
1. Polish spaces

Polish spaces are the main objects of study in analysis and descriptive set theory.
Descriptive set theory is largely the study of the definable subsets of Polish spaces.

Definition 1.1. A Polish space X is a topological space which is separable and
completely metrizable.

If we wish to specify a complete metric giving the topology we will write pX, ρq.
Recall that separable means that there is a countable dense set, which for metric
spaces is the same as saying the space is second countable. Also, complete metriz-
ability is a topological property, although there will be different metrics giving the
topology, some of which will be complete and some not.

Most of the familiar objects of study in analysis involve Polish spaces; the next
examples record a few of them.

Examples 1.2. Rstd, r0, 1sstd, Rn, r0, 1sn are all Polish spaces. Any Gδ subset of a
Polish space is Polish according to theorem 1.3 below, so p0, 1q and Irr � R�Q (with
the subspace topology) are also Polish. We will see below that Irr is homeomorphic
to the Baire space ωω. Q, however, is not Polish (see exercise 3 below). A countable
product of Polish spaces is Polish according to exercise 1 below, so Rω (which by
a theorem of Anderson is homeomorphic to `2) and the Hilbert cube r0, 1sω are
Polish. A separable Banach space is by definition Polish, so the `p, p   8, are
Polish as are the Lppr0, 1sq, or LppRq (p   8). c0 (the sequences converging to 0
with the sup norm topology) is also Polish.

Any countable discrete space is Polish, so N, Z with their usual topologies are
Polish.

Any compact metric space is Polish (it is helpful to recall that a metric space is
compact iff it is complete with respect to every compatible metric). In particular,
the Cantor space 2ω (see below) is Polish.

If X is Polish the set F pXq of all closed subsets of X carries a natural topology
under which it becomes Polish called the Beer topology; more on this later. When
X is compact this coincides with the Hausdorff metric topology on KpXq (the space
of compact subsets of X).

If X is a compact metric space, then CpXq � the space of continuous real valued
functions on X with the sup norm topology is Polish.

Exercise 1. Show that if Xn are Polish then the product space
±
nXn (with the

product topology) is also Polish. (hint: without loss of generality we may assume
that the topology on Xn is given by a complete metric ρn which is bounded by 1.
Then let ρ �

°
n

1
2n ρn. Show this works.)

Exercise 2. Show that if pX, ρq is Polish and F � X is closed, then ρæF � F is a
compatible complete metric on F .

Exercise 3. Show directly that Q (with the subspace topology) is not a Polish space
(by directly we mean not quoting the Baire category theorem).

Exercise 4. Suppose ρn are metrics on a set X which are all bounded by 1. Show
that ρ

.
�
°
n

1
2n ρn is a metric on X which gives the supremum of the ρn-topologies

(i.e., the smallest topology containing all the ρn-topologies).
1
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We first recall the following classical theorem of Alexandroff. Recall a set is Gδ if
it is a countable intersection of open sets (the dual notion is Fσ, a countable union
of closed sets).

Theorem 1.3 (Alexandroff). Let X be Polish. Then Y � X (with the subspace
topology) is Polish iff Y is a Gδ in X.

Proof. Suppose first that Y is a Gδ, say Y �
�
n Un, where each Un is open.

Let ρ be a compatible complete metric on X bounded by 1. Define ρn on Un by
ρnpx, yq � ρpx, yq�|fnpxq�fnpyq|, where fnpxq � ρpx,X�Unq � infyPX�Un ρpx, yq.
Clearly τρ � τρn (since ρ ¤ ρn). Since fn is continuous, we also have τρn � τρ. So,
ρn is a compatible metric on Un. ρn is also a complete metric on Un, for suppose
txmu is a ρn-Cauchy sequence from Un. Since the ρnpx1, xmq are bounded, so are
the fpxmq. So, Dε ¡ 0 @m ρpxm, X � Unq ¥ ε. Clearly txmu is ρ-Cauchy, so the
xm converge to some x P X. Since tx : ρpx,X � Unq ¥ εu is closed, x P Un. So, ρn
is a complete compatible metric on Un. Replacing ρn by mintρn, 1u, we may now
assume that the ρn are all bounded by 1. Let now d �

°
n

1
2n ρn, a metric on Y .

Easily, d is a compatible metric on Y (this also follows from exercise 4). Also, d is
complete on Y , for suppose tymu � Y is d-Cauchy. Since ρn ¤ 2n � d, tymu is also
ρn-Cauchy. So, there is a y P Un such that ym Ñ y. Since limits of sequences are
unique in T2 spaces, we must have y P

�
n Un.

Suppose next that Y � X is Polish in the subspace topology. Let ρ again be a
compatible complete metric on X bounded by 1, and let d be a compatible complete
metric on Y . For U an open set intersecting Y , define oscpd, Uq � suptρpx, yq : x, y P
U XY u. For y P Ȳ � clXpY q define oscdpyq � inftoscpd, Uq : y P Uu. We claim that
Y � ty P Ȳ : oscdpyq � 0u. Clearly if y P Y then oscdpyq � 0. Suppose y P Ȳ and
oscdpyq � 0. For each n choose an open set Un about y such that oscpd, Unq  

1
n

and Un � Bρpy,
1
n q. If we let yn P Un, then tynu is d-Cauchy, so converges to some

z P Y . Since Un � Bρpy,
1
n q we also have yn Ñ z, and so y � z. This proves the

claim. Thus

Y � ty P Ȳ : oscdpyq � 0u

�
£
n

ty P Ȳ : oscdpyq  
1

n
u

and ty P Ȳ : oscdpyq  
1
nu is the intersection of the closed set Ȳ with the open set�

tU : U X Y � ∅ ^ oscpd, Uq   1
nu. Since a closed set in a metric space is a Gδ,

we are done. �

Let us consider in more detail two Polish spaces of particular interest, the Cantor
space 2ω and the Baire space ωω. For the Cantor space, we will take as our official
definition the space 2ω � 2N �

±
Nt0, 1u. The Baire space is ωω �

±
N ω, where

ω � N carries the discrete topology. A basis for the product topology on 2ω is
the collection of sets of the form Ns � tx P 2ω : xælhpsq � su, that is, all x which
extend s, where s P 2 ω is a finite string of 0’s and 1’s. Similarly for the Baire
space, where now s P ω ω. We refer to tNsu as the standard basis for 2ω or ωω. It
is convenient to use the following standard metrics on 2ω and ωω: ρpx, yq � 1

2i�1 ,
where i is least so that xpiq � ypiq.

From the definition of the product topology we see that a sequence txnu � 2ω

(or ωω) converges to x iff it converges coordinatewise, that is, @i Dn@m ¥ n xnpiq �
xpiq. Note that a function f : 2ω Ñ 2ω (or from ωω to ωω) is continuous at x iff
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for every k there is an l so that if x, x1 agree on the first l coordinates, then fpxq,
fpx1q agree on the first k coordinates.

We visualize 2ω (or ωω) as the set of branches or paths through the tree 2 ω (or
ω ω). We make this precise.

Definition 1.4. A tree on a set X is a subset of X ω closed under initial segments,
that is, if s P T and m   lhpsq, then sæm P T . A branch or path through T is an
f : ω Ñ T such that @n fæn P T . We let rT s denote the set of branches through T .

The basic open sets Ns are the “cones” of branches determined by the sequence
s.

Proposition 1.5. The Cantor set 2ω is homeomorphic to the Cantor middle thirds
set C � R.

Proof. Recall C �
�
n Fn where Fn � r0, 1s is a disjoint union of 2n closed intervals

of length p 1
3 q
n, obtained by successively removing the middle thirds of the previous

intervals. So, F1 � F2 � . . . . Recall C is closed and nowhere dense. The disjoint
intervals comprising Fn are naturally indexed by s P 2n. So, the intervals in F1

are I0, I1, the intervals in F2 are I0,0, I0,1 � I0 and I1,0, I1,1 � I1, etc. Define
f : 2ω Ñ C by fpxq �

�
n Ixæn. Clearly f is an onto mapping from 2ω to C.

f is one-to-one since if xpiq � ypiq then Ixæi�1 X Iyæi�1 � ∅. To see that f is
continuous note that if x, y P 2ω and xæn � yæn � s, then fpxq, fpyq P Is, and so
|fpxq� fpyq| ¤ diampIsq �

1
3n . Since f is a continuous bijection and 2ω is compact

(see below), it follows that f is also an open map and so a homeomorphism. We
can also see this directly as follows. Suppose y P C and f�1pyq � x. Let ε ¡ 0 and
consider Bpx, εq � 2ω. Take n large enough so that 1

2n   ε. Let s P 2n denote the
unique sequence of length n such that y P Is. So, xæn � s. Note that if t P 2n,
t � s, then any point of It is at least 1

3n away from any point of Is. Hence, if z P C

and |y � z| ¤ 1
3n , then f�1pzqæn � s, and so ρpf�1pyq, f�1pzqq ¤ 1

2n   ε. So, f�1

is continuous. �

Proposition 1.6. The Baire space ωω is homeomorphic the space of irrationals
Irr (with the subspace topology from Rstd).

Proof. Let Q � tq0, q1, q2, . . . u. Let I0, I1, . . . enumerate all of the open intervals
of the form pi, i � 1q in R. Suppose that Is has been defined for all s P ω¤n, and
each Is � pas, bsq is an open interval of R. Let Es � QX Is be such that the only
limit points of Es are as and bs. We may also assume that qn P

�
sPω¤n Es. Let

tIsaiuiPω enumerate the subinterval of Is determined by the points of Es (that is,
the two endpoints of each subinterval are in the set Es). Without loss of generality
we may assume that diampEsaiq ¤

1
2i for all i. Note that Esai � Es for all s, i.

Define a map f : ωω Ñ R as follows. For x P ωω let fpxq �
�
n Ixæn. Since the Is

are strongly nested (i.e., if t extends s then It � Is) and diampIsq ¤
1

2lhpsq , fpxq is
a well-defined point in R. We must have fpxq P Irr since fpxq R

�
sEs, and

�
sEs

contains all of Q. Since
�
sEs � Q, for each y P Irr there is for each n a unique

sequence of length n such that y P Is. These sequences must extend each other to
define an x P ωω (since if s K t then Is X It � ∅). By definition of f we then have
fpxq � y. Thus, f is a bijection between ωω and Irr.
f is continuous since if ρpx, x1q   1

2n�1 , that is xæn � x1æn, then fpxq, fpx1q are

in the same Es for s of length n, and diampEsq ¤
1

2n .
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To see f�1 is continuous, let y P Irr and let x � f�1pyq. Fix an open set Ns
about x, say s � xæn. Since fpxq � y, y P Is. Since Is is open in R, let ε ¡ 0
be such that if |y � y1|   ε then y1 P Is as well. Thus, if y1 P Irr and |y � y1|   ε,
f�1py1qæn � f�1pyqæn � s. This shows f�1 is continuous. �

Let us study the open and closed sets in 2ω and ωω a bit more, in particular we
get a useful representation for the closed sets in these spaces.

Recall that the sets of the form Ns, for s P 2 ω (or s P ω ω in the case of the
Baire space) form a base for the topology. Recall a topological space is said to be
0-dimensional if it has a base of clopen sets.

Proposition 1.7. 2ω, ωω are 0-dimensional.

Proof. To see that Ns is clopen, note that if x R Ns, then for some n, t
.
� xæn K s.

Also, Nt � X �Ns. Thus, X �Ns �
�
tNt : t K su is open. �

In particular, 2ω, ωω are totally disconnected (i.e., the maximal connected sets
are points). We note that it is a theorem of topology that for compact T2 spaces,
0-dimensional is the same as totally disconnected (but the two are not the same in
general).

We can also say a tiny bit more about open sets in these spaces.

Lemma 1.8. Any open set in 2ω or ωω can be written as a (countable) disjoint
union of basic open sets Ns.

Proof. Let U be open in X (either 2ω or ωω). Let A be the set of all s P 2 ω (or
s P ω ω) of minimal length such that Ns � U . If x P U , then for some n, xæn P A
(as U is open). Thus U �

�
sPANs. If s � t are both in A, then s K t as otherwise

one would not satisfy the minimality condition. Thus, Ns XNt � ∅. �

Exercise 5. Show that lemma 1.8 also holds for Rstd (with the usual basis of open
intervals), but fails for Rn, n ¥ 2.

The next lemma gives us a good picture of the closed sets in these spaces.

Lemma 1.9. The closed sets in ωω (or 2ω) are precisely those of the form rT s
where T is a tree on ω (or on t0, 1u in the case of 2ω; recall this means T � ω ω

or T � 2 ω). Also, we may take the tree T to be pruned, that is, T has no finite
branches (that is, no terminal nodes in the tree).

Proof. If T is a tree on ω, then rT s � ωω is closed. To see this, suppose x R rT s.
Then for some n, xæn R T . Let s � xæn. Then Ns � ωω�rT s, as no node extending
s can be in T (by the definition of T being a tree). So, rT s is closed.

Suppose next that F � ωω is closed. Let T be the set of all s P ω ω such that
there is an x P F which extends s. Clearly T is a tree. Also clearly T is pruned (if
s P T the for some x P F , x extends s. But then any longer initial segment of x is
also in T ). By definition, if x P F then xæn P T for all n, so F � rT s. To see the
other direction, suppose x P rT s. So, for each n, xæn P T . By definition this means
that there is an xn P F with xnæn � xæn. But then xn Ñ x, and since F is closed,
x P F . So, F � rT s for some pruned tree T . �

Exercise 6. Show directly that 2ω is compact.

Exercise 7. Show that a closed set F � rT s � ωω is compact iff T is finitely splitting,
that is, every node of T has only finitely many immediate successors in T .
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Exercise 8. Show that ωω is not σ-compact (i.e., it is not a countable union of
compact sets).

We next give the Cantor–Bendixson analysis of the closed sets in a Polish space.
Recall that for a set A in a topological space, A1 denotes the set of limit points of
A.

Definition 1.10. LetX be Polish and let F � X be closed. The Cantor–Bendixson
derivatives of Fα, α P On, are defined as follows.

F0 � F

Fα�1 � pFαq
1

Fα �
£
β α

Fβ for α limit

Thus, in passing from Fα to Fα�1 we throw out all the points of Fα which
are isolated points of Fα. Clearly the sequence of derivatives is monotonically
decreasing, that is, if α   β then Fα � Fβ . Because the sequence is monotonically
decreasing, there is a least ordinal such that Fα � Fα�1.

Definition 1.11. The least ordinal α such that Fα � Fα�1 is called the Cantor–
Bendixson rank of the closed set F . We denote this ordinal by αcb.

The next result, which is the Cantor–Bendixson analysis, shows that this is
always a countable ordinal. Recall a (non-empty) set P in a topological space is
said to be perfect if P contains no isolated points.

Exercise 9. Show that a perfect set P in a complete metric space has size c � 2ω.
In fact, show that there is a continuous injection from 2ω into P .

Theorem 1.12 (Cantor–Bendixson). Let F be a closed set in the Polish space X.
Then the Cantor–Bendixson rank αcb of F is countable. Furthermore, if Fαcb

� ∅
then F is countable. If Fαcb

� ∅, then Fαcb
is perfect (so F contains a perfect set).

Proof. Let U0, U1, . . . be a base for the topology. For each x P F � Fαcb
, let

αpxq   αcb denote the unique ordinal such that x P Fαpxq � Fαpxq�1. Let npxq be
the least basic open set which isolates x in Fαpxq, that is, Fαpxq X Unpxq � txu. We
claim that x ÞÑ npxq is one-to-one. To see this, suppose x � y are in F � Fαcb

and npxq � npyq � n. If αpxq � αpyq then we would have txu � Un X Fαpxq �
Un X Fαpyq � tyu, a contradiction. So, assume without loss of generality that
αpxq   αpyq. Since Fαpxq X Un � txu and x R Fαpxq�1, Un X Fαpxq�1 � ∅, and so
Un X Fαpyq � ∅, a contradiction.

If Fαcb
� ∅, then αpxq, npxq are defined for all x P F . Since x ÞÑ npxq is one-to-

one, this shows that F is countable. Suppose now Fαcb
� ∅. Since pFαcb

q1 � Fαcb
,

Fαcb
is perfect. So, F contains the perfect set Fαcb

. �

Corollary 1.13. If F is a closed set in a Polish space X, then either F is countable
or has cardinality c � 2ω.

Corollary 1.14. Any Polish space X is of the form X � P YC where P is perfect
(possibly empty) and C is countable.

If the continuum hypothesis fails (that is, c ¡ ℵ1), then by AC we get a set A � R
of size ℵ1, that is |N|   |A|   c. By corollary 1.13 such a set cannot be closed.
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That is, the “pathological” set given by AC cannot be a simple set such as a closed
set. A motivating principle in descriptive set theory is hinted at in this corollary:
the reasonably defined subsets of a Polish space should avoid pathologies and have
a structural theory.

It is instructive to interpret the proof of theorem 1.12 in the special case X � ωω.
Given a tree T on a set X, say that a node s P X ω is a splitting node if there are
t1, t2 extending s with t1 K t2. Let T 1 denote the set of splitting nodes of T . So,
suppose F � rT s � ωω is closed. Let T0 � T , and define by induction Tα�1 � pTαq

1

and Tα �
�
β α Tβ for α limit. Since T is countable, the least ordinal δ such

that Tδ�1 � Tδ is countable. For each x P F � rTδs, let αpxq be largest such that
x P rTαpxqs (this is clearly well-defined). Let npxq be least so that xænpxq R Tαpxq�1.
So, xænpxq is a non-splitting node of Tαpxq. Also, Nxænpxq X rTαpxqs � txu. The
same argument as before show that the map x ÞÑ npxq is one-to one on F � rTδs.
So, if Tδ � ∅, then F is countable. Otherwise, every node of Tδ is splitting, and so
rTδs is perfect.

We can also run the Cantor–Bendixson analysis on an arbitrary set C � X. Let
C0 � C, Cα�1 � Cα X pCαq

1, and Cα �
�
β α Cβ for α limit as before. As before,

there is a least countable ordinal αcb such that Cαcb
� Cαcb�1. If Cαcb

� ∅, then C
is countable as before. Otherwise, Cαcb

is dense in itself. Conversely, if C contains
a dense in itself set, then all derivatives of C are non-empty.

We can say a little more.

Theorem 1.15. For C � X (X Polish) the following are equivalent:

(1) Cαcb
� ∅

(2) C is a countable Gδ.

Proof. If C is a Gδ, then it is Polish with the subspace topology. So either Cαcb
� ∅

or else C contains a perfect set. The latter cannot happen as C is countable.
Suppose now that Cαcb

� ∅. Thus, C is countable (and hence an Fσ). It remains
to show that C is a Gδ. For each α   αcb and each n P ω we define an open set Unα
as follows. For each x P Cα � Cα�1, and each n, let Bnpxq be an open ball about
x satisfying:

(1) ρpBnpxq, Cα�1q ¡ 0
(2) diampBnpxqq   1

2ρpx,Cα � txuq

(3) diampBnpxqq   1
2n

We can do this since x R Cα�1 which is a closed set (which allows (1)) and x is not a
limit point of Cα (which allows (2)). Note that if x � y are both in Cα�Cα�1, then
Bnpxq X Bmpyq � ∅ for any n, m (by (2)). Let Unα �

�
tBnpxq : x P Cα � Cα�1u.

Let Un �
�
α αcb

Unα . Clearly Cα � Cα�1 � Unα , and hence C � Un for each n.

Thus, C �
�
n U

n. Suppose now that x P
�
n U

n. Let α0 be least such that for
some n we have x P Unα0

. Fix n0 so that x P Un0
α0

. Let x1 P Cα0 � Cα0�1 be the
unique point such that x P Bn0px1q

.
� B. By (1), fix ε0 such that ρpB,Cα0�1q ¡ ε0.

Consider now any n large enough so that 1
2n   ε0. By assumption, x P Unα for some

α   αcb. We cannot have α ¡ α0 by (1) and (3). By minimality of α0 we must
then have x P Unα0

. By disjointness we must have x P Bnpx1q. By (3) we then have
x � x1 P C. �
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We prove another result concerning ∆0
2 sets in a Polish space. The next result

analyzes ∆0
2 sets in a Polish space in terms of the so-called difference hierarchy

which we now define.

Definition 1.16. Let tAαuα θ be a sequence of sibsets of X. The difference
operator is defined by

DptAαuq � tx : µα px R Aαq is oddu

whwre µα denotes “the least α.” Note that there is no harm in assuming the
sequence Aα is decreasing, as we can replace Aα with

�
β¤αAβ .

We let DαpΓq denote the collection of sets of the form DptAβuβ αq where each

Aβ P Γ. In particular, we are interested in the classes DαpΠ0
1q where α   ω1.

Exercise 10. Show that if A P DαpΓq, then X � A P Dα�1pΓq. [hint: put an extra
copy of X at β � 0 and an extra copy of

�
α β at β for all limit β.] Deduce that

DαpΠ0
1q � ∆0

2 for all α   ω1.

Theorem 1.17. A set is ∆0
2 iff it is in DαpΠ0

1q for some α   ω1.

Proof. One direction is Exercise 10. For the other direction, assume A � X is ∆0
2.

We define a decreasing sequence of closed sets Fα and associated open sets Uα, Vα
(for α even) as follows. Let F0 � X, and for limit α let Fα �

�
β αAβ . Given Fα

where α is even, we define Fα�1, Fα�2, Uα and Vα as follows. Since both of A and
Ac � X � A are Gδ, they cannot both be dense in the Polish space Fα (otherwise
their intersection would be dense, and in particular non-empty, a contradiction).
So there an open set W in X such that W X Fα � ∅ and either W X F � A or
W X F � Ac. Let Uα � YtW : W X Fα � Au and Vα � YtW : W X Fα � Acu. Let
Fα�1 � Fα � Uα and Fα�2 � Fα � pUα Y Vαq. Clearly as long as Fα � ∅ we have
Fα�2 � Fα. Let α   ω1 be least such that Fα � ∅. Suppose x P X. Let β ¤ α
be the least ordinal such that x R Fβ . So, β is a successor ordinal. Let β1   β be
the largest even ordinal less than β (all limit ordinals are even). So, β � β1 � 1 or
β � β1�2. Also, x P Fβ1 , and x R Fβ1�2. If x P Fβ1 �Fβ1�1 then x P Fβ1 XUβ1 � A,
and if x P Fβ1�1 � Fβ1�2 then x P Fβ1 X Vβ1 � Ac. So, A � DαptFβuq. �

1.1. The Borel Hierarchy. We introduce the Borel hierarchy of sets in a Polish
space X. We will study the Borel sets in more detail shortly, but for now we
introduce the hierarchy and state a few facts. Although we intend to study Polish
spaces, the definition makes sense in a general topological space.

Definition 1.18. The Borel sets in a topological space X is the smallest σ-algebra
(i.e., closed under countable unions, intersection, complements) containing the open
sets.

The next definition stratifies the Borel sets into a natural hierarchy.

Definition 1.19. Let X be a topological space. The Σ0
1 sets in X are the open

sets of the space X. The Π0
1 sets are the closed sets of X. A set A is Σ0

α if it is a
countable union of sets A �

�
nAn with each An being Π0

βn for some βn   α. A

set A is Π0
α if it is a countable intersection A �

�
nAn with each An being Σ0

βn

for some βn   α. A set is ∆0
α if it is both Σ0

α and Π0
α.

So, Σ0
1 is the collection of open sets, Π0

1 the closed sets, ∆0
1 the clopen sets, Σ0

2

the Fσ sets, and Π0
2 the Gδ sets.
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Exercise 11. Let Y � X be topological spaces. Show that if A � X is Σ0
α (or Π0

α,
etc.), then AX Y is Σ0

α in the relative topology on Y .

Definition 1.20. A (boldface) pointclass Γ is a collection of subsets of Polish
spaces which is closed under continuous preimages. That is, for each Polish space
X, ΓæX � PpXq, and if f : X Ñ Y is continuous and A � Y is in Γ, then
f�1pAq � X is in Γ.

The next definition abstracts the operations used in generating the Borel hier-
archy.

Definition 1.21. Let Γ be a pointclass. The dual class Γ̌ is defined by Γ̌æX �
tX � A : A P ΓæXu. We let

�
ω Γ be the collection of those A � X which can be

written as a countable union A �
�
nAn with each An P Γ. Likewise we define�

ω Γ using countable intersections.

The next lemma gives some of the elementary properties of these sets.

Lemma 1.22. For any topological space X, the Σ0
α, Π0

α, ∆0
α sets are closed under

continuous preimages. The Σ0
α sets are closed under countable unions, and the Π0

α

sets are closed under countable intersections. The complement of a Σ0
α set is a Π0

α

set and vice-versa. ∆0
α is closed under complements. For any α ¥ 2, Σ0

α and Π0
α

are contained in ∆0
α�1. If X is a metric space, then this last fact holds also for

α � 1. For α � 3, Σ0
α is closed under finite intersections, Π0

α under finite unions,
and ∆0

α under finite unions and intersections. If X is a metric space than this
holds also for α � 3. If we let B �

�
α ω1

Σ0
α, then B is the σ-algebra of Borel

subsets of X.

Proof. The fact that Σ0
1 is closed under countable (in fact, arbitrary) unions and Π0

1

is closed under countable intersections follows immediately from the definition of a
topology. For α ¥ 2, these same closure properties for Σ0

α, Π0
α follow immediately

from the definition of these classes. The complement of a Σ0
1 set is Π0

1 by definition
and vice-versa, and a straightforward induction shows that Σ0

α and Π0
α are likewise

dual classes for all α.
For 2 ¤ α   β, it is immediate from the definitions that Σ0

α � Σ0
α�1 and

likewise Π0
α � Π0

α�1. For all α   β it is immediate that Σ0
α � Π0

β and Π0
α � Σ0

β

(any Σ0
α set is the countable intersection of itself). So, for 2 ¤ α   β we have

Σ0
α,Π

0
α � ∆0

β . If X is metric then Π0
1 � Π0

2 as well, since for any closed set F we

may write F �
�
n Un where Un � tx : ρpx, F q   1

nu is open. By duality we also

have Σ0
1 � Σ0

2. Hence, for metric X, Σ0
1,Π

0
1 � ∆0

2.
For α � 3 we show that Σ0

α is closed under finite intersections, and then also
follows that Π0

α is closed under finite unions and ∆0
α is closed under both finite

unions and intersections. Σ0
1 is closed under finite intersections from the definition

of a topology. If A,B P Σ0
2, then write A �

�
Fn, B �

�
nHn, where the Fn,

Hn are closed. Then A X B �
�
n,mpFn X Hmq, and each Fn X Hm is closed.

Similarly, if A,B P Σ0
α and α ¥ 4, then write A �

�
nAn, B �

�
nBn where each

An, Bn are Π0
αn , Π0

βn respectively, where αn, βn   α. We again have A X B ��
n,mpAn XBmq. In an arbitrary space X we still have Π0

1 � Σ0
2 � Π0

3. From this

and the fact that Π0
γ � Π0

δ whenever 2 ¤ γ ¤ δ, it follows that An X Bm P Π0
δ ,

where δ � maxtαn, βm, 3u   α. Thus, AXB P Σ0
α. When X is a metric space, the

argument works also for α � 3 since Π0
1 � Π0

2 also holds in this case.
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The fact that B is closed under countable unions follows from the fact that
cofpω1q ¡ ω (this uses AC). It is also closed under complements since every Π0

α

set is Σ0
α�1. So, B is a σ-algebra, and hence contains the Borel sets. On the other

hand, clearly the Σ0
α, Π0

α sets stay inside any σ-algebra containing the open sets,
and so B is equal to the Borel sets. �

Exercise 12. Let X be the topological space r0, ω2q with the order topology. Show
that there is an open set U and a closed set F in this space such that U XF is not
Σ0

3. [hint: Let H � tω1 � α : α   ω2u, that is, the set of all ordinal multiples of ω1.
H is closed, and let U � X �H. Let F be the set of all limit ordinals below ω2, so
F is closed. Suppose F XH �

�
nAn Y

�
nBn where each An is Π0

1 and each Bn
is Π0

2. Argue that each An, and hence
�
nAn is bounded below ω2. Thus, for any

large enough copy of ω1, its set of limit ordinals is a union of Π0
2 sets. One of these

Π0
2 sets must be stationary. But a stationary Π0

2 set in ω1 must contain a tail, a
contradiction.]

