)). Also,
from Lemma 2.5, F  Vz (2 < S™(0) - (z * 0 v -~ vz ~ S™710)). It
follows that F - Vz < S™(0) (—¢'(S™(0),2) A —(S™(0), 2)). Since we also have
F I ¢'(S™(0),S5™(0)) we have that F - x(5™(0), 5™ (0)). This statement logically
implies the statement 3z x(5™(0),2) = p(S™(0)), so F  p(5™(0)).

Suppose next that n ¢ R, and let m be least so that ¥"(m). Exactly as in the
previous paragraph we have F - ¢'(5™(0),5™(0)) and

F = Vz < 87(0) (—=¢(57(0),2) A —'(57(0), 2)).

We must show that F - —p(S™(0)). It suffices to derive a contradiction from F
and p(S™(0)) = Jy x(S™(0),y). So, assume F and x(S™(0),y). From x(S™(0),y)
it follows that Vz < y [—¢'(S™(0),2)]. Since F ~ ¢'(S™(0),S™(0)), it follows
that y < S™(0) (we use here the fact that F proves that < is a linear order). From
Lemma 2.5 it follows that F - (y * 0v -+ - vy &~ S™(0)). But by representability of
the relation defined by ¢’ we have F - —¢'(5™(0),0),..., F — —¢'(5™(0), S™(0)).
From these facts it follows that F — —¢'(5™(0),y), and so F — —x(5™(0),y), a
contradiction.

]

3. INCOMPLETENESS

In this section we prove several versions of the Godel incompleteness theorem.
First we define a coding of the formulas of number theory into the integers. Fix a
bijection 7 between the finitely many symbols of the language (including the logical
symbols) excluding the (infinitely many) variable symbols and the set {0,1,...,no—
1}. Extend 7 to the variables by 7(z1) = ng + k. Then 7 is a bijection between the
logical symbols and the integers, and the relation R(a,b) < m(x,) = b is clearly
recursive.
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Definition 3.1. If ¢ = sgs1, ..., sk is a string of symbols in the language of number
theory, then the Gddel code of ¢ is defined by #(¢) = (7 (so), ..., 7(sk)) € w.

We will use in the following arguments the fact that certain relations and (total)
functions on the integers are recursive. In fact, all of the relations and functions
we need are primitive recursive. These facts can be easily checked from the closure
properties of recursive functions of §1.

The next result is the key technical lemma for the incompleteness results. It says,
in effect, that we may construct self-referential formulas. The formulas attempt to
refer to themselves by referring to the Godel codes of themselves.

Lemma 3.2. Let 0(x) be a formula in the language of number theory with one free

variable x. Then there is a sentence o (in the language of number theory) such that
F (0 < 0(S77(0))).

Proof. Let f: w — w be the primitive recursive function defined as follows. If n is
the code of a formula ¢ with one free variable, then f(n) is the code of the sentence
¥ (S#%(0)). Otherwise, let f(n) = 0. Let p(x,y) strongly represent f in F. Let 7
be the formula

7 =3z1 (p(z0,71) A O(21)).

Note that 7 has one free variable, zg. Let n = #7. Let o = 7(S#7(0)). Let m =
f(n), which is the code for 7(S#7(0)) = 0. We show that o works. Working within
F, first assume o. Thus, 3z; (p(S#7(0),21) A 6(x1)). By strong representability,
F + Vz; (p(S#7(0),21) — 21 ~ S™(0)). These two sentences logically imply
0(S™(0)), that is, 6(S#°(0)).

Assume next 6(S#7(0)), that is, 6(S™(0)). Since F  p(5"(0), S™(0)) by rep-
resentability, we may deduce 3x; (p(S™(0),z1) A 0(x1)). Thus, we may deduce
7(8™(0)), that is, o. O

We now state the first version of the incompleteness theorem. We call a set of
sentences T' recursive if {#¢: ¢ € T} is recursive. The reader will note that the
sentence o constructed in the following proof is a formalization of the statement
“this sentence is not provable.”

Theorem 3.3. Let T be a consistent, recursive set of sentences in the language of
number theory which contains F. Then T is incomplete, that is, there is a sentence
o such that T ¥ o and T ¥ —o.

Proof. Towards a contradiction assume that T' is complete. Let R = {#¢: T  ¢}.
We claim that R is recursive. This is because we may check if n € R by enumerating
all possible deductions from T and checking at each step if it is a deduction from
T of either ¢ (the formula with code n) or a deduction of —¢. We output a 1 if
for the least such deduction we encounter it is a deduction of ¢. Checking if an
integer codes a valid deduction from T is recursive, using the assumption that T is
recursive. This algorithm will always terminate by our completeness assumption.
The answer will be correct as T is consistent.

Let 0 represent —R in F'. Let o be the sentence of lemma 3.2 applied to 6. Thus,
F, and hence T proves the statement

o < 0(S*7(0)).
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Let n = #o. If R(n), then F - —6(5™(0)), and so T + —o. Thus, —R(n),
a contradiction. If =R(n), then F - 6(S™(0)), and so T + o. Hence R(n), a
contradiction. ]

Theorem 3.3 was proved by contradiction, and thus does not actually produce
a concrete sentence o which is independent of T. With a little extra argument we
can do this. First we give the argument due to Goédel which shows this under a
slightly stronger hypothesis.

Definition 3.4. We say T is w-consistent if there is no formula ¢(z) such that for
all n € w, T+ —¢(S™(0)) but T + Iz ¢(z).

Of course, an w-consistent theory is consistent, but the converse is not true. An
w-inconsistent theory is one that has no standard model.

For T a recursive set of sentences in the language of number theory, let Rp
be the relation defined by Ryr(a,b) iff b is the code of a deduction from T of the
formula with code a. Ry is clearly recursive. Let p(x,y) strongly represent R
in F. Let 0(z) = —3y p(z,y), and let o1 = 01(T) be the sentence such that
F I o1 < 6(S#°1(0)) from lemma 3.2.

Theorem 3.5. Let T be an w-consistent, recursive set of sentences in the language
of number theory which contains F. Then T ¥ o1 and T ¥ —o7y.

Proof. The proof is similar to theorem 3.3. Assume first that 7' o1. Let n = #07.
Let m code a deduction of o7 from T. Thus, T+ p(S™(0),S™(0)) (in the notation
above). This logically implies —=0(5™(0)), and thus 7' —oy. This contradicts the
assumption that T is consistent (note: this case only used the consistency of T').
Assume next that T+ —oq. Thus, T+ —60(5™(0)), and so T + Jy p(S™(0),y).
Since T ¥ o1 from the previous paragraph, we know that for all m € w that
—Ry(n,m), and hence T + —p(S™(0), 5™ (0)). This contradicts the w-consistency
of T. O

The extra hypothesis of w-consistency, though minor, is slightly annoying. An
improvement of theorem 3.5, due to Rosser, shows that it is actually unnecessary.
Let Rr(a,b) and p(z,y) be as above. Let g: w — w be a recursive function such
that if a is the code of ¢, then g(a) is the code of —¢. Let n(x,y) strongly represent
g. Let 7(z) be the formula

T =Vy (p(z,y) = 3z <y Fw (n(z,w) A p(w, 2)))

Let 09 = 05(T') be the sentence from lemma 3.2 for this 7.

Theorem 3.6. Let T be a consistent, recursive set of sentences in the language of
number theory which contains F. Then T ¥ oo and T ¥ —os.

Proof. Let n = #05. Assume first T 05. Let m code a deduction of o9 from T.
So, T + p(S™(0),S™(0)). Also, T Yy (p(S™(0),y) — Jz <y FJw (n(S™(0),w) A
p(w, z))). These statements logically imply 3z < S™(0) Jw (n(S™(0),w) A p(w, z)).
We violate the consistency of T' by showing T+ Yz < S™(0) Yw (n(S™(0),w) —
—p(w,z)). From lemma 2.5 it is enough to fix ¥ < m and show that T +
Yw (n(S™(0),w) — —p(w,S*¥(0))). By strong representability of 7, it is enough
to show that T — —p(S™ (0), S*(0)), where n’ is the code for —oy. Since T is con-
sistent and T' - o9 by assumption, T' ¥ —o9, and so —R(n’, k). By representability,
T + —p(S™ (0), S*(0)) and we are done.
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Assume next that T+ —oy. Let again n’ = #—02, and let now m code a
deduction from T of —gy. So, T  p(S™(0),S™(0)). Since T  —ay we also
have T + Jy (p(S™(0),y) A Vz <y Yw (n(S™(0),w) — —p(w, z))). To violate the
consistency of T' it is enough to show that T = T'u{«} is inconsistent, where a(y) =
(p(5™(0).y) A Yz <y Y (n(S™(0),w) — —p(w, 2))). Since T - n(S™(0), 5™ (0)),
it follows that 7" - y < S™(0) (we use here the order axiom of F which gives y <
S™(0) or y > S™(0)). From lemma 2.5 it is enough to show that each k < S™(0)
that 77 = T u {(p(S™(0), S*(0)) A Vz < S¥(0) Yw (n(S™(0),w) — —p(w,2)))}
is inconsistent. This is clearly the case, however, since for all such k we have
T — —p(S™(0),S*(0)) since by consistency R(n, k) holds (recall we are assuming
T F _'0'2). |:|

Note that the sentences o1, oy of the Godel theorems are II; sentences in the
language of number theory [For oo we must replace the Jw quantifier by a bounded
quantifier. This can easily be done as there is a simple primitive recursive bound
for the function g, in the notation just before Theorem 3.6].

Thus, incompleteness arises for sentences having only one unbounded number
quantifier.

