1. POLISH SPACES

Polish spaces are the main objects of study in analysis and descriptive set theory.
Descriptive set theory is largely the study of the definable subsets of Polish spaces.

Definition 1.1. A Polish space X is a topological space which is separable and
completely metrizable.

If we wish to specify a complete metric giving the topology we will write (X, p).
Recall that separable means that there is a countable dense set, which for metric
spaces is the same as saying the space is second countable. Also, complete metriz-
ability is a topological property, although there will be different metrics giving the
topology, some of which will be complete and some not.

Most of the familiar objects of study in analysis involve Polish spaces; the next
examples record a few of them.

Examples 1.2. Ryq, [0, 1]sta, R™, [0, 1]™ are all Polish spaces. Any G subset of a
Polish space is Polish according to theorem 1.3 below, so (0, 1) and Irr = R—Q (with
the subspace topology) are also Polish. We will see below that Irr is homeomorphic
to the Baire space w®. Q, however, is not Polish (see exercise 3 below). A countable
product of Polish spaces is Polish according to exercise 1 below, so R¥ (which by
a theorem of Anderson is homeomorphic to £2) and the Hilbert cube [0,1]* are
Polish. A separable Banach space is by definition Polish, so the /P, p < oo, are
Polish as are the LP([0,1]), or LP(R) (p < ). ¢y (the sequences converging to 0
with the sup norm topology) is also Polish.

Any countable discrete space is Polish, so N, Z with their usual topologies are
Polish.

Any compact metric space is Polish (it is helpful to recall that a metric space is
compact iff it is complete with respect to every compatible metric). In particular,
the Cantor space 2“ (see below) is Polish.

If X is Polish the set F'(X) of all closed subsets of X carries a natural topology
under which it becomes Polish called the Beer topology; more on this later. When
X is compact this coincides with the Hausdorff metric topology on K (X) (the space
of compact subsets of X).

If X is a compact metric space, then C(X) = the space of continuous real valued
functions on X with the sup norm topology is Polish.

Ezxercise 1. Show that if X,, are Polish then the product space [ [, X, (with the
product topology) is also Polish. (hint: without loss of generality we may assume
that the topology on X, is given by a complete metric p,, which is bounded by 1.
Then let p =Y, 5+pn. Show this works.)

Ezercise 2. Show that if (X, p) is Polish and F € X is closed, then p|F x F is a
compatible complete metric on F'.

Ezercise 3. Show directly that Q (with the subspace topology) is not a Polish space
(by directly we mean not quoting the Baire category theorem).

FEzercise 4. Suppose p, are metrics on a set X which are all bounded by 1. Show
that p =3 2% pn is a metric on X which gives the supremum of the p,-topologies
(i.e., the smallest topology containing all the p,-topologies).
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We first recall the following classical theorem of Alexandroff. Recall a set is Gy if
it is a countable intersection of open sets (the dual notion is F,, a countable union
of closed sets).

Theorem 1.3 (Alexandroff). Let X be Polish. Then'Y € X (with the subspace
topology) is Polish iff Y is a G5 in X.

Proof. Suppose first that Y is a Gj, say Y = (), U,, where each U, is open.
Let p be a compatible complete metric on X bounded by 1. Define p,, on U, by
Pn(ff,y) = p(x,y)+|fn($)—fn(y)|, where fn(‘r) = p(x, X_Un) = innyXfUn P(!E,y)
Clearly 7, < 7, (since p < py,). Since f, is continuous, we also have 7, < 7,. So,
pn 18 a compatible metric on U,. p, is also a complete metric on U,, for suppose
{xm} is a p,-Cauchy sequence from U,,. Since the p,(z1,,,) are bounded, so are
the f(zm). So, 3¢ > 0 Ym p(zm, X —U,) = €. Clearly {z,,} is p-Cauchy, so the
T converge to some x € X. Since {z: p(x, X — U,) = €} is closed, x € U,. So, py
is a complete compatible metric on U,. Replacing p,, by min{p,, 1}, we may now
assume that the p, are all bounded by 1. Let now d = ) %pn, a metric on Y.
Easily, d is a compatible metric on Y (this also follows from exercise 4). Also, d is
complete on Y, for suppose {y,,} €Y is d-Cauchy. Since p, < 2" -d, {y} is also
prn-Cauchy. So, there is a y € U,, such that y,, — y. Since limits of sequences are
unique in T5 spaces, we must have y € (), Up.

Suppose next that Y € X is Polish in the subspace topology. Let p again be a
compatible complete metric on X bounded by 1, and let d be a compatible complete
metric on Y. For U an open set intersecting Y, define osc(d, U) = sup{p(z,y): x,y €
UnY}. ForyeY = clx(Y) define oscy(y) = inf{osc(d,U): y € U}. We claim that
Y = {y € Y: oscq(y) = 0}. Clearly if y € Y then oscq(y) = 0. Suppose y € Y and
oscq(y) = 0. For each n choose an open set U, about y such that osc(d,U,) < +
and U, € B,(y, %) If we let y,, € Uy, then {y,} is d-Cauchy, so converges to some
z €Y. Since U, < B,(y, %) we also have y, — 2z, and so y = z. This proves the
claim. Thus

Y ={yeY:osc(y) =0}

= ﬂ{y € Y: oscy(y) < %}

and {y € Y: oscq(y) < 1} is the intersection of the closed set Y with the open set
U{U: UnY # @ Aose(d,U) < £}. Since a closed set in a metric space is a Gy,
we are done. O

Let us consider in more detail two Polish spaces of particular interest, the Cantor
space 2* and the Baire space w®. For the Cantor space, we will take as our official
definition the space 2« = 28 = ] {0,1}. The Baire space is w* = [[yw, where
w = N carries the discrete topology. A basis for the product topology on 2% is
the collection of sets of the form Ny = {z € 2¥: z[lh(s) = s}, that is, all  which
extend s, where s € 2<% is a finite string of 0’s and 1’s. Similarly for the Baire
space, where now s € w<“. We refer to {N,} as the standard basis for 2* or w*. It
is convenient to use the following standard metrics on 2¥ and w*: p(z,y) = 2,-%,
where i is least so that z(7) # y(z).

From the definition of the product topology we see that a sequence {x,} < 2%
(or w*) converges to z iff it converges coordinatewise, that is, Vi InVm = n x,(i) =
z(4). Note that a function f: 2% — 2% (or from w* to w*) is continuous at z iff
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for every k there is an [ so that if , 2’ agree on the first [ coordinates, then f(x),
f(z") agree on the first k coordinates.

We visualize 2¢ (or w®) as the set of branches or paths through the tree 2<¢ (or
w=¥). We make this precise.

Definition 1.4. A tree on a set X is a subset of X < closed under initial segments,
that is, if s € T and m < lh(s), then stm € T. A branch or path through T is an
f:w — T such that Vn fneT. We let [T] denote the set of branches through 7.

The basic open sets N, are the “cones” of branches determined by the sequence
s.

Proposition 1.5. The Cantor set 2* is homeomorphic to the Cantor middle thirds
set C < R.

Proof. Recall C =1, F,, where F,, C [0,1] is a disjoint union of 2™ closed intervals
of length (%)”, obtained by successively removing the middle thirds of the previous
intervals. So, F; 2 F5 2 .... Recall C is closed and nowhere dense. The disjoint
intervals comprising F;, are naturally indexed by s € 2. So, the intervals in F}
are Iy, I;, the intervals in Fy are Iy, lo1 S Ip and Iy 0,111 S I;, etc. Define
f:2¥ - C by f(z) = ), Letn- Clearly f is an onto mapping from 2¢ to C.
f is one-to-one since if z(i) # y(i) then Iyr11 N Iypy1 = @. To see that f is
continuous note that if x,y € 2% and zIn = yIn = s, then f(x), f(y) € I, and so
|f(z) — f(y)| < diam(I,) = 5. Since f is a continuous bijection and 2 is compact
(see below), it follows that f is also an open map and so a homeomorphism. We
can also see this directly as follows. Suppose y € C' and f~!(y) = z. Let ¢ > 0 and
consider B(z,¢) € 2¢. Take n large enough so that 2% < €. Let s € 2™ denote the
unique sequence of length n such that y € I,. So, z[n = s. Note that if ¢ € 27,
t # s, then any point of I; is at least 3% away from any point of I,. Hence, if z € C
and |y — z| < %, then f=1(2)In = s, and so p(f~1(y), f71(2)) < 2—1” <€ So, f71
is continuous. U

Proposition 1.6. The Baire space w* is homeomorphic the space of irrationals
Irr (with the subspace topology from Riq).

Proof. Let Q = {qo0,q1,42,-..}. Let Iy, I1,... enumerate all of the open intervals
of the form (i,% + 1) in R. Suppose that I, has been defined for all s € w<", and
each Iy = (as,bs) is an open interval of R. Let Es € Q n I be such that the only
limit points of E are a, and by. We may also assume that ¢, € | J,c,<n Es. Let
{I4~;}iew enumerate the subinterval of I determined by the points of Ey (that is,
the two endpoints of each subinterval are in the set F). Without loss of generality
we may assume that diam(F,~;) < Qi for all 7. Note that F,~; € E for all s, 1.