Exercise 13. Show that in the space X � r0, ω1q the class Σ0
3 is closed under finite

intersections. [hint: First argue that it is enough to show that the intersection of
a Π0

1 set and a Π0
2 set is Σ0

3. So consider F X
�
n Un, where F is closed and each

Un is open. If any of these sets is bounded, the result is easy so assume otherwise.
If all of the open sets Un contain a tail of ω1, then so does

�
n Un, and the result

is again easy. Without loss of generality assume H0
.
� X � U0 is c.u.b. in ω1.

Thus, U0 �
�
α ω1

Iα, where each Iα is a countable interval of ordinals, and these
intervals are pairwise disjoint. Write each F X Iα as a countable intersection of sets
relatively open in Iα (and so open in X). Say, F X Iα �

�
j V

j
α . Let V j �

�
α V

j
α .

Then
�
j V

j � F . So, F X
�
n Un is a Π0

2, and hence a Σ0
3 set.]

In particular, in the case of interest where X is a Polish space, all of the Σ0
α,

Π0
α, ∆0

α are closed under finite unions and intersections. Σ0
α is closed under count-

able unions, Π0
α under countable intersections, and ∆0

α under complements. Also,
Σ0
α,Π

0
α � ∆0

β for any α   β   ω1. Thus, we have the following picture of the
Borel hierarchy in any Polish space:



10

∆0
1

Σ0
1

�

Π0
1

�

�
�

∆0
2

�
�

�

�

Σ0
2

Π0
2

∆0
3 � � � � � � ∆0

α

�

�

�

�

Σ0
α

Π0
α

∆0
α�1

�

�

�

�

Σ0
α�1

Π0
α�1

∆0
α�2 � � �

Exercise 14. Show that the collection of Borel sets in a metric space is the smallest
collection containing the open and closed sets and closed under countable increasing
unions and countable decreasing intersections.

Exercise 15. Show that the collection of Borel sets in a metric space is the smallest
collection containing the open and closed sets and closed under countable disjoint
unions and countable decreasing intersections.

Exercise 16. Show that the collection of Borel sets in a metric space is the smallest
collection containing the open and closed sets and closed under countable disjoint
unions and complements.

Exercise 17. Show that if C � PpXq is a collection of subsets of a set X, and C
is closed under complements and countable disjoint unions, then C is closed under
countable increasing unions and countable decreasing intersections.

Exercise 18. Show that in Rstd, every Borel set is in the smallest collection contain-
ing the open intervals pa, bq and closed under complements and countable disjoint
unions. Remark: This is also true for Rnstd by a result of [1].

We next introduce a notion of complexity for functions between Polish spaces.

Definition 1.23. Let Γ be a pointclass, and X, Y Polish spaces. We say a function
f : X Ñ Y is Γ-measurable if for every open set U � Y , f�1pUq P ΓæX. We simply
say f is Borel to mean Borel measurable.

Thus, continuity is equivalent to Σ0
1-measurability. We will see later that Borel

measurability is equivalent to saying that the graph of f is a Borel set in X � Y .

Exercise 19. Show that a composition of two Borel functions is a Borel function.
Show that a composition of a Σ0

n and a Σ0
m measurable function is Σ0

n�m�1-
measurable.

We next establish several “transfer” theorems which allow us to transfer results
from one Polish space to another. In particular, we show that all uncountable
Polish spaces are Borel isomorphic in a strong sense. We will also establish several
results of independent interest along the way. The first result says in some sense
that ωω is universal among the Polish spaces.

Lemma 1.24. For any Polish space X there is a continuous surjection π : ωω Ñ X.
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Proof. Fix a countable base B � tU0, U1, . . . u for X. For x P ωω, define a sequence
of basic open sets in X as follows. Let V x0 � Uxp0q. In general, let V xn�1 � Uxpn�1q

if Uxpn�1q � V xn and diampUxpn�1qq  
1

2n . Otherwise let V xn�1 � Um where m is

least such that Um � V xn and diampUmq  
1

2n . Let πpxq �
�
n V

x
n , which is clearly

a well-defined point in X.
To see π is onto, let y P X. Get a sequence of basic open sets Ui0 , Ui1 , . . .

with Uin � U in�1 and diampUinq  
1

2n�1 for all n. Then if x � pi0, i1, . . . q P ω
ω,

πpxq � y.
To see π is continuous, suppose πpxq P U , where U is open inX. Let ε ¡ 0 be such

that Bρpπpxq, εq � U , and fix n large enough so that 1
2n�2   ε. Then if xæn � x1æn,

πpxq and πpx1q lie in a set of diameter less than 1
2n�2 , and so ρpx, x1q ¤ 1

2n�2   ε
implies πpx1q P U . �

We restate exercise 9 in the following lemma.

Lemma 1.25. If X is an uncountable Polish space, then there is an embedding
from 2ω into X.

The next lemma strengthens lemma 1.24 (it is a strengthening since every closed
subset of ωω is a retract of ωω).

Exercise 20. Show that every closed subset F � ωω is a retract of ωω, and likewise
for every closed subset of 2ω (recall this means that there is a continuous function
f : ωω Ñ F such that fæF is the identity).

Lemma 1.26. Let X be Polish space. Then there is a closed F � ωω and a con-
tinuous bijection π : F Ñ X. Furthermore, the inverse map π�1 is Σ0

2-measurable.

Proof. Fix a countable base B � tU0, U1, . . . u for X. For each x P X we define
a sequence of basic open sets Ui0pxq, Ui1pxq, . . . as follows. Let i0pxq be least such
that x P Ui0pxq and diampUi0pxqq   1. In general, let in�1pxq be the least integer

such that x P Uin�1pxq, diampUin�1pxqq  
1

2n�1 , and U in�1pxq � Uinpxq. For x P X
let fpxq � pi0pxq, i1pxq, . . . q P ω

ω. Clearly, f is one-to-one from X into ωω.
We claim that F

.
� ranpfq � ωω is closed. For suppose zn � fpxnq, and zn Ñ z

in ωω. So, for any k we have that for all large enough n that znpkq � zpkq. So, for
all large enough n, m, we have that xn, xm lie in a basic open set (i.e., Uzpkq) of

diameter   1
2k

. So, txnu is a Cauchy sequence in X, and hence converges to some
point x P X. We show that fpxq � z, which shows z P ranpfq. Suppose we have
fpxqæi � zæi, and we show pfpxqqpiq � zpiq. For all large enough n we have that

xn P Uzpi�1q � Uzpi�1q � Uzpiq.

So, x P Uzpi�1q � Uzpiq. On the other hand, for any j   zpiq such that U j � Uzpi�1q

and diampUjq  
1
2i we have for all large enough n that xn R Uj . Since xn Ñ x, we

have x R Uj . From the definition of fpxq we now have that pfpxqqpnq � zpnq. So,
fpxq � z.

Note that for z � fpxq P F , that x �
�
n Uzpnq. Thus, π

.
� f�1 : F Ñ X is given

by πpzq �
�
n Uzpnq. Since for any z P F , diampUzpnqq  

1
2n it follows that π is

continuous.
Finally, we show that π�1 � f is Σ0

2-measurable. So, let s P ω ω and consider
the basic open set F X Ns of F , which we may assume is non-empty. This says
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that Uzp0q � Uzp1q � Uzp1q � Uzp2q � � � � � Uzplhpsqq and diampUzpiqq  
1
2i for all

i   lhpsq. We must compute f�1pNsq. Now

f�1pNsq � tx P X : x P Uzplhpsqq ^ @i   lhpsq @j P Ii z R Uju,

where Ii is the finite set of j   zpiq satisfying U j � Uzpi�1q and diampUjq  
1
2i .

So, f�1pNsq is the intersection of an open and a closed set, so is in ∆0
2. �

We next head toward the Borel isomorphism of two uncountable Polish spaces.
First we need the following technical lemma.

Lemma 1.27. Let F � ωω be perfect, and let C � F be countable and dense in F .
Then F � C is homeomorphic to ωω.

Proof. Let F � rT s, where T is a pruned tree on ω. Let C � tc0, c1, . . . u. Since
F is perfect, for every node s P T there is a splitting in T below s. We define a
map f from ω ω to T as follows. To begin, let d∅ � c0 P C � F (so d0 P rT s).
Let A∅ � ts P T : s K d∅ ^ sæplhpsq � 1q||d∅u (recall s||t means s and t are
compatible, s K t means they are incompatible). A∅ is infinite since every node of
T eventually splits (for every k, there are two incompatible nodes sk, tk extending
c0æk. At least one of these, say sk, must be incompatible with d∅. Now go a
larger l such that skplq � d∅plq and repeat the argument. Continuing we get an
ω sequence in A0). Let s0, s1, . . . enumerate A0. Set fpi0q � si0 . Now repeat this
process below each of the nodes si. That is, for each si pick a di P F extending
si (which is possible as C is dense). Also, if c1 extends si, then let di � c1. Let
Ai � ts P T : ps extends siq ^ ps K diq ^ psiæplhpsiq � 1qq||diu. As before, each Ai is
infinite. Let Ai � tsi,0, si,1, . . . u. Then set fpi0, i1q � si0,i1 . Continuing we define
the map f .

The map f naturally gives rise to a map π : ωω Ñ F , namely, πpzq � x where
xæn � szp0q,zp1q,...,zpn�1q. Clearly, πpzq P F � C since every fpsq for s of length i is
incompatible with ci. π is onto F � C, for suppose x P F � C. Since x � d∅ � c0,
there is a least n0 such that xpn0q � d∅pn0q. Then xæpn0 � 1q � si0 for some i0.
Since x � di0 , there is an n1 ¡ n0 such that xpn1q � di0pn1q. So, for some i1,
xæpn1 � 1q � si0,i1 . Continuing, we define z � pi0, i1, . . . q such that πpzq � x.

It is clear from the construction that both π and π�1 are continuous. �

Exercise 21. Give an example of a perfect Polish space X and a countable dense
set C � X such that X � C is not homeomorphic to ωω. [hint: try X � R2

std.]

Exercise 22. Show that if C � Rstd is countable dense then R�C is homeomorphic
to ωω. [hint: follow the proof that R�Q is homeomorphic to ωω.]

Now we are ready for the isomorphism result.

Theorem 1.28. Let X be an uncountable Polish space. Then there is a bijection
π : ωω Ñ X such that both π and π�1 are ∆0

3-measurable.

Proof. From lemma 1.26, let f : F Ñ X be a bijection where F � ωω is closed,
f is continuous, and f�1 is ∆0

2-measurable. From the Cantor–Bendixson analysis
write F � P Y C1, a disjoint union, where P is perfect and C1 is countable. From
lemma 1.27, let C2 � P be countable such that P � C2 is homeomorphic to ωω.
Also, let D � ωω be countable dense, so by lemma 1.27 we also have ωω �D � ωω.
Let g : ωω � D Ñ F � C be a homeomorphism, where C � C1 Y C2. Extend g



13

to a bijection h : ωω Ñ F by taking an arbitrary bijection between the countable
infinite sets D and C. Let π � f � h. Clearly, π is a bijection between ωω and X.

Let U � X be open. So, V � f�1pUq is open in F . Also,

V � f�1pUq � pV X pF � Cqq Y pV X Cq.

Now, h�1pV q � g�1pV X pF � Cqq Y h�1pV X Cq. Since g is a homeomorphism,
g�1pV XpF �Cqq is open in ωω�D, and thus is the intersection of an open set and
a co-countable set in ωω. Thus, g�1pV X pF � Cqq is Π0

2 in ωω. Also, h�1pV X Cq
is countable. So, h�1pf�1pUqq is the union of Π0

2 set and a countable set, so is ∆0
3.

So, π is ∆0
3-measurable.

Suppose now U � ωω is open. Then

hpUq � gpU �Dq Y hpU XDq.

Since g is a homeomorphism, gpU �Dq is open in F � C. So, gpU �Dq � V � C,
where V is open in F . So, hpUq � pV �CqYE, where E is countable. Since fpV q is
Σ0

2, fphpUqq is of the form pS �E1q YE2, where S P Σ0
2 and E1, E2 are countable.

So, πpUq P ∆0
3. This shows π�1 is ∆0

3 measurable. �

Remark 1.29. The proof actually shows that there is a countable set C � ωω

such that πæpωω � Cq is continuous.

The next results provide a topological characterization of the spaces 2ω, ωω.

Theorem 1.30. 2ω is the unique up to homeomorphism space which is compact,
metrizable, perfect, and 0-dimensional.

Proof. 2ω clearly has all the stated properties. Suppose X is a 0-dimensional com-
pact metric space (recall a compact metric space is complete, so X is Polish). To
begin, let U0, U1, . . . , Uk be cover of X by disjoint clopen sets of diameter   1

2 . We
may do this as X is compact and 0-dimensional. Since X is also perfect, by further
splitting these clopen sets we may assume that k is a power of 2, say k � 2n0 .

Now repeat the argument to write each Ui as a finite disjoint union of clopen
sets Ui,j , j   kpiq, with diampUi,jq  

1
4 , and U i,j � Ui. Again, we can do this as

each Ui is compact and X is 0-dimensional. By further splitting, we may assume
that for some n1 ¡ n0 that kpiq � 2n1 for all i.

Continuing, we define the clopen sets Us for all s P ω ω with sp0q   2n0 , sp1q  
2n1 , . . . , splhpsq � 1q   2nlhpsq�1 . Now define π : 2ω Ñ X as follows. Let x P 2ω.
For each j, let xæ2nj be the ithj binary sequence of length nj . Then set πpxq ��
j Ui0,i1,...,ij .

Because the Us are strongly nested and their diameters go to 0, πpxq is well-
defined. By the disjointness of the Us for s of a given length, the map π is one-to-
one. Since these Us also cover, π is onto. The proofs that π and π�1 are continuous
is straightforward. �

Theorem 1.31. ωω is the unique up to homeomorphism space which is perfect,
Polish, 0-dimensional, and the closure of every open set is not compact.

Proof. It is clear that ωω has all the stated properties. Assume now X has the
stated properties. Let U be an open cover of X with no finite subcover. Let B
be all the basic clopen sets B of X such that diampBq   1

2 and for some U P U ,
B � U . Clearly, B is a cover of X with no finite subcover. Let B � tB0, B1, . . . u.
Define U0 � B0, U1 � B1 � B0, Un � Bn � pB0 Y � � � Y Bn�1q. By reindexing, we
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may assume that all of the Ui are non-empty (using the fact that no finite subset of
B covers X). So, the Ui are a pairwise disjoint collection of clopen sets of diameter
  1

2 which cover X.
Now repeat the argument to write each Ui as a countably infinite disjoint union

of clopen sets Ui,j , j P ω, with diampUi,jq  
1
4 , and U i,j � Ui. We use here the

fact that each clopen set Ui is not compact (by hypothesis). Define π : ωω Ñ X by
πpxq �

�
j Uxæj . This is easily a bijection and it is again straightforward to check

that π and π�1 are continuous. �

Of course, other Polish spaces of interest have topological characterizations as
well. For example, r0, 1s is the unique up to homeomorphism space which is compact
metrizable, connected, and has exactly two non-cut points. The focus in descriptive
set theory, however, is not so much at the topological level, but at a somewhat
higher level. According to theorem 1.28, at a little past the topological level all the
uncountable Polish spaces appear the same.

One of the advantages of using ωω (or 2ω) is that ωω � ωω � ωω, and moreover±
nPω ω

ω � ωω. This means that there are continuous coding and decoding maps
from pωωqn or pωωqω into ωω. This simple fact is nevertheless of crucial importance
in many arguments. Let us be specific about these maps. Fix a bijection pn,mq ÞÑ
xn,my P ω from ω�ω to ω. We let n ÞÑ ppnq0, pnq1q denote the inverse of this map.
Define π : pωωqω Ñ ωω by πpx0, x1, . . . q � y where ypnq � xpnq0ppnq1q. Extending
the notation used for integers, we frequently write px0, x1, . . . q ÞÑ xx0, x1, . . . y P ω

ω

for this map. The decoding map (the inverse of π) is given by x ÞÑ ppxq0, pxq1, . . . q
where pxqipjq � xpxi, jyq. When there is no danger of confusion we will drop the
extra parentheses, and just write x ÞÑ px0, x1, . . . q for the decoding map. We can
similarly get bijections from pωωqn to ωω (starting with a bijection between ω � n
and ω for example). With a slight abuse of notation we will use the same notation
for all of these maps (e.g., px, yq ÞÑ xx, yy and x ÞÑ px0, x1q for the coding and
decoding maps between ωω � ωω and ωω).

In an entirely similar manner we also define the coding and decoding maps
between products of 2ω and 2ω, and we continue to use the same notation.

Exercise 23. Show that the coding and decoding maps in all cases are continuous.

We have analyzed the open and closed sets in Polish spaces. We push a little
further and analyze the ∆0

2 sets. For this we need to introduce the difference
hierarchy. Recall that an ordinal is odd (even) if it is of the form λ� k where λ is
limit and k P ω, and k is odd (even).

Definition 1.32. Let Γ be a pointclass and α P On. The α-Γ difference sets,
denoted DαpΓq, are those sets A for which there is an α length sequence tAβuβ α,
with each Aβ P Γ, such that A � DptAβuq, where x P DptAβuq iff the least β such
that x R Aβ is odd (we regard Aα as being the empty set).

The next theorem analyzes the ∆0
2 sets.

Theorem 1.33. A set A in a Polish space X is ∆0
2 iff it is α-Π0

1 for some countable
α.

Proof. If A is α-Π0
1, then both A and X �A are easily Σ0

2. For example

A �
¤

β α,β odd

p
£
γ β

Aγ X pX �Aβqq.
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The quantity in parentheses is the intersection of a closed and an open set, so is
∆0

2. So, A P Σ0
2. A similar computation shows X �A P Σ0

2, so A P ∆0
2.

Suppose now that A P ∆0
2. Let B � X �A, so both A, B are Π0

2. Note that for
any closed set F � X we cannot have that both AX F and B X F are dense in F ,
as the intersection of two dense Π0

2 sets in the Polish space F is non-empty (Baire
category). So for any closed F , there is a basic open set U such that F XU � A or
F X U � B (and F X U � ∅).

We define a decreasing sequence Fβ of closed sets along with open sets Aβ and
Bβ . Let B be a base for X. Let F0 � X. Let A0 �

�
tU P B : U � Au, and likewise

B0 �
�
tU P B : U � Bu. At least one of A0, B0 is non-empty. Let F1 � F0 � A0

and F2 � F � pA0 YB0q. In general, for β limit define Fβ �
�
γ β Fγ . Otherwise,

given Fβ let Aβ �
�
tU P B : Fβ X U � Au, and Bβ �

�
tU P B : Fβ X U � Bu.

Note that Aβ XBβ X Fβ � ∅. Again, assuming Fβ � ∅, at least one of Aβ , Bβ is
non-empty. Let Fβ�1 � Fβ �Aβ , Fβ�2 � Fβ � pAβ YBβq.

For some least countable ordinal δ we have that Fδ � ∅. Fix x P X, and let
α be least such that x R Fα. We claim that x P A iff α is odd. Since we took
intersections at limit ordinals, it make sense to let β be the largest even ordinal
such that x P Fβ . So either x P Fβ�Fβ�1 � FβXAβ or x P Fβ1

�Fβ�2 � FβXBβ .
In the first case we have x P A and α � β � 1 is odd. In the second case we have
x R A and α � β � 2 is even. This shows that A is δ-Π0

1. �

We will extend theorem 1.33 later to higher levels of the Borel hierarchy.
We next present a useful notational shorthand for describing sets and set opera-

tions in Polish spaces, called logical notation. The idea is to use the terminology of
first order logic in describing sets and set operations. Although only a notational
change, it turns out to be very useful, especially since it is intrinsically tied to the
Borel and projective hierarchies (to be defined shortly). If X is a Polish space and
P � X, we regard P as a property or unary relation of the set X. Thus, instead
of “x P P” we write P pxq, and instead of “x R P” we write  P pxq. Similarly, we
write P pxq_Qpxq in place of x P pP YQq and P pxq^Qpxq in place of x P pP XQq.
Countable unions and intersections become correspond to existential and univer-
sal quantification over the natural numbers respectively. To be specific, suppose
P �

�
n Pn. Define Q � X � ω by Qpx, nq Ø px P Pnq. Then P pxq Ø Dn Qpx, nq.

More generally, we make the following definition.

Definition 1.34. Let Γ be a pointclass, and X, Y Polish spaces. The pointclass
DY Γ is defined by: A � X is in DY Γ if there is a B P X � Y , B P Γ, such that
Apxq Ø Dy P Y Bpx, yq. Likewise A P @Y Γ if there is a B P X � Y , B P Γ, such
that Apxq Ø @y P Y Bpx, yq.

Note that A P DY Γ iff A is the projection onto X of a Γ set in X � Y . Thus,
in non-logical notation we would describe DY Γ as the collection of projections of Γ
sets (from sets in X � Y ).

The next exercise makes precise our comments above about countable unions
and intersections.

Exercise 24. Let Γ be a (boldface) pointclass. Show that any set in DωΓ is a
countable union of sets in Γ. Show that the converse is not true in general (hint:
consider Γ �

�
n Σ0

n). Show that the converse also holds provided the countable
join of sets in Γ is in Γ. Given sets Pn � X, their join is the set P px, nq Ø px P Pnq.
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According to the next exercise, in quantifying over Polish spaces we only need
to consider the cases Y � ω and Y � ωω.

Exercise 25. Let Γ be a pointclass and X, Y Polish spaces. Show that if A � X is

in DY Γ, then A P Dω
ω

Γ. (hint: consider a continuous map π : X � ωω
onto
ÝÑ X � Y ).

The next definition is of fundamental importance in the theory of pointclasses.

Definition 1.35. Let Γ be a pointclass, and X, Z be Polish spaces. We say
U � Z � X is universal for ΓæX if U P Γ and for every A P ΓæX, A occurs as a
section of U . That is, Dz P Z pA � Uzq, where Uz

.
� tx P X : pz, xq P Uu is the

z-section of U .

The next lemma provides universal sets at the bottom level. These will then
propagate to higher pointclasses.

Lemma 1.36. For any Polish space X there is a set U � 2ω�X which is universal
for Σ0

1æX.

Proof. Fix a base B � tU0, U1, . . . u for X. Define

pz, xq P U Ø Dn P ω pzpnq � 1^ x P Unq.

Clearly, every open set in X is a section of U . Also, U � 2ω �X is open. To see
this, suppose pz, xq P U . Fix n so that zpnq � 1 and x P Un. Then V

.
� tz P

2ω : zpnq � 1u is a basic open set in 2ω and pz, xq P V � Un � U . �

The next lemma propagates universal sets under complements, countable unions,
and countable intersections.

Lemma 1.37. Let Γ be a pointclass, and U � Z � X a universal set for ΓæX.
then U 1 .� Z �X � U is universal for Γ̌æX.

Suppose Γn are pointclasses and Un � 2ω � X (or ωω � X) is universal for
ΓnæX. Define Upz, xq Ø Dn P ω Unppzqn, xq. Then U is universal for

�
ω ΓnæX.

Similarly, Upz, xq Ø @n P ω Unppzqn, xq is universal for
�
ω ΓnæX.

Proof. The first claim is easily checked. Suppose now Γn, Un are as above and define
Upz, xq Ø Dn P ω Unppzqn, xq. If A P

�
ω Γn, write A �

�
nAn with An P Γn. Fix

for each n a zn such that @x pAnpxq Ø Unpzn, xqq. Let z � xz0, z1, . . . y. Clearly,

Upz, xq Ø Dn P ω Unppzqn, xq Ø Dn P ω Unpzn, xq Ø Dn px P Anq.

Also, U �
�
n Cn, where Cnpz, xq Ø Unppzqn, xq. Since z ÞÑ pzqn is continuous and

Γn is a pointclass, Cn P Γn. The argument for
�
ω Γn is similar. �

As a corollary of lemma 1.36 and 1.37 we have the following theorem.

Theorem 1.38. Let X be a Polish space. Then for any α   ω1 there is a universal
set U � 2ω �X for Σ0

αæX and likewise a universal set for Π0
αæX.

An important consequence of having universal sets is non-selfduality, according
to the next result.

Theorem 1.39. Suppose Γ is a pointclass having a universal set U � X �X (for
ΓæX). Then U R Γ̌. In particular, Γ � Γ̌ (i.e., Γ is not self-dual).

Proof. Suppose U � X � X is in Γ and is universal for ΓæX. Suppose U P Γ̌.
Define Apxq Ø  Upx, xq. Since x ÞÑ px, xq is continuous, A P Γ. But then A � Uz
for some fixed z P X. Then, Apzq Ø Upz, zq Ø  Apzq, a contradiction. �
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The last proof was just the usual Cantor diagonal argument.
As a corollary we have the following theorem, which says that in any uncountable

Polish space there is no collapsing in the Borel hierarchy.

Theorem 1.40. Let X be an uncountable Polish space. Then for every α   ω1

there is a set A P Σ0
α �Π0

α. There is also for each α ¡ 1 a set in ∆0
α �

�
β α Σ0

β.

Proof. Let X be an uncountable Polish space. The claim is clear for α � 1 so
assume α ¡ 1. (If every open set were closed, every point, and hence every subset
of X would be open, giving X the discrete topology. This contradicts X being
uncountable and separable.) From lemma 1.25 there is subspace C � X homeo-
morphic to 2ω. Since 2ω is compact, C is closed in X. From theorems 1.38 and 1.39
there is an A � C which is Σ0

α but not Π0
α in the subspace topology on C. Thus

in X, A is the intersection of a Σ0
α and a closed set, and hence is Σ0

α (as α ¡ 1).
If A were Π0

α in X, then A � AX C would also be Π0
α in the relative topology on

C, a contradiction. This proves the first claim.
For the second claim, suppose now α ¥ 2. As above, it again suffices to show

there is an A P 2ω which is ∆0
α but not in Σ0

β for any β   α. If α is a successor, say

α � β � 1, then let A � 2ω with A P Σ0
β �Π0

β , and let B � 2ω with B P Π0
β �Σ0

β .
Let then C � 2ω be the join of A and B, that is,

Cpxq Ø pxp0q � 0^ x1 P Aq _ pxp0q � 1^ x1 P Bq,

where x1piq � xpi � 1q for all i. Clearly, C P ∆0
α (by closure of ∆0

α under finite
unions, intersections). Also, A R Σ0

β , as then B � tx : 1ax P Cu would be in

Σ0
β . �

Thus, in the picture of the Borel hierarchy shown earlier, all of the containments
shown are proper (assuming X is uncountable Polish).

The next two exercises analyze the Borel sets in an ordinal space r0, αq.

Exercise 26. Let α P On with cofpαq ¡ ω. Show that if B � r0, αq is Borel, and
C � r0, αq is c.u.b. (closed and unbounded), then there is a c.u.b. D � C such that
B either contains or omits a tail of D.