The incompleteness theorems as we stated them apply to theories in the language
of number theory, however it is not difficult to see that they consequently apply
to theories in which we can “interpret” the theory F. To make this precise, let
L denote the language of number theory, and £’ a first-order language (e.g., the
language of set theory). Suppose we have formulas ay, a4, a., ag, ac, ag, ag of
L. ay is intending to define a “copy” of N, and the other formulas, o for example,
are intending to define the corresponding function, relation, or constant symbol on
this copy. Let T” be a theory (set of sentences) in £, for example 7" might be the
axioms of ZFC. Suppose T’ proves that 3z ay(x) (i.e., the copy of N is non-empty)
and also for each of the axioms 9 of F, T - ¢’ where ¢’ is the interpretation of
v into £’ using the « formula in a natural way. For example, an atomic formula
of the form = + (y - z) ~ w is replaced by 321320 (an(z1) A an(z2) A a.(y,2z,21) A
ay(x, 21, 22) A 29 & w). In this way, each formula ¢ of number theory is replaced by
a formula v’ of £’ such that if F I v then T"  ¢'. Of course, T may prove more
about its copy of N than does F, for example, if £’ is the language of set theory
and ay =“r € w,” (and the other a are defined in the usual way these functions
etc. are defined in set theory), then ZFC proves much more about N than F does,
in particular ZFC proves that all of the Peano axioms hold in N.

At any rate, if TV proves all of the ¢’ for ¢ € F, then all of the proofs of
the incompleteness results given above for £ may be carried over immediately for
theories extending 7”. Since F is finite, it follows that there is a finite 7" which
suffices to prove all of the v.

For example, let ZFC’ denote the finite subset of ZFC which suffices to prove all
of the ¢’ for ¢ € F. We then have:

Theorem 3.7. Let T be a recursive, consistent theory in the language of set theory
which extends the finite fragment ZFC'. Then T is incomplete. Moreover, there is
a Ty sentence o9 = 09(T) such that T ¥ oy and T ¥ —o.

Proof. Define R(a,b) and p(z,y) as in theorem 3.6. Let p'(x,y) be the interpreta-
tion of p into the language of set theory. Thus, if R(a,b) then F  p(5%(0), S°(0))
and so T' - p, , and likewise for —R(a,b), where p;, , denotes the interpretation of
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p(5%(0), S%(0)). The proof is now essentially identical to theorem 3.6 using p’ in
place of p. (]

Lastly, we discuss the second Godel incompleteness theorem. We now consider
theories T" which may be in the language of number theory, or set theory, etc., for
which we have an interpretation of N as above. Let R(b) iff b codes a deduction
from T of a logical contradiction, say 3z (x # ). Let p(z) represent R in F, and let
CON7 be the sentence —3x p. If T is in set theory, say, then we let CONp be the
interpretation of this sentence into the language of set theory. The second version
of the incompleteness theorem say that if T' is recursive, consistent, and sufficiently
strong (but we need more that T contains F now), then T ¥ CONr. It is enough to
have T contain PA (even a smaller fragment of it, say II;-induction), but we state
the result now for theories extending ZFC.

Theorem 3.8. Let T be a recursive, consistent theory in the language of set theory
extending ZFC. Then T ¥ CONrp.

Proof. Let o1 be the sentence from the first version of the Godel incompleteness
theorem, so T' ¥ o1 (recall this direction only used the consistency of T'). The proof
of this (theorem 3.5) was presented in the metatheory. That is, in the metatheory
we showed that if T is consistent, then T ¥ o;. Closer examination of the proof
reveals that the only properties of the integers used in the proof are theorems of
PA. Certainly, however, they are all theorems of ZFC. Thus, this argument in the
metatheory, when formalized, becomes the statement that ZFC - (CONp — ¢),
where ¢ is the formalization of the statement “there does not exist a proof of oy
from T.” However, this formalization is just the statement 7(S#°1(0)) (using the
notation of theorem 3.5), and this is T provably equivalent to o1 (more precisely,
the interpretations of these statements into the language of set theory). Thus,
ZFC  (CONp — 07). It follows that ZFC ¥ CONp from theorem 3.5. O

4. HILBERT’S 10TH PROBLEM

We let Z denote the set of positive integers. Our goal in this section is to show
that there is a 4th degree polynomial

p(x1,...,xk) € Z[x1, ..., 2k]
such that the statement “Jay,...a; € Zi p(ai,...,ax) = 0”7 is independent of
ZFC. This displays a conection between logic, set theory and number theory, and
has deep implications for Diophantine analysis.
By “polynomial” we will henceforth mean an element p € Z[x1, ..., xy] for some
k = 0, that is, our polynomials have integer coefficients (i.e., they may be negative).

Definition 4.1. A relation R < Z’i is Diophantine if there is a polynomial
p(T1, . Tl Y1y, Yp)
such that for all aq,...,a; € Z’j we have
(a1,...,ar) € R 3by,....,bs € Zy play,...,ak,b1,...,bs) =0.

That is, @ € R iff p(@, §) € Z[y1, ..., ye¢] has a positive integer root.

Since the formula p(xy,...,25) = 0 is clearly Ay (moving the negative terms
to the other side of the equation this becomes an atomic formula), it is immediate
that every Diphantine set is ©¢. Our main theorem will be that the converse holds.

Specifically, our main theorem is the following.



23

Theorem 4.2. Every X9 relation S € (Z,)" is Diophantine.

Moreover, the proof will be constructive in the sense that it will give us a pro-
cedure for transforming a ¥; formula ¢ in the language of number theory into a
polynomial p,, such that the Y set defined by ¢ has a diophantine representation
given by p,,. This will allow us to make a connection with the Gédel incompleteness
theorem and produce a specific polynomial such that statement that is has a root
is independent of ZFC. By an algebra trick (credited to Skolem) we are able to
reduce any diophantine problem down to a 4th degree one, which will give the final
theorem.

Theorem 4.2 was proved in 1970 by Matiyasevic, and built upon earlier work of
sereral people including Davis, Putnam, and J. Robinson. Our presentation will
largely follow the 1973 paper of Davis [?].

We first note, according to the following lemma, that the requirement that the
roots of the polynomial be positive, instead of just arbitrary integers, is for conve-
nience and doesn’t change the diophantine sets.

Lemma 4.3. A relation R < Z’i is Diophantine according to Definition 4.1 iff there
is a polynomial p' such that for all @ € Z% we have @ € R <> Jbezt P (d, [_)') = 0.

Proof. Suppose first that R < Zi is Diophantine according to Definition 4.1, that is,

for some ¢ and some p € Z[x1, ..., Tk, Y1,- -, Ye] we have @ € R iff e Z. p(a, [_;') =
0. for each variable y; we introduce 4 variables w?, ..., w;] and let
pl(xla"ka)ylw"vyé?'"’w{?w%7w§7wi )

be the k + ¢ + 4¢-ary polynomial given by

p= 1+ (wi)? + (w3)? + (w3)® + (wy)® —91)* + -+

+ (14 (wh)? + (wh)? + (wh)? + (wh)? = v0)® + (1, 2k y1, - Ye)

Using Lagrange’s theorem that an integer n is > 0 iff it can be written as the sum
of 4 squares of integers, we see that for any a@ that p(d, %) has a root in Zﬁ iff
p'(@, ¥, W) has a root in Z°.

Suppose next that R < Zﬁ is represented in the Z-sense, that is, there is a
polynomial p/(21,..., %k, Y1,...,Ye) such that for all @ € Z* we have @ € R iff
3b e Z¢ p/(d@,b) = 0. For each variable y; we introduce two variables z;, w; and let
p(x1 ..., %k, 21,- -, 20, W1, ..., we) be the polynomial

p=(z1—w)*+ -+ (ze —we)’ + P (x1,..., T8, 21 —w1,..., 20— wp))>.

—

Since every integer is a difference of two positive integers, p(d, ¥, Z) has a root in
the positive integers iff p/(@, i) has a root in the integers. O

We now begin the process of showing ¢ relaions are Diophantine.
Lemma 4.4. The class of Diophantine relations is closed under n, U, 3%+.

Proof. Suppose R € Z, S < Z, are Diophantine and represented by the polyno-
mials p(x1, ..., Tr, Y15+, Ye), ¢(X1,...,Xs,21,---,2m). Then R " S is represented
by the polynomial ¢t = p? + ¢? and R U S is represented by v = p - g. The relation
Tc Zi_l given by T'(x1,...,4j,...2,) < 3z; R(z1,...,x,) is represented by

/ ~
p(xlv"'vxjv'~-;xrvzlayla-“»yf) :p(xla'"7213"'axr,y17"'7yf)7
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where the variable z; is substituted for x; in p.
O

We can rephrase Lemma 4.4 as saying that the collection of formulas ¢ in the
language of number theory which define (over Z, ) Diophantine relations is closed
under A, v and Jz;.

Lemma 4.5. For any polynomials p(¥), q(¥), the relations defined by the formulas
p(Z) ~ q(Z) and p(Z) < q(Z) are Diophantine.

Proof. Therelation R € Z* defined by p(Z) ~ ¢(7) is represented by the polynomial
p(Z) — q(Z). The relation S defined by p(Z) < ¢(Z) is represented by the formula
(%) — p(¥) — y- O

From Lemmas 4.4 and 4.5 it follows that the relations defined by the formulas
(%) < (%), p(¥) # q(¥) are also Diophantine. It further follows that the collection
of relations on Z, defined over N by quantifier-free formulas in the language £ =
(+,-,<,5,0) (note: we have omitted exponentiation) are Diophantine. That is, if
o(x1,...,z1) is a quantifier-free formula in £’ the set

R = {(ar,...,a1) € Z5 : $(S(0), .., 5% (0)))
is Diophantine.

Definition 4.6. We say a function f: Z% — Z, is Diophantine iff its graph Gy <
Zﬁ“ is Diophantine. More generally, we say a function f: Z’i — 7 is Diophantine
if Gy n Ziﬂ is Diophantine.

Lemma 4.7. The collection of Diophantine relations is closed under substitution
by Diophantine functions.