Define a map f: w* — R as follows. For x € w® let f(z) = (), Istn. Since the I,
are strongly nested (i.e., if ¢ extends s then I; C I,) and diam([,) < 2”]%, flx) is
a well-defined point in R. We must have f(z) € Irr since f(z) ¢ |, Es, and |J, Es
contains all of Q. Since | J, Es € Q, for each y € Irr there is for each n a unique
sequence of length n such that y € Iy. These sequences must extend each other to
define an x € w* (since if s L ¢t then I; n I; = &). By definition of f we then have
f(x) =y. Thus, f is a bijection between w® and Irr.

[ is continuous since if p(z,2') < 557, that is #1n = 2’ In, then f(z), f(2') are
in the same E, for s of length n, and diam(E,) < 5.




To see f~! is continuous, let y € Irr and let * = f*(y). Fix an open set N,
about xz, say s = x|n. Since f(z) =y, y € I,. Since I, is open in R, let € > 0
be such that if |y — 3’| < € then y' € I as well. Thus, if ¢’ € Irr and |y — ¢'| < e,
=Yy )In = f~Y(y)In = s. This shows f~! is continuous. |

Let us study the open and closed sets in 2¢ and w* a bit more, in particular we
get a useful representation for the closed sets in these spaces.

Recall that the sets of the form Ny, for s € 2<% (or s € w<“ in the case of the
Baire space) form a base for the topology. Recall a topological space is said to be
0-dimensional if it has a base of clopen sets.

Proposition 1.7. 2 w*“ are 0-dimensional.

Proof. To see that N, is clopen, note that if x ¢ Ny, then for some n, t =z[n L s.
Also, Ny € X — N,. Thus, X — Ng = [J{N¢: t L s} is open. O

In particular, 2¢, w* are totally disconnected (i.e., the maximal connected sets
are points). We note that it is a theorem of topology that for compact Ty spaces,
0-dimensional is the same as totally disconnected (but the two are not the same in
general).

We can also say a tiny bit more about open sets in these spaces.

Lemma 1.8. Any open set in 2% or w* can be written as a (countable) disjoint
union of basic open sets Nj.

Proof. Let U be open in X (either 2 or w®). Let A be the set of all s € 2<% (or
s € w<¥) of minimal length such that Ny € U. If z € U, then for some n, z|n € A
(as U is open). Thus U = J,c4 Ns. If s # t are both in A, then s L ¢ as otherwise
one would not satisfy the minimality condition. Thus, Ny n N; = &. O

Ezercise 5. Show that lemma 1.8 also holds for Ryq (with the usual basis of open
intervals), but fails for R, n > 2.

The next lemma gives us a good picture of the closed sets in these spaces.

Lemma 1.9. The closed sets in w* (or 2¥) are precisely those of the form [T]
where T is a tree on w (or on {0,1} in the case of 2¥; recall this means T S w<¥

or T € 2<¢). Also, we may take the tree T to be pruned, that is, T has no finite
branches (that is, no terminal nodes in the tree).

Proof. If T is a tree on w, then [T] € w* is closed. To see this, suppose = ¢ [T].
Then for some n, zln ¢ T. Let s = x[n. Then Ny € w* —[T1], as no node extending
s can be in T (by the definition of T being a tree). So, [T] is closed.

Suppose next that F' € w® is closed. Let T be the set of all s € w<“ such that
there is an = € F' which extends s. Clearly T is a tree. Also clearly T is pruned (if
s € T the for some = € F, x extends s. But then any longer initial segment of = is
also in T'). By definition, if z € F then zfn € T for all n, so F € [T]. To see the
other direction, suppose = € [T]. So, for each n, x[n € T. By definition this means
that there is an z,, € F' with x, [n = x[n. But then z,, — x, and since F' is closed,
x € F. So, F = [T] for some pruned tree T'. O

Ezercise 6. Show directly that 2¢ is compact.

Ezercise 7. Show that a closed set F' = [T] € w is compact iff T is finitely splitting,
that is, every node of T" has only finitely many immediate successors in T'.
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Ezercise 8. Show that w* is not o-compact (i.e., it is not a countable union of
compact sets).

We next give the Cantor-Bendixson analysis of the closed sets in a Polish space.
Recall that for a set A in a topological space, A’ denotes the set of limit points of

A.

Definition 1.10. Let X be Polish and let F' € X be closed. The Cantor—Bendixson
derivatives of F,, o € On, are defined as follows.

Fy=F
Fa+1 = (Fa)l
F,= () Fs for o limit
B<a

Thus, in passing from F, to F,.1 we throw out all the points of F, which
are isolated points of F,. Clearly the sequence of derivatives is monotonically
decreasing, that is, if o < 8 then F, 2 Fj. Because the sequence is monotonically
decreasing, there is a least ordinal such that F,, = Fi 1.

Definition 1.11. The least ordinal « such that F,, = F,,+; is called the Cantor—
Bendixson rank of the closed set F'. We denote this ordinal by agp.

The next result, which is the Cantor-Bendixson analysis, shows that this is
always a countable ordinal. Recall a (non-empty) set P in a topological space is
said to be perfect if P contains no isolated points.

Ezercise 9. Show that a perfect set P in a complete metric space has size ¢ = 2“.
In fact, show that there is a continuous injection from 2“ into P.

Theorem 1.12 (Cantor-Bendixson). Let F' be a closed set in the Polish space X .
Then the Cantor—-Bendizson rank o, of F' is countable. Furthermore, if F,,, = @
then F' is countable. If F,,, # &, then F, , is perfect (so F' contains a perfect set).

cb

Proof. Let Up,Uy,... be a base for the topology. For each z € F — F,_,, let
a(z) < acep denote the unique ordinal such that x € Fy(z) — Foz)+1- Let n(x) be
the least basic open set which isolates x in Fi(,), that is, Fiy(z) N Uy = {x}. We
claim that z — n(z) is one-to-one. To see this, suppose x # y are in F — F,_,
and n(z) = n(y) = n. If a(x) = a(y) then we would have {x} = U, n Fy) =
Un 0 Fuyy = {y}, a contradiction. So, assume without loss of generality that
a(z) < afy). Since Fup) nUp = {z} and 2 ¢ Fyo)+1, Un 0 Fyz)+1 = 9, and so
Un N Fy(y) = 9, a contradiction.

If F,., = @, then a(z), n(x) are defined for all z € F. Since z — n(z) is one-to-
one, this shows that F' is countable. Suppose now F,_, # &. Since (Fy,_) = Fa.,,
F,., is perfect. So, F' contains the perfect set Fi,,, . O

Corollary 1.13. If F is a closed set in a Polish space X, then either F' is countable
or has cardinality ¢ = 2%.

Corollary 1.14. Any Polish space X is of the form X = P u C where P is perfect
(possibly empty) and C' is countable.

If the continuum hypothesis fails (that is, ¢ > X;), then by AC we get a set A € R
of size Wy, that is |[N| < |A] < ¢. By corollary 1.13 such a set cannot be closed.
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That is, the “pathological” set given by AC cannot be a simple set such as a closed
set. A motivating principle in descriptive set theory is hinted at in this corollary:
the reasonably defined subsets of a Polish space should avoid pathologies and have
a structural theory.

It is instructive to interpret the proof of theorem 1.12 in the special case X = w®.
Given a tree T on a set X, say that a node s € X <% is a splitting node if there are
t1, ta extending s with ¢; L ¢5. Let T’ denote the set of splitting nodes of T'. So,
suppose F' = [T] € w¥ is closed. Let Ty = T', and define by induction Ty 41 = (1)’
and T, = (3., Tp for o limit. Since 7' is countable, the least ordinal § such
that T541 = Tj is countable. For each x € F — [T5s], let a(x) be largest such that

€ [To(x)] (this is clearly well-defined). Let n(z) be least so that z [n(z) ¢ To(z)+1-
So, x[n(x) is a non-splitting node of T ;). Also, Nyp(ay N [Ta@y] = {z}. The
same argument as before show that the map = — n(x) is one-to one on F' — [T5].
So, if Ts = &, then F is countable. Otherwise, every node of T} is splitting, and so
[T5] is perfect.

We can also run the Cantor—Bendixson analysis on an arbitrary set C € X. Let
Co=0C,Chy1 =Cyn(Cy),and C, = ﬂﬁ<a Cp for o limit as before. As before,
there is a least countable ordinal a, such that Cy, = Co+1. If Co, = @, then C
is countable as before. Otherwise, C,, is dense in itself. Conversely, if C' contains
a dense in itself set, then all derivatives of C' are non-empty.

We can say a little more.

Theorem 1.15. For C € X (X Polish) the following are equivalent:

(1) Oacb =0
(2) C is a countable Gs.

Proof. If C'is a G, then it is Polish with the subspace topology. So either C,_, = @
or else C contains a perfect set. The latter cannot happen as C' is countable.