Exercise 27. Show that in any ordinal space X � r0, αq, every Borel set is ∆0
4.

Show that in X � r0, ω1q every Borel set is ∆0
3. [hint: It is enough to show it is Σ0

4.
Show this by induction on α. For α successor or limit with cofpαq � ω, the result
follows easily by induction. If cofpαq ¡ ω, let C � α be c.u.b. in α of order-type
cofpαq. Let B � r0, αq be Borel. By the previous exercise B contains or omits a tail
of a c.u.b. D � C. Say D � tiγuγ cofpαq is an increasing, continuous enumeration

of D. Consider each of the open sets Iγ � piγ , iγ�1q. By induction B X Iγ is Σ0
4 in

Iγ . Argue that this gives that BX
�
γ Iγ � BX pX �Dq is Σ0

4 in X �D, and thus

is Σ0
4 in X. If B contains a tail of D (the other case is easier), then BXD � F YB1

where F is closed in X and B1 � r0, βq is Borel, for some β   α. By induction B1

is Σ0
4 in r0, βq, which easily gives that B1 is Σ0

4 in X (recall here exercise 13). So,
B is Σ0

4 in X.]

One technique for proving theorems about Borel sets is to change the topology
to make them clopen. The following theorem says that this is possible.
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Theorem 1.41. Let pX, τq be Polish, and A � X a Σ0
α set. Then there is a finer

Polish topology τ 1 � τ such that A is clopen in τ 1. Furthermore, if A is open in τ 1,
then A is Σ0

α�1 is τ .

Moreover, if tAnunPω is a sequence of sets with An P Σ0
αn , then there is a Polish

topology τ 1 � τ in which all of the An are clopen and such that every open set in
τ 1 is Σ0

α in τ , where α � supnpαn � 1q.

Proof. We prove this by induction on α. Let ρ be a complete metric on X giving
the topology τ , and we may assume ρ ¤ 1. Suppose first A P Σ0

1. Define

ρ1px, yq �

$'&
'%

mint1, ρpx, yq � |fpxq � fpyq|u if x, y P A

1 if x P A, y R A or vice-versa

ρpx, yq if x, y P X �A,

where for x P A, fpxq � 1
ρpx,X�Aq . It is straightforward to show that ρ1 is a metric

on X. Also, ρ ¤ ρ1 so τ � τ 1
.
� the topology given by ρ1. To see ρ1 is complete,

suppose txnu is ρ1-Cauchy. So, txnu is ρ-Cauchy. So, for some x P X, xn Ñ x.
We also clearly have that for large enough n that xn P A, or for large enough n
that xn R A. In the latter case we have x P X � A, and ρ1px, xnq � ρpx, xnq Ñ 0.
In the first case we have (as in the proof of Alexandroff’s theorem) that there is
an ε ¡ 0 such that @n ρpxn, X � Aq ¥ ε. Since tz : ρpz,X � Aq ¥ εu is closed,
ρpx,X � Aq ¥ ε. Since f is continuous on A, this shows that ρ1pxn, xq Ñ 0. This
shows ρ1 is complete. τ 1 is also second countable, since if B is a countable base for
τ , it is easy to see that B Y tB X pX � Aqu is a base for τ 1. So, τ 1 � τ and τ 1

is also a Polish topology on X. Next observe that X � A is also open in τ 1 since
if x P X � A and ε   1, then Bρ1px, εq � X � A. So, A is clopen in τ 1. Finally,
suppose U is open in τ 1. As we observed above, U is union of sets each of which
is either in B, the base for τ , or else of the form B X pX � Aq for B P B. So, U is
countable union of sets which are ∆0

2 in τ , and hence is Σ0
2 in τ .

Suppose now A P Σ0
α, and the theorem holds for all β   α. Write A �

�
nAn

where An P Π0
αn , and αn   α. Let ρn be a complete, separable metric (i.e., the

resulting topology τn is separable) on X such that An is clopen in τn, and every τn
open set is Σ0

αn�1 in τ . Without loss of generality we may assume ρn ¤ 1 for each
n. Define

ρ1px, yq �
¸
n

1

2n
ρnpx, yq.

It is straightforward to check (as in Alexandroff’s theorem) that ρ1 is a complete
metric on X. Clearly, τ � τ 1 again. Also, τ 1 is at least as fine as each τn (the
topology given by ρn), so each An is clopen in τ 1. Thus, A is open in τ 1. Also,
τ 1 � supn τn, so if Bn is a countable base for τn, then tB1 X � � � X Bk : B1 P
B1, . . . , Bk P Bku is a base for τ 1. So, τ 1 is separable. This observation also shows
that any open set U in τ 1 is a countable union of sets each of which is Σ0

αn�1 for

some n. If α � β � 1, then U is a countable union of sets each of which is Σ0
α in τ ,

and hence U is Σ0
α in τ . Likewise, if α is limit we get U is Σ0

α in τ . By the first
part of the proof, we may then enlarge τ 1 to τ2, also a Polish topology making A
clopen in τ2. Also, every set open in τ2 is Σ0

2 in τ 1. Thus, every open set in τ2 is
Σ0

2 in τ 1 and thus a countable union of sets which are Π0
α in τ . So, every open set

in τ2 is Σ0
α�1 in τ .
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Given a sequence tAnunPω with each An P Σ0
αn , let for each n, ρn give a Polish

topology τn � τ which makes An clopen and such that every open set in τn is
Σ0
αn�1 in τ . We may assume ρn ¤ 1 for all n. Let ρ1 �

°
n

1
2n ρn. As above, ρ1

generates a Polish topology τ 1 � τn. Thus, all of the An are clopen in τ 1. Also as
before, a base for τ 1 consists of sets of the form B1 X � � � XBk where Bi is open in
τi. Each such set lies in Σ0

α where α � supnpαn � 1q. Hence, every open set in τ 1

is Σ0
α as well. �

Theorem 1.41 has many applications in the study of Borel sets. The next result
gives one.

Corollary 1.42. Every Borel set B in a Polish space X is either countable or
contains a perfect set (hence has size c).

Proof. Let B be Borel in the Polish space pX, τq. Let τ 1 � τ be Polish such that B
is clopen in τ 1, so B itself is a Polish space in the subspace topology from τ 1. But
every Polish space is either countable or contains a perfect set (in the τ 1 topology).
In the later case, B in fact contains a homeomorphic copy of 2ω, so B contains a
set C which is compact and perfect in the τ 1 topology. So, C is compact in the τ
topology, hence closed in τ . Since no point of C is isolated in the τ 1 topology, the
same holds for the coarser topology τ . �

We will extend corollary 1.42 to higher level sets later.
As another application of the method of changing topologies we prove the fol-

lowing generalization of theorem 1.33. Recall from definition 1.32 the difference
operator D.

Theorem 1.43. For every countable ordinal α, a set is ∆0
α iff there is a sequence

tAγuγ δ with δ   ω1 and each Aγ in
�
β α Π0

β such that A � DptAγuq.

Proof. An easy computation as in theorem 1.33 shows that if each Aγ P
�
β α Π0

β ,

then DptAγuq P ∆0
α. Suppose now that A P ∆0

α. Consider first the case where α
is a successor, say α � α1 � 1. Write A �

�
nAn, B

.
� X � A �

�
nBn, where

each An, Bn P Π0
α1 . Write also for each n, An �

�
mAn,m, Bn �

�
mBn,m, where

each An,m, Bn,m is in Π0
η for some η   α1. From theorem 1.41 there is a Polish

topology τ 1 � τ making all of the An,m, Bn,m clopen, and such that every τ 1 open

set is Σ0
α1 . A and B are both Σ0

2 in τ 1 and so A is ∆0
2 in τ 1. From theorem 1.33

there is a δ   ω1 and a sequence of τ 1 closed sets tAγuγ δ such that A � DptAγuq.
Each Aγ is Π0

α1 , so we are done in this case.
If α is a limit, the result is easier, and we may in fact take the sequence of sets

to have length ω. To see this, write again A �
�
nAn, B

.
� X �A �

�
nBn where

each An, Bn P
�
β α Π0

β . Let C0 � X, C1 � X �A0, and C2 � X � pA0 YB0q. In

general, if C2k is defined, let C2k�1 � C2k � Ak, C2k�2 � C2k � pAk Y Bkq. Each
of the Cn lies in

�
β α Π0

β , and A � DptCnuq. �

We next introduce a few general properties of pointclasses. When Γ is a (bold-
face) pointclass, we let ∆pΓq � ΓX Γ̌, so ∆pΓq is a selfdual pointclass. When there
is no danger of confusion, we simply write ∆.

Definition 1.44. We say a pointclass Γ has the separation property if whenever
A, B are disjoint Γ sets, then they can be separated by a ∆ set, that is, there is a
C P ∆ such that A � C and B X C � ∅.
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Definition 1.45. We say a pointclass Γ has the reduction property if whenever A,
B are Γ sets, then there are Γ sets A1 � A, B1 � B with A1 Y B1 � A Y B and
A1 XB1 � ∅.

We write seppΓq and redpΓq for the reduction and separation properties of Γ
respectively.

The reduction property is the stronger of the two properties in the following
sense.

Lemma 1.46. For any pointclass Γ, redpΓq Ñ seppΓ̌q.

Proof. Assume redpΓq, and let A, B be disjoint sets in Γ̌. Consider X �A, X �B.
These are Γ sets with pX � Aq Y pX � Bq � X. Let C � X � A, D � X � B be
disjoint Γ sets with C YD � pX � Aq Y pX � Bq � X. Thus, D � X � C and so
C, D P ∆. Then A � D � pX �Bq. �

The concepts of prewellordering and the prewellordering property play a central
role in the subject. Recall that a binary relation   is wellfounded if for every non-
empty A � X there is a  -minimal element of A (i.e., Da P A @b P A  pb   aq).

Definition 1.47. A prewellordering ¨ on a set X is a binary relation which is
reflexive (x ¨ x), connected (x ¨ y or y ¨ x), transitive (x ¨ y and y ¨ z implies
x ¨ z), and such that the strict part   is wellfounded. The strict part is defined
by: x   y iff x ¨ y and  py ¨ xq.

Given a prewellordering¨ onX, this defines a corresponding equivalence relation
x � y iff x ¨ y and y ¨ x. The prewellordering ¨ can thus be identified with a
wellordering of these equivalence classes (More precisely, set rxs   rys iff x   y.
This is easily welldefined.) Prewellorderings on a set A � X can also be identified
with norms on the set A:

Definition 1.48. A norm on a set A � X is a map φ : A Ñ On. We say φ is
regular if φ is onto an ordinal.

Given a prewellordering ¨ on A, we have the corresponding norm φpxq � |x| ,
defined for x P A. Conversely, given the norm φ on A, we have the prewellordering
of A given by x ¨ y iff φpxq ¤ φpyq.

Note that if   is a prewellordering on a set A, and ¨ lies in a pointclass Γ, then
¨ gives a way of writing A as an increasing union of Γ sets. Namely, for each x P A,
ty : y ¨ xu is in Γ. It is useful to strengthen this requirement, which gives us the
notion of a Γ-norm.

Definition 1.49 (Γ-norm). Let Γ be a pointclass, and A � X. We say a norm φ
on A is a Γ-norm if the relations  �, ¤� are in Γ, where

x  � y Ø x P A^ py R A_ py P A^ φpxq   φpyqqq

x ¤� y Ø x P A^ py R A_ py P A^ φpxq ¤ φpyqqq

Note that if φ is a Γ-norm on A, then this writes A as an increasing union of
sets which are in ∆, that is, for any y P A, tx P A : φpxq ¤ φpyqu � tx : x ¤� yu �
tx :  py  � xu. So, a Γ-norm is a way of writing A as an increasing union of sets
which are “uniformly” in ∆.
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Note that if φ is a Γ-norm on A, then its regularization φ1 (i.e., the transitive
collapse of φ) has the same norm relations, and so also is a Γ-norm. Thus, there is
generally no harm in assuming the norm is regular.

There is another definition of Γ-norm frequently used, which we give in the next
definition.

Definition 1.50 (Alternate definition of Γ-norm). Let Γ be a pointclass. We say
φ is a Γ-norm on A if there are relations ¤Γ P Γ and ¤Γ̌ P Γ̌ such that for all y P A
and all x P X,

px P A^ φpxq ¤ φpyqq Ø x ¤Γ y Ø x ¤Γ̌ y.

The next lemma shows that in most cases the two definitions of Γ-norm are
equivalent.

Lemma 1.51. For any pointclass Γ, if φ is a Γ-norm according to definition 1.49,
then φ is a Γ-norm according to definition 1.50. If Γ is closed under ^, _, then
definition 1.50 implies definition 1.49 as well.

Proof. Suppose φ satisfies definition 1.49. Define x ¤Γ y iff x ¤� y, and x ¤Γ̌ y iff

 py  � xq. Clearly, ¤Γ P Γ and ¤Γ̌ P Γ̌. If y P A, then clearly tx : x ¤Γ yu � tx P
A : φpxq ¤ φpyqu. Also, since y P A we have that

tx : x ¤Γ̌ yqu � tx :  py  � xqu

� tx :  py P A^ px R A_ φpyq   φpxqqqu

� tx : x P A^ φpxq ¤ φpyqu.

Suppose next that φ is a Γ-norm according to definition 1.50, and assume now
Γ is closed under ^, _. Then x  � y iff x P A ^ py R A _ φpxq   φpyqq iff
px P A ^  py ¤Γ̌ xqq. The last equivalence follows since for x P A, y ¤Γ̌ x iff y P
A^φpyq ¤ φpxq. This shows  � P Γ. Also x ¤� y iff x P A^py R A_φpxq ¤ φpyqq
iff x P A^ py ¤Γ̌ xq _ px ¤Γ y ^ y ¤Γ xq. This shows ¤� P Γ. �

Definition 1.52. We say a pointclass Γ has the prewellordering property if every
A P Γ admits a Γ-norm.

We write pwopΓq to say Γ has the prewellordering property.

Lemma 1.53. Suppose pwopΓq and Γ is closed under _ and intersections with
clopen sets. Then redpΓq.

Proof. Let A, B P Γ. Define C � X � ω by Cpx, nq Ø pn � 0 ^ x P Aq _ pn �
1 ^ x P Bq. From our closure assumptions, C P Γ. Let φ be a Γ-norm on C,
and ¤�,  � the corresponding relations. Define A1pxq Ø px, 0q  � px, 1q and
B1pxq Ø px, 1q ¤� px, 0q. Then A1, B1 are in Γ, A1 � A, B1 � B, A1 XB1 � ∅, and
A1 YB1 � AYB. �

Theorem 1.54. For all α ¡ 1, pwopΣ0
αq. If X is 0-dimensional, then also

pwopΣ0
1q.

Proof. Let A � X be Σ0
α, say A �

�
nAn where each An P Π0

βn , βn   α. Let
φ be the corresponding norm on A, that is, φpxq � the least n so that x P An.
Then x  � y iff Dn px P An ^ @m   n px R Amq ^ y R Anq. The expression
inside parentheses defines a ∆0

α set, and so  � is Σ0
α. A similar computation shows

¤� P Σ0
α. If X is 0-dimensional, and A P Σ0

1, write A as an increasing union of
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clopen sets, and a similar computation shows the corresponding norm relations ¤�,
 � are both Σ0

1. �

Corollary 1.55. For all α ¡ 1, redpΣ0
αq and seppΠ0

αq. If X is 0-dimensional, this
holds also for α � 1.

The prewellordering property, and a stronger property called the scale prop-
erty (defined later) are both closely related to the notion of uniformizations. A
uniformization of A � X � Y is essentially a choice function for the relation A.

Definition 1.56. Let A � X � Y . A uniformization A1 of A is a set A1 � A with
dompA1q � dompAq and such that @x P dompAq D!y A1px, yq. We say a pointclass
Γ has the uniformization property if every A � X � Y in Γ has a uniformization
A1 in Γ. We say Γ has the number uniformization property if every A � X � ω in
Γ has a uniformization A1 in Γ.

The prewellordering property is related to the number uniformization property,
and the stronger scale property is related to the (full) uniformization property. The
following lemma makes this first connection.

Lemma 1.57. If Γ is closed under @ω and has the prewellordering property, then
Γ has the number uniformization property.

Proof. Let A � X � ω be in Γ. Define

A1px, nq Ø @m ppx, nq ¤� px,mqq ^ @m pm � nÑ px, nq  � pn,mqq.

From closure of Γ under @ω we see that A1 P Γ. Clearly, A1 is a uniformization of
A. �

The hypothesis of lemma 1.57 does not apply to the pointclasses Σ0
α, but we see

below that (for α ¡ 1) they nevertheless have the number uniformization property.
Number uniformization can also be thought of as a kind of generalized reduction

property, according to the next definition.

Definition 1.58. We say Γ has the ω-reduction property if for every sequence
tAnunPω with each An P Γ, there are sets Bn � An with Bn P Γ satisfying Bn X
Bm � ∅ if n � m and

�
nBn �

�
nAn.

We say Γ has the ω-separation property if for each sequence of pairwise disjoint
sets tAnunPω with each An P Γ, there is a sequence tCnunPω of ∆ sets with An � Cn
for all n, and

�
n Cn � ∅.

Lemma 1.59. If Γ is a pointclass closed under ω-joins, then Γ has the number
uniformization property iff Γ has the ω-reduction property.

Proof. First suppose Γ has the ω-reduction property. Let A � X � ω be in Γ.
Define An � X by Anpxq Ø Apx, nq. Since x ÞÑ px, nq is continuous, each An is
in Γ. Let tBnu be Γ sets reducing the An. Define A1px, nq Ø x P Bn. Since Γ is
closed under ω-joins, A1 P Γ. Since

�
nBn �

�
nAn, dompA1q � dompAq. Since

the Bn are pairwise disjoint, A1 is the graph of a function.
Next suppose Γ has the number uniformization property. Let tAnunPω be a

sequence of Γ sets. Define A � X � ω by Apx, nq Ø x P An. Since Γ is closed
under ω-joins, A P Γ. Let A1 � A be a uniformization of A. Define Bn by
Bnpxq Ø px, nq P A1. So, each Bn is in Γ. Since A1 is a uniformization of A, the
Bn are pairwise disjoint and union to

�
nAn. Clearly, Bn � An. �
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Exercise 28. Show that if Γ has the ω-reduction property and is closed under
countable unions then Γ̌ has the ω-separation property. [hint: Given pairwise
disjoint An P Γ̌, apply ω-reduction to the sequence Bn � X �An.]

Exercise 29. Show that if Γ has the separation property and is closed under count-
able unions and finite intersections, then Γ has the ω-separation property. [hint:
Given pairwise disjoint sets An P Γ, apply first separation to A1 and

�
n¡1An.

Continue inductively.]

Next we verify that for α ¡ 1, each Σ0
α class has the number uniformization

property.

Theorem 1.60. For all α ¡ 1, Σ0
α has the number uniformization property.

Proof. Suppose A � X � ω is in Σ0
α. Write A �

�
nAn, where each An P Π0

βn for
βn   α. Define

A1px, nq Ø Dm ppx, nq P Am ^ @k   xn,my px, pkq0q R Apkq1q.

The expression inside the parentheses defines a ∆0
α set, and thus A1 P Σ0

α. Clearly,
A1 is a uniformization of A. �

The following theorem summarizes our pointclass discussions within the Borel
hierarchy.

Theorem 1.61. For any uncountable Polish space X, all of the containments in the
Borel hierarchy are proper. For all α ¡ 1, each Σ0

αæX class has the prewellordering,
reduction, and number uniformization properties, and each of the Π0

αæX classes has
the separation property. If X is 0-dimensional, this holds also for α � 1.

As an application of these techniques we next present the Lebesgue–Hausdorff
theorem analyzing Borel functions between Polish spaces. This theorem connects
the notions of Γ-measurability defined earlier and the notion of a function having
a certain Baire class, which we define below.

First, we get another representation of the ∆0
α sets. Recall the notions of lim

sup and lim inf for a sequence of sets:

Definition 1.62. Let tAnunPω be a sequence of subsets of a set X. Then

lim sup
n
An �

£
n

¤
m¥n

Am

lim inf
n
An �

¤
n

£
m¥n

Am

If lim supnAn � lim infnAn, we say that limnAn exists and set

lim
n
An � lim sup

n
An � lim inf

n
An.

Thus, x P lim supnAn iff x lies in infinitely many of the Am, and x P lim infnAn
iff x lies in a tail of the Am. Clearly, lim infnAn � lim supnAn. Saying that
limnAn exists is equivalent to saying that for every x there is either a tail of m for
which x P Am, or a tail of m for which x R Am. In this case, limnAn is the set of
x which are eventually in the Am.
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Lemma 1.63. Let X be Polish, and α ¡ 2 a countable ordinal. If α � β � 1 is
a successor, then A � X is ∆0

α iff there is a sequence tAnunPω of sets, with each
An P ∆0

β for such that A � limAn. If α is a limit, then A � X is ∆0
α�1 iff there

is a sequence tAnunPω of sets, with each An P ∆0
βb

for some βn   α such that

A � limAn. So, in either case every ∆0
α set is a limit of sets in

�
β α ∆0

β. If X
is 0-dimensional, this holds also for α � 2.

Proof. Suppose first α � β�1 is a successor. If A � limnÑ8An with each An P ∆0
β ,

then x P A Ø Dn @m ¥ n x P Am Ø @n Dm ¥ n x P Am. This first equivalence
shows A is Σ0

α, and second shows A is Π0
α. Suppose next that A P ∆0

α. Since
both A and B

.
� X �A are Σ0

α, write A �
�
nAn, B �

�
nBn with An, Bn P Π0

β .

Clearly, AnXBn � ∅, and by seppΠ0
βq let Cn P ∆0

β with An � Cn, CnXBn � ∅. If
x P A, then x is eventually in the An, and hence eventually in the Cn. If x R A, then
x is eventually in the Bn, and hence eventually not in the Cn. So, A � limn Cn. If
α � 2 the argument is similar, using seppΠ0

1q.
Suppose next α is a limit. If A � limnAn where each An P

�
β α ∆0

β , then a

computation similar to the one above shows that A P ∆0
α�1. Suppose that A P

∆0
α�1. Again let B � X �A and write A �

�
nAn, B �

�
nBn, increasing unions

with An, Bn P Π0
α. Write each An, Bn as a decreasing intersection An �

�
mA

m
n ,

Bn �
�
mB

m
n where each Amn , Bmn are in

�
β α ∆0

β . Define

x P Cn Ø Dn1 ¤ n r@m ¤ n x P Amn1 ^ Dm ¤ n x R Bmn1

^ @n2   n1 Dm ¤ n px R Amn2 ^ x R B
m
n2qs

Each Cn is clearly a Boolean combination of sets in
�
β α ∆0

β , and hence Cn P�
β α ∆0

β . We claim that A � limn Cn. To see this, suppose first that x P A. Let
n0 be least such that x P An0 , and so x P Amn0

for all m. Also, x R Bn0 . Let n1 ¥ n0

be such that x R Bn1
n0

. For all n   n0 we have x R An and x R Bn, so may take an
n2 ¥ n1 large enough so that for all n   n0, x R pAn2

n YBn2
n q. Then, x P Cn for all

n ¥ n2 (using n0 as a witness to the first existential quantifier in the definition of
Cn). Suppose next that x R A. Let n0 be least such that x P Bn0 . So, for all m,
x P Bmn0

. Let n1 ¥ n0 be such that x R An1
n0

, and let n2 ¥ n1 be large enough so
that for all n   n0, x R pAn2

n Y Bn2
n q. Then for all n ¥ n2, x R Cn. For suppose

n1 ¤ n witnessed the existential statement in the definition of Cn. We cannot have
n1   n0 as the first conjunct in the square brackets would fail from the choice of
n2. We cannot have n1 � n0 as the second conjunct would then fail as x P Bmn0

for all m. We also cannot have n1 ¡ n0 as then the third conjunct would fail since
x P Bmn0

for all m. This shows the claim and completes the proof. �

We now introduce the Baire hierarchy of functions. The classical case is for
functions f : Rstd Ñ Rstd. In this case, a function is said to be of Baire class 1 if
it is a pointwise limit of continuous functions. In general, it said to be of Baire
class α if it is a pointwise limit of functions, each of Baire class less than α. When
considering Polish spaces other than Rstd, however, we must modify the definition
of the Baire hierarchy at the bottom level slightly to get our main result. So, we
take the following definition as our official definition of the Baire hierarchy for any
Polish space (we see below that for Rstd this definition is equivalent to the one just
stated).
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Definition 1.64. Let X, Y be Polish spaces. We say f : X Ñ Y is of Baire class
1 if it is Σ0

2-measurable. For α ¡ 1, we say f is of Baire class α if it is a pointwise
limit of functions each of which has Baire class less than α.

Exercise 30. Show that if f, g : X Ñ R are Baire class α, then f � g is also Baire
class α. Show this also for f , g being Σ0

α measurable.

The nest theorem is the general statement of the Lebesgue–Hausdorff theorem.

Theorem 1.65. Let X, Y be Polish spaces, and α ¥ 1 a countable ordinal. Then
f : X Ñ Y is Baire class α iff f is Σ0

α�1-measurable.

Proof. The theorem is true by definition for α � 1, so assume α ¡ 1. Suppose first
that f : X Ñ Y is of Baire class α. Let f � limn fn where each fn is of Baire class
βn   α. By induction, each fn is Σ0

βn�1-measurable, and hence Σ0
α measurable.

Let U � Y be open. Write U �
�
Vn where each Vn is an open set with Vn � U .

Then,

x P f�1pUq Ø Dk Dn @m ¥ n pfmpxq P Vkq.

Since tx : fmpxq P Vku is Π0
βm , this shows that f�1pUq P Σ0

α�1.

Suppose next that f is Σ0
α�1-measurable, and we show f is of Baire class α.

Consider first the following special case. Suppose C � ty0, y1, . . . u � Y is countable
and A0, A1, . . . are pairwise disjoint ∆0

α�1 sets which partition X, and let f be the
function which takes value yn on An. For each n, by lemma 1.63 let Amn be a
sequence of sets such that An � limmA

m
n , and each Amn P ∆0

α if α is a successor
and in

�
β α ∆0

β if α is limit. Define for each m the function fm by fmpxq � yn
where n is the least integer ¤ m such that x P Amn , if one exists, and fmpxq � y0

otherwise. It is easy to check that fm is ∆0
α-measurable for α successor, and ∆0

β

measurable for some β   α if α is a limit. In either case, fm has Baire class   α.
Also, f � limm fm, since if n is such that x P An, then for large enough m, n will
also be least such that x P Amn . Thus, f is Baire class α.

We return now to the general case. For each εn �
1

2n , let Cn � ty
0
n, y

1
n, . . . u be

an εn net in Y (i.e., every point in Y is within εn of a point in Cn). Let

Ain � tx P X : ρpfpxq, yinq   εnu.

So, each Ain is Σ0
α�1, and for each n, the tAinuiPω partition X. By ω-reduction, let

Bin � Ain be Σ0
α�1 and such that tBinuiPω are pairwise disjoint and partition X. It

follows that each Bin is ∆0
α�1 (its complement is a countable union of the Bjn for

j � i). For each n, let gn be the function which is equal to yin on Bin. Let gmn be
the sequence of functions constructed as in the special case considered above. So,
each gmn is of Baire class   α and limm g

m
n � gn. Define the function fn as follows.

Consider the sequence of points

gn0 pxq, g
n
1 pxq, . . . , g

n
npxq.