Proof. Let R = Z% be Diophantine and fi(z1,...,2¢),.., fr(21,-..,2¢) are Dio-
phantine functions, where for notational convenience we have assumed all the f;
have the same arity and use the same variables (the general case is similar). Let

S(z1,...,20) it R(f1(2),...,fe(?)). Say f ..., fr are represented by pi,...,px.
Then S is defined by the formula

(21,5 20) = Jwy, .o wg [(f1(2) =w1) A A (fi(Z) = wi) A R(wy, ..., wg)]
From Definition 4.6 and Lemma 4.4 it follows that .S is Diophantine. [

It is immediate that all polynomials are Diophantine functions.

To complete the proof that every %Y relation is Diophantine it suffices to show
two things: (1) The exponentiation finction nEm = n™ is Diophantine, and (2) The
class of formulas defining Diophantine relations is closed under bounded existential
and universal quantification.

The bounded existential quantification case follows from the above lemmas as
o(x1,...,x5) = Iy < zjY(x1,. .., 2 Y) is equivalent to Iy [(y < xj)Av(z1, ..., Tk, Y)],
and the result follows by Lemma 4.4.

The exponentiation and bounded universal quantification cases, however, require
much more work. The first main step is to reduce bounded universal quantification
down to showing some specific functions are Diophantine, an argument to Davis
and Putnam. This uses the Chinese remainder theorem (CRT), and is similar to
arguments used by Gdédel in his pairing functions.

Definition 4.8. We let fi(n,m) = (), f2(n) = n!, and f3(a,b,n) = [, (a+1b).

n
m
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The following lemma reduces the problem of showing X{ sets are Diophantine
to showing the specific function of Definition 4.8 are Diophantine.

Lemma 4.9. Assume the functions of Definition 4.8 are Diophantine. Then the
collection of Diophantine relations is closed under bounded universal quantification.

Proof. Let R(y,z1,...,x,) & Yk <y S(y,k,z1,...,x,) where S is Diophantine.
So, for some polynomial P we have:

R(y7x1a"'7 n)Hng S(y?kaxlw",mn)

g Vk < Hylr e Ym I:P(y?k7l‘17"'a'xnvyla"'aym) = O]

< Ju Vk < Y Elyla"',ym <u [P(y,kvxla'"7mnay17"'7ym) = O:I
We first get a polynomial b(y, u, x1, . .., 2, ) bounding |P(y, k, Z1, ..., Tn, Y15+ - Ym)|
whenever k < y and y1,...,ym < u. Namely, if P = >}t is sum of monomials of the
formt = cy®kPz]t - atryt - ySm thenlet b = y+u+), |e|yetlusit o Temglt g
Note that b(y,u,Z) >y, b(y, u, &) > u as well.

Suppose first that for some y, x1, ..., 2, and u that

VE<y Iy, Ym <u Py, k,z1,. .., Zn, Y1, ooy Ym) = 0.

For each k < y, let ygk)7 . ,y,(n) < u be such that

P(y,k, 7, y§k), .. .,y,(,’f)) =0.

Let ¢t = b(y, u, Z)!. Consider the y numbers (1+¢), (1+2t),...,(1+ yt). These are
pairwise relatively prime since any prime divisor of (1+4t) and (1+ j¢) would divide
(j—14)t where (j—1) <y < b(y, u, ¥) and so would divide ¢, and thus divide 1, a con-
tradiction. By the CRT, let a1, ...a,, be such that a; = yl( ) mod (1+ kt) for each
i=1,...,m,andeachk = 1,...,y. Note that if we define ¢ by [ [/_, (1+kt) = 1+ct,
then c=k mod (1+kt) for all k = 1,...,y. This is because (1+ct) =0 = (1 +kt)
mod (1 + kt), and so ¢t = kt mod (1 + kt). Since (t,1 + kt) = 1, this gives c =k
mod (1 + kt). We thus have P(y,c¢, &, a1,...,am) = Py, k,& y(k),...,yfn)) =0
mod (1+kt) for each k = 1,...,y, and thus P(y,c, &, aq, .. ) =0 mod (1+ct).

Also, for each a; and each k = 1,...,y we have a; = yz(k) < u mod (1+ kt) and
thus [ [;_,(a; —j) =0 mod (1+kt). Thus, [];_,(a; —j) =0 mod (1+ct). Thus,
we have shown one direction of the following claim.

Claim. For any y,u, T we have

Vk yaylv"'7ym Sy [P(y7kax17"' xnaylv"'7ym) :0]

y
o detyar, .., an[t =b(y,u, E)! A1+ ct = H1+kzt (1+ et)] nal—]

(1+ ct)] H A+ ct)|Ply, e, Z,a1, ... am)]

For the other direction, fix y, u, &, and suppose ¢, t,aq, ..., a,, witness the right-
hand side of the above claim. As above, the (1 + kt), for 1 < k < y, are pairwise
reatively prime, and ¢ =k mod (1+kt) for all these k. Since (1+ct)|[]7_,(a; —j)
for each 1 < i < m, we have that for each 1 < k£ < y and each prime factor
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of 1 + kt that there is a j < w such that a; = j mod p. Since p must be rel-
atively prime to ¢, and t = b(y,u,Z)!, this gives that p > b(y,u,Z). Let ygk)
denote such a j. Since also ¢ = k£ mod (1 + kt), we have ¢ = k mod p. Thus,
P(y,k,f,y%k),...,y,(,]f)) = 0 mod p. But, P(y,k,f,y%k),...,y,(,’f)) < b(y,uZ) < p,
and so P(y, k, T, y%k), .. .,y,(,f)) = 0.

From this the lemma follows, since [[}_, (1 + kt) = f3(1,¢,y), and for a > u+1
that [ [;_,(a —j) = fa(a —u—1,1,u). O

Our next task is to show that the functions of Definition 4.8 are Diophantine
given that the exponential function (n,m) — n™ is Diophantine. We first show
that f1(n,m) = (;:l) is Diophantine, from which the other two will follow.
Lemma 4.10. Assume the exponential function is Diophantine. Then the function
filn,m) = (::;) 18 Diophantine.

Proof. We show that for all m < n and all v > 2™ that
1 n
(") — [MJ mod u
m um
Fix such m < n and u > 2". Then

= () e 3 (e S (e

i=m+1 =0
It suffices to show that Y7 " (7)u'~™ < 1. Since Y1, (7) = (1 + 1) = 2", we
-1 i 1 n
have Y30" (Du' =" < o 30 (5) < %4 < L.
This shows that f; is Diophantine since we now have

1 n
k= (n) < Ju, v, w [v=2"/\u>vAw=[MJ
m um
Ak<u)Ak=w modul
Note that w = [(“;#J iff wu™ < (u+1)" < (w+1)u™. Since the function n — 2"
is Diophantine by assumption, this show that f; is also. ([l

Lemma 4.11. Assume the exponential function is Diophantine. Then the function
f2(n) = n! is Diophantine.

n

)

‘ e

Proof. We claim that if u > (2n)"*!, then n! = | —~|. To see this, note that

~~

w e IR S N s

[ R R IR O ) Bl LA R vl
= nl.

On the other hand,

A1 = (= 2) e (1= T <t [ D) <t (1 2y

2 (n m\’ 2n & (n 2n
:n![1+2<,) <> ]"<n1[1+2<,)]<n!+2”n!
=\ u u - i u

2n
<nl+ —2"n" <n!+1.
U
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This shows the claim, and from this the lemma follows by a straightforward com-
putation as at the end of Lemma 4.10, using now that Lemma 4.10 gives that f; is
Dipohantine. O

Lemma 4.12. Assume the exponential function is Diophantine. Then the function
f3(a,b,n) = [];_,(a+1ib) is Diophantine.

Proof. Let M = b(a+nb)"+1,s0 M > f3(a,b,n) and (b, M) = 1. Since (b, M) =1,
there is a ¢ < M such that ¢gb =a mod M. Then,

n

fa(a,b,n) = ﬁ(a +ib) = H(qb +1ib) mod M

i=1

=b"(g+1)(g+2)---(g+n)="0b"n! <q:n) mod M

So, f3(a,b,n) is the unique integer less than M which is congruent to b"n! (q‘;")
mod M.
This again easily shows that f3 is Diophantine, namely,

k= f3(a,b,n) < Ju,v,w,M,q [M =bla +nb)"” +1 A M|(gh—a) A u = n!
AV = (q;n) Aw="b"A (k< M)A M|(k—wuv)].
(]

To summarize, from Lemmas 4.9, 4.10, 4.11, and 4.12 we have shown the follow-
ing theorem.

Theorem 4.13. Assume the exponential function is Diophantine. Then every XV
set S < (Z4)™ is Diophantine.

5. THE EXPONENTIAL FUNCTION
To complete the proof of Theorem 4.2 it suffuces to show the following theorem.
Theorem 5.1. The exponential function nEm = n™ on Zi is Diophantine.

The proof of theorem 5.1 is difficult and will occupy the rest of this section. This
theorem was proved by Matiyasevic in 1970, and gave the solution to Hilbert’s 10th
problem. To show the exponential function is Diophantine, as we will see, it suffices
to show that something with exponential-like growth is Diophantine. Matiyasevic
originally used the Fibonacci sequence, but here we will use the set of solutions to
Pell’s equations which somewhat simplifies the arguments, though the main ideas
are the same.

Readers may note that some of the arguments we give concerning the solutions
to Pell’s equations are actually special instances of much more general results in
algebraic number theory. However, we give elementary arguments here to keep the
arguments self-contained.

Definition 5.2. For a positive integer d, the corresponding Pell equation is
2 —dy* =1

where we regard z,y € N.
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Of course, it make little difference whether we regard x,y and as ranging over N
or Z, as the solutions over Z are just those obtained from the solutions over N by
possibly changing the signs of x and/or y.

Note that one solution is just (z,y) = (1,0). If we let d = a® — 1 for some integer
a > 1, then we also have the solution (z,y) = (a,1). We will henceforth take d of
this form, that is, d = a® — 1.