Suppose now that C,,_, = @. Thus, C' is countable (and hence an F,). It remains
to show that C' is a Gs. For each o < agp, and each n € w we define an open set U}
as follows. For each x € Cy, — Cy+1, and each n, let B™(x) be an open ball about
x satisfying:

(1) p(B"(x),Cas1) >0
(2) diam(B"(z)) < gp(x,Ca — {z})
(3) diam(B"(z)) < 5=

We can do this since ¢ C,1 which is a closed set (which allows (1)) and « is not a
limit point of C, (which allows (2)). Note that if z # y are both in C,, —Cy41, then
B"(z) n B™(y) = @ for any n, m (by (2)). Let U} = J{B"(x): © € Cy — Co41}-
Let U™ = Ua<acb UZ. Clearly Co, — Cqq1 € UZ, and hence C € U™ for each n.
Thus, C' < (), U™. Suppose now that x € (), U™ Let o be least such that for
some n we have x € U . Fix ng so that x € UJ°. Let 2’ € Cy, — Cqy41 be the
unique point such that z € B™ (2') = B. By (1), fix g such that p(B,Cu+1) > €o-
Consider now any n large enough so that 57 < €. By assumption, x € U} for some
a < acp. We cannot have a > «g by (1 ) and (3). By minimality of ap we must
then have x € U} . By disjointness we must have x € B"(z'). By (3) we then have
z=a"€C. O
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We prove another result concerning Ag sets in a Polish space. The next result
analyzes Ag sets in a Polish space in terms of the so-called difference hierarchy
which we now define.

Definition 1.16. Let {A,}n<s be a sequence of sibsets of X. The difference
operator is defined by

D({Ay}) = {z: pa(x ¢ Ay) is odd}

whwre po denotes “the least .” Note that there is no harm in assuming the
sequence A, is decreasing, as we can replace A, with [ B<a Ag.

We let D, (T') denote the collection of sets of the form D({Ag}s<q) where each
Ap € T'. In particular, we are interested in the classes D, (I1%) where a < wy.

Ezercise 10. Show that if A € D,(T'), then X — A € Dy y1(T'). [hint: put an extra
copy of X at 8 = 0 and an extra copy of ﬂa<ﬁ at 3 for all limit 5.] Deduce that

Do (1Y) < A for all a < wy.
Theorem 1.17. A set is AY iff it is in Dy (I1Y) for some a < w.

Proof. One direction is Exercise 10. For the other direction, assume A € X is Ag.
We define a decreasing sequence of closed sets F,, and associated open sets Uy, V,
(for o even) as follows. Let Fy = X, and for limit a let Fy, = (5., Ap. Given F,
where « is even, we define F,,. 1, Fi,12, U, and V,, as follows. Since both of A and
A€ = X — A are Gy, they cannot both be dense in the Polish space F, (otherwise
their intersection would be dense, and in particular non-empty, a contradiction).
So there an open set W in X such that W n F,, # @ and either W n F' € A or
WnFcCA Let Uy = u{W: WnF, S At and V,, = u{W: W n F, € A°}. Let
Foi1=F,—U,and Fyyo = F, — (Uy U V,). Clearly as long as F,, # @ we have
Fo.o € F,. Let a < wy be least such that F, = &. Suppose x € X. Let 8 < «
be the least ordinal such that = ¢ Fg. So, § is a successor ordinal. Let 5’ < 3 be
the largest even ordinal less than 8 (all limit ordinals are even). So, 8 = 8"+ 1 or
ﬂ = ﬂl+2. AlSO7 T € Fﬂ/, and x ¢ F5/+2. Ifzxe Fﬂ/ —Fﬂq_l then x € F/g/ ﬁU/g/ < A,
and if z € F5/+1 — Fﬁ/.,.g then x € Fﬁ/ N Vﬁ/ C A°. So, A = Da({Fﬁ}). O

1.1. The Borel Hierarchy. We introduce the Borel hierarchy of sets in a Polish
space X. We will study the Borel sets in more detail shortly, but for now we
introduce the hierarchy and state a few facts. Although we intend to study Polish
spaces, the definition makes sense in a general topological space.

Definition 1.18. The Borel sets in a topological space X is the smallest o-algebra
(i.e., closed under countable unions, intersection, complements) containing the open
sets.

The next definition stratifies the Borel sets into a natural hierarchy.

Definition 1.19. Let X be a topological space. The E? sets in X are the open
sets of the space X. The IT{ sets are the closed sets of X. A set A is 30 if it is a
countable union of sets A = | J,, A, with each A, being H%n for some 3, < a. A
set A is IV if it is a countable intersection A = (1), A, with each A, being E%n
for some B, < a. A set is AL if it is both X% and TT2.

@

So, 2(1) is the collection of open sets, H? the closed sets, A(l) the clopen sets, 23
the F, sets, and Hg the G sets.
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Ezercise 11. Let Y € X be topological spaces. Show that if A € X is 3° (or IT2,
etc.), then AnY is 23 in the relative topology on Y.

Definition 1.20. A (boldface) pointclass T is a collection of subsets of Polish
spaces which is closed under continuous preimages. That is, for each Polish space
X, X € P(X), and if f: X — Y is continuous and A € Y is in T', then
f YA cXisinT.

The next definition abstracts the operations used in generating the Borel hier-
archy.

Definition 1.21. Let T be a pointclass. The dual class T' is defined by I'} X =
{X —A: AeTX}. Welet |J,T be the collection of those A € X which can be
written as a countable union A = [ J, A, with each A, € T'. Likewise we define
(., T using countable intersections.

The next lemma gives some of the elementary properties of these sets.

Lemma 1.22. For any topological space X, the 23, Hg, Ag sets are closed under
continuous preimages. The X2 sets are closed under countable unions, and the TI2,
sets are closed under countable intersections. The complement of a £° set is a TI2,
set and vice-versa. A% is closed under complements. For any o = 2, 2 and TI2,
are contained in Agﬂ. If X is a metric space, then this last fact holds also for
a=1. For a # 3, 23 is closed under finite intersections, Hg under finite unions,
and Ag under finite unions and intersections. If X is a metric space than this
holds also for oo = 3. If we let B = | 23, then B is the o-algebra of Borel

subsets of X.

Proof. The fact that 3 is closed under countable (in fact, arbitrary) unions and IT¢
is closed under countable intersections follows immediately from the definition of a
topology. For o > 2, these same closure properties for Eg, Hg follow immediately
from the definition of these classes. The complement of a X9 set is IT{ by definition
and vice-versa, and a straightforward induction shows that X° and II? are likewise
dual classes for all a.

For 2 < a < f, it is immediate from the definitions that 2 < X%, and
likewise ITp, < IIp,, ;. For all a < f it is immediate that X7, < IIj and II;, < %3

a<wi

a+1*
(any X2 set is the countable intersection of itself). So, for 2 < a < 3 we have
>0 M < Ag. If X is metric then TI{ C TI9 as well, since for any closed set F we
may write F' = [, U,, where U,, = {z: p(z,F) < 1} is open. By duality we also
have ¢ € =Y. Hence, for metric X, 39, T1Y € AY.

For a # 3 we show that X° is closed under finite intersections, and then also
follows that ITI? is closed under finite unions and A% is closed under both finite
unions and intersections. XV is closed under finite intersections from the definition
of a topology. If A,B € 23, then write A = (JF,, B = |,, Hn, where the F,,
H,, are closed. Then An B = Unm(Fn n H,,), and each F,, n H,, is closed.
Similarly, if A, B € % and a > 4, then write A = U, An, B = J,, Bn where each
A,, B, are Hgn, H%n respectively, where ay,, 3, < a. We again have A n B =
Un.m(An 0 By,). In an arbitrary space X we still have ) ¢ =Y ¢ IT. From this
and the fact that Hg c Hg whenever 2 < v < 4, it follows that A, n B,, € Hg,
where § = max{a,,, Bm,3} < a. Thus, An B e X°. When X is a metric space, the
argument works also for o = 3 since TI! € TI9 also holds in this case.



The fact that B is closed under countable unions follows from the fact that
cof(wy) > w (this uses AC). It is also closed under complements since every ITO
set is X0 ;. So, B is a o-algebra, and hence contains the Borel sets. On the other
hand, clearly the Eg, Hg sets stay inside any o-algebra containing the open sets,

and so B is equal to the Borel sets. ([

Ezercise 12. Let X be the topological space [0,ws) with the order topology. Show
that there is an open set U and a closed set F' in this space such that U n F' is not
9. [hint: Let H = {w; - a: a < wy}, that is, the set of all ordinal multiples of w;.
H is closed, and let U = X — H. Let F be the set of all limit ordinals below ws, so
F' is closed. Suppose FFn H =J,, An v ,, B where each A, is l_[(l) and each B,
is Hg. Argue that each A,, and hence | J,, A, is bounded below w,. Thus, for any
large enough copy of wy, its set of limit ordinals is a union of Hg sets. One of these
Hg sets must be stationary. But a stationary Hg set in wy; must contain a tail, a
contradiction.]

Ezercise 13. Show that in the space X = [0,w;) the class 39 is closed under finite
intersections. [hint: First argue that it is enough to show that the intersection of
a TIY set and a I set is Eg. So consider F' n (), Up, where F' is closed and each
U, is open. If any of these sets is bounded, the result is easy so assume otherwise.
If all of the open sets U, contain a tail of wy, then so does [, Uy, and the result
is again easy. Without loss of generality assume Hy = X — Uy is c.u.b. in w;.
Thus, Uy =, <w, Lo, where each I, is a countable interval of ordinals, and these
intervals are pairwise disjoint. Write each F' n I, as a countable intersection of sets
relatively open in I, (and so open in X). Say, F'n I = [; Vi. Let VI =], V3.
Then (; V7 = F. So, F n(, Uy is a I19, and hence a X9 set.]