Let an0 pxq � gn0 pxq, and define inductively, ani�1pxq � gni�1pxq if ρpgni�1pxq, a
n
i pxqq  

2εn, and ani�1pxq � ani pxq otherwise. Then set fnpxq � annpxq. Since each gni is

∆0
α-measurable (if α is a limit then it is ∆0

β-measurable for some β   α), and
each ani is a Boolean combination of the gnj for j ¤ i (recall here that the range of

each gni is finite, and the preimage of every point is ∆0
α), it follows that fn is also

∆0
α-measurable (∆0

β for β   α if α is a limit).
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Finally, we show that limn fn � f . Let x P X, and let i0, i1, . . . be such that
x P Bi00 , Bi11 , . . . . For every k and large enough n we have that gnk pxq � yikk .
So for large enough n we will have that for all j   k that ρpgnj pxq, g

n
j�1pxqq �

ρpy
ij
j , y

ij�1

j�1 q   2εj since ρpy
ij
j , fpxqq   εj as x P B

ij
j . Thus, for all k we have

that for all large enough n that ank pxq � gnk pxq � yikk , and thus ρpfnpxq, fpxqq ¤
ρpfpxq, ank pxqq � ρpa

n
k pxq, fnpxqq   εk �

°n
j�k�1 εj ¤ 2εk. Thus, limn fn � f . �

In definition 1.64 we defined a function to have Baire class 1 if it is Σ0
2 measurable.

This, of course, made the α � 1 case of theorem 1.65 trivial, but we are still
left with the question of whether every Σ0

2 measurable function is the pointwise
limit of a sequence of continuous functions. The argument as in the easy direction
of theorem 1.65 shows that every pointwise limit of continuous functions is Σ0

2

measurable. The other direction is not true in general. For example, if X � R
and Y � t0, 1u, and f : X Ñ Y is the characteristic function of a non-trivial ∆0

2

set, then f is Σ0
2 measurable, but f is not the limit of a sequence of continuous

functions (every continuous function from X to Y is constant). However, in the
case of classical interest, that is when X � Y � R, this direction is also true. In
fact we have the following.

Theorem 1.66. If either X is 0-dimensional or Y � R, then every f : X Ñ Y
which is Σ0

2 measurable is the pointwise limit of a sequence of continuous functions.

Proof. If X is 0-dimensional, the proof of theorem 1.65 still works, since in this case
every ∆0

2 set is the limit of a sequence of ∆0
1 sets. So, suppose Y � R. Suppose

that we know the result for functions from X Ñ p0, 1q. Let f : X Ñ R be Σ0
2

measurable. Let π : R Ñ p0, 1q be a homeomorphism. Let f 1 � π � f : x Ñ p0, 1q.
Let gn : X Ñ R be continuous with f 1 � limn gn. Let

g1npxq �

$'&
'%

1� 1
n if gnpxq ¡ 1� 1

n

gnpxq if 1
n ¤ gnpxq ¤ 1� 1

n
1
n if gnpxq  

1
n

then g1n : x Ñ p0, 1q is also continuous and f 1 � limn g
1
n. Let fn � π�1 � g1n. Then

fn : X Ñ R is continuous and f � limn fn.
So, we may assume f : X Ñ p0, 1q. As in the proof of theorem 1.65, let for each

εn �
1

2n Cn � ty
0
n, y

1
n, . . . , y

k
nu be a (finite) εn net in p0, 1q. Define the Ain and Bin

as before. Also as before, let gn � yin on Bin. Let h0 � g0, and hi � gi � gi�1 for
i ¡ 0. Clearly |hi| ¤

1
2i�2 . Also, f �

°8
i�0 hi. Note that each hi takes on only

finitely many values, decided by a ∆0
2 partition of X. We show in a moment that

each such function hi is a limit of continuous functions. Given this, note that each
hi is then actually a limit of continuous functions, each of which is at most 1

2i�1

in absolute value (by truncating the continuous functions to lie in this range). Say

hi � limj g
j
i where gji is continuous and |gji | ¤

1
2i�2 . Define then fn �

°
gni . It is

straightforward to check that fn is well-defined and f � limn fn.
Finally, suppose B1, . . . , Bk are a partition of X into ∆0

2 sets, and h takes the
constant value yi on Bi. For each i write Bi �

�
k Fk, X�Bi �

�
k Ek as increasing

unions of closed sets. For each k, by Urysohn’s lemma let f ik : X Ñ p0, 1q be such
that f ik is 1 on Fk and 0 on Ek. Let fk �

°
f ik. Each fk is continuous and

limk fk � h. �
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2. Analytic, Co-analytic, And Projective Sets

Recall X, Y denote Polish spaces.

Definition 2.1. A set A � X is Σ1
1, or analytic, if there is a closed set F � X�ωω

such that for all x, Apxq Ø Dy P ωω F px, yq. A set A is Π1
1 or coanalytic if X � A

is Σ1
1. We say A is ∆1

1 if it is both Σ1
1 and Π1

1.

That is, the Σ1
1 sets are the projections of closed sets in X � ωω. If we require

the set F to be closed as we did, then it is important that we use ωω in the second
coordinate rather than say 2ω or R. That is because since 2ω is compact, any closed
set F � X � 2ω will project to a closed set in X. Similarly, since R is σ-compact,
any closed set in X � R will project to a Σ0

2 set in X.
Even with the right definition 2.1 it is perhaps not immediately clear that every

Borel set is analytic. We could have made this trivial by allowing the F in defini-
tion 2.1 to be Borel (which we see shortly gives an equivalent definition), but we
want to have the representation afforded by definition 2.1.

Exercise 31. Show that every Borel set A in a Polish space X is a continuous image
image of a closed set F � ωω (note: a stronger version of this is proved below).
Deduce that every Borel set in a Polish space is Σ1

1. [hint: Prove this by induction
on the Borel rank of A. If A is open or closed, use lemma 1.24. If A �

�
nAn

and An � fnpFnq, define F � ωω by piecing together disjoint copies of the Fn,
and define f on F in the obvious manner. If A �

�
nAn, where An � fnpFnq, let

F � ωω be the set of x such that @n pxqn P Fn and @i, j fippxqiq � fjppxqjq. Show
that F is closed. For x P F , let fpxq � f0ppxq0q.]

Using logical notation we may rephrase the definitions of analytic and coanalytic
by saying Σ1

1 � Dω
ω

Π0
1 and Π1

1 �  Σ1
1. Of course, more precisely we mean

Σ1
1æX � Dω

ω

Π0
1æpX �ω

ωq. This suggests a natural extension of these pointclasses,
which gives the projective hierarchy.

Definition 2.2 (Projective Hierarchy). For any Polish space X and n ¡ 1 we
define Σ1

n � D
ωωΠ1

n�1, Π1
n �  Σ1

n, ∆1
n � Σ1

n XΠ1
n.

For example, a set A � X is Σ1
3 if it of the form Apxq Ø Dy @z Dw F px, y, z, wq,

where F � X � pωωq3 is closed, and all the y, z, w quantifiers range over ωω.
Similarly, A is Π1

3 if it is of the form Apxq Ø @y Dz @w  F px, y, z, wq, where again
F is closed. Thus, a bound for the level of the set A in the projective hierarchy is
obtained by counting quantifier alternations in the logical description of the set.

Lemma 2.3. For any Polish space X, all of the Σ1
n, Π1

n, ∆1
n are pointclasses and

are closed under countable unions and intersections. The pointclass Σ1
n is closed

under existential quantification over Polish spaces, and Π1
n is closed under universal

quantification over Polish spaces. Furthermore, Σ1
n,Π

1
n � ∆1

n�1.

Proof. It follows easily that they are all pointclasses. For example, to see this for
Σ1

1, suppose B � Y is Σ1
1 and f : X Ñ Y is continuous. Let A � f�1pXq. Then

Apxq Ø Bpfpxqq Ø Dz P ωω F pfpxq, zq where F � Y � ωω is closed. Since Π0
1 is a

pointclass, tpx, zq : F pfpxq, zqu is closed, and so A P Σ1
1.

To show Σ1
1 is closed under countable unions, suppose An � X are Σ1

1, and let
Fn � X�ωω be closed such that Anpxq Ø Dy P ωω Fnpx, yq. Define F � X�ωω by
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F px, yq Ø Fyp0qpx, y
1q, where y1pnq � ypn� 1q. F is easily closed. Let A �

�
nAn.

Then Apxq Ø Dy P ωωF px, yq, so A P Σ1
1.

To show Σ1
1 is closed under countable intersections, let An, Fn be as above, and

let A �
�
nAn. Then,

Apxq Ø @n Dy Fnpx, yq

Ø Dy @n Fnpx, pyqnq

Since tpx, yq : @n Fnpx, pyqnqu is closed, this shows that A P Σ1
1.

The proof that Σ1
n, for n ¡ 1, is closed under countable unions and intersections

is almost identical. It follows that all the Σ1
n, Π1

n, ∆1
n classes are closed under

countable unions and intersections.
To see that Σ1

n is closed under DY for any Polish space Y , let B � X � Y be
Σ1
n, and let Apxq Ø Dy P Y Bpx, yq. Let π : ωω Ñ Y be continuous and onto.

Define B1 � X � ωω by B1px, zq Ø Bpx, πpzqq. So, B1 P Σ1
næX � ωω. Write

B1px, zq Ø Dw P ωωCpx, z, wq, where C P Π1
n�1 (we assume n ¡ 1, the case n � 1

being similar). Then

Apxq Ø Dy P Y Bpx, yq

Ø Dz P ωω Bpx, πpzqq

Ø Dz P ωω Dw P ωω Cpx, πpzq, wq

Ø Du P ωω Cpx, πppuq0q, puq1q

Now, tpx, uq : Cpx, πppuq0q, puq1qu is Π1
n�1 and this shows A P Σ1

n. The closure of

Π1
n under @Y follows from this.
The fact that Σ1

n � Π1
n�1 is essentially trivial: if A P Σ1

n then Apxq Ø @y Bpx, yq

where Bpx, yq Ø Apxq. To see that Σ1
n � Σ1

n�1 it suffices by induction to show

that Π0
1 � Π1

1, that is, Σ1
1 contains all the open sets. However Σ1

1 contains all the
Borel sets since Σ1

1 contains all the closed sets and is closed under countable unions
and intersections. This shows Σ1

n � ∆1
n�1 and thus also Π1

n � ∆1
n�1. �

Exercise 32. Suppose Y � X are Polish spaces (Y with subspace topology from
X). Show that a set A � Y is Σ1

næY iff A is Π1
næX, and likewise for Π1

n, ∆1
n.

[hint: Use the fact that Y is a Gδ in X, and thus every set A � Y � ωω is Borel in
Y � ωω iff it is Borel in X � ωω. Use the closure properties of the Σ1

n, Π1
n.]

Exercise 33. Show that if f : X Ñ Y and g : Y Ñ Z are both Σ1
n-measurable

functions, then g � f is also Σ1
n-measurable.

The next lemma records a few simple reformulations of the notion of analytic.

Lemma 2.4. For any Polish space X the following are equivalent.

(1) A � X is analytic.
(2) A � X is the continuous image of a closed set F � ωω.
(3) A � X is the image of a Borel set B � Y in a Polish space Y by a Borel

function f : Y Ñ X.

Proof. Clearly (1) ñ (2) ñ (3). So, suppose B � Y is Borel, f : Y Ñ X is a Borel
function, and A � f rBs. Then Apxq Ø Dy P Y pfpyq � xq. Now tpx, yq : fpxq � yu
is a Borel set in X � Y since it is the preimage of the closed equality relation by
the Borel function px, yq ÞÑ pfpxq, yq. By the closure of Σ1

1 under DY it follows that
A P Σ1

1. �
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Lemma 2.5. For every Polish space X and every n, the pointclasses Σ1
næX, Π1

næX
have universal sets U � 2ω�X. For every uncountable Polish space X and every n,
there is a set in Σ1

næX �Π1
næX and vice-versa. In particular, all of the inclusions

for the projective hierarchy are proper.

Proof. Recall there is a closed F � 2ω � X which is universal for Π0
1æX, for any

Polish space X. Let F � 2ω � pX � ωωq be universal for Π0
1æX � ωω. Define

Upx, yq Ø Dz F px, y, zq. So, U P Σ1
1æp2

ω � Xq. Suppose that A � X is Σ1
1, say

Apyq Ø Dz Epy, zq where E � X � ωω is closed. Let x P 2ω be such that E � Fx.
Then Uxpyq Ø Upx, yq Ø Dz F px, y, zq Ø Dz Epy, zq Ø Apyq. Thus, U is universal
for Σ1

1æX.
The inductive step is entirely similar. Suppose V � 2ω � pX � ωωq is universal

for Π1
n�1æpX � ωωq. Define Upx, yq Ø Dz V px, y, zq. Suppose that A � X is Σ1

n.

Write Apyq Ø Dz Epy, zq where E � X � ωω is Π1
n�1. Let x P 2ω be such that

E � Vx. Then Uxpyq Ø Upx, yq Ø Dz V px, y, zq Ø Dz Epy, zq Ø Apyq. So, U is
universal for Σ1

næX. It follows immediately that Π1
næX also has a universal set.

If X is an uncountable Polish space, then X contains a homeomorphic copy of
2ω. So, we may view 2ω � X, and 2ω is closed in X (since it is compact). Any
closed set in 2ω�X is still closed as a subset of X�X. It follows that the universal
sets U � 2ω �X constructed above for the Σ1

næX, Π1
næX are still Σ1

n, Π1
n sets in

the space X �X, and are clearly still universal. From theorem 1.39 it follows that
any such universal set U � X �X for Σ1

næX cannot lie in Π1
næX. �

We next discuss a useful representation for Σ1
1 sets, in terms of the Suslin oper-

ation A. For sets A � ωω, this will have an especially important and useful form,
and will motivate a key definition, that of a Suslin representation.

We first define the Suslin operation for a general Polish space.

Definition 2.6. Let X be Polish and tBsusPω ω be a family of subsets of X indexed
by ω ω. Then AsptBsuq is defined by

x P AptBsuq Ø Dy P ωω @n px P Byænq.

When there is no danger of confusion we will just write AptBsuq.
It is important in this definition to use ω ω as the index set, as opposed to say

2 ω as the next exercise shows.

Exercise 34. Suppose tBsusP2 ω is a family of Borel subsets of the Polish space
X. Define the analog of the Suslin operation in the obvious manner, that is, x P
A1ptBsuq Ø Dy P 2ω @n px P Byænq. Show that A1ptBsuq is still a Borel set. [hint:
Using the compactness of 2ω (i.e., König’s lemma, the fact that every infinite finitely
splitting tree has an infinite branch), show that x P A1ptBsuq iff @n Ds P 2n px P Bsq.
Show this gives a Borel computation of A1ptBsuq.]

Note that there is no loss of generality is assuming that if t extends s then
Ft � Fs, since we can replace the closed sets Fs with F 1s �

�
i lhpsq Fsæi. Clearly

AptFsuq � AptF 1suq.
Theorem 2.7. For any Polish space X, Σ1

1æX � ApΠ0
1æXq. That is, A � X is

Σ1
1 iff it is of the form A � AptFsuq, where the Fs � X are closed.

Proof. Suppose first that A � AptFsuq where the Fs are closed. So, Apxq Ø Dy P
ωω @n px P Fyænq. The relation Rpx, y, nq Ø px P Fyænq is closed since for any n,

tpx, yq : x P Fyænu is closed. This shows A P Σ1
1æX.
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Suppose next that A P Σ1
1æX. Say, Apxq Ø Dy P ωωF px, yq where F � X � ωω

is closed. For s P ω ω let Fs � As where Aspxq Ø Dy pyælhpsq � s^ F px, yqq. We
show that A � AptFsuq which suffices. If x P A, let y P ωω be such that F px, yq.
Then for any n, x P Ayæn � Fyæn, using y as a witness in the definition of Ayæn.
Suppose next that x P AptFsuq. Let y P ωω be such that for all n, x P Fyæn. So, for
each n there is an xn and a yn such that ρpx, xnq  

1
n and ynæn � yæn such that

F pxn, ynq (ρ is a compatible complete metric for X). But clearly pxn, ynq Ñ px, yq,
and since F is closed this gives px, yq P F . So, x P A. �

Exercise 35. Show that for any pointclass Γ, ApΓq is also a pointclass and is closed
under countable unions and intersections. Show also that if ΓæX has a universal
set U � ωω �X, then so does ApΓq. Deduce in this case that ΓæX is non-selfdual.

Exercise 36. Show that for any pointclass Γ, ApApΓqq � ApΓq. [hint: Let A P
ApApΓqq. Say, A � AsptBsuq, where Bs � AtptC

s
t uq, and each Cst P Γ. Then

Apxq Ø Dy @n Dz @m px P Cyænzæmq Ø Dy Dz @n @m px P Cyænpzqnæm
q Ø Dw @k px P

C
pwq0æpkq0
ppwq1qpkq0æpkq1

q. Note that pwq0æpkq0 and ppwq1qpkq0æpkq1 depend only on wæk. So

define Ds � Cuv where u � psq0æplnpsqq0 and v � ppsq1qplnpsqq0æplnpsqq1. Then
A � AptDsuq.]

Although Σ1
1 � ApΠ0

1q, it is not true that Σ1
2 � ApΠ1

1q. In fact, ApΠ1
1q �

∆1
2 (we give this computation later). If we iterate taking the operation A and

complements ω times, we generate the smallest σ-algebra closed under the operation
A. This collection is sometimes referred to as the C-sets. It is properly contained
within ∆1

2.
Given a Suslin scheme tAsu, we may improve it slightly as follows.

Definition 2.8. We say a Suslin scheme tAsusPω ω is good if it satisfies:

(1) If t extends s then A1t � A1s,
(2) diampA1sq  

1
2lhpsq .

Lemma 2.9. Suppose Γ is closed under intersections with closed sets, and let
tAsusPω ω be a Suslin scheme with each As P Γ. Then there is a good Suslin
scheme tA1su with each A1s P Γ with AptAsuq � AptA1suq.

Proof. Let Vi be a base for X. Say a sequence u P ω ω is good if

@i   lhpuq diampVupiqq  
1

2i
and @i   lhpuq � 1 V̄upi�1q � Vupiq.

For pu, sq P pω ωq2 with lhpuq � lhpsq, Set Bpu,sq � As X V̄uplhpuq�1q if u is good
and Bpu,sq � ∅ otherwise.

If x P AptBu,suq, then there is a z and a y such that @n x P Bzæn,yæn � Ayæn,
and so x P AptAsuq. If x P AptAsuq, let y P ωω be such that @n x P Asæn. Fix
a z P ωω such that for all n, zæn is good and x P Vzpnq (which we can easily do
since tViu is a base). Then for all n, x P Bzæn,yæn, so x P AptBu,suq. Finally, by
taking a bijection between ω � ω and ω allows us to reorganize the Suslin scheme
into one with index set ω ω. That is, define A1t � Bu,s, where upiq � ptpiqq0 and
spiq � ptpiqq1. �

We next re-interpret the notion of analytic and Suslin operation when X � ωω.
Here the concepts simplify down to a basic combinatorial notion, that of a Suslin
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representation. Recall that if T is a tree on a set Z, then rT s � Zω is the set of
infinite branches through T , that is, rT s � tf P Zω : @n fæn P Zu.

Definition 2.10. Let T be a tree on Y � Z. We let

prT s � tf P Y ω : Dg P Zω pf, gq P rT su

� tf P Y ω : Dg P Zω @n pfæn, gænq P T u.

Note that we identify elements of a tree T on Y �Z with pairs of sequences ps, tq
with s P Y  ω, t P Z ω, and lhpsq � lhptq.

Theorem 2.11. A set A � ωω is Σ1
1 iff there is a tree T on ω � ω such that

A � prT s.

Proof. first suppose T is a tree on ω � ω and A � prY s. So, Apxq Ø Dy P
ωω @n pxæn, yænq P T . For each n, tpx, yq : pxæn, yænq P T u is a clopen set in
ωω � ωω. So, tpx, yq : @n pxæn, yænq P T u is a closed set in ωω � ωω. This shows
A P Σ1

1.
Suppose next that A P Σ1

1, A � ωω. Let F � ωω � ωω be closed such that
Apxq Ø Dy F px, yq. Let T be the tree on ω � ω corresponding to F , that is,
ps, tq P T iff Dx, y pxælhpsq � s ^ yælhpyq � y ^ px, yq P F u. Since F is closed,
F � rT s. Thus Apxq Ø Dy px, yq P rT s and we are done. �

This representation suggests a natural generalization. We emphasize that the
next definition is made in ZF.

Definition 2.12. Let κ P On. We say A � ωω is κ-Suslin if there is a tree T on
ω � κ such that A � prT s.

Exercise 37. Show that if α P On and κ � |α|, then a set is α-Suslin iff it is κ-Suslin.
We let Spκq denote the collection of κ-Suslin sets.

In view of exercise 37, there is no loss of generality in restricting to cardinals in
definition 2.12.

Thus, Spωq � Σ1
1. It is not immediately clear for which cardinals κ we pick up

new sets. We make this into the following definition.

Definition 2.13. We say κ is a Suslin cardinal if Spκq �
�
λ κ Spλq � ∅.

Exercise 38. Show that for any cardinal κ that Spκq is a pointclass closed under
countable unions, countable intersections, and Dω

ω

.

Assuming AC, every set A � ωω is c � 2ω-Suslin, but these trivial Suslin repre-
sentations are of no interest [define the tree T on ω�c by ps, ~αq P T iff xαæplhpsq � s,
where txαuα c is a wellordering of A.] We will discuss Suslin sets and Suslin car-
dinals in more detail later, but now we return to the theory of Σ1

1 sets.
We next show Suslin’s theorem that ∆1

1 �Borel. We prove this in the form of a
more general separation theorem.

Theorem 2.14 (Suslin). Let A,B be disjoint Σ1
1 sets in a Polish space X. Then

there is a Borel set C with A � C and C XB � ∅.

Proof. Let A � AptFsuq, B � AptHtuq, where Fs, Ht are closed, and AX B � ∅.
We may assume the Fs and Ht are good Suslin schemes. We may also assume
F∅ � H∅ � X. Define T to be the tree on ω � ω given by:

ps, tq P T Ø plhpsq � lhptq ^ Fs XHt � ∅q.
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We first claim that T is wellfounded. For suppose px, yq P rT s. For each n, let
zn P FxænXHyæn. Since the Suslin schemes are good, tznu is Cauchy, so converges to
some z P X. Since the Fs and Ht are decreasing along any branch (from goodness),
and the Fs, Ht are closed, we have z P

�
n Fxæn, so z P A. Likewise, z P B, a

contradiction since AXB � ∅.
By induction on the rank of ps, tq in the tree T we define a Borel set Cps,tq � X

which separates As
.
� tz : Dx pxælhpsq � n ^ @n pz P Fxænqq from Bt (with a

similar definition). If ps, tq has rank 0 (which we take to mean is not in T ), then
Fs XHt � ∅. Then Cs � Fs is a closed set which contains As and is disjoint from
Bs (since As � Fs and Bs � Hs).

For the general inductive step, fix ps, tq P T . By induction, for each i, j P ω
there is a Borel set Csai,taj separating Asai from Btaj . Note that As �

�
iAsai

and Bt �
�
j Btaj . Define then Cps,tq �

�
i

�
j Csai,taj . This clearly works, noting

that for each i,
�
j Csai,taj separates Asai from

�
j Btaj .

Finally, C � Cp∅,∅q is the desired Borel set. �

Corollary 2.15. For every Polish space X, ∆1
1æX is the collection of Borel sets

in X.

Proof. If A � X is ∆1
1, apply the previous theorem to A and B

.
� X � A. The

separating set C must equal A. �

Corollary 2.16. For every Polish space X, seppΣ1
1q.

Corollary 2.17. A function f : X Ñ Y is Borel (that is, Borel measurable) iff it
has a Borel graph Gf � X � Y .

Proof. First suppose that f : X Ñ Y is Borel measurable. Let tVnu be a base for
Y . Then fpxq � y iff @n px P f�1pVnq Ø y P Vnq. Since each f�1pVnq is Borel, this
shows Gf is Borel.

Suppose next that Gf is Borel. Let V � Y be open. Then fpxq P V Ø
Dy pGf px, yq ^ y P V q Ø @y pGf px, yq Ñ y P V q. This shows that f�1pV q is both

Σ1
1 and Π1

1, and hence Borel. �

Corollary 2.18. If f : X Ñ Y is a Borel function and A � Y is Σ1
n (or Π1

nq, then
f�1pAq is Σ1

n (or Π1
n).

Proof. If A P Σ1
n, then x P f�1pAq Ø Dy py � fpxq ^ y P Aq, which shows

f�1pAq P Σ1
n. If A P Π1

n, then x P f�1pAq Ø @y py � fpxq Ñ y P Aq, which shows
f�1pAq P Π1

n. �

Thus, the projective hierarchy begins at precisely the point where the Borel ends,
at the collection of Borel sets B � ∆1

1.
The next result on Borel sets strengthens exercise 31 and is an important fact

in its own right. We will see below that the converse of this theorem also holds.

Theorem 2.19. Every Borel set in a Polish space is the continuous one-to-one
image of a closed subset of ωω.

Remark 2.20. It doesn’t matter whether we view the conclusion as saying there
is a closed F � ωω and a continuous f : F Ñ X with A � fpF q, or as saying there
is a closed F � ωω and a continuous f : ωω Ñ X with A � fpF q. This is because
every closed set F � ωω is a retract of ωω (see exercise 20).
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Proof. Let A � X be Borel. If A is open or closed, then it is Polish (with the
subspace topology), and hence the result follows from lemma 1.26. From exercise 15
it suffices to show that the family F of subsets of X which are continuous one-to-
one images of closed subsets of ωω is closed under countable disjoint unions and
countable intersections.

Suppose A �
�
nAn, a disjoint union, where each An P F . Say, An � fnpFnq

where Fn � ωω is closed and fn : Fn Ñ X is continuous and one-to-one. Define
F � ωω by F pxq Ø x1 P Fxp0q, where x1pnq � xpn � 1q. Easily F is closed. Define
f : F Ñ X by fpxq � fxp0qpx

1q. Since each fn in one-to-one on Fn, f is also one-
to-one tx : xp0q � nu. Since the An are pairwise disjoint, it then follows that f
is one-to-one on F . Since f is continuous on each of the relatively clopen pieces
tx : xp0q � nu it follows that f is continuous on F . Clearly, f rF s �

�
n fnrFns ��

nAn � A.
Suppose next that A �

�
nAn, and An � fnrFns where again Fn � ωω is closed.

Define F � ωω by

F pxq Ø rp@n pxqn P Fnq ^ @i, j pfippxqiq � fjppxqjqqs.

Clearly F is closed. Define f on F by fpxq � f0ppxq0q (� fippxqiq for all i). If
x P F , then since fpxq � fippxqiq, we have fpxq P Ai. So, f rF s �

�
nAn. If

y P
�
nAn, then for each i let xi P Ai with fipxiq � y. Let x P ωω be such that for

all i, pxqi � xi. Then x P F and fpxq � y.
Finally, f is one-to-one on F . For suppose x, y P F and x � y. Then for some n,

pxqn � pyqn, and both are in Fn. Since fn is one-to-one on Fn, fnppxqnq � fnppyqnq.
Thus fpxq � fnppxqnq � fnppyqnq � fpyq. �

Theorem 2.21 (Lusin). If f : X Ñ Y is Borel and one-to-one, and A � X is
Borel, then f rAs is Borel.