We first characterize the set of solutions to Pell’s equations. Note that if we
consider Q(v/d), then (z,y) is a solution to Pell’s equation iff the element x + y/d
has norm 1, where N(z +yv/d) = (z++/d)(x —+/d) = x> — dy?. Tt is a general fact,
true in any number field, that the norm is a multiplicitive function (the norm of z,
in general, is the product 7 (2)m2(2) - - - mp(2) where the 7; are the automorphisms
of the field over Q). In our case, we see can see by a direct elementary computation
that this is the case, namely:

(z% — dy?)(u? — dv?) = (zu + dyv)? — d(zv + yu)?.

Thus, if (z,y) and (u,v) are solutions to Pell’s equation, then so is (zu+dyv, zv+
yu). Replacing y by —y we see that (zu — dyv, xv — yu) is also a solution.

Since a 4 v/d is a solution, it follows that if we let (a +vd)™ = z,, + yn,+/d, then
(Zn,Yn) is a solution. We show next that these are all of the non-negative solutions
to the equation.

Let (z,y) be a solution with x,y > 0. Clearly = + yv/d > 1. Let n be such
that (a +Vd)" < = + yvd < (a + v/d)**'. Multiplying through by (a — v/d)™ we
get 1 < 2’ +y/'v/d < a ++/d where (2,y) is a solution. Taking reciprocals we get
1>2 —yVd>a—+d or -1 < —2' +yvd < —a++d. Adding these equations
gives 0 < 2y/vVd <2V/dor 0<y' < 1,50y =0. So, 2’ =1, and 2’ + yy'/d = 1 and
so x4+ yvd = (a+\/&)”.

We summarize this analysis into the following lemma.

Lemma 5.3. Let a > 0 and d = a®> — 1. The non-negative (i.e., z,y > 0) solutions
to Pell’s equation x> — dy? = 1 are exactly the pairs of the form (xn,yn) where
Tp + ynVd = (a + V/d)" for some n = 0. The general solutions are of the form
(+xn, yn). Furthermore

(4) Tmtn = TmTn T dYmYn
(5) Ymin = TTmYn + YmIn
In, particular, taking n = 1 and n = —1, we have the following forward and
backward recurrence formulas for the Ty, Ym:
(6) T4l = QT + dYm, Ym+1 = Tm + QY.
(7) Tm—1 = ATy — AYm, Ym—1 = —Tm + QY-

We also have the following second-order recurrence equations for the x,, and Y,
separately:

(8) Tyl = 20T, — Tmo1
(9) Ym+1 = 20Ym — Ym—1
Proof. Equation 4 follows from

Tmin +HYmanVd = (a+Vd) ™" = (a+Vd)™ (a+ V)" = (€ +Vdym ) (@0 +Vdyy).
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Equation 5 similarly follows from (a ++/d)™ ™ (a +/d)" = (a ++/d)™, which gives
T+ Ym-nVd = (a+Vd)"" = (a+Vd)" (a—Vd)" = (@ +Vdym ) (@0 —Vdyy).
To see equations 8, 9, note that these holds for m = 1, as the first three solutions

are (1,0), (a, 1), and (a? +d,2a) = (2a® — 1, 2a), which satisfy these equations, and
inductively we then have:

Tomt2 — 20Tmi1 + T = (aTmt1 + AYmr1) — 2a(azy, + dym) + (aTm—1 + dYim—1)
= a(Tms1 — 20T + Tm—1) + d(Ym+1 — 20Ym + Ym—1)
=0

with similar equations holding for the y,, (note, as the above equations show, that

once a linear recurrence relations such as 8, 9 hold for the first three terms, they
must automatically hold for all the terms in view of equations 6). (]

Note that we may phrase the first-order recurrence relations for the x,,, ., in

matrix form as
Tmt1) _ (@ AN (Tm
Ym+1 1 a Ym
An immediate consequence of the first-order recurrence relations is the following.

Lemma 5.4. For all m we have:
(1) Tm = a™
(2) ym =m, and form =1, y,, = a™" L.

Proof. These follow immediately by induction from the first-order recurrence rela-
tions. (]

An immediate consequence of the second-order recurrence relations is the fol-
lowing.

Lemma 5.5. For all m we have:
(1) Ym =m mod (a—1).
(2) ym =m mod 2.

Proof. Proceding inductively, and noting that a = 1 mod (a — 1), we have y,,, =
2aYm-1 — Ym—2 = 2(m — 1) — (m — 2) = m mod (a — 1). Likese, the recurrence
realtion shows ¥y, = ym,—2 mod 2, and the second result follows. O

We now investigate the number theoretic properties of the solutions. We will see
that the x,, and the y,, terms each satisfy certain delicate properties.

Lemma 5.6. The non-negative solutions (x,,yn) of Pell’s equation satisfy the
following.

(1) For alln, (xn,yn) = 1.

(2) For all m,n we have yn, | yn iff m | n.

Proof. If p | @y, D | yn, then p | (22 — dy?) = 1, a contradiction, so (x,,y,) = 1.
This result also follows from the backward recurrence equation 7, since if p | x,,
P | Yn, then equation 7 shows that p | x,_1 and p | y,—1, so we inductively
conclude that p | y; = 1, a contradiction.

Fix m, and we show by induction on k that y,,, | yxm- The case k = 1 is trivial,
and we have y(x11)m = Tkm¥Ym + TmYkm SO since Ym | Yrm by induction we see that

Ym ‘ Yk+1)m-
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Finally, suppose m { n, say n = km + r where 0 < r < m. Then y, =
Tem¥Yr + TrYkm- I ym | Yn, then since yn, | ypm we see that y,, | (kayr)'
Since (Tkm, Ykm) = 1, and s0 (Tgm, Ym) = 1, we have that y,, | y,. This a contra-
diction as y,, > y, (clearly from equation 6, the x, and y, are strictly increasing
sequences). O

Lemma 5.6 says that y,, | y; iff m | t. The next lemma tells us when 32, | ;.
Lemma 5.7. For all m,t we have that y2, | yi iff mym | t.
Proof. We have

(Ot + V) = (@4 VD)™ = (VD = 33 ()b (V'

i=0
So,
kok o
Ymk = Z (i>$7kn1yfnd(zl)/2 = kxﬁ;lym mod y3,.
i'oda

So, setting k = y,, we have yy,,,, =0 mod y2,. It follows from Lemma 5.6 that
if my,, | t then y2, | v;.

Suppose next that y2, | y;. From Lemma 5.6 we have that m | t, say t = mk.

The above equation gives that y; = Y = kxkly,, mod y2,. so, y, | kzF L.

Since (T, Ym) = 1, we have y,, | k, so my, | t. O
We now establish some properties of the z,,.
Lemma 5.8. zopmt; = (—l)kxj mod z,,,.

Proof. For k =1 we have

Tom+j = TmTm+j + AYmYm-+j
= dym (£Tmy; + Yma;) mod z,
= dyfnxj mod zp,
= (22, — )z; mod zy,
= —z; mod xz,,

Proceeding inductively we now have:

okt l)ym+j = T2mT2km+j + AY2mY2km+;

(—1)1’0(—1k)1'j + dy2my2kmij mod z,,
= <_1)k+1mj + d(ymxm + xmym)@/kaij

(=1)**z; mod w,,

O

For given z,, and ¢ < m, we now investigate when z; = z; mod z,,,. We first
show that the representatives mod x,, of zg, ...z, are all distinct, except in one
rather trivial exceptional case.
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Lemma 5.9. Suppose i < j < 2m and z; = x; mod x,, (m > 0). Then i = j
unlessa =2, m=1,1=0, j =2 (in which case xg =1, 1 =2, and x5 = 7).

Proof. Consider xg,...,Zn—1, and note that z,,—1 < %xm since x,, = aTpym—_1 +
dym—1. Unless a = 2 and y,,,—1 = 0 (i.e., m = 1), we must have strict inequality.
Since T4, = Tom—(m—j) = —Tm—j mod z,,, we have that z,,41,...,22, are
equivalent to —x,,—1,...,—x1 mod x,,. If strict inequality holds then then these
two sets of values are disjoint, and the result follows. For x,,_1 to equal %xm we
must have that x,, is even, a = 2, m = 1, and we must have i = m — 1 = 0,
j=m+1=2. O

Lemma 5.10. Let i < m, and suppose x; = x; mod x,,. Then j = +i mod 4m
unlessa =2, m=1 and i = 0.

Proof. Suppose z; = z; mod x,,, where i < m. Let j = j mod 4m. Then
xzj = xj mod z,, by Lemma 5.9 and so z;; = x; mod z,,. If j/ < 2m, then by
Lemma 5.9 we have j° = i (or else we are in the exceptional case). Otherwise,
j' = 4m — k where k < 2m. Then z;; = z; mod z,,, and zx = x; mod z,,.
From Lemma 5.9 we have k = i (or else the exceptional case) and so j = j' = —i
mod 4m. (]

The above lemmas give properties of the x,,, Y, for a particular value of a (recall
d = a? —1). We need also a simple lemma relating the solutions for different values
of a.

Lemma 5.11. If a = b mod k then z,,(a) = x,,(b) mod k and y,(a) = ym(b)
mod k.

Proof. This is true for m = 0,1 as x1(a) = a, and then follows immediately for
m > 1 from the second-order recurrence relations. O

Finally, a technical lemma relating x,,(a), y,(a) and the the exponential function
y™. We will use this the exponential function is Diophantine from the fact (which
we will establish first) that the functions (a,m) — x.,(a), ym(a) are Diophantine.

Lemma 5.12. 2,(a) — yn(a)(a —y) =y mod 2ay — y> — 1.

:ZTOOﬁ zo(a) —yo(a)(a—y) = zo(a) = 1, and x1(a) —y1(a)(a—y) =a—(a—y) = y.