In particular, in the case of interest where X is a Polish space, all of the Eg,
2, AY are closed under finite unions and intersections. X2 is closed under count-
able unions, l__[Oa under countable intersections, and Ag under complements. Also,
Eg,Hg c A% for any o < 8 < wy. Thus, we have the following picture of the
Borel hierarchy in any Polish space:
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FEzxercise 14. Show that the collection of Borel sets in a metric space is the smallest
collection containing the open and closed sets and closed under countable increasing
unions and countable decreasing intersections.

Ezercise 15. Show that the collection of Borel sets in a metric space is the smallest
collection containing the open and closed sets and closed under countable disjoint
unions and countable decreasing intersections.

Ezercise 16. Show that the collection of Borel sets in a metric space is the smallest
collection containing the open and closed sets and closed under countable disjoint
unions and complements.

Ezercise 17. Show that if C € P(X) is a collection of subsets of a set X, and C
is closed under complements and countable disjoint unions, then C is closed under
countable increasing unions and countable decreasing intersections.

Ezxercise 18. Show that in Rgq, every Borel set is in the smallest collection contain-
ing the open intervals (a,b) and closed under complements and countable disjoint
unions. Remark: This is also true for R ; by a result of [1].

We next introduce a notion of complexity for functions between Polish spaces.

Definition 1.23. Let I' be a pointclass, and X, Y Polish spaces. We say a function
f: X — Y is T-measurable if for every open set U € Y, f~1(U) € T'} X. We simply
say f is Borel to mean Borel measurable.

Thus, continuity is equivalent to Zg—measurability. We will see later that Borel
measurability is equivalent to saying that the graph of f is a Borel set in X x Y.

Exercise 19. Show that a composition of two Borel functions is a Borel function.
Show that a composition of a X% and a X2, measurable function is 30, -
measurable.

We next establish several “transfer” theorems which allow us to transfer results
from one Polish space to another. In particular, we show that all uncountable
Polish spaces are Borel isomorphic in a strong sense. We will also establish several
results of independent interest along the way. The first result says in some sense
that w“ is universal among the Polish spaces.

Lemma 1.24. For any Polish space X there is a continuous surjection w: w* — X.
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Proof. Fix a countable base B = {Uy, Uy, ...} for X. For x € w*, define a sequence
of basic open sets in X as follows. Let Vi" = Uy (o). In general, let V' = Uy
if Uy(nyry € V¥ and diam(Uy(n41)) < 5. Otherwise let V7, = Uy, where m is
least such that U,, € V,* and diam(U,,) < 5. Let (z) =1, V¥, which is clearly
a well-defined point in X.

To see 7 is onto, let y € X. Get a sequence of basic open sets U;,, Ui, ...
with U;, 2 U;,,, and diam(U;,) < g==r for all n. Then if z = (ig,i1,...) € w*,
m(x) =y.

To see  is continuous, suppose 7(x) € U, where U is open in X. Let € > 0 be such
that B,(m(x),€) € U, and fix n large enough so that 2,1%2 < e Thenif xn = 2'In,
m(z) and 7(2’) lie in a set of diameter less than 57, and so p(z,2') < 5z < €
implies 7(z') € U. O

We restate exercise 9 in the following lemma.

Lemma 1.25. If X is an uncountable Polish space, then there is an embedding
from 2¥ into X.

The next lemma strengthens lemma 1.24 (it is a strengthening since every closed
subset of w* is a retract of w*).

Exercise 20. Show that every closed subset F' € w¥ is a retract of w”, and likewise
for every closed subset of 2 (recall this means that there is a continuous function
f:w? — F such that f|F is the identity).

Lemma 1.26. Let X be Polish space. Then there is a closed F € w* and a con-
tinuous bijection w: F — X. Furthermore, the inverse map m ' is Eg—measumble.

Proof. Fix a countable base B = {Up,Uy,...} for X. For each x € X we define
a sequence of basic open sets U (z), Uj, (z),--- as follows. Let ig(x) be least such
that x € U; () and diam(Us,(z)) < 1. In general, let i,41(x) be the least integer
such that x € Uin+1(1)7 diam(UinH(I)) < Qn%, and ﬁin+1(ﬂﬂ) < Uin(z)- For x € X
let f(x) = (io(x),i1(z),...) € w¥. Clearly, f is one-to-one from X into w®.

We claim that F' = ran(f) € w* is closed. For suppose z, = f(z,), and z, — 2
in w¥. So, for any k we have that for all large enough n that z, (k) = z(k). So, for
all large enough n, m, we have that x,, x,, lie in a basic open set (i.e., U.()) of
diameter < 2% So, {z,} is a Cauchy sequence in X, and hence converges to some
point € X. We show that f(z) = z, which shows z € ran(f). Suppose we have
f(x) i = 21i, and we show (f(z))(i) = z(4). For all large enough n we have that

Tn € Uyiz1) € Usgisn) € Usgy.

So, x € U.,(i+1) € U.(;)- On the other hand, for any j < z(i) such that U; € U,(;_1)
and diam(U;) < % we have for all large enough n that z, ¢ U;. Since z,, — z, we
have z ¢ U;. From the definition of f(x) we now have that (f(z))(n) = z(n). So,
flx) = 2.

Note that for z = f(z) € F, that 2 = (), U,(n). Thus, 7 = f~': F — X is given
by 7(2) = (), U.(n). Since for any z € F, diam(U.,)) <
continuous.

Finally, we show that 71 = f is Eg—measurable. So, let s € w<“ and consider
the basic open set F' n N, of F, which we may assume is non-empty. This says

2% it follows that = is
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1

that Uz(o) 2 ﬁz(l) =2 Uz(l) =2 ﬁz(z) 2 2 Uz(lh(s)) and diam(Uz(i)) < 37 for all

i < 1h(s). We must compute f~1(N,). Now
JTUNG) ={ze X:weUnes) AVi<lh(s) Vjel; z¢ U},

where I; is the finite set of j < z(i) satisfying U; < U(i—1) and diam(U;) < 2i

So, f~1(IVy) is the intersection of an open and a closed set, so is in Ag. ([

We next head toward the Borel isomorphism of two uncountable Polish spaces.
First we need the following technical lemma.

Lemma 1.27. Let F € w® be perfect, and let C € F' be countable and dense in F.
Then F — C' is homeomorphic to w®.

Proof. Let F' = [T], where T is a pruned tree on w. Let C = {¢g,c1,...}. Since
F' is perfect, for every node s € T there is a splitting in T below s. We define a
map f from w<¥ to T as follows. To begin, let dg = co € C S F (so dy € [T]).
Let Ay = {s € T:s L dg A s|(lh(s) — 1)||dz} (recall s||t means s and ¢ are
compatible, s L ¢ means they are incompatible). Ag is infinite since every node of
T eventually splits (for every k, there are two incompatible nodes s, ¢ extending
colk. At least one of these, say s, must be incompatible with dg. Now go a
larger [ such that si(l) # dz(l) and repeat the argument. Continuing we get an
w sequence in Ag). Let sg, s1,... enumerate Ag. Set f(ig) = s;,. Now repeat this
process below each of the nodes s;. That is, for each s; pick a d; € F extending
s; (which is possible as C' is dense). Also, if ¢; extends s;, then let d; = ¢;. Let
A; ={seT: (sextends s;) A (s L d;) A (s;I(Ih(s;) — 1))||d;}. As before, each A; is
infinite. Let A; = {s;0,S:,1,...}. Then set f(ip,?1) = S5, Continuing we define
the map f.

The map f naturally gives rise to a map 7: w¥ — F, namely, 7(z) = & where
[N = 5.(0),2(1),....:(n—1)- Clearly, 7(z) € F' — C since every f(s) for s of length i is
incompatible with ¢;. 7 is onto F — C, for suppose z € F' — C. Since = # dg = ¢y,
there is a least ng such that z(ng) # dg(no). Then zl(ng + 1) = s;, for some 4.
Since x© # d;,, there is an ny > ng such that z(n1) # d;,(n1). So, for some iy,
xl(n1 +1) = $4.4,- Continuing, we define z = (ig, 1, ...) such that 7(z) = z.

It is clear from the construction that both 7 and 7~ are continuous. (]

FEzxercise 21. Give an example of a perfect Polish space X and a countable dense
set C € X such that X — C is not homeomorphic to w®. [hint: try X =R2 ]

Ezxercise 22. Show that if C' € Rgiq is countable dense then R — C' is homeomorphic
to w®. [hint: follow the proof that R — Q is homeomorphic to w®.]

Now we are ready for the isomorphism result.

Theorem 1.28. Let X be an uncountable Polish space. Then there is a bijection
7 w? — X such that both © and 7" are AY-measurable.