Proof. We first do the special case where f is continuous. We have already shown
in theorem 2.19 that every Borel set is the continuous one-to-one image of a closed
set in ωω. Thus, it suffices to show that a continuous one-to-one image of a closed
set in ωω is Borel.

Suppose F � ωω is closed, and A � f rF s where f : F Ñ X is continuous and
one-to-one. Let F � rT s where T is a tree on ω. For s P T , let Fs � F XNs, and
let As � f rFss � A. Since f is one-to-one, if s K t, then As X At � ∅. Using
Suslin’s theorem, we define Borel sets Bs with As � Bs and such that if s K t then
BsXBt � ∅. If Bs is defined, using Suslin’s theorem for each i let Csai � Bsai be
Borel and such that if i � j then CsaiXCsaj � ∅ (separate Asai from

�
j�iAsaj ,

and then disjointize these separating Borel sets). Let Bsai � Csai X Bs. Finally,
by replacing each Bs with Bs XAs, we may assume that Bs � As for each s.

We next show that A � AptBsuq. First assume x P A, say x � fpyq where
y P rT s. then for all n, y P Fyæn, and so x P Ayæn � Byæn, so x P AptBsuq. Next

suppose x P AptBsuq. Fix y P ωω such that ] for all n, x P Byæn. Since Bsæn � Ayæn,
there is for each n a yn P ω

ω such that ynæn � yæy and ρpfpypnq, xq   1
2n . Since

yn Ñ y, y P F . Since f is continuous, fpyq � limn fpynq � x. Thus, x P A.
Since the Bs are Borel and have the property that whenever s K t then BsXBt �

∅, it follows that AptBsuq is Borel. To see this, note that



34

x P AptBsuq Ø Dy @n px P Byænq

Ø @k Ds P ωk px P Bsq.

The last equivalence follows from the disjointness assumption on the Bs, and shows
that AptBuq is Borel.

For the general case where f : X Ñ Y is Borel, enlarge the topology τ on X to
a finer Polish topology τ 1 making f : pX, τ 1q Ñ Y continuous, and then apply the
above case. To do this, consider a basis tVnunPω for Y . Get τ 1 to make all of the
f�1pVnq clopen. This makes f continuous. �

In corollary 2.16 we observed seppΣ1
1q. This leads us to suspect that redpΠ1

1q
and even pwopΠ1

1q might be true. In fact an even stronger property property called
the scale property holds for Π1

1. We first define the notion of scale.

Definition 2.22. A semi-scale tφnunPω on a set A � X is a sequence of norms
φn : AÑ On such that if txmumPω � A, xm Ñ x, and for each n the norms φnpxmq
are eventually constant (that is, there is a λn P On such that φnpxmq � λn for all
large enough m), then x P A.

A scale tφnunPω is a semi-scale with the additional semi-continuity property: for
all n, φnpxq ¤ λn � limmÑ8 φnpxmq.

For sets in the Baire space, we first show that semi-scales are equivalent to Suslin
representations.

If T is an illfounded tree on a wellordered set pX, q, then the left-most branch
of T , `pT q � p`p0q, `p1q, . . . q is defined as follows: `p0q is the   least element of X
such that Df P Xω pxæ1 � p`p0qq ^ f P rT sq. In general we inductively define `pnq
to be the   least element of X such that Df P Xω pfæn � `æn^ f P rT sq. This is
well-defined, and the resulting branch ` P rT s is leftmost in the sense that if f P rT s
and ` � f , then for the least n such that `pnq � fpnq we have `pnq   fpnq.

Lemma 2.23. A � ωω is κ-Suslin iff A admits a semi-scale with norms into κ.

Proof. Suppose first that A is κ-Suslin, say A � prT s where T is a tree on ω � κ.
For each x P prT s, let `x � x`xp0q, `xp1q, . . . y be the left-most branch of Tx �
t~α : pxælhp~αq, ~αq P T u. Let φnpxq � `xpnq. To see this works, suppose xm P A,
xm Ñ x, and for each n, limm φnpxmq � λn. Then for each n and and all large
enough m we have that xmæn � xæn and `xmæn � pλ0, . . . , λn�1q. In particular,

since pxm, `
xmq P rT s, we have pxæn, pλ0, . . . , λn�1qq P T . Thus, px,~λq P rT s, so

x P A.
For the other direction, suppose tφnunPω is a semi-scale on A. Define the tree of

the semiscale Tφ by:

ps, ~αq P Tφ Ø Dx pxælhpsq � s^ φ0pxq � α0 ^ � � � ^ φlhpsq�1pxq � αlhpsq�1q.

If x P A, then x P prTφs, since px, pφ0pxq, φ1pxq, . . . qq P rTφs. On the other hand,
suppose x P prT s, say px, fq P rT s. for each n, pxæn, fænq P T , and so there is
an xn P A with xmæn � xæn and φ0pxmq � fp0q, . . . , φn�1pxmq � fpn � 1q. Then
xm Ñ x and for each n and all j ¡ n, φnpxjq � fpnq, so all the norms are eventually
constant. Since tφnu is a semi-scale, we have x P A. �
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If A � prT s and tφnu is the semi-scale derived from T , we can patch-up tφnu
to be a scale in the following manner. Say each φn is a norm into κ P On. Let
xα0, . . . , αi�1y denote the rank of pα0, . . . , αi�1q in the lexicographic ordering on κi

(so this lexicographic ordering has length the ordinal κi). Define now the norms
ψn on A by:

ψnpxq � xφ0pxq, φ1pxq, . . . , φnpxqy.

Claim. tψnunPω is a scale on A.

Proof. Suppose txmu � A, xm Ñ x, and and for each n, limm ψnpxmq � λn. Say
λn � xα

n
0 , α

n
1 , . . . , α

n
ny. So, for large enough m we have φ0pxmq � αn0 , . . . , φnpxmq �

αnn. In particular, for all n, n1 ¥ i, αni � αn
1

i � αi
.
� limm φipxmq. So, for large

enough m, φipxmq � αi. Since tφnu is a semiscale on A, x P A. Moreover, px, ~αq P
rT s. For any n we then have ψnpxq � x`

xp0q, . . . , `xpnqy ¤ xα0, . . . , αny � λn since
`x is the left-most branch of Tx. �

We call tψnu the scale derived from T . Note that if T is a tree on ω � κ, then
the derived semi-scale has norms into κ, but the derived scale has norms on the
slightly bigger ordinal κω (ordinal exponentiation).

Exercise 39. Let tφnunPω be a semi-scale on A � ωω. Show that we may directly
define the scale tψnunPω on A by:

ψnpxq �mintxα0, . . . , αny : D~β @m Dy P A pyæm � xæm^

φ0pyq � α0 ^ � � � ^ φnpyq � αn ^ @k ¡ n φkpyq � βk�n�1qu

[hint: you can trace through the definition of ψ given before from the tree Tφ, or you
can proceed directly as follows. Let xm P A and assume xm Ñ x and for each n, the
ψnpxmq are eventually equal to xαn0 , . . . , α

n
ny. Argue that for i, j ¥ n that αin � αjn.

Let αn be the common value of the αin for i ¥ n. Then for all n and all m there
is a y with yæm � xæn and φ0pyq � α0, . . . , φnpyq � αn. Since φ is a semi-scale,
x P A. From the definition of ψ, it follows easily that φnpxq ¤ xα0, . . . , αny.]

Exercise 40. Show that if we start with a scale φ � tφnunPω on a set A, form the
tree Tφ of the scale, and then let ψ � tψnunPω be the semi-scale of the tree Tφ, we
have ψ � φ.

Exercise 41. Show that if we start with a tree T on ω � κ, let φ � tφnunPω be the
semi-scale of the tree T (on the set A � prT s), and then let T 1 be the tree of the
semi-scale φ, then T 1 � T . Give an example where T 1 � T .

The canonical scale on A � prT s has, with a slight modification of the definition,
a few extra properties which we abstract in the following definition.

Definition 2.24. We say the scale tφnunPω on the set A is good if whenever xm P A
and for each n the norms φnpxmq are eventually constant, then the xm converge to
some x (and so x P A).

We say tφnunPω is very good if it is good and for all x, y P A, and i ¤ j, if
φjpxq ¤ φjpyq, then φipxq ¤ φipyq.

We say tφnunPω is excellent if it is very good and whenever x, y P A and φnpxq �
φnpyq then xæn � yæn.

Lemma 2.25. Suppose A � prT s where T is a tree on ω � κ. For x P A, define

ψnpxq � x`
xp0q, xp0q, `xp1q, xp1q, . . . , `xpnq, xpnqy,
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where `x � p`xp0q, `xp1q, . . . q is the left-most branch of Tx. Then ψ is an excellent
scale on A with norms into κω (ordinal exponentiation).

Proof. Clearly ψ satisfies the excellence condition. It follows that if txmu � A are
such that all the norms φnpxmq are eventually constant, then the xm converge to
some x. As before, we must have x P A. The previous proof of the scale property
still holds here since xæn will also equal the limiting values of the xmæn. The very
good condition follows from the definition of ψn. �

We can also go directly from a scale to an excellent scale.

Lemma 2.26. Let A � ωω and tφnu be a scale on A, with say norms into κ.
Define ψn on A by ψnpxq � xφ0pxq, xp0q, φ1pxq, xp1q, . . . , φnpxq, xpnqy (the rank in
the lexicographic ordering on 2n�2 tuples from κ). Then tψnu is an excellent scale
on A.

Proof. The excellence and very good conditions easily hold. If txmu � A and
for each n the norms ψnpxmq are eventually constant, then also the φnpxmq are
eventually constant, and xm Ñ x for some x. Since tφnu is a scale, it follows that
x P A and φnpxq ¤ limm φnpxmq. It follows that ψnpxq ¤ limm ψnpxmq. �

Although the canonical scale (or excellent scale) derived from a Suslin represen-
tation A � prT s, T a tree on ω � κ, has norms into a slightly bigger ordinal than
κ (though of the same cardinality as κ), we nevertheless have the following.

Theorem 2.27. For any A � ωω and cardinal κ, the following are equivalent.

(1) A is κ-Suslin.
(2) A admits a semi-scale with norms into κ.
(3) A admits an excellent scale with norms into κ.

Proof. It is clear that (3) ñ (2), and we have already shown that (2) ñ (1). So,
assume A � prT s with T a tree on ω � κ, and we show that A admits an excellent
scale with norms into κ.

We consider two cases. First assume that cofpκq ¡ ω. Let T 1 be the tree on
ω � κ defined by

ps, pα0, . . . , αn�1qq P T
1 Ø rα0 � maxtα0, . . . , αn�1u^

psæn� 1, pα1, . . . , αn�1qq P T s.

Since cofpκq ¡ ω we easily have that prT s � prT 1s. Let

ψnpxq � x`
xp0q, xp0q, `xp1q, xp1q, . . . , `xpnq, xpnqy,

where now this refers to the rank of the tuple in lexicographic ordering on the
tuples of length 2n� 2 from κ having the first element maximal. The rank of any
such tuple is less than κ, so ψnpxq   κ. As before, tψnu is an excellent scale on
A � prT 1s � prT s.

Suppose next that cofpκq � ω. Let tκnunPω be an increasing sequence of cardinals
with κ � supn κn. Let T 1 be the tree on ω�κ consisting of all ps, tq with lhpsq � lhptq
and t an initial segment of a sequence of the form

xn0, 0, . . . , 0loomoon
n0�1

, α0, n1, 0, . . . , 0loomoon
n1�1

, α1, . . . y

where ps, pα0, α1, . . . , αlhpsq�1qq P T and each tpiq   κi. Clearly, prT s � prT s1.
Let tψnu be the excellent scale derived from T 1, where for ψn we use lexicographic
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ordering on n� 1 tuples pβ0, . . . , βn�1q from κ satisfying βj   κj for all j. So, ψn
maps into pκjq

�   κ. �

One use of scales is that they provide a way to uniformize relations. To see this,
suppose R � ωω�ωω is κ-Suslin, say R � prT s where T is a tree on ω�ω�κ. Note
that x P dompRq iff Dy Tx,y is illfounded iff Tx is illfounded. For x P dompRq, let
`x � p`x0 , `

x
1q be the leftmost branch of Tx. The map x ÞÑ y � `x0 is a uniformization

of R. We can also give the previous uniformization argument directly in terms of
scales. We state this in the following lemma.

Lemma 2.28. Let R � ωω � ωω and let tφnunPω be an excellent scale on R. For
each x P dompRq and n P ω, let

Axn � ty : px, yq P R^ φnpx, yq is minimalu

� ty : @z px, yq ¤�n px, zqu,

where ¤�n is the norm relation corresponding to φn. Then for each x P dompRq,
Ax0 � Ax1 � � � � , and there is unique point fpxq in

�
nA

x
n. Also, Rpx, fpxqq for all

x P dompRq. That is, f is a uniformization for R.

Proof. Fix x P dompRq, and let Axn be as above. If y P Axn, then for any z such
that Rpx, zq we have φnpy, yq ¤ φnpx, zq. Since φ is very good, we have φipx, yq ¤
φipx, zq for all i ¤ n as well. Thus, y P Axi for all i ¤ n. Let λn be the minimal
value of φnpx, yq, among all y P Rx. Let yn P A

x
n for each n. So, φnpx, ynq � λn.

By very goodness, we also have φipynq � λi for all i ¤ n. So, for each i, the norms
φipx, ynq are eventually equal to λi. Since φ is a good scale, Rpx, yq. From the scale
property, φnpx, yq ¤ λn, and hence φnpx, yq � λn for all n. If z P

�
nA

x
n, then for

all n, φnpx, zq � φnpx, yq � λn. By the excellence condition, z � y. Thus,
�
nA

x
n

is a singleton set tfpxqu, and thus the map x ÞÑ fpxq is a uniformization of R. �

We next identify some useful coding sets.

Definition 2.29. LO is the set of x P 2ω such that tpn,mq : xpxn,my � 1u is a
linear order of fieldpxq

.
� tn : Dm xpxn,myq � 1_ xpxm,nyq � 1u.

WO is the set of x P 2ω such that tpn,mq : xpxn,my � 1u is a wellorder of fieldpxq.
WF is the set of x P 2ω such that tpn,mq : xpxn,my � 1u is wellfounded.

Thus, WO � LO, and WO � WF. We let  x denote the binary relation
tpn,mq : xpxn,my � 1u. So, x P LO iff  x is a linear order, and x P WO iff
 x is a wellorder.

Lemma 2.30. LO P Π0
1, WO,WF P Π1

1.

Proof. x P LO iff the following conditions defining a linear ordering are satisfied:

(1) @n pxpxn, nyq � 0q
(2) @n,m P fieldpxq pxpxn,myq � 1_ n � m_ xpxm,nyq � 1q
(3) @n,m P fieldpxq pxpxn,myq � 1 Ñ  xpxm,nyq � 1q
(4) @n,m, k P fieldpxq pxpxn,myq � 1^ xpxm, kyq � 1 Ñ xpxn, kyq � 1q

Each of these is a Π0
1 condition, so LO P Π0

1. Since x P WO Ø x P LO^x P WF, it
suffices to show that WF P Π1

1. But, x P WF Ø  Dy @n pxpxypn� 1q, ypnqyq � 1q,
which shows WF P Π1

1. �

We show below that WO and WF are Π1
1-complete sets, which we introduce in

the following definition.
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Definition 2.31. If A, B � ωω we say A is Wadge reducible to B if there is a
continuous function f : ωω Ñ ωω such that @x px P A Ø fpxq P Bq. If Γ is a
pointclass, we say B is Γ-hard if every A P Γ is Wadge reducible to B. We say B
is Γ-complete if B P Γ and B is Γ-hard.

The following general definition shows how to turn tree orderings into linear
orderings, and is useful in a variety of settings.

Definition 2.32. Let T be tree on a wellordered set pX, Xq. The Kleene-Brouwer
ordering  KB on T is defined by:

s  KB tØ rs extends t_ Di   mintlhpsq, lhptqu pspiq � tpiq ^ spiq  X tpiq

^ @j   i pspjq � tpjqqqs.

Thus, the Kleene-Brouwer ordering is like lexicographic ordering except that
extensions of sequences are smaller in the Kleene-Brouwer order.

Theorem 2.33. WF, WO are Π1
1-complete.

Proof. We first show WF is Π1
1-complete. Let A � ωω be Π1

1. Let T be a tree on
ω � ω with Apxq Ø Tx is wellfounded. For x P ωω we define a linear-order  x as
follows. Let π : ω Ñ ω ω be a bijection. Define

n  x mØ pπpnq, πpmq P Tx ^ πpnq extends πpmqq.

since Tx is wellfounded, so is  x. Let fpxq P 2ω be the real coding  x, that is,
fpxqpiq � 1 iff piq0  x piq1. So, x P A iff fpxq P WF. Note finally that x ÞÑ fpxq is
continuous. This is because fpxqpiq is determined by Tx restricted to sequences of
length at most k

.
� maxtlhpπppiq0q, πppiqq1qu. This, in turn, is determined by xæk.

Thus, f is a continuous reduction of A to WF, which shows WF is Π1
1-complete.

Consider next WO. Define  x now using the Kleene-Brouwer order on Tx:

n  x mØ pπpnq, πpmq P Tx ^ πpnq  KB πpmqq.

Again let fpxq code  x. As before, f is continuous. Note that fpxq P LO for all x.
Also, x P A iff Tx is wellfounded iff  x is a wellordering iff fpxq P WO. This shows
WO is Π1

1-complete. �

We can give a version of this for general Polish spaces as the next exercise shows.

Exercise 42. Let X be Polish and A � X be Π1
1. Show that there is a Borel function

f : X Ñ 2ω such that @x P X px P A Ø fpxq P WFq, and likewise for WO. Show
that in fact we may take f to be Σ0

2-measurable. [hint: Say X�A � AptFsuq, where
tFsusPω ω is a closed good Suslin scheme. Let π : ω Ñ ω ω again be a bijection.
Define  x by: n  x m iff x P Fπpnq ^ x P Fπpmq ^ πpnq extends πpmq.]

We use these ideas to show the prewellordering property for Π1
1.

Theorem 2.34. For any Polish space X, pwopΠ1
1q.

Proof. Let A � X be Π1
1. Let f : X Ñ LO be Borel such that @x px P AØ fpxq P

WOq. Define the norm φ on A by φpxq � |fpxq| � the rank of the wellordering
fpxq. So, φ : AÑ ω1. We show that φ is a Π1

1-norm. We have

x  � y Ø rfpxq P WO^ Dz pz codes an order-preserving map from  fpyq to  fpxqq

Ø rfpxq P WO^ Dz p@n,m px  fpyq nÑ zpnq  fpxq zpmqqq
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Also,

x ¤� y Ø rfpxq P WO^ Dz pz codes an order-preserving map from  fpyq to

a proper initial segment of  fpyqq

Ø rfpxq P WO^ Da P domp fpxqq Dz p@n,m pn  fpyq mÑ

zpnq  fpxq zpmq  fpxq aqq

The above computations show that  � and ¤� are both Π1
1, and thus φ is a

Π1
1-norm. �

From lemma 1.57 we have:

Corollary 2.35. Π1
1 has the number uniformixation property (and hence the ω-

reduction and reduction properties).

We have the following boundedness principle for norms.

Lemma 2.36. Let Γ be a nonselfdual pointclass closed under @ω
ω

, ^, _, and
assume pwopΓq. Let φ be a Γ-norm on a Γ-complete set A. If B � A is in ∆, then
suptφpxq : x P Bu   suptφpxq : x P Au.

Proof. Suppose B � A is in ∆ and suptφpxq : x P Bu � suptφpxq : x P Au. Then
we would have x P A Ø Dy P B px ¤Γ̌ yq. This computes A to be in Γ̌, a
contradiction. �

Corollary 2.37. If B � WO is Borel, then supt|x| : x P Bu   ω1.

We pause to note that the prewellordering property propagates in ZF by exis-
tential quantification.

Lemma 2.38. Let Γ be a pointclass closed under @ω
ω

, and assume pwopΓq. Then
pwopDω

ω

Γq.

Proof. Let A P Dω
ω

Γ, say Apxq Ø Dy Bpx, yq where B � X � ωω is Γ. Let φ be a
Γ-norm on B. For x P A define ψpxq � inftφpx, yq : px, yq P Bu. We have:

x  �ψ y Ø Dz @w ppx, zq  �φ py, wqq,

which shows ¤�ψP Γ. We also have

x ¤�ψ y Ø Dz @w ppx, zq ¤�φ py, wqq,

so ¤�ψ is also in Γ. �

Corollary 2.39. pwopΣ1
2q.

So, Σ1
2 has the ω-reduction and reduction properties, and Π1

2 has the separation
property.

We next introduce the notion of a Γ-scale which adds a definability hypothesis
to the Suslin representation. Viewing the Suslin representaion via the norms (i.e.,
considering the corresponding scale) suggests how to add the definability hypothe-
sis.

Definition 2.40. Let Γ be a pointclass and A � X. A sequence of norms tφnunPω
on A is said to be a Γ-semiscale (or scale, very good scale, etc.) if it is a semiscale
(or scale, etc.) and each of the norms φn is a Γ-norm.
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Definition 2.41. We say a pointclass Γ has the scale property, scalepΓq, if every
A P Γ admits a Γ-scale.

The notions of Γ-scale and the scale property were introduced by Moschovakis
and have their motivation in the methods used in the Novikov-Kondo solution to
the uniformization problem.

The next lemma says that passing from a scale to a very good or excellent scale
does not usually increase the complexity of the scale.

Lemma 2.42. Let Γ be a pointclass closed under ^, _. If A � ωω and A admits
a Γ-scale, then A admits an excellent Γ-scale.

Proof. Let tφnu be a Γ-scale on A. As before, define

ψnpxq � xφ0pxq, xp0q, φ1pxq, xp1q, . . . , φnpxq, xpnqy.

We showed in lemma 2.26 that tψnu is an excellent scale on A. The definability
conditions are easily checked, for example:

x  �ψ,m y Ø x  �φ,0 y

_ px ¤�φ,0 y ^ y ¤
�
φ,0 x^ xp0q   yp0qq

_ px ¤�φ,0 y ^ y ¤
�
φ,0 x^ xp0q � yp0q ^ x  �φ,1 yq . . .

_ px ¤�φ,0 y ^ y ¤
�
φ,0 x^ xp0q � yp0q ^ � � � ^ xpnq   ypnqq

�

Exercise 43. Show that if Γ is closed under ^, _, and contains Σ0
2, then if every

A � X admits a Γ-scale, then every A � X admits a Γ-excellent scale. Here the
excellemce condition in interpreted as meaning that if ψnpxq � ψnpyq, then ρpx, yq  
1

2n . [hint: For x P A let ψnpxq � xφ0pxq, χ0pxq, φ1pxq, χ1pxq, . . . , φnpxq, χnpxqy,
where the χn are define inductively as follows. Let tViu be a base for X. Let χ0pxq
be the least i P ω such that x P Vi and diampViq  

1
20 . Let χnpxq be the least i P ω

such that x P Vi � Vχn�1pxq and diampViq  
1

2n . Show that each ψn is a Γ-norm
and tψnu is an excellent scale on A.]

We next show the scale property for Π1
1, which is the essence of the solution to

the uniformization problem.

Theorem 2.43. scalepΠ1
1q.

Proof. We prove it for the case X � ωω, leaving the general case as an exercise.
Let A � ωω be Π1

1, and let f : ωω Ñ LO be the continuous function of theorem 2.33
so that @x px P A Ø fpxq P WOq. For x P A, let φ0pxq � |fpxq| (the rank of the
wellordering fpxq). For n ¡ 0 let φnpxq � xφ0pxq, |n�1| fpxqy, where |n�1| fpxq is

the rank of n�1 in the wellordering  fpxq if n�1 P domp fpxqq, and is 0 otherwise.

We fist show that each φn is a Π1
1-norm on A. We have:

x  �n y Ø px  �0 yq _ px ¤
�
0 ^ y ¤

�
0 x^ Dz pz codes an order-preserving map

from Ifpyqn to Ifpxqn qq,

where I
fpxq
n � tm : m  fpxq nu is the initial segment of the order  fpxq determined

by m. In theorem 2.34 we showed that φ0 is a Π1
1-norm, so  �0 , ¤�0 are Π1

1 relations.

It follws that ¤�n is also Π1
1. A similar computation shows that ¤�n is Π1

1.
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Next we show that tφnu is a scale on A. Suppose txmu � A, xn Ñ x, and for
all n, φnpxmq is eventually equal to λn � xαn, βny. We must show that  fpxq is
wellfounded. To see this, note that if k  fpxq l, then (since f is continuous) for all
large enough m we have k  fpxmq l, and hence |k| fpxmq

  |l| fpxmq
. It follows that

βk�1   βl�1. Thus, n Ñ βn�1 is an order-preserving map from  fpxq to On, and
so  fpxq is wellfounded.

Finally, we show the lower semi-continuity property. Note that α � αn doesn’t
really depend on n, it is the limiting value of φ0pxmq. Also, βn   α for each n.
Since n Ñ βn�1 is order-preserving on  fpxq, this shows that φ0pxq � fpxq ¤ α.

Similarly, for each n the map k ÞÑ βk�1 is order-preserving from I
fpxq
n�1 to βn. Thus,

|n� 1| fpxq ¤ βn. So, φnpxq � xφ0pxq, |n� 1| fpxqy ¤ xα, βny � λn. �

Corollary 2.44. Every Π1
1 set A � ωω admits an excellent Π1

1-scale.

Corollary 2.45. Every Π1
1 relation R � X � Y has a Π1

1 uniformization.

Proof. First suppose X � Y � ωω. From corollary 2.44, let tφnu be an excellent
scale on R. Let R1 � R be the uniformization from the scale φ as in lemma 2.28.
Thus,

R1px, yq Ø @n @z ppx, yq ¤�m px, zqq.

Since ¤�n is Π1
1, R1 P Π1

1.
Consider now the general case R � X � Y . Let π1 : ωω Ñ X and π2 : ωω Ñ Y

be Borel bijections. Let S � ωω � ωω be defined by Spu, vq Ø Rpπ1pxq, π1pyqq.
Note that S is Π1

1 as it is the inverse image of a Π1
1 set by a Borel function (c.f.

corollary 2.18). Let S1 be a Π1
1 uniformization of S. Define R1 by R1px, yq Ø

S1pπ�1
1 pxq, π�1

2 pyqq. Then R1 is Π1
1 as π�1

1 , π�1
2 are also Borel functions. Clearly

R1 is a uniformization of R. �

It makes sense to ask whether a Π1
1 set in an arbitrary Polish space X admits a

Π1
1-scale (though the analagous question about Suslin representations doesn’t make

sense). The next exercise shows that this is the case.

Exercise 44. Show that if A � X is Π1
1, then A admits a Π1

1-scale. [hint: let
tFsusPω ω be a closed good Suslin scheme such that X�A � AptFsuq, that is, Apxq
iff T pxq is wellfounded, where T pxq

.
� ts P ω ω : x P Fsu. For x P A, let φ0pxq �

|T pxq| � the rank of T pxq. For n ¡ 0, let φnpxq � |πpn�1q|T pxq, where π : ω Ñ ω ω

is a bijection. Let tViu be a base for X. Let χnpxq � �1 if x P Fπpnq (we allow �1
as a value of the norms for convenience), and otherwise χnpxq � the least i such
that x P V i � X � Fπpnq. For x P A, let ψnpxq � xφ0pxq, χ0pxq, . . . , φnpxq, χnpxqy.