Tm+1(a) — ym+1(a)(a —y) = 2a(zm(a) — ym(a)(a — y)) — (m-1(a) — (@ = Y)Ym-1)
=2ay™ —y" ' =y (2ay — 1)

= ym71y2 — ym+1 mod 2ay _ y2 —1.

Theorem 5.13. The function f(a,k) = zx(a) is Diophantine.

Proof. For fixed a and k, consider three solutions (z,y), (z,w), (u,v) to the Pell’s
equations:

(10) 22— (a®* —1)y* =1
(11) 2 -0 -1uw?=1
(12) u? — (a®> —1)? =1



32

where we require that b =1 mod 4y, and b > 1 (we will require more on b below).
That is, we require

(13) b=1+dky
Say (z,y) = (zi(a),yi(a)), (z,w) = (z;(a),y;(a)), and (u,v) = (zn(a), yn(a)).

The idea is to make b a sufficiently large base, require y;(b) to be congruent to
k mod b — 1, and so mod 4y, (so j = k mod 4y), and then try to require that j
be equal to i as best we can. Specifically, we will require that j be congruent to
mod 4y (more or less) so that i = k mod 4y. We will require that k& < y and this
will give i = k.

So, let us require that k& <y

(14) y=k+e—-1
and w =k mod 4y:

(15) w=k+4(d—1)y

Since w =j mod b—1 (and so mod 4y), this says that j =k mod 4y. Let us
also suppose that b = a mod z,(a), that is,

(16) b=a+qu

This gives x;(b) = z;(a) mod z,(a). Let us then add the requirement that z;(b) =
z;(a) mod x,(a), that is:

(17) z=x+cu

This then gives that z;(a) = z;(a) mod z,(a). We will have i < n shortly, and so
by Lemma 5.10 we have j = +i mod 4n (note that k < y so i # 0, so we are not in
the exceptional case of Lemma 5.10). We add the requirement that (y;(a))? | yn(a):

(18) v = Lly?

From Lemma 5.7 this gives y;(a) | n (and so ¢ < n). Hence, j = +i mod 4y;(a).
Since j = k mod 4y, this gives i = k mod 4y. Since i,k < y (recall i < y;(a)),
this says i = k, and so z = x(a).

Summarizing, we have shown that for any a, k that if there is a solution exists
to the equations (10)—(18), then x = xj(a).

For the other direction, consider (x(a),yr(a)), that is, take ¢ = k in the above
notation. Let (z,y) = (zr(a),yr(a)). So, (10) is satisfied. Let n = 2ky and let
(u,v) = (zn(a),yn(a)), so y? | v. So, (12) and (18) are satisfied. By the CRT let
b > 1,a be such that b= 1 mod 4y and b = ¢ mod u. Note here that if a prime
p divides y then p | v and so p{u (as (u,v) = 1). Also, since n ie even, y,(a) = v
is even, so u is odd. So, (4y,u) = 1 so we may apply the CRT to get b. This
satisfies (13) and (16). Let (z,w) = (zx(b),yr (b)), so (11) is satisfied. We have
kE <y = yr(a), so (14) holds. Also, w = yk(b) = k mod (b —1) and so w = k
mod 4y and so (15) holds. Finally, z = z4(b) = xk( ) = 2 mod u since b = a
mod u. Thus, (17) holds.

This completes the proof of Theorem 5.13.
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Theorem 5.14. The exponential function f(n,k) = n* is Diophantine.

Proof. We must show that the relation m = n* is Diophantine. The idea is to use
Lemma 5.12 to relate the exponential function n* to the solution (zx(a), yx(a)) for
a large enough base a. Fix for the moment n, k, and consider (zx(a), yr(a)) (we will
specify @ momentarily). From lemma 5.12 we have that n* = z(a) — (a — n)yx(a)
mod 2an — n? — 1. Thus, to equations (10)—(18) we add the equation

(19) (z— (a—n)y —m)? = (f = 1)(2an —n? — 1)?
which says that m =n* mod 2an — n? — 1 (we will have momentarily that a > 1;
also we square both sides since we may have x — (a — n)y —m = +£(2an —n? — 1)
for some ¢ € N). We consider a w > n, k, so we add the equation

(20) w=n+h=k+/{

Suppose now that a is itself of the form a = x;(w) and the corresponding y; (w) is
divisible by w — 1. That is, we add the equation

(21) a® — (w? = D(w—-1)%22 =1

This requires a to be z;(w) and (w — 1) | y;(w). Thus, from Lemma 5.5 we
have j = y;(w 0 modw —1, so (w—1) | j and thus j > w — 1. Hence

a=zj(w)=w =>w*!>nk We require that m < 2an —n? — 1 by adding the
equation

(22) m+g=2an —n*—1

k' mod 2an —n? — 1 and m < 2an — n? — 1. To conclude

m = nF it suffices to show that n* < 2an — n? — 1 as well. Since a > n* we
have 2an — n? —1 > nF. To see this, note that if n = 1 then a > n* = 1, so
2an —n?—-1>4—-1-1=2>1=n* Soassume n > 1. Then 2an —n? —1 >
nktl o (nk+1 —n2_ 1) > (nk + 1) 4 (nk+1 —n2 = 1) >nk 4 (nk+1 _ n2) > nk.

We have shown so far that if m,n, k are such that there is a solution to the
equations (10)-(22), then m = n*.

For the other direction, suppose m = n*. Let w > n,k and let a = x,,_1 (w),
and note that y,—1(w) =w—-1=0 mod w—1. Thena > 1and (w—1) | yu—1(w)
so we have y,,—1(w) = (w — 1)z which satisfies equation (21). Since w > n, k we
can satisfy (20). We again have that a > w*~! > n¥ and so 2an —n? — 1 > n*
and so we can satisfy (22). Set x = zx(a), y = yg(a). Then from Lemma 5.12
we have that (19) can be satisfied. Since z = zx(a) and y = yx(a), we can satisfy

equations (10)—(18). O

So, we now have m =n

k

This completes the proof of Theorem 4.2.
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6. INDEPENDENCE AND UNDECIDABILITY

We now connect Theorem 4.2 with independence and the Gédel incompleteness
theorem, and with the notion of undecidability. The phrase “decidable” refers to
there being an algorithm (a “decision process”) for computing whether the property
holds. Of course, this is just the notion of the set in question (when coded as a set
of natural numbers) being recursive, that is AY.

In Exercise 5 it was shown that the universal X9 set is not A? (and a similar
statement holds for all the X0, TI?). Let us expand this discussion a bit. Let
U € w x w be the universal £ of Theorem 1.39. So, U € £¢ and for every X set
A< wwehave A =U, = {n: U(e,n)} for some e.

Lemma 6.1. U ¢ AY.

Proof. Suppose U € AY. Let A = {e: =U(e,e)}. Since A{ is closed under comple-
ments and substitution by recursive functions (the function e — (e, e) is recursive),
we have that A € A{. Since U is universal, this gives that A = U,, for some eg.
But then eg € A iff —U(eg,ep) (definition of A) iff —ey € A (since A = U,,), a
contradiction. g

The following theorem gives the “undecidability” version of Hilbert’s 10th prob-
lem.

Theorem 6.2. There is no algorithm which takes as input a polynomial p €
Uy Z[z1, ... 2] and decides if p(E) has a root in Z*. In fact, there is one partic-
ular polynomial po(x,y,21,...,2k) such that there is no algorithm which takes as
input (a,b) € Z* and decides if po(a,b,Z) has an integer root for the Z.

Proof. Let U € w x w be the universal X{ set. From Theorem 4.2 there is
a polynomial p(z,v,z21,...,2;) such that for all (a,b) € Z* we have U(a,b) iff

Az1,..., 21 pla,b,2) = 0. Since U ¢ AY (i.e., is not recursive), there is no algorithm
for computing membership in u, and thus there can be no algorithm for deciding if
p(a,b, Z) has an integer root. (]

By combining Theorem 4.2 with the Godel incompleteness theorem we may
present the Hilbert’s 10th problem result as an independence result.

Theorem 6.3. There is a polynomial p € Z|z1,...,2;] (for some k) such that
the statement 3z1,...,2 € Z p(Z) = 0 is independent of ZFC. That is, it is not
provable in ZFC whether or not this polynomial has an integer root.

Proof. Let U € w x w again be the universal ¥¢ set. Let ¢ be the statement
—CON(ZFC), which is a ¥; statement in the language of arithmetic. Let A = {n e
w: p}. Note that since ¢ is a sentence, A is either & or w, but we cannot prove in
ZFC which case holds. However, A is the X{ set defined by ¢. The proofs of the
closure properties of A} and the definition of U show that there is an ey such that
A(n) < Uleg,n), and this equivalence is provable in ZFC (in fact, in PA). If we
let p be the polynomial representing U again, then we have A(n) iff p(eg,n, 2) has
an integer root, so
ZFC + (¢ < Jy 37 p(en,y, 2) = 0).

Since ¢ is independent of ZFC (assuming the consistency of ZFC) we have that the
statement Jy 3% p(ep, y, Z) = 0 is also independent of ZFC. O
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Theorem 6.3 produces a polynomial p (with integer coefficients) of some degree
and some dimension (number of variables) such that it is independent of ZFC
whether p has an integer root. A natural question is how small can we make the
degree and/or the dimension of the polynomial. The following general result shows
that every Diophantine problem is equivalent to a 4th degree one. This result is
attributed to Skolem.

Theorem 6.4. Let p(x1,...,xx) be a polynomial (with integer coefficients). Then
there is a polynomial q(x1, ..., Tk, y1,--.,ye) of degree 4 such that p has an integer
root iff ¢ has an integer root.