Proof. From lemma 1.26, let f: FF — X be a bijection where F' € w* is closed,
f is continuous, and f~! is Ag—measurable. From the Cantor-Bendixson analysis
write ' = P u (1, a disjoint union, where P is perfect and C; is countable. From
lemma 1.27, let C5 € P be countable such that P — C5 is homeomorphic to w®.
Also, let D € w” be countable dense, so by lemma 1.27 we also have w* — D ~ w®.
Let g: w — D — F — C be a homeomorphism, where C = Cy u Cs. Extend g
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to a bijection h: w* — F by taking an arbitrary bijection between the countable
infinite sets D and C. Let m = f o h. Clearly, « is a bijection between w® and X.
Let U € X be open. So, V = f~}(U) is open in F. Also,

V=fYU)=(VaF-C)u(Vn0O).

Now, h=}(V) = g7} (V n (F - C)) u h"}(V n C). Since g is a homeomorphism,
g 1 (V n(F—C)) is open in w* — D, and thus is the intersection of an open set and
a co-countable set in w”. Thus, g~ (V n (F — C)) is I3 in w*. Also, h=*(V n C)
is countable. So, h='(f~1(U)) is the union of ITJ set and a countable set, so is AJ.
So, 7 is AJ-measurable.

Suppose now U < w® is open. Then

h(U) = g(U — D) u h(U n D).

Since g is a homeomorphism, g(U — D) is open in F — C. So, g(U — D) =V — C,
where V is open in F. So, h(U) = (V—C) U E, where E is countable. Since f(V) is
29, f(h(U)) is of the form (S — E}) U E,, where S € £9 and E1, F, are countable.
So, m(U) € AY. This shows 7~ is AJ measurable. O

Remark 1.29. The proof actually shows that there is a countable set C' = w¥
such that 7 [(w* — C) is continuous.

The next results provide a topological characterization of the spaces 2%, w®.

Theorem 1.30. 2% is the unique up to homeomorphism space which is compact,
metrizable, perfect, and 0-dimensional.

Proof. 2¥ clearly has all the stated properties. Suppose X is a 0-dimensional com-
pact metric space (recall a compact metric space is complete, so X is Polish). To
begin, let Uy, Uy, ..., Uy be cover of X by disjoint clopen sets of diameter < % We
may do this as X is compact and 0-dimensional. Since X is also perfect, by further
splitting these clopen sets we may assume that k is a power of 2, say k = 2"°.

Now repeat the argument to write each U; as a finite disjoint union of clopen
sets U, j, j < k(i), with diam(U; ;) < 1, and U, ; € U;. Again, we can do this as
each U; is compact and X is O-dimensional. By further splitting, we may assume
that for some nq > ng that k(i) = 2™ for all i.

Continuing, we define the clopen sets U for all s € w<* with s(0) < 2", s(1) <
27 o s(lh(s) — 1) < 2Mu-1. Now define 7: 2¥ — X as follows. Let x € 2%,
For each 7, let z[2™ be the i;h binary sequence of length n;. Then set 7(z) =
ﬂj Ui v, ... ij-

Because the U, are strongly nested and their diameters go to 0, w(x) is well-
defined. By the disjointness of the U, for s of a given length, the map 7 is one-to-
one. Since these U also cover, 7 is onto. The proofs that m and 7! are continuous
is straightforward. O

Theorem 1.31. w* is the unique up to homeomorphism space which is perfect,
Polish, 0-dimensional, and the closure of every open set is not compact.

Proof. Tt is clear that w® has all the stated properties. Assume now X has the
stated properties. Let U be an open cover of X with no finite subcover. Let B
be all the basic clopen sets B of X such that diam(B) < 1 and for some U € U,
B c U. Clearly, B is a cover of X with no finite subcover. Let B = {By, By, ... }.

Define Uy = By, Uy = By — By, U, = B, — (Bg u --- U B,_1). By reindexing, we
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may assume that all of the U; are non-empty (using the fact that no finite subset of
B covers X). So, the U; are a pairwise disjoint collection of clopen sets of diameter
< % which cover X.

Now repeat the argument to write each U; as a countably infinite disjoint union
of clopen sets U;j, j € w, with diam(U; ;) < 1, and U; ; € U;. We use here the
fact that each clopen set U; is not compact (by hypothesis). Define 7: w* — X by
m(x) = (; Uzpj. This is easily a bijection and it is again straightforward to check

that 7 and 7! are continuous. O

Of course, other Polish spaces of interest have topological characterizations as
well. For example, [0, 1] is the unique up to homeomorphism space which is compact
metrizable, connected, and has exactly two non-cut points. The focus in descriptive
set theory, however, is not so much at the topological level, but at a somewhat
higher level. According to theorem 1.28, at a little past the topological level all the
uncountable Polish spaces appear the same.

One of the advantages of using w* (or 2¢) is that w* x w* ~ w*, and moreover
[1,c0 w* & w®. This means that there are continuous coding and decoding maps
from (w*)™ or (w*)* into w®. This simple fact is nevertheless of crucial importance
in many arguments. Let us be specific about these maps. Fix a bijection (n,m) —
{n,my € w from w x w to w. We let n — ((n)o, (n)1) denote the inverse of this map.
Define 7: (w*)* — w* by m(x9,1,...) = y where y(n) = x(,),((n)1). Extending
the notation used for integers, we frequently write (zg, z1,...) — {(xo,z1,...) € W¥
for this map. The decoding map (the inverse of 7) is given by z — ((x)o, (z)1,...)
where (2);(j) = z(<i,j)). When there is no danger of confusion we will drop the
extra parentheses, and just write x — (xg, 1, ...) for the decoding map. We can
similarly get bijections from (w®)™ to w® (starting with a bijection between w x n
and w for example). With a slight abuse of notation we will use the same notation
for all of these maps (e.g., (z,y) — {x,y) and = — (zg,21) for the coding and
decoding maps between w® x w* and w®).

In an entirely similar manner we also define the coding and decoding maps
between products of 2% and 2“, and we continue to use the same notation.

Ezercise 23. Show that the coding and decoding maps in all cases are continuous.

We have analyzed the open and closed sets in Polish spaces. We push a little
further and analyze the A} sets. For this we need to introduce the difference
hierarchy. Recall that an ordinal is odd (even) if it is of the form A 4+ &k where A is
limit and &k € w, and k is odd (even).

Definition 1.32. Let I" be a pointclass and o € On. The a-I' difference sets,
denoted D, (T'), are those sets A for which there is an « length sequence {A3}g<a,
with each Ag € T, such that A = D({Ag}), where & € D({Ag}) iff the least 5 such
that x ¢ Ag is odd (we regard A, as being the empty set).

The next theorem analyzes the AY sets.

Theorem 1.33. A set A in a Polish space X is Ag iff it is a—l’I(l) for some countable
a.

Proof. If A is oz—l_[(l], then both A and X — A are easily Eg. For example
A= | ()4 (X = 4p).

B<a,B odd vy<pB
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The quantity in parentheses is the intersection of a closed and an open set, so is
AY. So, Ae X, A similar computation shows X — A€ 39, so A e AJ.

Suppose now that A € Ag. Let B =X — A, so both A, B are Hg. Note that for
any closed set F' € X we cannot have that both A n F' and B n F are dense in F,
as the intersection of two dense Hg sets in the Polish space F' is non-empty (Baire
category). So for any closed F, there is a basic open set U such that FnU € A or
FnUcB(and FnU # 9).

We define a decreasing sequence Fg of closed sets along with open sets Ag and
Bg. Let B be a base for X. Let Fy = X. Let Ay = J{U € B: U < A}, and likewise
By = |J{U € B: U < B}. At least one of Ay, By is non-empty. Let F} = Fy — Ay
and Fy = F' — (Ao U By). In general, for 8 limit define Fz = ﬂ7<ﬁ F,. Otherwise,
given Fpg let Ag = |J{U € B: F3 nU < A}, and Bg = | J{U € B: FsnU < B}.
Note that Ag n Bg n F3 = @. Again, assuming Fjg # &, at least one of Ag, Bg is
non-empty. Let Fgiq1 = Fg — Ag, Fgio = Fg — (Ag U Bﬁ).

For some least countable ordinal § we have that Fs = @&. Fix x € X, and let
« be least such that = ¢ F,. We claim that x € A iff o is odd. Since we took
intersections at limit ordinals, it make sense to let 5 be the largest even ordinal
such that z € F[g. So either x € Fﬂ 7F,3+1 = F[g (\A@ or x € Fﬂ1 7F/3+2 = F/g ﬂB[g.
In the first case we have z € A and « = §+ 1 is odd. In the second case we have
x¢ Aand o = 8+ 2 is even. This shows that A is 6-IT7. O

We will extend theorem 1.33 later to higher levels of the Borel hierarchy.

We next present a useful notational shorthand for describing sets and set opera-
tions in Polish spaces, called logical notation. The idea is to use the terminology of
first order logic in describing sets and set operations. Although only a notational
change, it turns out to be very useful, especially since it is intrinsically tied to the
Borel and projective hierarchies (to be defined shortly). If X is a Polish space and
P c X, we regard P as a property or unary relation of the set X. Thus, instead
of “z € P’ we write P(x), and instead of “z ¢ P” we write =P (z). Similarly, we
write P(x) v Q(x) in place of x € (P u Q) and P(x) A Q(z) in place of z € (P n Q).
Countable unions and intersections become correspond to existential and univer-
sal quantification over the natural numbers respectively. To be specific, suppose
P =, Pn. Define Q € X xw by Q(z,n) & (z € P,). Then P(z) < In Q(x,n).
More generally, we make the following definition.