Show that each ψn is a Π1
1-norm on A. To see that it is a scale on A, suppose

txmu � A, xm Ñ x, and for each n the ψnpxmq are eventually equal to λn. So,
the φnpxmq are eventually constant as well. Using the χi, show that the trees
T pxiq converge to the tree T pxq in the sense that for every s P ω ω, s P T pxq iff
s P T pxmq for large enough m. Let xα, βny be the limiting value of the φnpxmq. As
in theorem 2.43, show that the map s ÞÑ βπ�1psq is order-preserving and follow the
proof of theorem 2.43].

Exercise 45. Show that if A � X is Π1
1, then A admits an excellent Π1

1-scale. Here
excellent means very good and with the property that if x, y P A and φnpxq � φnpyq,
then ρpx, yq   1

2n , where ρ is a compatible complete metric for X. [hint: let
ψnpxq � xφ0pxq, χ0pxq, σ0pxq, . . . , φnpxq, χnpxq, σnpxqy where the φnpxq, χnpxq are
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above and σnpxq is defined recursively as follows. Let σ0pxq � 0. Let σn�1pxq be
the least i P ω such that x P V i � Vσnpxq and diampViq  

1
2n�1 ].

Exercise 46. Show directly using exercise 45 that every Π1
1 relation R � X � Y

has a Π1
1 uniformization.

The next fact shows that the uniformization property passes up through exis-
tential quantification. Let unifpΓq be the statement that every R � X � Y in Γ
has a uniformization R1 � R in Γ.

Lemma 2.46. Let Γ be a pointclass and assume unifpΓq. Then unifpDω
ω

Γq.

Proof. Let R � X � Y be in Dω
ω

Γ, say Rpx, yq Ø Dz P ωω Spx, y, zq with S P Γ.
View S as a subset of X � pY � ωωq (i.e., pX � Y q � ωω is homeomorphic to
X � pY � ωωq). Let S1 � X � pY � ωωq be in Γ and uniformize S. Then define
R1px, yq Ø Dz S1px, y, zq. Clearly R1 is a uniformization of R. �

Corollary 2.47. unifpΣ1
2q.

Likewise, it is easy to show that the scale property propagates upward through
existential quantification, according to the next lemma. Note that the scale prop-
erty for Σ1

2, for example, does not directly imply uniformization for Σ1
2 (the proof

of uniformization from scales required Γ to be closed under @ω
ω

; see the proof of
corollary 2.45). However, establishing scalepΣ1

2q is important for propagating the
scale property further (assuming stronger axioms).

Lemma 2.48. Let Γ be a pointclass closed under @ω
ω

, ^, _. Assume scalepΓq.
Then scalepDω

ω

Γq.

Proof. Let A P Dω
ω

Γ, say Apxq Ø Dy Bpx, yq where B P Γ. Let tφnu be a Γ-scale
on B, and without loss of generality we may assume that tφnu is very good. Define
ψn on A by:

ψnpxq � inftφnpx, yq : px, yq P Bu.

Note that x ¤�ψn y Ø Dz @w px, zq ¤�φn py, wq, so ¤�ψn is in Dω
ω

Γ. Suppose

txmu � A and for each n, ψnpxmq is eventually equal to λn. For each m, let ym be
such that φmpxm, ymq � ψmpxmq. By very goodness, px,m , ymq has minimal value
for all the norms φi for i ¤ m (amongst all y P Ax). So, for all n we have that
for all large enough m that φnpxm, ymq � λn. Thus, pxm, ymq converges to some
px, yq P B, and so xm Ñ x P A. Also, φnpx, yq ¤ λn as tφnu is a scale. Thus,
ψnpxq ¤ φnpx, yq ¤ λn and so tψnu is a scale. �

The scale on a Π1
1 set in ωω constructed in theorem 2.43 implicitly also builds

a Suslin representation for Π1
1 sets. We construct directly now a related, but

somewhat different, Suslin representation called the Shoenfield tree which also has
other useful properties, specifically it is a homogeneous tree (we define this concept
later).

Let A � ωω be Π1
1, and let T be a tree on ω � ω such that ωω �A � prT s, that

is, Apxq iff Tx is wellfounded. Let π : ω Ñ ω ω be a reasonable bijection, say with
π�1psq ¥ lhpsq for all s. Note that πp0q � ∅ (which we consider to be the root
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node of any tree). Define the tree S on ω � ω1 by:

ps, pα0, . . . , αnqq P S iff @0 ¤ i, j ¤ n pαi   αjq Ø

rpπpiq, πpjq P Ts ^ πpiq  KB πpjqq

_ pπpiq R Ts ^ πpjq P Tsq

_ pπpiq, πpjq R Ts ^ i   jqs

We refer to the tree S defined above as the Shoenfield tree for A. Note that
S only depends on the tree T projecting to ωω � A. We claim that A � prSs.
If x P A, then Tx is wellfounded. Let  x be the ordering on ω defined by the
last three disjuncts in the above definition of S.  x is easily a wellorder using the
fact that  KB æTx is a wellorder in this case. Let φpnq be the rank of n in  x.
Then px, pφp0q, φp1q, . . . qq is a branch through S, so x P prSs. If x R A, then Tx is
illfounded, say px, yq P rT s. Then Sx must be wellfounded, for suppose px, ~αq P rSs.
Let ki � π�1pyæiq. Then αk0 ¡ αk1 ¡ . . . , a contradiction.

Thus, for all x we have Sx is illfounded iff Tx is wellfounded. In particular, x P A
iff Tx is wellfounded iff Sx is illfounded, that is, A � prSs.

We state two important properties of the Shoenfield tree. The first is that
the Shoenfield tree construction is absolute to transitive models of enough of ZF
containing ω1. That is, if V1 � V2 are transitive models of enough of ZF and
pω1q

V1 � pω1q
V2 , and T P V1 is a tree on ω � ω, then pSqV1 � pSqV2 , where pSqV1

denotes the Shoenfield tree computed in V1 and likewise for V2. This is immediate
from the fact that both models compute the same set of countable ordinals, and
the fact that the conditions for ps, ~αq to be in S are clearly absolute.

Secondly, note that S is homogeneous, which here means that if ps, ~αq P S and ~β

is order-isomorphic to ~α, then ps, ~βq P S. That is, being in the tree S only depends
on the relative ordering of the ordinals in ~α (we give the general definition of a
homogeneous tree later).

Note also that if ps, pα0, . . . , αnqq P S then α0 ¡ α1, . . . , αn (since πp0q � ∅ is
the maximal element in the ordering  x).

The Shoenfield tree construction also give a Suslin representation for Σ1
2 sets.

For suppose A � ωω is Σ1
2, say Apxq Ø Dy Bpx, yq where B P Π1

1. Let T be a tree
on ω�ω�ω such that Bpx, yq Ø Tx,y is wellfounded. Let S be the Shoenfield tree
on ω � ω � ω1 constructed from T in the obvious manner. So, Bpx, yq Ø Sx,y is
illfounded. But then we also have Apxq Ø Dy Sx,y is illfounded Ø Sx is illfounded
(here Sx is a tree on ω � ω1). If we identify ω � ω1 with ω1, then S may be
viewed as a tree on ω � ω1 (identifying the second and third coordinates with
a single coordinate). So, A � prSs which gives a Suslin representation for A.
Again, the operation T ÞÑ S is absolute between transitive models of enough of
ZF having the same ω1. Now however, S is no longer homogeneous but rather
weakly homogeneous, which in this case we can take to mean that S is isomorphic
to a homogeneous tree on ω � ω � ω1 by an identification of the second and third
coordinates (we will give a more official and general definition later).

We summarize this discussion in the following theorem.

Theorem 2.49. If A � ωω is Π1
1, then the Shoenfield tree S on ω�ω1 is such that

A � prSs. Furthermore S is homogeneous and the map T ÞÑ S is absolute between
transitive models of (enough of) ZF having the same ω1 (where T is a tree on ω�ω
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such that ωω � A � prT s). If A is Σ1
2, then these facts also hold except S is only

weakly homogeneous.

Suppose again that A � ωω is Π1
1, T is a tree on ω�ω with ωω �A � prT s, and

S is the Shoenfield tree on ω � ω1 constructed from T . We claim the S has true
left-most branches.

Definition 2.50. Let V be a tree on a wellordered set pX, q. We say f P rV s is
a true left-most branch if @g P rV s @n pfpnq ¨ gpnqq.

To see this, suppose Sx is illfounded, that is x P A. So, Tx is wellfounded.
Again let φpnq be the rank of n in the wellordering  x of ω defined above. So,
px, pφp0q, φp1q, . . . qq P rSxs. Suppose px, gq P rSxs. Then n ÞÑ gpnq is order-
preserving from  x to On. It follows that for every m P ω, gpmq is greater than or
equal to the rank of m in  x, which is φpmq.

We thus have:

Lemma 2.51. For A � ωω in Π1
1 and S the Shoenfield tree for A, S has true

left-most branches.

For x P A, if we define φnpxq � the rank of n in  x as above, then tφnu is
a scale on A. In fact, this scale is essentially the same one given in the proof of
theorem 2.43. The only difference is that we had to take ψnpxq � xφ0pxq, φnpxqy to
get the scale to be a Π1

1-scale. Thus, the Π1
1-scale on A we constructed is more or

less the values of the true left-most branch of Sx.

Exercise 47. Let A � ωω be Π1
1. Let ωω �A � prT s, T a tree on ω � ω, and let S

be the corresponding Shoenfield tree on ω � ω1. Let tφnu be the scale on A given
by the true left-most branch (i.e., φnpxq is the rank of n in the wellordering ¨x
defined above). Let S1 be the tree of the scale tφnu. Show that S1 � S.

Although the tree of a scale always has true left-most branches, as does the
Shoenfield tree, it is not true that the Shoenfield tree S corresponding to an arbi-
trary T will be the tree of a scale.

Exercise 48. Show that if a tree T is the tree of a scale, then the scale is uniquely
determined by the tree. [hint: Show that if T is the tree of a scale tφnu then for
x P prT s, φnpxq is the nth coordinate of the left-most branch of Tx.]

Exercise 49. Consider WF � 2ω. Let T be the canonical tree on 2 � ω with
2ω�A � prT s given by ps, tq P T iff @i   lhptq  pspxtpiq, tpi�1qyq � 0q, that is, if it is
consistent with the amount of the ordering  s determined by s that tpiq  s tpi�1q.
Let S be the Shoenfield tree on 2�ω1 corresponding to T . Actually, use the slight
variation of S which is defined as before except if ps, ~αq P S and πpiq R Ts, then we
require αi � �1 (we will still consider this tree to be homogeneous). Show that S
is the tree of a scale. [hint: Fix ps, pα0, . . . , αnqq P S. We must show that there is
an x P WF extending s such that φipxq � αi for i ¤ n, where tφmu is the scale on
WF corresponding to the true left-most branch of Sx. That is, φmpxq is the rank
of πpmq in the ordering  KB of Tx (we assume πpmq P Tx here). So, show that
there is an x P WF extending s such that for all i ¤ n (with πpiq P Ts) we have
that |i| x � αi.]

The Shoenfield tree immediately gives an important absoluteness pripciple. First
recall the following simple fact. By a “Σ1

1 statement about x” we mean a statement



45

of the form φpxq � Dy @n Rpxæn, yænq, where R is a recursive relation on ω ω�ω ω.
Thus, φpxq Ø Dy px, yq P rT s where T ps, tq Ø @i   lhpsq Rpsæi, tæiq. So, T is in all
transitive models of enough of ZF.

Lemma 2.52. If M � N are transitive models of enough of ZF, then Σ1
1 statements

ars absolute between M and N .

Proof. Let T be a tree on ω� ω with T PM such that φpxq Ø Dy px, yq P rT s. Let
x P M . Then φpxqM Ø pTx is illfounsdedqM , and φpxqN Ø pTx is illfounsdedqN .
Since Tx PM � N , by absoluteness of wellfoundedness we have pTx is illfounsdedqM

iff pTx is illfounsdedqM . �

Using the Shoenfield tree, we can extend this result as follows. For any tree T
on ω � ω, and any ordinal α, let SpT, αq be the Shoehfield tree constructed from
T , but using the ordinal α instead of ω1. The same proof as before shows (in ZF)
that if α ¥ ω1, then Tx is wellfounded iff Sx is illfounded, for all x P ωω.

Theorem 2.53. If M � N are transitive models of enough of ZF and ωN1 P M ,
then Σ1

2 statements are absolute between M and N .

Proof. Let φpxq be a Σ1
2 statement, that is φpxq � Dy T px, yq is wellfounded, where

T is a recursive tree on ω�ω�ω. So, T PM . Let S � SpT, ωN1 q, and note that this is
the same constucted in M or N , that is, SM pT, ωN1 q � SN pT, ωN1 q � S. Let x PM
and assume φpxqN , so pDy Tx,y is wellfoundedqqN , and thus pSx is illfoundedqN .
By absoluteness, pSx is illfoundedqM . So, Dy P M pSx,y is illfoundedqM , and so
Dy PM pTx,y is wellfoundedqM since ωN1 ¥ ωM1 . Thus, φpxqM . The other direction

is immediate by Σ1
1 absoluteness. �

Corollary 2.54. If V is a transitive model of enough of ZF and V rGs is a generic
extension of V , then Σ1

2 statements are absolute between V and V rGs.

Exercise 50. Show that there are countab;e transitive models M of ZFN such that
Σ1

2 absoluteness fails between M and V . [hint: Suppose Σ1
2 absoluteness held

between V and every countable transitive model M of ZFN . Let A be a Π1
2 set, say

Apxq Ø φpxq where φ is a Π1
2 statement. Then we would have Apxq iff DE Dn pM �

pω,Eq is a countable wellfounded model of ZFN , πpnq � x, and φpnqM q, which
computes A to be Σ1

2.]

3. Suslin Representations and the Perfect Set Property

We show how Suslin representations give us structural information about the set.
In this section we consider the perfect set property. Recall that in theorem 1.42 we
showed that every Borel set in a Polish space is either countable or else contains a
perfect set.

Theorem 3.1 (ZF). Let A � ωω be κ-Suslin. Then either |A| ¤ κ (i.e., there is a
map of κ onto A), or A contains a perfect set.

Proof. Let A � prT s, where T is a tree on ω � κ. If ps, ~αq P T , we say T left-splits

below ps, ~αq if there are pt, ~βq, pu,~γq in T extending ps, ~αq with t K u. In general,
for S a tree on ω� κ, let S1 be the set of all ps, ~αq P S such that S left-splits below
ps, ~αq. Let T0 � T , and define the derivatives inductively by Tα�1 � pTαq

1, and for
limit α, Tα �

�
β α Tβ . Since T has size at most κ, there is a least ordinal θ   κ�

such that Tθ � Tθ�1.
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First assume Tθ � ∅. Then it is easy to build a perfect set in rT s. Namely, let
ps∅, ~α∅q be any node of Tθ. In general, suppose psw, ~αwq P Tθ has been defined
for w P 2 ω. Let pswa0, ~αwa0q, pswa1, ~αwa1q be extensions of psw, ~αwq in Tθ with
swa0 K swa1. Define π : 2ω Ñ rT s by πpxq � the union of the sxæn.

Suppose next that Tθ � ∅. If x P rT s, let `x be the left-most branch of Tx.
Let β   θ be the unique ordinal such that px, `xq P rTβs � rTβ�1s. Let ps, ~αq be
the least initial segment of px, `xq such that ps, ~αq R Tβ�1. We show that the map
x ÞÑ pβ, s, αq is one-to-one, which thus maps A into an ordinal of size κ. To see this,
suppose x, y P A and px, `xq, py, `yq P rTβs � rTβ�1s for some β (otherwise we are
done). Likewise, we may assume that ps, ~αq is the longest initial segment of px, `xq
in Tβ and also for py, `yq (or else we are done). Thus, Tβ does not left-split below
the node ps, ~αq. This says that xæn, yæn are compatible for all n, that is x � y. �

Corollary 3.2 (ZF). Every Σ1
1 set in a Polish space is either countable or else

contains a perfect set.

Proof. ForX � ωω the result follows immediately from theorem 3.1. For the general
case, let π : X Ñ ωω be a Borel bijection. If A � X is Π1

1, then A1 � πrAs � ωω

is also Π1
1 (since π�1 is Borel). If A1 is countable, then so is A. So, suppose A1

contains a perfect set P . Then A contains π�1rP s which is an uncountable Borel
set in X. By theorem 1.42, π�1rP s contains a perfect set. �

Similarly we have:

Corollary 3.3 (ZF). Every Σ1
2 set in a Polish space either has size ¤ ω1 or else

contains a perfect set.

We also have the following refinement of the perfect set theorem, sometimes
called the effective perfect set theorem.

Theorem 3.4 (ZF). Let A � prT s, where T is a tree on ω � κ. Then either A
contains a perfect set or else A � LrT s and there is in LrT s a one-to-one map from
A into κ.

Proof. Work inside LrT s, and define the derivatives Tα as before. Note that the
map S Ñ S1 (the left-splitting derivative) is absolute for transitive models of ZF.
Thus, the sequence Tα as computed in LrT s is the same as computed in V . Likewise,
the least θ such that Tθ � Tθ�1 is the same computed in LrT s or in V . If Tθ � ∅,
then A contains a perfect set as before. Suppose then that Tθ � ∅. Let x P A,
and let β, ps, ~αq be as in theorem 3.1. Then x may be defined in LrT s as the
union of all the t such that for some ~γ, pt, ~γq extends ps, ~αq and pt, ~γq P Tβ . This
is because on the one hand all such pt, ~γq are compatible in their first coordinates,
and on the other hand T ps, ~αq

.
� tpz,~γq P rTβs : pz,~γq extends ps, ~αqu is non-empty

in LrT s by absoluteness. So, x P LrT s. The proof of theorem 3.1 shows that the
map x ÞÑ pβ, s, ~αq (which is now defined in LrT s) is one-to-one. �

The effective perfect set theorem gives more information, for example, we have
the following corollary.

Corollary 3.5. If @x ppω1q
Lrxs   ω1q, then every Σ1

2 is either countable or else
contains a perfect set.
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Proof. We may assume A � ωω is Σ1
2. Say Apxq Ø Dy Bpx, yq, where B P Π1

1. Let
T be a tree on ω�ω�ω with B � prT s. T may be coded as a real, so are assuming
that pω1q

LrT s   ω1. Let S be the Shoenfield tree corresponding to T , so S P LrT s
(note: in defining S we use pω1q

V ). By theorem 3.4 it then follows that either A
contains a perfect set or else A � LrT s. Since LrT s |ù CH, |A| ¤ pω1q

LrT s   ω1,
that is, A is countable. �

On the other hand, the perfect set property for even Π1
1 is not decidable within

ZFC. This follows from the previous corollary and the following theorem of Gödel.

Theorem 3.6. Assume V � L. Then there is an uncountable Π1
1 set which does

not contain a perfect set.

Proof. Let   be the canonical ∆1
2-good wellorder of the reals assuming V � L. For

each α   ω1, let xα be the  -least element of WO with |x| � α. Let A � txα : α  
ω1u. Clearly A is uncountable. Also, A P Σ1

2 since

x P AØ x P WO^ DM rM is a countable transitive wellfounded model

of ZFC� V � L ^ x PM ^ p@y   x  py P WO^ |y| � |x|qqM s

Ø x P WO^ DE � ω � ω Dn P ω rpω,Eq is a wellfounded model of

ZFC� V � L^ πpnq � x^ pω,Eq |ù @z   n p pz P WO^ |z| � |n|qs,

where π is the transitive collapse map of pω,Eq. Let Apxq Ø Dy Bpx, yq where
B P Π1

1. By uniformization for Π1
1, let C � B be a Π1

1 uniformization of B.
Clearly C is uncountable. Suppose P � C were perfect. Since P contains a copy of
2ω, we may assume by shrinking P that P is compact. Let R � πrP s, where π is
the projection map onto the first coordinate. Since πæC is one-to-ome, R � WO is
uncountable and compact, hence Borel. However, a Borel subset of WO is bounded
in the ordinals coded by corollary 2.37, contradicting |R| � ω1. �

We can extract a bit more from the proof of theorem 3.6.

Theorem 3.7. Assume there is an x P ωω such that ω
Lrxs
1 � ω1. Then there is an

uncountable Π1
1 set with no perfect subset.

Proof. Suppose ω
Lrzs
1 � ω1. We follow the proof of theorem 3.6. Let  z be the

canonical wellordering of Lrzs. Define

x P AØ px P WOX Lrzsq ^ DM rM is a countable transitive wellfounded model

of ZFC� V � Lrzs ^ x PM ^ p@y  z x  py P WO^ |y| � |x|qqM s

Ø x P WO^ DE � ω � ω Dm P ω Dn P ω rpω,Eq is a wellfounded model of

ZFC� V � Lrms ^ πpmq � z ^ πpnq � x^

pω,Eq |ù @w  m n p pw P WO^ |w| � |n|qs,

where again π is the transitive collapse map. So, A P Σ1
2 as before. Note that since

ω
Lrzs
1 � ω1 it follows that A is uncountable. We obtain the Π1

1 set B from A as
before, and the same proof shows that B is uncountable and does not contain a
perfect set. �

We show next that ZFC�pthe perfect set property for Π1
1q is equiconsistent with

ZFC� D an inaccessible cardinal.
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Lemma 3.8. Assume the perfect set property for Π1
1. Then ωV1 is an inaccessible

cardinal in every Lrxs.

Proof. Clearly ω1 is regular in Lrxs. Suppose ω1 were a successor cardianl in Lrxs,
say ω1 � pκ

�qLrxs where κ is a cardinal of Lrxs. since κ   ωV1 , there is a real y
such that κ is countable in Lrx, ys. But then ω1 � pω1q

Lrx,ys, contradicting our
assumption. Thus, ωV1 is inaccessible in Lrxs. �

Corollary 3.9. CONpZFC� perfect set propertypΠ1
1qq ñ CONpZFC� D an inac-

cessible cardinalq.

Thus, the perfect set property for Π1
1 cannot be proved in ZFC. On the other

hand, we have the following. Let P � collpω,  κq be the forcing for collapsing
all ordinals less than κ to be countable. Recall P consists of all finitely supported
functions f with domain a subset of ω � κ, and such that fpn, βq   β for all
n P ω and β   κ. If G is generic for P, we regard G as a sequence G � xgαyα κ,
where gα : ω Ñ α. For γ   κ, we let Gγ be those f P G with domain contained
in ω � γ. We regard Gγ as the initial segment xgαyα γ of G. Gγ is generic for
Pγ

.
� collpω,  γq.

Lemma 3.10. Assume κ is an inaccessible cardinal. Let G be P � collpω,  κq

generic over V . Then in V rGs we have @x pω
Lrxs
1   ω1q, and thus we have the

perfect set property for Σ1
2 in V rGs.

Proof. Let G � xgαyα κ be generic over V for P. Since κ is regular, P is κ-c.c.,
and so forcing with P does not collapse κ (but does collapse every α   κ to be
countable). So, pω1q

V rGs � κ.
Let x be a real in V rGs. Since κ is regular and P is κ-c.c., the usual nice-

name argument shows that x P V rGγs for some γ   κ. It is enough to show that

pω1q
V rGγ s   ω1. Since |Pγ | � |γ|, forcing with Pγ preserves all cardinals greater

than γ. Since κ is a limit cardinal, it follows that pω1q
V rGγ s   κ � pω1q

V rGs. �

Thus we can improve corollary 3.9 to an equiconsistency result:

Corollary 3.11. CONpZFC � perfect set propertypΠ1
1qq ô CONpZFC � D an in-

accessible cardinalq.

Remark 3.12. In Solovay’s model above obtained by forcing with P � collpω,  κq
with κ inaccessible, we actually have that all ordinal definable sets of reals in V rGs
have the perfect set property, and that in the LpRq of this model, every set of reals
has the perfect set property. Thus, ZF � pthe full perfect set propertyq still only
has the consistency strength of an inaccessible cardinal.

The perfect set property for Π1
1 implies @x pω

Lrxs
1   ω1q, and this in turn was

enough to get the perfect set property for Σ1
2. However, this is easy to show directly

as the following exercise shows.

Exercise 51. Show that if every Π1
1 set has the perfect set property, then every

Σ1
2 set has the perfect set property. [hint: If A is an uncountable Σ1

2 set, write
Apxq Ø Dy Bpx, yq where B P Π1

1. Let B1 uniformize B. Use the perfect set
property for B1.]
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4. Measure and Category

We consider the measure theoretic and topological notions of regularity of sets,
namely the notions of measurability and the Baire property. Unlike the perfect set
property, the situation now is symmetrical between a pointclass and its dual. We
recall first the basic notions.

First consider the case of measure. By a measure on a set X we mean a countably
additive function µ : M Ñ R� � RY t�8u, where M � PpXq is a σ-algebra. By
countably additive we mean that if tAnunPω are pairwise disjoint sets in M, then
µp
�
nAnq �

°
n µpAnq. If X is a topological space and M is the collection of Borel

subsets of X, then we call µ a Borel measure. If µpXq � 1, we call µ a probability
measure. We say µ is σ-finite if we can write X �

�
nXn where µpXnq   8 for each

n. There is little difference in the arguments for σ-finite measures and probability
measures, so we frequently just consider the case of a probability measure.

Exercise 52. Let µ be a Borel probability measure on a metric space X. Show that
µ is regular, that is, show that for any Borel set B � X and any ε ¡ 0, that there
is an open set U and a closed set F with F � B � U such that µpUq � µpF q   ε.
[hint: Prove this by induction on the Borel rank of B. Use the fact that every open
set in a metric space is the increasing countable union of closed sets.]

If µ is a Borel probability (or σ-finite) measure on a metric space X, then we
extend µ from the Borel sets to a larger σ-algebra, call the measurable sets, as
follows. First, we define the null sets to be those sets Z such that Z � A for
some Borel set A with µpAq � 0. Clearly the null sets for a σ-ideal (i.e., they are
closed under subsets and countable unions). We then define a set A � X to be
measurable if there is a Borel set B such that A4B � Z is null. The collection
M of µ-measurable sets is easily seen to be a σ-algebra containing the Borel sets.
Moreover, the measure µ naturally extends from the σ-algebra of Borel sets to the
the σ-algebra of measurable sets. Namely, if A PM and say A4B � Z is null, set
µpAq � µpBq. This is easily well-defined.

Exercise 53. Let µ be a Borel probability measure on a metric space X. Show
that the extension of µ to M is also regular, that is, for every A P M and any
ε ¡ 0, that there is an open set U and a closed set F with F � B � U such that
µpUq � µpF q   ε.

Exercise 54. Let µ be a Borel probability measure on a metric space X. Show that
A � X is µ-measurable iff for every ε ¡ 0 there is an open set U and a closed set
F with F � B � U such that µpUq � µpF q   ε.

We say a set A in a metric space X is universally measurable if it is measurable
with respect to every Borel probability measure on X (equivalently, with respect
to every σ-finite Borel measure).

We recall the following fact. Recall for a measure µ on a set X, that a point x P X
is said to be an atom if µptxuq ¡ 0. µ is atomless if there are no atoms. Clearly
there can be only countably many atoms. It follows that if µ is a Borel probability
measure on the Polish space X then µ can be written as � mu � αµ1� βµ2 where
α�β � 1, µ1 is a discrete probability measure (i.e., µ1 concentrates on a countable
set), and µ2 is an atomless Borel probability measure.