Proof. Let p(x1,...,xr) = 2, 8;(¥) where each s; is a monomial. Consider a mono-
mial term s = s(s1,...,x) = 7' - - x3*. For each such s we introduce several new
variables. First, for each of the variable x;, we introduce variable y; 1, 2, ..., ¥ia;-
Let

asi = (Yin — )% + (Y2 — 29i)* + -+ Wisar — Tilisai—1)°
Thus, g.; = 1 asserts that y; ; = 27 for j < a; (we could be more efficient here

by using binary representation for a; and just building up the powers (xi)2m). We
then introduce the variables z1,..., 2z and let

re = (21 — yl,a1)2 + (22 — Zly?,a2)2 +o+ (2 — Zk—lyk,a,c)g'

Thus, rs = 0 asserts that z; = 27, 20 = z{'25%, ..., 2z, = 7' - -2} = s.
We then let ¢ = > g5, + >, 7s. Note that g is of degree 4 and p(7) = 0 iff
Iy 37 ¢(Z,9, %) = 0. O

7. THE PARIS-HARRINGTON THEOREM

We begin by recalling the Erdés-Rado partition notation. We let x* denote the
set of increasing functions f from A to .

Definition 7.1. We write kK — (5);‘ to mean for every partition F': k* — p there is
a H C k with |[H| > § which is homogeneous for F, that is, 3o < pV.f € H* (F(f) =
o.

Note that the property x — ()5 implies the property x — (5’);‘,, for ¢’ < 6,
AN <\ and pf < p.

Extending the definition slightly, we say x — (0)5" if for every partition F' of
=N = Uy K% into p pieces, there is a set H S & of size § such that for each
a < \, F'is constant on H®.

The Paris-Harrington theorem states that a certain partition property in not
provable in PA, though it is provable in ZFC. This partition property concens
finitary partitions, and the partition property it concerns is a strengthening of the
classical Ramsey theorem, which we discuss below. Although these are partition
properties of the natural numbers, more general partition properties play a large
role in logic and set theory in general. We therefore briefly discuss some general
facts about partition properties.

First, the following theorem says that any partition property with an infinite
exponent is inconsistent with choice.

<A
P

Theorem 7.2 (ZFC). For all k, k - (w)5.
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Proof. Consider the equivalence relation on % defined by f = g iff 3n € w VYm >
n (f(m) = g(m)). Using AC, Let S < k¥ be a selector for thie relation (i.e., S
contains exactly one element from each equivalence class). Consider the partition
F: k¥ — 2 given by F(f) = 1 iff the least n such that Ym = n f(m) = g(m)
is odd, where {g} = S n [f] is the unique element of S equivalent to f. suppose
H < k was infinite and homogeneous for F. Let ap < a; < --- be an infinite
increasing sequence of elements from H. Let f(n) = ag,. Let ¢ =S n [f]. Let n
be least so that Vm = n f(m) = g(m). But we then change f to f’ by defining
f'(n) = agn41 to make n + 1 the least point of eventual agreement (this does not
change the equivalence class of f and so the representative g does not change). So,
H is not homogeneous. O

So, with AC we can only consider finite-exponent partition properties (or slight
variations). However, without AC, much stronger partiton properties are possible,
and these play an important role in determinacy theory. For example a theorem of
Martin is that w; — (w1)“' (when the subscript is omitted, it is understood to be
2).

Definition 7.3. k has the strong partition property if kK — (k)*®. k has the weak
partition property if kK — (k)<".

In a model of determinacy, there are many cardinals x with the strong partition
property, but there are no such cardinals in a model of ZFC by theorem 7.2.

Definition 7.4. k is a Ramsey cardinal if K — (k)<“. k is weakly compact if k is
uncountable and x — (k)2.

We note that w is not Ramsey as can be seen by consider the partition F': w<* —
w given by F(ny,...,ng) = 1 iff k € {n1,...,nx} (here we identify f € w<* with
a finite subset of w, written in increasing order). Thus, every Ramsey cardinal in
uncountable, and thus is weakly compact.

The next theorem shows that weakly compact cardinals are inaccessible, and
thus cannot be shown to exist in ZFC.

Theorem 7.5. Every weakly compact cardinal is strongly inaccessible. That is, k
is a regular limit cardinal (weakly inaccessible) and if « < k then 2% < K (a strong
limit cardinal).

Proof. To see k is regular, suppose A = cof(k) < k. Let f: A — k be increasing
and cofinal. Partition x? by F(«,8) = 1 iff ran(f) n («, ) # &. There cannot be
a homogeneous set H € k for F' of size k. for on the one hand we can always fine
a < Bin H with ran(f) n («, 8) # & by taking g sufficiently large. On the other
hand, since |H| = > X, one of the intervals [f(7), f(7+ 1)) must have > A many
points of H in it. In particular, we can find a < 8 in H n (f(v), f(v + 1)), which
says F(a, 8) = 0.

To finish, we need to show that if A\ < s then 2* < k. Suppose 2* > k. Let
{An}a<r be a k sequence of distinct subseteq of \. We consider the partition
F: k? — 2 defined as follows. Let o < 3 < k. Let 6(c, 8) be the least ordinal less
than A such that é(«, 8) € A(Ay, Ag). We set F(a, ) = 1iff 6(a, ) € Ay. Let
H < k be homogeneous for F' of size k.

Suppose first that for « < 8 in H we have F(«,) = 0. For each a < &, let
a(a, i) be the ith element of A, (this is defined for i < 0.t.(A,)). The homogeneity
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of H gives that for a < 8 in H that a(a,0) > a(f,0), past the unique point, if any,
where A, = ¢J. Thus there is an a(0) < A and a vy < & such that for a > v in H
we have a(a,0) = a(0). That is, we have stabilized the first element of the sets A,.
Past the unique point, if any, in H where A, = {a(0)} we have that for & < 3 in
H that a(a,1) = a(B,1). This give a a(1) < A and a 7; < & such that for a > v,
in H we have a(a,1) = a(1), that is, we have stabilized the first two elements of
Aq. In general suppose that ¢ < A and for all j < ¢ we have defined v; < s and
a(y) < A such that for all @ > 7; in H and we have a(«,j) = a(j). Since & is
regular, v = sup;_;y; < . The above argument then produces a v; < K, v; > 7,
and an a(i) < A such that for all & > =; in H we have a(«,?) = a(i). If now a < 8
are in H and o, B > sup;_, i, then A, = Ag, a contradiction.

Suppose next that on the homogeneous side we have F(«,3) = 1. Then for
a < B in H we have a(a,0) < a(3,0). Either there is a vy < x such that for all
a < 7o in H we have a(a,0) = a(8,0) or else there is a & size subset of H on which
a(a, 0) is strictly increasing (using here that k is regular). The latter case cannot
occur, as this a map a — a(a,0) from a set of size k to a set of size A\. So, we may
assume 7o and a(0) are defined. Continuing, as the previous case, we define v;, a()
for all i < A, which is a contradiction as in the first case. ([l

Remark 7.6. The proof of Theorem 7.5 shows that for all x that 2% - (k7)2.

We now turn to partition properties on the integers. We first state the “infini-
tary” version of Ramsey’s theorem.

Theorem 7.7 (Infinite Ramsey Theorem). For alln, ke w, w — (w)}.

Proof. We proceed by induction on n. The case n = 1 is trivial. Assume the result
for exponent n — 1, and let F': w™ — k be a given partition. Let ap € w and let
Fo: (w—(ap+1))" ! — k be defined by F,,(i1,...,in-1) = F(a,0,i1,...,in_1).
By the n — 1 case, there is an H,, < w — (ap + 1) which is homogeneous for
F.,. Let a; € H,,. Define F,,: (H,, — (a1 +1))"™' — k by F,, (i1,...,in-1) =
F(ay,i1,...,in). Let Hy, S Hyy — (a1 + 1) be homogeneous for H,,. Continuing
in this manner we define H' = ag < a1 < as < --- with the property that if @,
be H" and min(d@) = min(b), then F(a@) = F(b). This defines a map g from H’ to
k (g(a;) = F(a) for any d € H with min(a@) = a;). We may fix an infinite H < H’
which fixes that value of g. H is then clearly homogeneous for F'. O

We next state the “finitary” version of Ramsey’s theorem, and show that it
follows from the infinite version by a compactness argument.

Theorem 7.8 (Finite Ramsey Theorem). For all n,k,m, there is an £ so that
L — (m)y.

Proof. Fix n,k, m, and suppose that for all £ the stated property fails. For each
L, let Fy: £" — k be a partiton without a homogeneous set of size m. For ¢ < ¢,
let Fy 4 be the restriction of Fy to (¢)". Since for any ¢’ there are only finitely
many partitions of (¢)" into k pieces, we have that for any ¢/, {Fp: 1 € w} is
finite. It follows that there is a sequence ag < a1 < as < --- such that for all
i <j<kwehave Iy, o, = Fu,a, [given ag < --- < a; and Hp € w — (ag + 1)
such that for all ¢; < ¢ in Hi we have Fak,azl = Fak,azza let axy1 € Hg, and
then get Hypy1 & Hp — (ag41 + 1) which fixes F,, ,, ¢ for all £ € Hjyq]. Let
fr be the common value of F,, 4, for £ > k. Thus, the f; union to a partition
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f:w™ — k. From Theorem 7.7, let H € w be an infinite homogeneous set for f.
Let k be large enough so that |H n ax| = m. Then H n aj is homogeneous for
[ 1 (ar)™ = Fa,,, | (ax)™, and so homogeneous for F, This contradicts the
definition of F, O

Ap41°

k+1°

The statement of the finite Ramsey theorem is a sentence in the language of
arithmetic, but the proof given above did not take place in arithmetic (i.e., from
the axiom system PA) since it passed through the infinite Ramsey theorem 7.7 which
talks about P(w). The finite Ramsey theorem can be proved in PA, however, by
re-working the above argument. We give this modified argument next.

Theorem 7.9. The statement of the finite Ramsey theorem, ¥Yn,k,m 3¢ [{ — (m)}]
is provable in PA.

Proof. Fix k, and let ¢(n) be the statement that ¥m 3¢ for all partitons F': (£)" —
k, there is a homogeneous set of size m. We prove ¢(n) by induction on n. For
n =1 we can take £ = (m — 1)k + 1. So, working in PA, assume ¢(n) and we show
o(n +1). We follow the proof of Theorem 7.7.