Definition 1.34. Let T" be a pointclass, and X, Y Polish spaces. The pointclass
3YT is defined by: A € X is in 3T if there is a B e X x Y, B € T, such that
A(x) & Jy € Y B(xz,y). Likewise A € VYT if there is a Be X xY, B € I, such
that A(xz) & VyeY B(x,y).

Note that A € 3YT iff A is the projection onto X of a T' set in X x Y. Thus,
in non-logical notation we would describe 3¥ T as the collection of projections of T’
sets (from sets in X x Y)).

The next exercise makes precise our comments above about countable unions
and intersections.

Ezercise 24. Let T' be a (boldface) pointclass. Show that any set in 3“T" is a
countable union of sets in I'. Show that the converse is not true in general (hint:
consider T' = J,, £2). Show that the converse also holds provided the countable
joinofsets in T isin I'. Given sets P, € X, their join is the set P(z,n) & (z € P,).
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According to the next exercise, in quantifying over Polish spaces we only need
to consider the cases Y = w and Y = w?.
FEzxercise 25. Let T’ be a pointclass and X, Y Polish spaces. Show that if A € X is
in 3¥T, then A € 3“T. (hint: consider a continuous map 7: X x w* &8 X x Y).

The next definition is of fundamental importance in the theory of pointclasses.

Definition 1.35. Let T' be a pointclass, and X, Z be Polish spaces. We say
U c Z x X is universal for 'l X if U € T and for every A € T't X, A occurs as a
section of U. That is, 3z € Z (A = U,), where U, = {x € X: (z,2) € U} is the
z-section of U.

The next lemma provides universal sets at the bottom level. These will then
propagate to higher pointclasses.

Lemma 1.36. For any Polish space X there is a set U € 2% x X which is universal
for 201X,

Proof. Fix a base B = {Uy, Uy, ...} for X. Define

(z,z)eU o Inew (z(n) =1 AxzelUy,).
Clearly, every open set in X is a section of U. Also, U € 2% x X is open. To see
this, suppose (z,z) € U. Fix n so that z(n) = 1 and z € U,. Then V = {z €
2¢¥: z(n) = 1} is a basic open set in 2¢ and (z,2) e V x U, € U. O

The next lemma propagates universal sets under complements, countable unions,
and countable intersections.

Lemma 1.37. Let T' be a pointclass, and U S Z x X a universal set for I'l X.
then U' = Z x X — U is universal for T'| X.

Suppose Ty, are pointclasses and U, S 2% x X (or w¥ x X ) is universal for
I, [ X. Define U(z,x) < In € w Uy((2)n,x). Then U is universal for |J,T'n!X.
Similarly, U(z,z) < Vn € w Up((2)n, ) is universal for (|, TplX.

Proof. The first claim is easily checked. Suppose now I',,, U,, are as above and define

U(z,z) & Inew U,((2)n, ). If Ae |, Ty, write A =, A, with A, e T',,. Fix

for each n a z, such that Yo (A,(x) < Uy(zn,2)). Let z = (29, 21, ... ). Clearly,
U(z,z) © Inew Up((2)n,z) © In€w Up(zn,z) & In (z € Ay).

Also, U = |J,, Cn, where Cy,(2,z) <> Up((2)n,x). Since z — (z),, is continuous and

T, is a pointclass, C), € I',. The argument for (), Ty, is similar. O

As a corollary of lemma 1.36 and 1.37 we have the following theorem.

Theorem 1.38. Let X be a Polish space. Then for any a < wy there is a universal
set U 2% x X for 23 I X and likewise a universal set for Hg 1 X.

An important consequence of having universal sets is non-selfduality, according
to the next result.

Theorem 1.39. Suppose I is a pointclass having a universal set U € X x X (for
T''X). ThenU ¢ T. In particular, T # T (i.e., T is not self-dual).

Proof. Suppose U € X x X is in T’ and is universal for T} X. Suppose U € I.
Define A(x) <> =U(x,x). Since x — (z,z) is continuous, A € I'. But then A = U,
for some fixed z € X. Then, A(z) < U(z, z) < —A(z), a contradiction. O
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The last proof was just the usual Cantor diagonal argument.
As a corollary we have the following theorem, which says that in any uncountable
Polish space there is no collapsing in the Borel hierarchy.

Theorem 1.40. Let X be an uncountable Polish space. Then for every a < wq
there is a set A e £ —TI2. There is also for each o > 1 a set in A? — Us<a E%,

Proof. Let X be an uncountable Polish space. The claim is clear for @ = 1 so
assume « > 1. (If every open set were closed, every point, and hence every subset
of X would be open, giving X the discrete topology. This contradicts X being
uncountable and separable.) From lemma 1.25 there is subspace C' € X homeo-
morphic to 2. Since 2¢ is compact, C is closed in X. From theorems 1.38 and 1.39
there is an A € C which is 32 but not II", in the subspace topology on C. Thus
in X, A is the intersection of a X and a closed set, and hence is 3° (as a > 1).
If A were Hg in X, then A = A n C would also be Hg in the relative topology on
C, a contradiction. This proves the first claim.

For the second claim, suppose now « = 2. As above, it again suffices to show
there is an A € 2“ which is Ag but not in E% for any 8 < a. If «a is a successor, say
o =f+1, then let A < 2* with A€ X} — I}, and let B € 2% with B € ITj — 9.
Let then C' € 2¢ be the join of A and B, that is,

Clxz) o (z(0)=0nz"€ A) v (2(0) =1 A2"€B),

where #'(i) = (i 4+ 1) for all 5. Clearly, C' € AY (by closure of A? under finite

unions, intersections). Also, A ¢ 9%, as then B = {z: 1"z € C} would be in

0. 0
B

Thus, in the picture of the Borel hierarchy shown earlier, all of the containments
shown are proper (assuming X is uncountable Polish).
The next two exercises analyze the Borel sets in an ordinal space [0, «).

Ezercise 26. Let o € On with cof(a) > w. Show that if B € [0, «) is Borel, and
C <C [0, ) is c.u.b. (closed and unbounded), then there is a c.u.b. D € C such that
B either contains or omits a tail of D.

Ezercise 27. Show that in any ordinal space X = [0,«), every Borel set is AZ.
Show that in X = [0,w;) every Borel set is AJ. [hint: Tt is enough to show it is 2.
Show this by induction on «. For a successor or limit with cof(a) = w, the result
follows easily by induction. If cof(a) > w, let C € « be c.u.b. in « of order-type
cof(a). Let B € [0, o) be Borel. By the previous exercise B contains or omits a tail
ofacub. DcC. Say D = {iw}q,«of(a) is an increasing, continuous enumeration
of D. Consider each of the open sets I, = (i, iy4+1). By induction B n I, is > in
I,. Argue that this gives that BnJ, I, = Bn (X — D) is >} in X — D, and thus
is 39 in X. If B contains a tail of D (the other case is easier), then BnD = Fu B’
where F' is closed in X and B’ < [0, ) is Borel, for some 8 < a. By induction B’
is 3 in [0, 3), which easily gives that B’ is 3 in X (recall here exercise 13). So,
Bis X in X ]

One technique for proving theorems about Borel sets is to change the topology
to make them clopen. The following theorem says that this is possible.
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Theorem 1.41. Let (X, 7) be Polish, and A € X a X° set. Then there is a finer
Polish topology ' 2 T such that A is clopen in 7. Furthermore, if A is open in 7/,
then A is X0 | is T.

Moreover, if {Ap}new is a sequence of sets with A, € Eg", then there is a Polish
topology ™' 2 T in which all of the A, are clopen and such that every open set in
7' is B2 in T, where o = sup,, (o, + 1).

Proof. We prove this by induction on a. Let p be a complete metric on X giving
the topology 7, and we may assume p < 1. Suppose first A € 2(1). Define

min{l, p(z,y) +[f(z) = W)} ifz,yeA
plz,y) =<1 if ve A, y¢ A or vice-versa
p(1'7y) ifl',yEX—A,

where for x € A, f(z) = m. It is straightforward to show that p’ is a metric
on X. Also, p < p' so 7 € 7 = the topology given by p’. To see p’ is complete,
suppose {z,} is p’-Cauchy. So, {z,} is p-Cauchy. So, for some z € X, z,, — .
We also clearly have that for large enough n that x, € A, or for large enough n
that z, ¢ A. In the latter case we have x € X — A, and p/(z,x,) = p(x,z,) — 0.
In the first case we have (as in the proof of Alexandroff’s theorem) that there is
an € > 0 such that Vn p(z,,X — A) > e. Since {z: p(z,X — A) = €} is closed,
p(x, X —A) = e. Since f is continuous on A, this shows that p'(z,,z) — 0. This
shows p’ is complete. 7’ is also second countable, since if B is a countable base for
7, it is easy to see that B u {B n (X — A)} is a base for 7. So, 7/ 2 7 and 7’
is also a Polish topology on X. Next observe that X — A is also open in 7 since
ifr e X —Aande <1, then By(x,e) € X — A. So, A is clopen in 7’. Finally,
suppose U is open in 7. As we observed above, U is union of sets each of which
is either in B, the base for 7, or else of the form B n (X — A) for B € B. So, U is
countable union of sets which are A in 7, and hence is X9 in 7.