Theorem 4.1. Any two atomless Borel probability mesures on Polish spaces are
Borel isomorphic.
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Proof. Let µ be a Borel probability measure on the Polish space X. It suffices
to show that µ is Borel isomorphic to Lebesgue measure on r0, 1s. Clearly X is
uncountable as µ is atomless. Since any two Polish spaces are Borel isomorphic, we
may assume that X � r0, 1s. Define f : r0, 1s Ñ r0, 1s by fpxq � µpr0, xsq. Since µ
is atomless it follows easily that fp0q � 0, fp1q � 1, and f is continuous. Also, f
in monotonically increasing. We claim that fpµq is Lebesgue measure λ on r0, 1s.
To see this, consider fpµqpra, bsq � µpf�1pra, bsq � µprc, dsq where fpcq � a and
fpdq � b. So, µpr0, csq � a and µpr0, dsq � b. But then µprc, dsq � µppc, dsq �
µpr0, dsq � µpr0, csq � fpdq � fpcq � b � a � λpra, bsq. Since fpµq and λ agree on
all basic open sets, it follows that fpλq and µ agree on all Borel sets in r0, 1s. The
remaining problem is that f need not be one-to-one.

Let tInunPω be a maximal family of pairwise disjoint open intervals in r0, 1s on
which f is constant (such a family is clearly countable). Using countably additivity
we easily have that µpInq � 0 for all n (each In is a countable union of intervals rc, ds
such that f is constant on rc, ds. Then µprc, dsq � µppc, dsq � µpr0, dsq � µpr0, csq �
fpdq � fpcq � 0). Since µ is atomless, we also have µpInq � 0. Let C be the
Cantor set in r0, 1s, so λpCq � 0. Let F � f�1pCq. Since λpCq � 0, µpF q � 0.
Let E � F Y

�
n In, so µpEq � 0. Note that if x, y P r0, 1s and fpxq � fpyq then

x, y P E. This is because f is constant on px, yq, and so px, yq � In for some n.
Hence, x, y P In. In particular, f in one-to-one on r0, 1s�E. Also, f maps r0, 1s�E
in a continuous one-to-one way to a Borel set B disjoint from F . In fact r0, 1s �B
is C YD where D is countable (the points in D are of the form fpzq where z is an
endpoint of an interval In). Since r0, 1s � B and E both measure 0 (with respect
to λ, µ respectively), it follows that f is a measure preserving bijection between
pr0, 1�E,µq and pB, λq. Finally, take a Borel bijection g between E and C. Then
the union of f restricted to r0, 1s�E and g restricted to E is a measure preserving
Borel bijection between pr0, 1s, µq and pr0, 1s, λq. �

If µ is a Borel probability measure on the metric space X, we let Im � Impµq
denote the σ-ideal of µ-null sets.

We generalize these concepts to an arbitrary ideal on a Polish space.

Definition 4.2. If I is a countably additive ideal on a Polish space X, we say a
set A � X is I-measurable if there is a Borel set B � X such that A4B P I.

The I-measurable sets form a σ-algebra containg the Borel sets in the Polish
space X.

Definition 4.3. An ideal I on a setX is c.c.c. if there does not exist an uncountable
collection tAαuα ω1

of I-measurable, I-positive sets (i.e., each Aα R I) such that
Aα XAβ P I whenever α � β.

Lemma 4.4. For any Borel probability (or σ-finite) measure on a Polish space X,
the ideal Im of µ-null sets is countably closed and c.c.c.

Proof. We have already note Im is countably closed, as µ is countably additive.
To see that Im is c.c.c., suppose tAαuα ω1

is a sequence of µ-measurable sets such
that µpAαq ¡ 0 and µpAα X Aβq � 0 for all α � β. We assume µ is a probability
measure, the σ-finite case easily following from that. Thinning out the sequence,
we may assume that for some n P N� that µpAαq ¡

1
m for all α. It folows that

µpA0YAnY� � �YAkq ¡
k
n , which is a contradiction for k ¡ n (since µ is a probability

measure). �
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Exercise 55. Show how to prove lemma 4.4 in the case where µ is just assumed to
be σ-finite.

We consider now the topological notion of category. Recall a set A is a topological
space X is aid to be nowhere dense if intpĒq � ∅. This is equivalent to saying that
for every open set U , there is an open set V � U with V X A � ∅. Recall that a
set A in a topological space X is said to be meager if A �

�
n Fn where each Fn

is closed and nowhere dense. Equivalently, A �
�
nEn where each En is nowhere

dense (since the closure of a nowhere dense set is nowhere dense). We say a set A
is comeager if X �A is meager.

Clearly a subset of a measger set is meager, and a countable union of meager sets
is meager, so the meager sets form a σ-ideal. Let Ic denote the σ-ideal of meager
sets. Recall X is said to be a Baire space is every open set is non-meager (that is,
every comeager set is dense).

The Baire category theorem says that every complete metric space, and hence
every Polisg space, is a Baire space. In particular, in every Polish space the ideal
Ic is proper.

The analog of measurability in the topological context is the Baire property.

Definition 4.5. A set A in a toplogical space X has the Baire property if there is
an open set U such that A4U is meager.

In analogy with measure, it perhaps would have seemed more natural in defini-
tion 4.5 to require only that there be a Borel set B such that A4B P Ic. However,
the stronger conclusion of definition 4.5 follows from this as the next standard
lemma shows.

Lemma 4.6. Every Borel set in a topological space has the Baire property.

Proof. If A is open, let U � A. If A is closed, let U � intpAq. Note that A4U �
A� U P Ic since for any closed set F in a topological space, F � intpF q is (closed)
nowhere dense. If A �

�
nAn, by induction let Un be open such that An4Un P Ic.

Let U �
�
n Un. Then A4U �

�
npAn4Unq P Ic since Ic is a σ-ideal. Suppose

finally that A has the Baire property, and we show X � A does as well. Let U be
open such that A4U � M P Ic. Then pX � Aq4pX � Uq � M P Ic also. Let
V � intpX � Uq, so pX � Uq4V P Ic. Thus, pX � Aq4V � pX � Aq4pX � Uq Y
pX �Aq4V P Ic. �

As in the measure case, the meager ideal is countable closed and c.c.c.

Lemma 4.7. Let X be Polish. Then Ic is countably closed and c.c.c. That is, there
does not exist an uncountable sequence tAαuα ω1

of sets with the Baire property
and each Aα R Ic, and such that Aα XAβ P Ic for all α � β.

Proof. Let Uα be open such that Aα4Uα P Ic. Since X is a Baire space and
Aα R Ic, Uα � ∅. For α � β, we must have Uα X Uβ � ∅, since Aα X Aβ P Ic
[note that pUα X Uβq4pAα X Aβq P Ic, and so Uα X Uβ P Ic. Since X is a Baire
space, this implies Uα X Uβ � ∅.] However, in a separable space we cannot have
an uncountable sequence of pairwise disjoint open sets. �

The analog of Fubini’s theorem in the category context is the Kuratowski-Ulam
theorem. The next lemma is the key point. Recall that if D � X � Y , then Dx

denotes the section Dx � ty : px, yq P Du.
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Lemma 4.8. Let X, Y be metric spaces with Y second countable. Let D � X�Y be
dense open (in the product topology). Then tx : Dx is open dense in Y u is comeager
in X.

Proof. For every x P X, Dx is open in Y . We show that for comeager many x P X
that Dx is dense in Y . Let tVnunPω be a base for Y . Let Un be the union of all
open sets U � X such that for some open V � Vn we have U � V � D. Then U is
dense in X. To see this, let W � X be open. Then pW � Vnq XD � ∅ since D is
dense, and since D is also open we have that W 1 � V � D for some open W 1 �W
and open V � Vn. Thus, W 1 � U , showing U is dense.

Since each Un is dense open, A
.
�
�
n Un is comeager in X. If x P A, then

Dx is dense since for any basic open set Vn, there is an open V � Vn such that
txu � V � D, that is, V � Dx. �

A useful notation is to write “@�Xx” to abbreviate “for comeager many x P X.”
We also write “D�Xx” for “for non-meager many x P X.” If the space is clear from
the context we just write “@�x.”

We now prove the Kuratowski-Ulam theorem.

Theorem 4.9. Let X, Y be Polish spaces. If C � X � Y is comeager, then
tx P X : Cx is comeager in Y u is comeager in X. If C � X � Y has the Baire
property and tx P X : Cx is comeager in Y u is comeager in X, then C is comeager
in X � Y .

Proof. First assume C � X � Y is comeager in X � Y . Say C �
�
nDn where

Dn � X �Y is open dense. From lemma 4.8, each An
.
� tx P X : Dn is open dense

in Y u is comeager in X. Thus, A
.
�
�
nAn is comeager in X. For x P A, each

pDnqx is open dense in Y , and so Cx is comeager in Y .
Suppose now C � X � Y has the Baire property and @�Xx @

�
Y y px, yq P C. If

C is not comeager, then D
.
� pX � Y q � C is nonmeager. Let W be an open set

such that D4W P I. So, W � ∅. Shrinking W , we may assume W � U � V ,
and so D is comeager on U � V . Then E � pD X pU � V qq Y pX � Y � U � V q
is comeager in X � Y . By the first case, we have @�Xx @

�
Y y px, yq P E. It follows

that @�Xx @
�
Y y rpx, yq P C ^ px, yq P Es. Since X is a Baire space and U is open, fix

x P U such that @�Y y rpx, yq P C ^ px, yq P Es. Since Y is a Baire space and V is
open, there is a y P Y such that px, yq P CXE, a contradiction as C, E are disjoint
on U � V . �

To summarize, in both the measure and category contexts, we have a countable
additive, c.c.c. ideal I, and the “measurable” sets are those which are equal to a
Borel set modulo a set in I (though in the category case we can improve “Borel”
to “open”).

Essentially by definition the Borel sets in X are measurable and have the Baire
property (when we say measurable we are referring to some Borel probability or
σ-finite measure on the Polish space X). We consider the question of which sets are
measurable. Most of this discussion is symmetric between measure and category
(though not everything is), and the only thing relevant is that the corresponding
ideal I is countably additive and c.c.c. We abstract this in the following definition.

Lemma 4.10. Let I be a countably additive, c.c.c. ideal on a Polish space X. Then
for every A � X there is a Borel set B with A � B and such that for every Borel
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set C � B � A, C P I. Likewise, there is an I-measurable set N with A � N and
such that for every I-measurable set C � N �A, C P I.

Proof. Let A � X. Let B be a collection of Borel subsets of X which is maximal
subject to satisfying:

(1) For every B P B, B XA � ∅ and B R I.
(2) For every B1 � B2 in B, B1 XB2 � ∅.

Since I is c.c.c., B is countable. Let C � YB, so C is Borel, and if we let
B � X � C, then B is Borel and contains A. By maximality of B, every Borel set
contained in B �A must be in I. The proof for I-measurability is the same. �

Theorem 4.11. Let I be a countably additive, c.c.c. ideal on the Polish space X.
Suppose A � AptMsuq where each Ms is I-measurable. Then A is I-measurable.

Proof. For each s P ω ω, recall As denotes the result of the Suslin operation starting
from Ms, that is, As � tx : Dy pyælhpsq � s ^ @n x P Myænu. Thus, A � A∅, and
As � Ms. For each s, let Ns � As be I-measurable as in lemma 4.10. So,
As � Ns � Ms, Ns is I-measurable, and every I-measurable set contained in
Ns �As is in I.

Let Es � Ns �
�
iPω Nsai. Clearly Es is I-measurable and Es � Ns. Also,

Es X As � ∅ since As �
�
iPω Asai, and Asai � Nsai. Thus, Es P I. Let

E �
�
sEs, so E P I as well. We claim that N∅ � A∅ � E and so is in I, which

shows that A � A∅ is I-measurable. Toward a contradiction, suppose x P N∅�A∅,
and x R E. Since x R E∅, there is an i0 P ω such that x P Ni0 . Since x R A∅, we
must have x R Ai0 . So, x P Ni0 �Ai0 . Continuing, we define a y P ωω such that for
all n, x P Nyæn�Ayæn. Since Nyæn �Myæn, this shows that x P AptMsuq. That is,
x P A � A∅, a contradiction. �

Corollary 4.12. Every Σ1
1 or Π1

1 set in a Polish space is universally measurable
and has the Baire property.

We earlier alluded to the following definition.

Definition 4.13. The C sets in a Polish space X are the smallest σ-algebra closed
under the operation A.

Corollary 4.14. Every C set in a Polish space X is universally measurable and
has the Baire property.

Exercise 56. Show that every C set in a Polish space is ∆1
2. [hint: Show that if each

Bs P ∆1
2 then A

.
� AptBsuq P ∆1

2. A direct computation will show that A P Σ1
2.

To see that X � A is Σ1
2, note that x P X � A iff Tx is wellfounded, where Tx is

the tree on ω given by Tx � ts P ω
 ω : x P Bsu. Then, x P X � A iff Dy P ωω rpy P

WFq ^ @n,m P ω pypxn,myq � 1 Ø x P Bπpnq ^ x P Bπpmq ^ πpnq extends πpmqqs
where π : ω Ñ ω ω is a bijection.]

In general, Σ1
1 sets in a product space X �Y cannot be uniformized by Σ1

1 sets,
even when Y � ω (otherwise Σ1

1 would have the reduction property, hence Σ1
1

wouls not have the separation property, which it however does). However, the next
result shows that Σ1

1 sets in a product can be uniformized by sets in the σ-algebra
generated by the Σ1

1, sets, and in fact by fairly simple sets in this collection. In
particular, Σ1

1 sets can be uniformized by sets which, when viewed as functions,
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are measurable also Baire measurable. The next result is due to Jankov and Von
Neumann.

Theorem 4.15. Let A � X � Y be Σ1
1. Then there is an A1 � A uniformizing A

with A1 P
�
ω

�
ωpΣ

1
1 ^Π1

1q.

Proof. Since Σ1
1, Π1

1 sets are preserved under Borel isomorphisms, and isomor-
phisms respect the set operations, it is enough to consider the case X � Y � ωω.

So, let A � ωω�ωω be Σ1
1. Let T be a tree on ω�ω�ω such that Apx, yq Ø Tx,y

is illfounded. Let B � dompAq � tx : Dy Apx, yqu. So, Bpxq Ø Tx is illfounded.
For x P B, let p`0pxq, `1pxqq be the leftmost branch of Tx (we implicitly identify
ω�ω with ω). Let A1px, yq Ø py � `0pxqq. Clearly A1 is a uniformization of A. We
compute the complexity of A1:

A1px, yq Ø@n P ωDt P ωn rpyæn, tq � p`0pxqæn, `1pxqænqs

Ø@n P ω Dt P ωn rDz, w P ωω ppz, wq extends pyæn, tq ^ px, z, wq P rT sq

^ @s1, t1 P ωn pps1, t1q   pyæn, tq Ñ  Dz, w P ωω ppz, wq extends

ps1, t1q ^ px, z, wq P rT sqqs.

The expression in square brackets defines an intersection of a Σ1
1 and a Π1

1 set. �

Suppose A � X � Y is Σ1
1. Let B � dompAq, and let A1 � A be the uniformiza-

tion produced in theorem 4.15. Let f : B Ñ ωω be the corresponding uniformizing
function, that is, A1px, fpxqq for all x P B. Then as a function from X to Y , f
is Γ-measurable, where Γ �

�
ωpΣ

1
1 ^Π1

1q. To see this, note that fpxqæn � s iff
Dt P ωn rps, tq � p`0pxqæn, `1pxqænqs, and then follow the above computation. It
follows that f is a measurable function, and also a Baire neasurable function.

5. Lightface Pointclasses

Up to this point we been discussing only the theory of “boldface poinclasses.”
Recall a (boldface) pointclass Γ is a collection of subsets of Polish spaces which
is closed under continuous preimages. In the boldface theory, the simplest sets
are open and closed sets, that is, the Σ0

1 and Π0
1 sets, and the simplest functions

are the continuous functions. In the lightface theory we refine these notions. The
lightface class Σ0

1, for example, will be the sets obtined by taking not arbitrary
unions of basis open sets but just “effective” or simply computable unions (the
precise definition will follow). In fact, for each real x P ωω, we will define the
lightface class Σ0

1pxq, which will denote those sets which are unions of basic open
sets which can be computed from x. Since every union of basic open sets can be
coded by some real, it will follow that Σ0

1 �
�
xPωω Σ0

1pxq. Similarly, the basic
notion of continuous is relaced by the effective notion of recursive, or computable.

The lightface theory has its origins in recursion theory, and many of the main
notions draw their motivation from that subject. It is possible to develop the main
technical results we need without recourse to recursion theory (and in fact we do
this this, see theorems ??, ??), but nevertheless an understanding of the underlying
recursion theory is helpful. We begin with a quick review of some basic concepts
in recursion theroy.

A total function from ω to ω is a function whose domaun is ω. A partial function
is one whose domain is a subset of ω. If f is a partial function we say fpnq is
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defined, or write fpnq Ó, if n P dompfq, and otherwise say fpnq is not defined, or
write fpnq Ò.

A total function f : ω Ñ ω is recursive, intuitively, if there is an algorithm which
computes f . That is, the algorithm when started with input n terminates after
a finite number of steps with the output fpnq. Now, an arbitrary algoritm when
started with a given input n does not have to terminate at all (e.g., it can go ino an
infinite loop). Thus, a general algorithm correspons to a partial recursive function.
There are several ways to make these intuitive notions precise. One way is to
give a precise definition of what a “machine computation” is, that is, formulate a
mathematically rigorous notion of machine computation. Of course, there are many
equivalent ways of doing this. For example, one could takr a formal programming
language such as C or Fortran, and use this as the basis for the definition. These
languages are designed to be flexible enough to be actually practical, and so lead to
very cumbersome formal definitions. The attempt to develop the simnplest possible
model of computation (or “programmin language”) leads to the notion of a Turing
machine.

Definition 5.1. A Turing machine is a finite set of quadruples xn, s, a,my where
n,m P ω, a P t0, 1u, and a is one of the symbols t0, 1, L,Ru.

A Turing machine executes as follows. We picture a tape which is infinite in
both directions, and at each place on the tape there may be either a 0 or a 1. The
Turing machine initially starts at position 0 of the tape. The machine is viewed
as having finitely many states that it can be in, each state being identified with an
integer. Each quadruple xn, s, a,my is interpreted as the following instruction: if
the machin is currently in state n and is scanning symbol s at the current position,
then take action a and go into state m. If a � 0 or 1, then the action is to print a
o or a 1 at the current position of the tape. If a � L or R, the action is to move
on position to the left or right respectively. To have the machine be given input
n, we start the machine (at position 0) on a tape which is 0 everywhere except for
a string of n � 1 ones in positions 0 to n � 1. It is convenient to designate one of
the states as a distinguished “halting state,” and declare that everything ceases if
and when this state is reached. If it is, then the number of ones on the tape at
that moment is declaredf to be the output value (one can require that these ones
also be in consecutive positions starting at position 0). We can also view Turing
machines as computing k-ary functions with an appropriate input convention, say
to compute the value on input pa1, . . . , akq we start with the tape containg a string
of a1 � 1 ones, then a 0, then a2 � 1 ones, etc.

It is tedious but straightforward to show that the usual programming constructs
can be done at the Turing machine level, and that any operation which can done
by a C or Fortran command, for example, can be done by a Turing machine. Then
next exercise gives some such simple operations.

Exercise 57. Show that functions fpnq � n� 1, fpn,mq � n�m, fpn,mq � n �m
are Turing computable.

Exercise 58. Show that if f : ω Ñ ω is computed by the Turing machine T , then
there is a Turing machine T 1 which also computes f and such that T 1 never moves
to a negative position (i.e., to the left of the starting position). [hint: simulate
a bi-infinite tape with a subset of the positive positions on the tape, for example
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using positions of the form 4k � 10. Show that any action of T can be simulated
by an action of T 1 which stays on the non-negative portion of the tape.]

Another approach is to give an abstract definition of the class of recursive (total)
functions as follows.

Definition 5.2. The collection of (total) recursive functions (of any arity) is the
smallest collection of functions (each of which is a function from ωk to ω for some
k) satisfying the following:

(1) fpnq � n � 1, fpn,mq � n � m, fpn,mq � n � m are recursive. Any
constant function is recursive. Any projection function fpa1, . . . , akq � ai
is recursive.

(2) Any composition of recursive functions is recursive. More precisely, if f :
ωk Ñ ω is recursive and g1, . . . , gk : ωl Ñ ω are recursive, then hpa1, . . . , alq �
fpg1pa1, . . . , alq, . . . , gkpa1, . . . , alqq is recursive.

(3) The collection is closed under primitive recursion. That is, suppose g : ωk Ñ
ω is recursive and h : ωk�2 Ñ ω is recursive, Define h : ωk�1 Ñ ω as follows:

fpt, a1, . . . , akq �

#
gpa1, . . . , akq if t � 0

hpt, a1, . . . , ak, fpt� 1, a1, . . . , akqq if t ¡ 0

(4) The collection is closed under total minimalization. That is, suppose g : ωk�1 Ñ
ω is recursive and assume that for all pa1, . . . , akq there is a t P ω such that
gp~a, tq � 0. Define fpa1, . . . , akq � µ t pgp~a, tq � 0q, where µ t means “the
least t.”

We also define a relation R � ωk to be recursive iff its characteristic function
χR is a recursive function.

It is easy to see that this is a welldefined class of functions (in case (4) this is
because of the asumption on g). A moments reflection will convince one that any
recursive function by definition 5.2 is machine computable. The other direction is
also true, but perhaps not quite as obvious. The following exercises develop some
of the basic properties of recursive functions and relations.

Exercise 59. Show that the functions

sgnpxq �

#
1 if x ¡ 0

0 if x � 0
and a� b �

#
a� b if a� b ¥ 0

0 if a� b   0

are recursive. [hint: both can be defined by simple primitive recursions.]

Exercise 60. Show that the relations � and   are recursive.

Exercise 61. Show that exponentiation is recursive, that is, the function defined by
fpn,mq � nm (� 0 if n � 0) is recursive.

Exercise 62. Show that if R1, . . . , Rk are recursive relations, then so is any Boolean
combination of the Ri.

Exercise 63. Show that a function f : ωk Ñ ω is recursive iff its graph Gf � ωk�1

is a recursive relation.

Exercise 64. Show that if R � ωk is recursive and f1, . . . , fk are reursive functions,
then Sp~aq Ø Rpf1p~aq, . . . , fkp~aqq is recursive.



57

Exercise 65. Show that a function defined by cases is recursive. That is, ifR1, . . . , Rk
are recursive relations and f1, . . . , fk are recursive functions, then the function

fp~aq �

$''''&
''''%

f1p~aq if R1p~aq

f2p~aq if R2p~aq
...

fkp~aq if Rkp~aq
is recursive.

Exercise 66. Show that if ϕpx1, . . . , xkq is a quantifier free formula in the language
of number theory (i.e., in the first order language with symbols �, �, E, S, 0,�, )
then Rpa1, . . . akq Ø N |ù ϕpa1, . . . , akq is recursive (here E is interpreted as ex-
ponentiation, s the successor function, and the other symbols have their usual
aenings). [hint: Prove this by induction on the formula ϕ. Collect the previous
exercises.]

Exercise 67. Show that the recursive relations are closed under bounded quantifi-
cation. That is, if Rp~a, b, nq is recursive then so is Sp~a, bq Ø Dn ¤ b Rp~a, b, nq.
Likewise for bounded universal quantification. Similarly, show that if R is a recur-
sive relation and fp~a, bq � µn ¤ b pRp~a, b, nqq (if one exists and � 0 otherwise),
then f is recursive. [hint: Show more generally that if fp~a, b, nq is a recursive
function, then so is gp~a, bq �

°
n¤b fp~a, b, nq. Use a primitive recursion to do this.]

Say a formula ϕ in the language of number theory is ∆0
0 if it is the smallest class

of forulas containing the quantifier free formulas and closed under bounded number
quantification.

Exercise 68. Show that if ϕ is a ∆0
0 formula then the relation defined by ϕ is

primitive recursive. [hint: proceed inductively on ϕ as in exercise 67, and note that
the minimalization operator is never needed.]

Exercise 69. Show that the relations Primepnq Ø pn is primeq and Seqpnq Ø
pn codes a sequenceq are recursive, in fact their chacteristic functions are primi-
tive recursive. Show that fpkq � pthe kth primeq is primitive recursive. Show that
the functions fpnq � µp ¥ n pPrimeppqq, lhpnq � pthe length of the sequence coded
by n if n codes a sequence, and 0 otherwiseq. are primitive recursive. Show that the
deocding function pnqk � ak if n codes a sequence n � xa0, . . . , aly of length l ¥ k,
and � 0 otherwise, is also primitive recursive. [hint: the Prime and Seq relations
are defined by ∆0

0 formulas. For the next prime function, use the fact that there is
a prime between n and n!� 1 (actually by Bertrand’s theorem between n and 2n).
Use this and a primitive recursion for the kth prime function.]

Theorem 5.3. The class of recursive functions coincides with the class of (total)
Turing computable functions.

proof (sketch). The proof that every recursive function is Turing computable is
tedious but relatively straightforward, using a few Turing machine “programming
tricks” such as exercise 58. Suppose then that f : ω Ñ ω is Turing computable
(the higher arity case is similar). Recall our coding of finite sequences of integers:

xa0, a1, . . . , aky � 2a0�1 � 3a1�1 � � � pak�1
k , where pi denotes the ith prime (p0 � 2).

At any stage of a computation, the values on the tape, the position of the machine,
and the current state of the machine can all be coded by an integer (note that
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there are only finitely many nonzero values on the tape at any given time). For
eaxmple, this information could all be coded by the integer xs, p, b, c, ty where s is
an integer giving the current state of the machine, p gives the current position, �b
is the leftmost 1, c is the rightmost 1, and t is a sequence of length b� c� 1 which
codes the tape values from positions �b to c. We will call such an integer a stage
code. An entire compuation of the machine which starts with input k and ends
in a halting state with output value l can then be coded by a finite sequence of
these stage codes. The relation Stagepnq Ø n is a stage codeq is clearly primitive
recursive. The relation

SteppT, n,mq Ø T codes a Turing machine^ Stagepnq ^ Stagepmq^

pm is obtained from n by a valid step of the Turing machineq

is primitive recursive, using the above exercises (all quantifiers used in computing
this relation are bounded). It follows that the relation

ComppT, n, k, lq Ø T codes a Turing machine^ Seqpnq ^ @i ¤ lhpnq pStagepnqiq^

ppnq0 codes an input stage with input value kq^

pnlhpn codes a halting stage with output value lq^

@i   lhpnq pni�i is obtained from ni by a valid step of the

Turing machineq

is also primitive recursive.
Finally, the function fT computed by the Turing machine can be expressed by

fT pkq � phpkqq1 where hpkq � µm ComppT, pmq0, k, pmq1q. Note the essential
use of the minimalization operator in the definition of h (though Comp is primitive
recursive). This is the Kleene normal form for a recursive function. In particular, it
shows that that every recursive function can be defined with at most one application
of the minimalization operator.

Theorem 5.3 gives a little more information. It shows that there is a universal
Turing machine. For every e P ω, let teu denote the partial function from ω Ñ ω
computed by e, if e codes a Turing machine, and otherwise teu is the 0 function.
That is, there is a Turing machine U computing a partial binary function, such
that for all e, n P ω,

Upe, nq �

#
teupnq if e codes a Turing machine ^ teupnq Ó

undefined otherwise

Namely, Upe, nq � phpe, nqq1, where hpe, nq � µm Comppe, pmq0, n, pmq1q. �

Exercise 70 (Halting Problem). Show that the halting function

Hpe, nq �

#
1 if Upe, nq Ó

0 if Upe, nq Ò

with Upe, nq the partial recursive function above, is not recursive. In particular, the
partial recursive function U is not total. [hint: Suppose H were recursive. Define
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f : ω Ñ ω by a diagonal argument:

fpnq �

#
Upn, nq � 1 if Hpn, nq � 1

0 if Hpn, nq � 0

Since H is recursive, this definition shows that f is also recursive. However, by
construction f cannot be equal to any recursive function, say teu, since fpeq �
teupeq.]