Let r(a,b), assumed defined for a < n, be the least £ so that for all partitions
F: (£)* — k there is a homogeneous set of size b. Let r,, be the function r,(m) =
r(n,m). Note that r,(1) = n. Let

C=rlorlo---orl (1)

where the functions r], are composed mk + 1 times, and 7, = r, + 1. That is,
let r,11(m) = r';m’“+1)(1)7 where the superscript denotes composition. Let ¢ =
7 n41(m), and suppose F: (£)"Tt — k. Let H_; = £, and let ap = 0 be the least
element of H_;. As in 7.7 we consider the partition F,,: (H_1 — (ag + 1))" — k
by Foo(it,.. . in-1) = Flag,it,...,in-1). Since £ = rpp1(1) = /I (1) =
rn(r';mk)(l)) + 1, we get a homogeneous set Hy for F,, of size r’;mk)(l) + 1. Let
a1 be the least element of H,,, so H,, — (a1 + 1) has size at least r;(mk)(l).
Continuing, as in 7.7 we obtain ag < a1 < -+ < @y which are “min homoge-
neous” as in 7.7. From this set we may, as in 7.7, extract a homogeneous set of size
m (we now have a coloring of these mk + 1 points into k colors, so there must be

a homogeneous set of size m). ]
Thus, working in PA we have shown that the following function is well-defined.

Definition 7.10. For 1 < n <m and k > 2, let 7(n, m, k) be the least £ such that

We introduce the Ackermann hierarchy of fast-growing functions.

Definition 7.11. Let Eg(n) = n + 1. Let Epyq1(n) = Epo--- 0 Ep(n) = E™ (n),
where the superscript denotes composition n times. Let E,(n) = E,(n).

We will extend the Ackermann hierarchy further into the transfinite later. Note

that F1(n) = 2n, Ea(n) = n2" ~ 2", and E3(n) ~ 22" a stack of exponentials
of height n. Ej is too large to write down in exponential notation.

The proof of Theorem 7.9 gives an estimate for the diagonal Ramsey function
r(n,n,n) of order E,(n). This, however, is not a very good estimate.

We now give an improved bound for r(n, m, k) due to Erdés-Rado (1952). Recall
that n < m always and r(n,n, k) = n.
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Theorem 7.12 (Erdés-Rado). For n < m, r(n,m,k) < k(f;ll), where t = r(n —
I,m—1,k)+ 1.

Proof. Let t = r(n — 1,m — 1,k) + 1, and let £ = o) Let B O™ - k
be given. A set H < / is called (n — 1) homogeneous if for all @, b € (H)™ with
@ln—1=5b]n—1wehave F(@) = F(b). It suffices to show that there is an H < ¢
which is n — 1 homogeneous and |H| > ¢. For say H = {ay,...,a;}, and consider
F': (H—{a;})" ' — k, given by F'(i1,...,in_1) = F(i1,...,in_1,a;). There is an
H' € H of size |H'| = m — 1 which is homogeneous for F’. Then H = H' U {a;} is
homogeneous for F', and |H| = m.

We construct the elements a1 < as < - -+ < a; < £ of an n—1 homogeneous set by
induction. Let {a1,...,an—1} ={0,1,...,n—2}. Thereisan H,_1 € {—(ap—1+1)

such that if a,b € H,_1 then F(ay,...,an_1,a) = F(ay,...,an_1,b), and |H,_1| =

(£—n+1) £
k = k*

Suppose in general that at step i = n—1 we have a; < --- < a; and H; € £—(a;+
1) and for any @ € {ay,...,a;}" ! and any p < ¢ in H; we have F(a,p) = F(a,q).

Assume also H,—1 2 H, 2 --- 2 H; and a; € Hj_; for all j < n — 1. Let
a;y1 = min(H;). Let S be the set of @ € {a1,...,a;11}" ! with max(@) = a;11.
For each b € H; — (a;+1 + 1), we have g(b) = (F(a,b): @ € S) € k°. So, we may
get H;y1 € H; — (a;4+1 + 1) on which g is constant and |H;41| = “3;';1 = %
k\n—2

Thus, we can define a; < --- < a; provided

(—n+1 1 1 1
R G I R T
that is,
f—n+1 > 1 n 1 - 1
EOID)+GID) (02 T pGI)+GI) -+ (003 pGe)+ () (02) 1(3)

which gives
0> n+ k023 L G0 4 G (),
So,
rn,m,k) < n+ kG2) + kG22)+G2) L 4 g G +G2) -+ (5
kG g k(G

< ()

3
3
ES

To see the last inequality, note that if n = 2 then

k-1

2+k1+k2+~-~+kt‘2:1+k77_1<1+kt‘1—1:k(:7—11).

If n > 3 then

t—2 t—2

Here we have used that n < k™ < k(2)+1 which holds provided t — 2 > n, that
is provided f(n — 1,m — 1,k) = n + 1, which we easily have (as n < m). Also,
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(7)) = (173) =2 for all t —2 > n — 1, which we have as

N

t—2)t—3)--(t—m+1)
(n—1)(n-2)---2

=zn—1>=2

=(n-1)

using again that t —n + 1 > 2.

In particular, we have the bound
Corollary 7.13.
(23) r(n,m, k) < kr-lm=LR"

Proof. If n = m this becomes n < k™=D""" which easily holds (as k > 2). If n < m
this follows from Theorem 7.12 as ("11) <l

O

From Equation 23 we see that the ramsey function grows roughly as F3. More
precisely, let g(p) = sup{r(m,n,k): m,n, k < p}.

Claim. For large enough p we have g(p) < E3z(p + 1).
Proof. Let a * b denote a®, a * b * ¢ denote a * (b * ¢), etc. From Corollary 7.13 we
get

g(p) <prpx(p—1p*(p—2)xpx---*3px2p.

Note that a b= a® < 2% = 2xab and c- (a*b) < 2* (c+ab) < 2 * (cab) provided
a,b,c>=2.

gp) <prpx(p—1)p=*(p—2)p#---#3p*2p
<2x[p-(px(p—Dp*(p—2)p*---x3p=*2p)]]
<2#2%p*[(p—Vp*(p—2)p#---+3p*2p
<2#2x2xp*(p—1)[(p—2)p* (p—3)p* - *3p = 2p]
<2%22x2xp'(p—1)(p—2)[(p = 3)p* (p — 4)p -~ * 3p * 2p]
<2%2%2%2x%- *2*(pp_1(p—1)(p—2)-~-(3p)(2p))

where the last expression has p—1 2’s in the tower. The final expression is bounded
by 2 # 2 % p for large enough p. Thus, g(p) < Es(p + 1).
|

We next introduce the Paris-Harrington partition property which is a strength-
ening of the finite Ramsey property.

Definition 7.14. The Paris-Harrington partition property for n, k, m is the state-
ment that there is an ¢ so that for all partition F': (¢)"™ — k there is a homogeneous
set H for F with |H| = m and |H| > min(H).

We first show that the Paris-Harrington partition property is a theorem of ZFC.

Theorem 7.15. The Paris-Harrington partition property is a theorem of ZFC.
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Proof. We use a compactness argument as the proof of Theorem 7.8. Suppose the
principle fails for some n, k, m, which we fix. For all ¢, fix a partition Fp: (¢)" — k
for which there is no homogeneous set H as desired. Ss in the proof of Theorem 7.8,
we may fix a sequence a sequence ag < a; < --- and partitions fy, f1,..., such
that for all k£ and all £ > k we have that F,, | (ax)” = fr. Let f = [, f, so
f: (w)™ — k is a partition of (w)™. By the infinite Ramsey theorem, let H € w be
infinite and homogeneous for f. Let ig € H with i¢ > m. Fix iy < --- <ip in H
with 4; > 79 and p > ig. Fix k large enough so that ay > iy, and let £ > k. Then
{io,...,1p} is homogeneous for fr = F; | (ar)™, a contradiction as this set satisfies
the Paris-Harrington condition. (]

We now head toward showing that the Paris-Harrington partition property is not
provable in PA. The approach uses the partition property to generate a sufficiently
rich set of indiscernibles for a model of arithmetic.

We call F: ()" — ( regressive if F(ay,...,a,) < ag. We call H € ¢ min-
homogeneous if whenever @, b are in (H)™ and min(@) = min(b), then F(@) = F(b).
We show the Paris-Harrington partition property implies the following partition
property for regressive functions.

Definition 7.16 (regressive partition property). The regressive partition property
is the statement that for all m,n, k, s there is an ¢ such that if Fy,..., Fg: ()" — ¢
are regressive, then there is an H C [s, ¢] with |H| = m which is min-homogeneous
for each Fj.

First we show that the Paris-Harrington partition property implies the slightly
stronger version where we require that |X| > min(H) +n + 1, and also we can keep
min(H) > s for given s.

Lemma 7.17. Assume the Paris-Harrington partition property (Definition 7.14).
Then for any m,n,k,s there is an £ such that for any F: ()" — k there is a
homogeneous H < [s,£€] with |H| = min(H) +n + 1, |H| = m.

Proof. Let € be large enough so that for any G: (€)™ — k+1 there is a homogeneous
X with |X| > min(X) and |X| = s +m + 2n + 1. Given now F: ()" — k,
define G(ai,...,a,) = Fag —n—1,...,a, —n—1)ifall a; = s+ n+ 1, and
G(d) = k + 1 otherwise. Let X be homogeneous for G with |X| > min(X) and
|X| = s+m+2n+1. Since |X| = s+2n+1, there are at least n elements of X which
are = s+n+ 1. So, we can find an n-tuple from X which does not have color k + 1,
and so all n-tuples from X do not have color k+1. That is, min(X) > s+n+1. Let
H={a—n—-1:aeX},s0 HC[s,{],and |H| = |X| 2 min(X) > min(H) +n+ 1.
Also, |H| = |X| = m. Clearly H is homogeneous for F' as X is homomogeneous for

. (]

Theorem 7.18. Work in PA. Assume the Paris-Harrington partition property
(Definition 7.14). Then the regressive partition property (Definition 7.16) holds.