Suppose now A € 23, and the theorem holds for all 8 < a. Write A = J,, A»

where A,, € Hgm and o, < a. Let p, be a complete, separable metric (i.e., the
resulting topology 7, is separable) on X such that A,, is clopen in 7,,, and every 7,
open set is 20% +1 in 7. Without loss of generality we may assume p,, < 1 for each

n. Define
1
{CENEDY o7 P (:9)-

n

It is straightforward to check (as in Alexandroff’s theorem) that p’ is a complete
metric on X. Clearly, 7 € 7’ again. Also, 7' is at least as fine as each 7, (the
topology given by p,), so each A, is clopen in 7/. Thus, A is open in 7. Also,
7/ = sup,, Tn, so if B, is a countable base for 7,, then {By n--- n By: B €
Bi,...,By € By} is a base for /. So, 7/ is separable. This observation also shows
that any open set U in 7’ is a countable union of sets each of which is Egn 41 for
some n. If « = §+ 1, then U is a countable union of sets each of which is Eg in T,
and hence U is 23 in 7. Likewise, if « is limit we get U is 23 in 7. By the first
part of the proof, we may then enlarge 7/ to 7", also a Polish topology making A
clopen in 7”. Also, every set open in 7 is £9 in 7/. Thus, every open set in 7" is
22 in 7/ and thus a countable union of sets which are Hg in 7. So, every open set
in 7" is 0, in 7.



19

Given a sequence {A,,} e, with each A, € Egn, let for each n, p, give a Polish
topology 7, 2 7 which makes A, clopen and such that every open set in 7, is
23n+1 in 7. We may assume p,, < 1 for all n. Let p' = Y. 5-p,. As above, p/
generates a Polish topology 7/ 2 7,,. Thus, all of the A,, are clopen in 7/. Also as
before, a base for 7/ consists of sets of the form By n --- n By, where B; is open in
;. Each such set lies in X° where o = sup,, (v, + 1). Hence, every open set in 7’
is 30 as well. O

Theorem 1.41 has many applications in the study of Borel sets. The next result
gives one.

Corollary 1.42. Every Borel set B in a Polish space X is either countable or
contains a perfect set (hence has size c).

Proof. Let B be Borel in the Polish space (X, 7). Let 7/ 2 7 be Polish such that B
is clopen in 7/, so B itself is a Polish space in the subspace topology from 7/. But
every Polish space is either countable or contains a perfect set (in the 7/ topology).
In the later case, B in fact contains a homeomorphic copy of 2¥, so B contains a
set C' which is compact and perfect in the 7/ topology. So, C is compact in the 7
topology, hence closed in 7. Since no point of C' is isolated in the 7 topology, the
same holds for the coarser topology 7. (]

We will extend corollary 1.42 to higher level sets later.

As another application of the method of changing topologies we prove the fol-
lowing generalization of theorem 1.33. Recall from definition 1.32 the difference
operator D.

Theorem 1.43. For every countable ordinal o, a set is Ag iff there is a sequence
{Ay}y<s with 6 <wi and each A, inJg_, H% such that A = D({A,}).

Proof. An easy computation as in theorem 1.33 shows that if each A, € UB«X H%,
then D({A,}) € A2, Suppose now that A € A%. Consider first the case where a
is a successor, say o = o/ + 1. Write A = |J,, An, B = X — A = |J,, Bn, where
each A,, B, € II?,. Write also for each n, A, = ), Anm»> Bn =), Bn,m, where
each Ay, m, Bnm is in Hg for some n < . From theorem 1.41 there is a Polish
topology 7/ 2 7 making all of the A,, ,,,, By, m clopen, and such that every 7/ open
set is £2,. A and B are both X9 in 7/ and so A is AY in 7/. From theorem 1.33
there is a ¢ < wy and a sequence of 7’ closed sets {A,},<s such that A = D({A,}).
Each A, is II2,, so we are done in this case.

If o is a limit, the result is easier, and we may in fact take the sequence of sets
to have length w. To see this, write again A =, A,, B =X — A =,, B, where
cach Ay, By € Jgoo . Let Cp = X, C1 = X — Ag, and Cy = X — (Ag U By). In
general, if Cyy, is defined, let Coriq1 = Cop — Ay, Copqa = Corp — (Ag U Bi). Each
of the Cy, lies in (Jg_,, H%, and A =D({C,}). O

We next introduce a few general properties of pointclasses. When T is a (bold-
face) pointclass, we let A(T') = I'nT', so A(T") is a selfdual pointclass. When there
is no danger of confusion, we simply write A.

Definition 1.44. We say a pointclass I' has the separation property if whenever
A, B are disjoint T sets, then they can be separated by a A set, that is, there is a
C e A such that A€ C and Bn C = 2.
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Definition 1.45. We say a pointclass I" has the reduction property if whenever A,
B are T sets, then there are I" sets A’ € A, B’ € B with A’ U B’ = AU B and
A nB =ga.

We write sep(T") and red(T") for the reduction and separation properties of I'
respectively.

The reduction property is the stronger of the two properties in the following
sense.

Lemma 1.46. For any pointclass T', red(T") — sep(T").

Proof. Assume red(T"), and let A, B be disjoint sets in I'. Consider X — A, X — B.
These are I" sets with (X —A) (X —B)=X. Let C€ X —A, DS X — B be
disjoint I sets with C v D = (X — A) u (X — B) = X. Thus, D = X — C and so
C,DeA. Then AC D C (X — B). O

The concepts of prewellordering and the prewellordering property play a central
role in the subject. Recall that a binary relation < is wellfounded if for every non-
empty A € X there is a <-minimal element of A (i.e., 3Jae AVbe A —(b < a)).

Definition 1.47. A prewellordering < on a set X is a binary relation which is
reflexive (x < x), connected (z < y or y < z), transitive (x < y and y < z implies
x < z), and such that the strict part < is wellfounded. The strict part is defined
by: z <y iff x <y and —(y < x).

Given a prewellordering < on X, this defines a corresponding equivalence relation
r =y iff £ <y and y < x. The prewellordering < can thus be identified with a
wellordering of these equivalence classes (More precisely, set [z] < [y] iff x < y.
This is easily welldefined.) Prewellorderings on a set A € X can also be identified
with norms on the set A:

Definition 1.48. A norm on a set A € X is a map ¢: A —» On. We say ¢ is
regular if ¢ is onto an ordinal.

Given a prewellordering < on A, we have the corresponding norm ¢(z) = |z|<,
defined for z € A. Conversely, given the norm ¢ on A, we have the prewellordering
of A given by = < y iff ¢(z) < ¢(y).

Note that if < is a prewellordering on a set A, and < lies in a pointclass T', then
< gives a way of writing A as an increasing union of I" sets. Namely, for each z € A,
{y: y < a} is in T'. Tt is useful to strengthen this requirement, which gives us the
notion of a I'-norm.

Definition 1.49 (I'-norm). Let I' be a pointclass, and A € X. We say a norm ¢
on A is a I'-norm if the relations <*, <* are in I, where

r<*yoxzeAr(y¢Av (ye AA p(x) < o(y)))
r<*yoxzeAr(yt Av (ye A o(z) < o(y)))

Note that if ¢ is a I''norm on A, then this writes A as an increasing union of
sets which are in A, that is, for any y € A, {zr € A: ¢(z) < ¢(y)} = {x: 2 <*F y} =
{z: =(y <* z}. So, a I'norm is a way of writing A as an increasing union of sets
which are “uniformly” in A.
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Note that if ¢ is a T-norm on A, then its regularization ¢’ (i.e., the transitive
collapse of ¢) has the same norm relations, and so also is a I'-norm. Thus, there is
generally no harm in assuming the norm is regular.

There is another definition of I'-norm frequently used, which we give in the next
definition.

Definition 1.50 (Alternate definition of I'-norm). Let T' be a pointclass. We say
¢ is a I'-norm on A if there are relations <r € I and < € I such that for all ye A
and all x € X,

(reAng(z)<d(y) or<ryoz<py.

The next lemma shows that in most cases the two definitions of I'-norm are
equivalent.

Lemma 1.51. For any pointclass T, if ¢ is a T'-norm according to definition 1.49,
then ¢ is a I'-norm according to definition 1.50. If T' is closed under A, v, then
definition 1.50 implies definition 1.49 as well.