We next give Kleene’s s-m-n theorem. We will shortly show, without using
recursion theory, that every pointclass that has a universal set has one for which
the s-m-n property holds, and this will suffice for applications to descriptive set
theory. However, the original fact that this holds for recursive functions is still of
interest.

Theorem 5.4 (s-m-n theorem). For every integers m   n, there is a total recursive
function s : ωm�1 Ñ ω such that for all partial recursive functions teu we have

tspe, a1, . . . , amqupam�1, . . . , anq � teupa1, . . . , am, am�1, . . . , anq.

Proof. Let T pb, a1, . . . , amq be the Turing machine which on inputs pam�1, . . . , anq
shifts those to the right on the tape and adds a1, . . . , am before them so as to
end with the tape containing the standard input configuration for pa1, . . . , anq, and
such that the least state of the machine used is b. It is straightforward to check
that T is recursive. Let spe, a1, . . . , amq be the Turing machine which computes
teu�T pe, a1, . . . , amq, which is essentually the union of the machines T pe, a1, . . . , amq
and the Turing machine coded by e. Since pe, a1, . . . , amq ÞÑ T pe, a1, . . . , amq is
recursive, so is pe, a1, . . . , amq ÞÑ spe, a1, . . . , amq. �

We next introduce the arithmetical hierarchy for sets of integers (or subsets of
ωk for some k).

Definition 5.5. A subset of ωk is ∆0
1 iff it is recursive. A set A � ωk is said

to be Σ0
1 (also called semi-recursive or recursively enumerable) if it of the form

Ap~aq Ø Db Rp~a, bq, where R is recursive. A set A is Π0
1 (or co-r.e.) if ωk �A is ∆0

1.
In general for n ¡ 1 we define Σ0

n � D
ωΠ0

n�1, Π0
n � Σ̌0

n, and ∆0
n � Σ0

n XΠ0
n.

The next exercise checks that ∆0
1 � Σ0

1 XΠ0
1 as well.

Exercise 71. Show that a set A � ω (or ωk) is recursive iff both A and ω � A
are recursively enumerable. [hint: If A is recursive then so is B � ω � A, and
so both are recursively enumerable. Suppose that A and B are both r.e. Say
Apnq Ø Dm Rpn,mq and Bpnq Ø Dm Spn,mq where R, S are recursive. Let fpnq �
µm pRpn,mq _ Spn,mqq. Thus, f is (total) recursive and Apnq Ø Rpn, fpnqq.]

The next two exercises give alternate characterizations of Σ0
1 sets.

Exercise 72. Show that A is Σ0
1 iff A is the range of a total recursive function.

[hint: If f is total recursive then n P ranpfq Ø Dm pfpmq � nq. Since the graph
of f is recursive, this shows ranpfq is Σ0

1. Suppose then that A P Σ0
1, say Apnq Ø

Dm Rpn,mq where R is recursive. Let fpaq � paq0 if Rppaq0, paq1q, and otherwise
fpaq � n0, where n0 is the least element of A.]

Exercise 73. Show that A is Σ0
1 iff A � dompfq for some partial recursive function

f . [hint: Ia A P Σ0
1, say Apnq Ø Dm Rpn,mq, then let fpnq � µm Rpn,mq (and
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fpnq is undefined if @m  Rpn,mq). Then f is partial recursive and A � dompfq.
Suppose next that A � dompfq for some partial recursive f . Then Apnq Ø Dm pm
codes a computation starting with input n which terminatesq. The relation inside
the quantifier is recursive.]

Remark 5.6. The theory of recursive functions can be developed entirely from def-
inition 5.2, that is, without appealing to the notion of Turing machine or machine
computability. One must be a little careful this way about some points related
to partial functions. For example, it is not true that the class of partial recursive
functions is the smallest class as defined in definition 5.2 where we allow all func-
tions to be partial (with the natural conventions on when a composition, primitive
recursion, etc. are defined); see the following exercise. One could define the partial
recursive functions to be those of the form fpnq � hpµm pgpn,mq � 0qq, where f ,
g are primitive recursive functions. One has to redo the proof of the normal form
theorem to show that this includes all the total recursive functions.

Exercise 74. Show that there is a partial recursive f on ω � ω such that

@n Dm pfpn,mq Ó ^fpn,mq � 0q

and the (total) function g defined by

gpnq � µm pfpn,mq Ó ^fpn,mq � 0q

is not recursive. [hint: define fpn, 1q � 0, and fpn, 0q � tnupnq (so fpn, 0q is defined
iff tnupnq Ó). If g were recursive, then so would be tn : gpnq � 0u � tn : tnupnq Óu.
This set is not recursive, though, by exercise 70.]

The next lemma summarizes the closure properties of these classes. We write
Σ0
næω

k for the Σ0
n subsets of ωk. We will shortly extend these arithmetical classes

to more general Polish spaces.

Lemma 5.7. Σ0
næω

k is closed under ^, _ and Dω. Π0
k is closed under ^, _ and @ω.

∆0
n is closed under ^, _. All of these classes are closed under recursive substitution,

that is, preimages under recursive functions. For eample if A � ωk is Σ0
n, then so

is Bpa1, . . . , anq Ø Apf1p~aq, . . . , fnp~aqq.

Proof. Suppose A P Σ0
1æω

k and Bp~aq Ø Apf1p~aq, . . . , fkp~aqq where the fi are recur-
sive. Write Ap~aq Ø Dm Rp~a,mq where R is recursive. Then

Bp~aq Ø Dm Rpf1p~aq, . . . , fkp~aq,mq.

The relation insider the quantifier is still recursive, so B P Σ0
1. It follows immedi-

ately that all the Σ0
n, Π0

n, and ∆0
n are closed under recursive substitution. To show

closure of Σ0
1 under Dω, let Ap~a,mq be Σ0

1, say Apveca,mq Ø Dn Rp~a,m, nq, where
R is recusive. Then Bp~aq Ø Dm Ap~a,mq Ø DmDn Rp~a,m, nq Ø Dp Rp~a, ppq0, ppq1q,
which shows B P Σ0

1. The same argument shows Σ0
n is closed under Dω, and so Π0

n

is closed under @ω. The other cases are similar. �

We construct universal sets for all of the arithmetical classes Σ0
n, Π0

n in ωk.
Define Uk � ωk�1 by Ukpe, a1, . . . , akq Ø teupa1, . . . , akq Ó. Since the Σ0

1 sets are
the domains of the partial recursive functions, it follows that U is universal for
Σ0

1æω
k. Applying the operations  and Dω immediately gives universal sets for all
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of the classes Σ0
næω

k, Π0
næω

k. Moreover, the s-m-n theorem for recursive functions
immediately gives a corresponding result for these universal sets. Namely,

Unpe, a1, . . . , anq Ø teupa1, . . . , anq Ó

Ø tspe, a1, . . . , amqupam�1, . . . , anq Ó

Ø Un�mpspe, a1, . . . , amq, am�1, . . . , anq

where s : ωm�1 Ñ ω is the total recursive function from theorem 5.4. Since the
universal sets for the other classes are obtained from these by the operations,  ,
Dω, it also follows immediately that the universal sets for all the Σ0

n, Π0
n class have

the s-m-n property as well. We summarize this in the following lemma.

Lemma 5.8. For all of the lightface classes Γ � Σ0
næω

k or Γ � Π0
næω

k, there are
universal sets UkΓ � ωk�1 for Γæωk such that the following holds. For all m   n
there are total recurive functions sm,n : ωm�1 Ñ ω such that

UnΓ pe, a1, . . . , am, am�1, . . . , anq Ø Un�mΓ psm,npe, a1, . . . , amq, am�1, . . . , anq,

for all a1, . . . , an P ω.

We will give a different proof, avoiding recursion theory, of the existence of
universal sets admitting s-m-n functions in a general context.

One of the uses of the s-m-n functions is to be able to do operations effectively
on the codes for sets. For example, suppose Γ is one of the arithmetical classes
Σ0
n or Π0

n. then there is a total recursive function t : ω � ω Ñ ω such that for all
a, b P ω, Utpa,bq � Ua X Ub (where U refers to the universal lg sets of lemma 5.8).
To see this, note that Apa, b, nq Ø Uapnq ^ Ubpnq is in Γ. Let e P ω be such that
Ueppa, b, nq Ø Apa, b, nq. By the s-m-n property, Uepa, b, nq Ø Uspe,a,bqpnq, so we
can take tpa, bq � spe, a, bq.

We next extend these lightface notion to more general Polish spaces.

Definition 5.9. A polish space pX, ρq with a dense set D � tr0, r1, . . . u is said
to be recursively presented if the relations Rpi, j, k, lq Ø ρpri, rjq  

k
l , Spi, j, kq Ø

ρpri, rjq ¤
k
l are recursive (we assume l ¡ 0).

When we discuss a recursively presented space pX, ρq,B, we will implicitly use
the corresponding basis B for X given by open sets of the form Bρpri, qq, where
q P Q. More specifically, For n P ω, let UXn � X be the basic open set

Uxn � Bρprpnq0 ,
pnq1
pnq2

q,

so the UXn form a basis B for X. We will just write Un when X is understood.
We will always implicitly use the recursive presentation for ω with ri � i. If
pX1, ρ1, D1q, pX2, ρ2, d2q are recursive presentations for Polish spaces X1, X2, then
pX1 � X2, ρ1 � ρ2, D1 � D2q is a recursive presentation for X1 � X2 (with the
product topology) where ρ1�ρ2ppx1, x2q, py1, y2qq � maxtρ1px1, y1q, ρ2px2, y2u. We
will implictly use this presentation when discussing products.

All of the usual Polish spaces such as ωω, 2ω, R, Cr0, 1s have recursive presen-
tations, and in fact their usual bases work. In particular, in the case of ωω we
use ri � si

a0̄ (0̄ is the constant 0 real), where si is the ith sequence in some out
(recursive) coding of sequences into integers. the corresponding basis B is just the
usual basis for the Baire space.
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We now extend the lightface classes to a recursively presented space, starting
with Σ0

1.

Definition 5.10. Let pX, ρq, D be a recursively presented space with corresponding
basis B � tUnu. A set A � X is Σ0

1 if A �
�
tUn : Spnqu where S � ω is Σ0

1.
We let Π0

næX � Σ̌0
næX, Σ0

n � D
ωΠ0

n�1 for n ¡ 1, and ∆0
næX � Σ0

næX XΠ0
næX.

Thus, A � X is Σ0
1 if there is a recursive function f : ω Ñ ω which enumerates

codes for basic open sets unioning to A. Note that in the case of the Baire space,
there is a simple recursive function t : ω Ñ ω such that tpnq P Seq for all n and

Bρprpnq0 ,
pnq1
pnq2

q � Ns, where xsy � tpnq. So the definition of A being in Σ0
1 in this

case is equivalent to saying that there is a recursive function which enumerates the
codes of sequences giving basic open sets which union to A.

Note that all Σ0
1 sets are open, that is Σ0

1, and so every Σ0
n or Π0

n set is Σ0
n or

Π0
n respectively. We call the ∆0

1 subsets of X the recursive subsets, using the same
terminology as in the X � ω case. Of course, if X is connected, like Rstd, then
there are no non-trivial ∆0

1 subsets. The next exercise, on the other hand, shows
that this is a reasonable terminology in the case of X � ωω.

Exercise 75. Show that A � 2ω is ∆0
1 iff it is computable in the following sense:

there is a Turing machine T such that when started on a tape with the real x P ωω

on it (i.e., the ith position of the tape has value xpiq), then the machine will halt
with output value 1 if x P A and will halt with output value 0 if x R A. Show
also that every A � 2ω which is computable in this sense is ∆0

1. Show that the
same is true for subseteq of ωω using a reasonable input convention for elements
of ωω. [hint: If A � 2ω is ∆0

1, let f , g be total recursive functions such that
A �

�
tNfpnq : n P ωu, B � 2ω � A �

�
tNgpnq : n P ωu (here we write Na for the

neighborhood Ns where xsy � a). Let T be the machine which at even 2n computes
fpnq and then checks to see if x P Nfpnq, and at odd steps 2n � 1 computes gpnq
and checks to see if n P Ngpnq. If the machine first gets a positive check at an even
stage, it outpus 1, and if at an odd stage, outputs a 0.]

We now define the relativized lightface pointclasses. for each x P ωω we define
the classes Σ0

npxq, Π0
npxq, and ∆0

npxq.

Definition 5.11. A � X is Σ0
npxq (or Π0

npxq, ∆0
npxq) if there is a Σ0

n set B � ωω�X
such that Apyq Ø Bpx, yq for all y P X. More generally, if Γ is any ω-parametrized
pointclass, we define Γpxq in a similar manner.

The following lemma connects the lightface and boldface pointclasses.

Lemma 5.12. Σ0
1 �

�
xPωω Σ0

1pxq, and likewise for all of the lightface classes Σ0
n,

Π0
n, ∆0

n, Σ1
n, Π1

n, ∆1
n.

Proof. It suffices to prove the result for Σ0
1, the other cases following by applying

quantifiers or negations. Suppose X is recursively presented and A � X is Σ0
1

(i.e., open). Let A � YtNn : xpnq � 1u, for some x P 2ω. Define Bpz, yq Ø
Di pzpiq � 1 ^ y P Niq. Easily B P Σ0

1æω
ω � X [consider the recursive function

which enumerates all pairs pxsy, kq where s is a finite sequence endind in 1 and
k � lhpsq. Then B � YtNs � Bk : ps, kq P ranpfqu.] Then Apyq Ø Bpx, yq, so
A P Σ0

1pxq. �
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For functions between Polish spaces, in the boldface theory the basic notions are
continuity and, more generally, f being Γ-measurable. The corresponding lightface
notions are f being recursive and f being Γ-recursive.

Definition 5.13. Let Γ be an ω-parametrized pointclass, and X, Y recursively
presented Polish spaces. We say f : X Ñ Y is Γ-recursive if the relation Rpx, nq Ø
fpxq P UYn is in ΓæpX � ωq. We say f is recursive if it is Σ0

1-recursive.

Clearly if f is recursive then f is continuous. If f is continuous, then tpx, nq : fpxq P
Unu is open, and so Σ0

1pxq for some x. Thus, f is Σ0
1pxq-recursive for some x.

Exercise 76. Show that f : ωω Ñ ωω is recursive (that is, Σ0
1-recursive) iff f is

∆0
1-recursive. [hint: Let S � tpx, sq : fpxq P Nsu, so S P Σ0

1. Then px, sq R S iff
there is a t K s such that fpxq P Nt.]

Exercise 77. Show that id f : X Ñ Y and g : Y Ñ Z are recursive, then so is g � f ,
and likewise for Σ0

1pxq.

The nest lemma extends lemma 5.7 and gives the basic closure propeties of the
lightface classes.

Lemma 5.14. For any recursively presented Polish space X we have the following.
Σ0
næX is closed under ^, _, Dω, and substitution by recursive functions (between

recursively presented Polish spaces). Π0
næX is closed under ^, _, @ω, and recursive

substitutions. ∆0
næX is closed under ^, _, and recursive substitutions. Σ1

n is closed
under ^, _, Dω, @ω, Dω

ω

, and recursive substitutions. Π1
n is closed under ^, _,

Dω, @ω, @ω
ω

, and recursive substitutions. ∆1
n is closed under ^, _, Dω, @ω, and

recursive substitutions. The same holds also for all of the corresponding relatixized
pointclasses.

Proof. Suppose A, B � X are Σ0
1. Say

A �
¤
tBρprpnq0 ,

pnq1
pnq2

q : Spnqu, B �
¤
tBρprpnq0 ,

pnq1
pnq2

q : T pnqu,

where S, T � ω are Σ0
1. Then AXB �

�
tBρprpnq0 ,

pnq1
pnq2

q : Rpnqu where

Rpnq Ø Da Db pSpaq ^ T pbq ^ pρprpnq0 , rpaq0q �
pnq1
pnq2

 
paq1
paq2

q

^ pρprpnq0 , rpbq0q �
pnq1
pnq2

 
pbq1
pbq2

q.

R is a Σ0
1 subset of ω using here the definition of a recursive presentation. Unions

are easier: A Y B �
�
tBρprpnq0 ,

pnq1
pnq2

q : Rpnq _ Spnqu, and R Y S is Σ0
1. Suppose

that B � x � ω is Σ0
1, and Apxq Ø Dm Bpx,mq. Say B �

�
tBρpxpnq0 ,

pnq1
pnq2

q �

tmu : Spn,mqu where S P Σ0
1æpω � ωq. Then A �

�
tBρpxpneq0 ,

pnq1
pnq2

q : T pnqu where

T pnq Ø Dm Spn,mq, so T P Σ0
1. So, A P Σ0

1æX. To see Σ0
1 is closed under

recursive substitution, suppose A � X is Σ0
1 and f : pZ, dq Ñ X is recursive. Let

Bpzq Ø Apfpzqq. Say, A �
�
tBρprpnq0 ,

pnq1
pnq2

q : Spnqu, with S P Σ0
1æω. Then Bpzq Ø

Dm pSpmq ^ pfpzq P UXm qq. Since the relation fpzq P UXm is Σ0
1, it follows from the

closure properties already established that B P Σ0
1. The closure properties for the

other pointclasses folow from these. �
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We next extend lemma 5.8 on universal sets and s-m-n functions to more general
space.

Theorem 5.15. Let X be a recursively presented Polish space, and Γ any of the
classes Σ0

n, Π0
n, Σ1

n, or Π1
n. Then there is a universal set U � ω � X for ΓæX.

First, we have the following.

Proof. It is enough to show the result for Γ � Σ0
1. Let V � ω � ω be universal for

Σ0
1æω. Define U � ω �X by

Upn, xq Ø Dm pV pn,mq ^ x P UXm q.

U is Σ0
1 from lemma 5.14. For the definition of Σ0

1æX it is immediate that U is
universal for Σ0

1æX. �

From theorem 5.15 we can obtain universal sets for the boldface classes which
respect the lightface classes in a certain sense.

Theorem 5.16. Let X be a recursively presented Polish space, and Γ any of the
classes Σ0

n, Π0
n, Σ1

n, or Π1
n. Let Γ denote the corresponding boldface class. Then

there is a UX � ωω � X in Γ which is universal for ΓæX and with the following
property. If A � X is in Γpzq, for z P ωω, then there is a real ε recursive in z such
that A � pUxqε.

Proof. Let U � ω�ωω�X be universal for Γæpωω�Xq from theorem 5.15. Define
UXpε, xq � ωω�X by UXpε, xq Ø Upεp0q, ε1, xq, where ε1pnq � εpn�1q. UX P Γ by
closure of Γ under recursive substitutions. Suppose A � X is Γpzq for z P ωω. So,
Apxq Ø Bpz, xq where B � ωω �X is in ΓæX. Let e P ω be such that Bpz, xq Ø
Upe, z, xq. Then if ε � xe, zy, we have UXpε, xq Ø Upe, z, xq Ø Bpz, xq Ø Apxq.
Also, ε � xe, zy is recursive in z. �

We now turn to the existence of s-m-n functions. Now must restrict out attention
to spaces for which we have recursive coding and decoding functions (at least if we
want to keep the s-m-n functions recursive). We first show the existence of the
s-m-n functions using the s-m-n theorem for recursive functions. Then we give a
more general abstract argument which avoids recursion theory.

Definition 5.17. We say a Polish space X is reasonable if it is a product X �
X1 � � � � �Xn of spaces with each Xi � ω, ωω, or 2ω.

Theorem 5.18. Let Γ any of the classes Σ0
n, Π0

n, Σ1
n, or Π1

n. For every X �
X1�� � ��Xn which a product of reasonable spaces Xi, let UX be the universal sets
from theorem 5.16. Then for every m   n there is a recursive function s : ωω �
X1 � � � � �Xm Ñ ωω such that

UY pspε, x1, . . . , xmq, xm�1. . . . , xnq Ø UXpε, x1, . . . , xm, . . . , xnq

for all ε P ωω, and xi P Xi, where Y � X1 � � � � �Xm.

Proof. It is enough to consider the case where each Xi is one of the basic spaces ω,
ωω or 2ω. We have UXpε, x1, . . . , xnq Ø Upεp0q, ε1, x1, . . . , xnq where U is universal
for the Σ0

1 subsets of ωω�X1���Xn. Also, Upεp0q, ε1, x1, . . . , xnq Ø Dn V pεp0q, nq^
Wnpε

1, x1, . . . , xnq where Wn refers to the recursive presentation for ωω�X1�� � ��
Xn. Let Ui, Vi be the recursive presentations for the spaces ωω �X1 � � � � �Xm,
and Xm�1 � � � � � Xn respectively. Let pa, bq ÞÑ rpa, bq be recursive such that
Wrpa,bq � Ua�Vb. Let Bn be the recursive presentation for ωω �Xm�1� � � ��Xn,
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and Cn the recursive presentation for ωω. Let m ÞÑ papmq, bpmqq be recursive such
that Bm � Capmq�Vbpmq. Let π : ωω Ñ ωω�X1�� � ��Xm be a recursive bijection,
and let g : ω Ñ ω be recursive such that πpCjq � Ugpjq. Define

Spe,mq Ø Dn pV pe, nq ^ rpgpapmqq, bpmqq � nq.

Clearly S P Σ0
1æpω � ωq, so by the s-m-n theorem on ω, there is a total recursive

function t : ω Ñ ω such that V ptpeq,mq Ø Spe,mq. Let spε, x1, . . . , xmq � z where
zp0q � tpεp0qq and z1 � π�1pε1, x1, . . . , xmq. Clearly s is recursive. Then

UY pspε, x1, . . . , xmq, xm�1, . . . , xnq Ø Dm pV ptpεp0qq,mq ^Bmpz
1, xm�1, . . . , xnqq

Ø Dm pSpεp0q,mq ^Bmpz
1, xm�1, . . . , xnqq

Ø Dm Dn pV pεp0q, nq ^ prpgpapmqq, bpmqq � nq ^Bmpz
1, xm�1, . . . , xnqq

Ø Dn pV pεp0q, nq ^Wnpε
1, x1, . . . , xnqq

Ø UXpε, x1, � � � , xnq

�

We now present a more general abstract srgument for the existence of universal
sets admitting s-m-n functions. This argument makes no appeal to recursion theory.

Theorem 5.19. Let Γ be a pointclass with Γæωω having a universal set. Then there
are universal sets UX � ωω�X for all reasonable spaces X satisfying the following.
For any product of reasonable spaces X � X1�� � ��Xm�� � ��Xn and m   n with
Y � Xm�1�� � ��Xn, there is a continuous function sX,Y : ωω�X1�� � ��Xm Ñ ωω

such that

UXpy, x1, . . . , xm, . . . , xnq Ø UY pspy, x1, . . . , xmq, xm�1, . . . , xnq

for all y P ωω and px1, . . . , xnq P X.

Proof. Let U � ωω � ωω be universal for Γæωω. Define ΓæX to those subsets of X
which are recursively reducible to U . If X � X1 � � � � �Xn is a reasonable space,
define

UXpy, x1, . . . , xnq Ø Uppyq0, xpyq1, x1, . . . , xnyq

(recall y ÞÑ ppyq0, pyq1q is our recursive bijection between ωω and ωω�ωω, and x� � � y
denotes our recursive coding functions). Clearly UX P Γ. To see it is universal,
suppose A � X in in Γ. Define A1 by A1pxq Ø Appxq1, . . . , pxqnq. Clearly A1 P Γ,
so let ε be such that Upε, xq Ø A1pxq. Let y � xε, 0̄y. Then UXpy, x1, . . . , xnq Ø
Uppyq0, xpyq1, x1, . . . , xnyq Ñ Upε, x0̄, x1, . . . , xnyq Ø Apx1, . . . , xnq.

To construct the s-m-n functions, note that

UXpy, x1, . . . , xnq Ø Uppyq0, xpyq1, x1, . . . , xnyq

and

UY ps, xm�1, . . . , xnq Ø Uppsq0, xpsq1, xm�1, . . . , xnyq.

therefore we can take sX,Y py, x1, . . . , xmq � xε, xy, x1, . . . , xmyy, where ε is such
that Upε, xxy, x1, . . . , xmy, xm�1, . . . , xnyq Ø Uppyq0, xpyq1, x1, . . . , xnyq. That is,
let ε be such that Upε, zq Ø Upz0,0,0, xz0,0,1, z0,1, . . . , z0,m, z1, . . . , zn�myq, where
z0,0,0 abbreviates pppzq0q0q0, etc.

�
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Definition 5.20. We say universal sets UX � ωω �X, for X a reasonable Polish
space, are good if there are continuous s-m-n functions as in the statement of
theorem 5.19.

One important consequence of the existence of s-m-n functions in the recursion
theorem, which says that in defining a Γ set, we may use the eventual code for the
set we trying to define in its definition. a precise statement follows.

Theorem 5.21. Let Γ be a pointclass and UX � ωω �X good universal sets for
ΓæX for X a reasonable Polish space. For any A � ωω�X in Γ, there is an ε P ωω

such that
UXpε, xq Ø Apε, xq

for all x P X.

Proof. Let ε0 P ω
ω be such that Upε0, δ, xq Ø Apspδ, δq, xq, where U � ωω�ωω�X

and s : ωω � ωω Ñ ωω is the corresponding s-m-n function. Then, Apspδ, δq, xq Ø
Upε0, δ, xq Ø Upspε0, δq, xq. In particular, for δ � ε0 we have Upspε0, ε0q, xq Ø
Apspε0, ε0q, xq, and so we can take ε � spε0, ε0q. �

Remark 5.22. It is possible to improve theorem 5.19 to obtain recursive s-m-
n functions, and so get a reasonable abstract notion of an associated lightface
class. One way to do this is as follows. View every real y as coding a Lipschitz
continuous function τy from ωω to ωω, say by τypsq � ypxsyq. Fix the universal
set U � ωω � ωω for Γæωω. Let U 1 � ωω be the image of U under our recursive
bijection, U 1pzq Ø Uppzq0, pzq1q. Define for X � X1� � � � �Xn a reasonable space,

UXpy, x1, . . . , xnq Ø τpyq0pxx1, . . . , xn, pyq1yq P U
1.

Clearly each UX P Γ. It is straightforward to check that UX is universal for
ΓæX. To see there are recursive s-m-n functions, note that for m   n and Y �
Xm�1 � � � � �Xn we have

UY ps, xm�1, . . . , xnq Ø τpsq0pxxm�1, . . . , xn, psq1yq P U
1.

So, we let spy, x1, . . . , xmq � xz, xy, x1, . . . , xmyq, where z will be described shortly,
and thus

UY ps, xm�1, . . . , xnq Ø τzpxxm�1, . . . , xn, xy, x1, . . . , xmyyq P U
1.

It remains to show that there is a recursive map py, x1, . . . , xmq ÞÑ z such that

τzpxxm�1, . . . , xn, xy, x1, . . . , xmyyq � τpyq0pxx1, . . . , xn, pyq1y.

We may effectively from y, x1, . . . , xm use this equation to define z. The point is
that if we are given k digits of xxm�1, . . . , xn, xy, x1, . . . , xmyy, using our standard
coding maps, then we compute at least the first k digits of xx1, . . . , xn, pyq1y (note
that only the digits of xm�1, . . . , xn are problematic since py, x1, . . . , xmq ÞÑ z is
not required to be Lipschitz).
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