Proof. Assume the Paris-Harrington partition property holds. Fix m,n,k,s as in
the statement of the regressive partition property. Let £ be large enough so that for
any F: (£)"* — 3k thereis aa X C [s,¢] with [ X| > m+n, |X| > min(X)+n+1
which is homogeneous for F.



42

Let now Fi,..., Fg: (€)™ — £ be regressive. For each 1 < i < k, consider the
partition G;: (£)"*! — 3 given by

0 if Fi(ao,al,...,an_l) <E(a0,a2,...,an_1,an)
Gi(a07a17 s 7a'fL) = 1 lf F’i(a()aala' .. 7a/’n71) = Fi(a07a27 .. '7a’n717an)
2 if Fi(ao,al,. .. ,an,l) > Fi(ao,ag, .. .,an,l,an)

Let G: (£)"*! — 3% be the partition given by G(ag, a1, - .., a,) = (Fi(@), ..., F(a@)).
Let X < [s,£] be homogeneous for G with | X| = m+n and | X| > min(X) +n + 1.
So, X is homogeneous for each G;, and we claim that homogeneous color is 1
for all i. To see this, let xg,z1,... enumerate X, and consider the tuples a; =
(o, xj,Tj41,. .., Tjpn—1). There are | X| —n > min(X) +n+1—n = x¢ + 1 such
tuples, and F;(@;) < x¢ for all j. So, we must have F;(a;) = F;(d; ) for some j # j/
(say j < j'). However, we can get from (zq, ;, ..., Zjtn—1) t0 (To, Zjr, ..., Tjr4n—1)
by a finite sequence of operations as in the definition of G; (the first move is to
delete ; and add xj/4,—1). But then we would have F;(a;) < F(a;/) (if the homo-
geneous color is 0), a contradiction (and similarly if the homogeneous color is 2).
So, for each i, the homogeneous color for G; in 1.

This implies that X minus the n — 1 largest elements {y1,...,yn—1} of X is

min-homogeneous for each F;. For if (ag,...,an-1) € X — {y1,-.-,Yn—1}, then
Fi(ao,al, ey an_l) = Fi(ao, as, ... ,an_l,y1)
= Fi(a07a37 cee 7an—17y15y2) =

= Fi(a07y1a e ayn71)~
which shows X — {y1,...,yn—1} is min-homogeneous for each F;. Clearly |X —
{yi,-. ., yn—1}| = m. O

We now use the regressive partition property to obtain a strong form of indis-
cernibles for models of arithmentic. We note that theorem 7.18 was proved in PA
and thus holds in any model of PA.

Definition 7.19. Let M be a model of PA, and let T be a finite set of formulas
in the language of arithmetic. We say I < |M]| is a set of diagonal indiscernibles
for M if whenever @(uy,...,ug,v1,...,0,) €T, 2o <21 < -+ <y and 29 < Y1 <
-o-<gyparein I, and aq,...,a; < xg then

M ':(,0<a:7$1,...7.'1}n) H@(5»y17~-~7yn)~

Theorem 7.20. Asssume PA and the Paris-Harrington partition property. Then
forallm,n, k, k', s and formulasT = {p;(u1,...,ug, v1,...,0,) i<k in the language
of arithmetic, there is a set I of diagonal indiscernibles for @1, ..., i with |I| = m,
and min(I) > s.

Proof. Fix m,n, k,k’, s and the set of formulas T" of size ¥’. We may assume m >
2n. From the finite Ramsey theorem, let p be large enough so that p — (m +
n)i?fll. From the regressive Ramsey theorem, let ¢ be large enough so that if
Fy, ... Fy: (£)>*1 — [ are regressive, then there is an X < [s,f] with |[X| > p
which is min-homogeneous for the F;.

Define F;: (£)*"*1 — { as follows. Set F;(x0,Z1,...,Tn,Tnit,---,T2,) = 0 if for

all @ < xp we have

M ': ij(a,xla"'vxn) > @j(aaxn+la~'~7x2n)~
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for all j < k’. Set also in this case G(zg, . . ., Tap+1) = 0. Otherwise, let G(xg, ..., z2,) <
k' be the least such j, and let F;(xo,...,22,) < Zo, for i < k, be the ith coordinate
of the least @ which violates this equation.

As the F; are regressive, from the definition of ¢, there is a X < [s,{] with
|X| = p which is min-homogeneous for the F;. From the definition of p we get an
H < X with |H| = m + n > 3n on which G is constant.

Suppose first that the homogeneous value of Gis 7 # 0. Fix g < z1 < -+ < x3p
in (H)?"*1. Let @ be the constant value of the F;(¥) for & € H with min(Z) = xo.
Then if we let ¥ = x1,...,%Zp, 2 = Tpi1...,Ton, and W = Topyqg ..., T3, then we
have

—\

z

\‘QL

M = p;(a,
M = p;(
M = p;(a,

which is a contradition as two of these must have the same truth value.
Suppose next that the homogeneous value for G is 0. Recall |H| = m + n. Let
Z1,...,2n be the n largest elements of H. Let I = H — {z1,...,2,}. Then I is
a set of diagonal indiscernibles for T of size |I| > m. To see they are diagonal

indiscernibles, note that if xg < 1 < -+ <z, and zg < y; < -+ < y, are in I,
then for all @ < zg and all j we have

~

) e p;(
) e p;(

) Nad (pj(a:7 U_;)

<y

Q
<y
Qy
g
S~—

i )

8y

M ): @j(&’vmla e ,$n) > (pj(dvzla to ,Zn) g @j(a7y1v ce ayn)
Thus I is the desired set of order indiscernibles for T'. O

Recall that PA consists of finitely many algebraic axioms together with the
induction axioms. The induction axioms are equivalent to the axioms which assert,
for each formula ¢(x), that if Jzp(x), then there is a least = such that ¢(x). That
is, the axiom

Frp(x) — Jzfp(z) A Vy <z —p(y)].
Note that if M is a model of PA, and A is an initial segment of M (i.e., N '€ M

andifa € N, b e M, and b < a, then b € M) then for any Aq formula p(z1,...,z,)
and ai,...an €N,

N Eyla,...,an) o MEo(ar,... a,).

Lemma 7.21. Let M be a model of PA and I = o < x1 < --- be a sequence
of diagonal indiscernibles (which are elements of M) for all formulas ¢ in the
language of number theory. Let N = {x € M: 3i (z < xz;)}. Then N is closed
under addition, multiplication, exponentiation and is a model of PA.

Proof. Suppose a,b < x; are elements of M. If a + b > ;11 then we can get ¢ < b
such that a + ¢ = ;1. But then the statement p(u1,us,v1,v2,) = U1 + ug = v9
holds at (a, b, z;,z;+1) but not at (a,b,z;,x,12), a contradiction. So, of a,b < x;,
then a + b < x;41. Thus, AN is closed under addition.

If a,b < z; but ab > x;,1, then there is a ¢ < b and an d < a such that
ac+ d = x;41, where a,c,d < x;. This again violates diagonal indiscernibility.

If a,b < 2; and a® > x;4,, then there is a ¢ < b such that a® < x;4; but
a®-a = x;41. By the previous paragraph, a®-a < x;42. Since a, ¢ < z;, by diagonal
indiscernibility we have a° - a < x;41, a contradiction.
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So, N is closed under addition, multiplication, and exponentiation. Thus, N is
a substructure of M. As we noted above, all Ay formulas are absolute between A
and M.

Suppose (¥, w) = Vz1 29+ Vzom—1 Izom ¥(¥,Z), where ¢ is Ag. By the
diagonal indiscernibility of ¢ and its subformulas, we get that for all x;, € I and
a,b < x;, that N = ¢(a, b) iff

(24) Vzl < Ty, 322 < Zj, ** ~\722m,1 < Ty Hz’gm < Ziym, 1/}(6, b, 5)

whenever ig < i; < -+ < ig,. Suppose now that ¢(7,w) is as above, @ € N
and N = Jw ¢(a@,w). Let i be such that @, < z;, and for some b < x;, we have
N k= (@, b). Then for any i1 < --- < iy, greater than ig, and any b < x;, we have
N E p(a,b) iff M =V < iy -+ 320m < x4y, ¥(d, b, Z). since M satisfies PA, in
M we can define the least b < z;, such that (24) holds. That is, we have a least
b e N such that N |= p(d@,b). This shows PA holds in V. O

It now follows that the Paris-Harrington partition property is not provable in
PA.

Theorem 7.22. The Paris-Harrington partition property is not provable in PA.

Proof. Suppose toward a contradiction that the Paris-Harrington partition property
was a theorem of PA. Let M be a non-standard model of PA. Let s € M be a
non-standard element. From Theorem 7.18 in M with ¥k = m = n = s, there
is an ¢ > s such that (*): if Fy,...,Fs are regressive functions on (£)®, then
there is min-homogeneous set H < [s,/] for the F; of size > s. Using PA in
M, let £y > s be the least such £ in M. From Theorem 7.20 in M, there is a set
{z;}ics S [s,4o] of diagonal indiscernibles for the first s formulas {¢,};<s, where
©;j = @j(ur,...,us,v1,...,0s). Since s is non-standard, I = zg < x1 < --- is
an initial segment of {z;};<s, and I is a set of diagonal indiscernibles for all the
standard formulas . Let N be the initial segment of M determined by I. From
Lemma 7.21, NV is a model of PA. Note that £y ¢ M. However, since N’ models PA,
which are are supposing proves the Paris-Harrington partition property, in A/ there
is an ¢; satisfying (). But ¢; < £o, and ¢; also satisfies (x) in M (as N is closed
under the coding of subsets of its integers, etc.). This contradicts the minimality
of éo. O