Proof. Suppose ¢ satisfies definition 1.49. Define = <r y iff x <* y, and = <y y iff
—(y <* 2). Clearly, <pr € T and <z € T. If y € A, then clearly {z: = <pr y} = {z €
A: ¢(x) < ¢(y)}. Also, since y € A we have that

{r:o<p o)} ={o: —(y <* 2)}
={z: ~(ye An(z¢ Avo(y) < é(2)))}
— {0z A A d(x) < S}
Suppose next that ¢ is a I'-norm according to definition 1.50, and assume now
T is closed under A, v. Then z <* yiff x € AA(y ¢ AV ¢(x) < ¢(y)) iff
(x € AA—(y <p 2)). The last equivalence follows since for z € A, y <p z iff y €

AAP(y) < ¢(x). This shows <* e T. Alsox <*yiffxe An(y¢ Avo(z) < o(y))
iffre AN—=(y<pz)v(r <ryAy<rx). This shows <* eT. d

Definition 1.52. We say a pointclass I" has the prewellordering property if every
A e T admits a I'-norm.

We write pwo(T') to say I' has the prewellordering property.

Lemma 1.53. Suppose pwo(T') and T' is closed under v and intersections with
clopen sets. Then red(T).

Proof. Let A, B € T. Define C € X xw by C(z,n) @ (n=0Ax€ A v (n=
1 Az € B). From our closure assumptions, C € I". Let ¢ be a I'norm on C,
and <*, <* the corresponding relations. Define A’(z) < (x,0) <* (z,1) and
B'(z) & (z,1) <* (2,0). Then A", B areinT', A€ A, B € B, A nB' =g, and
A'uB =AuUB. O

Theorem 1.54. For all a > 1, pwo(X"). If X is 0-dimensional, then also
pwo(E(lJ),

Proof. Let A € X be 0, say A = |, A, where each A, € Hon, Bn < a. Let
¢ be the corresponding norm on A, that is, ¢(x) = the least n so that x € A,.
Then z <* y iff In (x € Ay AVmMm < n (v ¢ Apn) Ay ¢ A,). The expression
inside parentheses defines a A set, and so <* is 3. A similar computation shows

<* e 2‘;. If X is O-dimensional, and A € 2(1), write A as an increasing union of
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clopen sets, and a similar computation shows the corresponding norm relations <*,
<* are both 3. O

Corollary 1.55. For all a > 1, red(X2) and sep(I1%). If X is 0-dimensional, this
holds also for a = 1.

The prewellordering property, and a stronger property called the scale prop-
erty (defined later) are both closely related to the notion of uniformizations. A
uniformization of A € X x Y is essentially a choice function for the relation A.

Definition 1.56. Let A € X x Y. A uniformization A’ of A is a set A’ € A with
dom(A’) = dom(A) and such that Vo € dom(A) Iy A'(x,y). We say a pointclass
T has the uniformization property if every A € X x Y in T has a uniformization
A’ in T'. We say T has the number uniformization property if every A € X X w in
T has a uniformization A" in T".

The prewellordering property is related to the number uniformization property,
and the stronger scale property is related to the (full) uniformization property. The
following lemma makes this first connection.

Lemma 1.57. If T is closed under Y and has the prewellordering property, then
T has the number uniformization property.

Proof. Let A< X x w be in I'. Define
Al(x,n) & ¥m ((z,n) <* (z,m)) AVm (m #n — (z,n) <* (n,m)).

From closure of T' under V¢ we see that A’ € T'. Clearly, A’ is a uniformization of
A. O

The hypothesis of lemma 1.57 does not apply to the pointclasses Eg, but we see
below that (for a > 1) they nevertheless have the number uniformization property.

Number uniformization can also be thought of as a kind of generalized reduction
property, according to the next definition.

Definition 1.58. We say I' has the w-reduction property if for every sequence
{An}new with each A, € T, there are sets B,, € A, with B, € T satisfying B,, n
By, = @ if n # m and |,, B, = ,, 4n-

We say I has the w-separation property if for each sequence of pairwise disjoint
sets {4, }new with each A,, € T, there is a sequence {C}, }new of A sets with A,, € C,,
for all n, and (), C\, = @.

Lemma 1.59. If T is a pointclass closed under w-joins, then T' has the number
uniformization property iff T' has the w-reduction property.

Proof. First suppose T'" has the w-reduction property. Let A € X x w be in T.
Define A4,, € X by A,(z) & A(x,n). Since z — (z,n) is continuous, each A, is
in I'. Let {B,} be I sets reducing the A,. Define A’(z,n) < = € B,. Since I is
closed under w-joins, A" € I'. Since |J,, B, = |,, An, dom(A’) = dom(A). Since
the B,, are pairwise disjoint, A’ is the graph of a function.

Next suppose I' has the number uniformization property. Let {A,}necw be a
sequence of T sets. Define A € X x w by A(z,n) & z € A,. Since T is closed
under w-joins, A € I'. Let A’ € A be a uniformization of A. Define B, by
B, (z) < (x,n) € A’. So, each B, is in I". Since A’ is a uniformization of A, the
B,, are pairwise disjoint and union to J,, Ay. Clearly, B,, € A,,. O
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FEzercise 28. Show that if I' has the w-reduction property and is closed under
countable unions then I' has the w-separation property. [hint: Given pairwise
disjoint A4,, € I', apply w-reduction to the sequence B, = X — A, ]

FEzercise 29. Show that if T" has the separation property and is closed under count-
able unions and finite intersections, then I' has the w-separation property. [hint:
Given pairwise disjoint sets A, € I', apply first separation to A, and |J,,.; An.
Continue inductively.]

Next we verify that for o > 1, each XY class has the number uniformization
property.

Theorem 1.60. For all o > 1, Eg has the number uniformization property.

Proof. Suppose A C X x w is in £°. Write A = U,, An, where each A, € Hoﬁn for
Bn < a. Define

A'(z,n) < Im ((x,n) € Ay AVE <{n,m) (z,(k)o) ¢ Aw),)-

The expression inside the parentheses defines a A? set, and thus A’ € £%. Clearly,
A’ is a uniformization of A. O

The following theorem summarizes our pointclass discussions within the Borel
hierarchy.

Theorem 1.61. For any uncountable Polish space X, all of the containments in the
Borel hierarchy are proper. For all a > 1, each Eg I X class has the prewellordering,
reduction, and number uniformization properties, and each of the Hg I X classes has
the separation property. If X is O-dimensional, this holds also for a = 1.

As an application of these techniques we next present the Lebesgue-Hausdorff
theorem analyzing Borel functions between Polish spaces. This theorem connects
the notions of I'-measurability defined earlier and the notion of a function having
a certain Baire class, which we define below.

First, we get another representation of the Ag sets. Recall the notions of lim
sup and lim inf for a sequence of sets:

Definition 1.62. Let {4, },c., be a sequence of subsets of a set X. Then

limsup A4, = ﬂ U A,

n mzn

lim i%f A, = U ﬂ A,

n mzan

If limsup,, A, = liminf, A,, we say that lim,, A,, exists and set

lim A, = limsup A,, = liminf A,,.

Thus, x € limsup,, 4, iff x lies in infinitely many of the A,,, and z € liminf, A,
iff  lies in a tail of the A4,,. Clearly, liminf, A, < limsup, A4,. Saying that
lim,, A,, exists is equivalent to saying that for every x there is either a tail of m for
which x € A,,, or a tail of m for which x ¢ A,,. In this case, lim,, A,, is the set of
2 which are eventually in the A,,.
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Lemma 1.63. Let X be Polish, and o > 2 a countable ordinal. If « =+ 1 is
a successor, then A € X is A% iff there is a sequence {Ap}new of sets, with each
A, € A% for such that A = lim A,,. If o is a limit, then A € X is AY,, iff there
is a sequence {An}new of sets, with each A, € A%b for some B, < « such that
A =1limA,. So, in either case every Ag set is a limit of sets in Uﬁ<a A%. If X
is 0-dimensional, this holds also for a = 2.

Proof. Suppose first « = 5+1 is a successor. If A = lim,, ., A,, with each A4,, € A%,
thenz e A o InVm=nx € A, & VYnIdm = n x € A,,. This first equivalence
shows A is X2, and second shows A is TI. Suppose next that A € A2. Since
both A and B = X — A are £, write A = J,, 4,,, B =J,, By, with A,,, B, € II},.
Clearly, A, nB,, = @, and by sep(l‘[%) let C,, € A% with A, € C,,,C,nB, = 2. If
x € A, then z is eventually in the A,,, and hence eventually in the C,,. If x ¢ A, then
x is eventually in the B,,, and hence eventually not in the C,,. So, A = lim,, C},. If
« = 2 the argument is similar, using sep(ITY).

Suppose next « is a limit. If A = lim,, A,, where each A,, € Uﬁ<a A%, then a
computation similar to the one above shows that A € A3+1. Suppose that A €
A .. Againlet B = X — A and write A = | J,, A,,, B = |J,, Bn, increasing unions
with A, B, € Hg. Write each A,,, B, as a decreasing intersection A, = ﬂm Al
B,, =(),, BI* where each A", B]" are in Uﬂ<a A%. Define

ze€C, oI <n[Vm<nazeA, Adm<nuz¢ B

n'

AR <n'Im <n (v ¢ Al Ax ¢ B

n'

Each C,, is clearly a Boolean combination of sets in | f<a AOB7 and hence C,, €

Uﬁ<a A%. We claim that A = lim,, C},. To see this, suppose first that x € A. Let
no be least such that x € A, and so x € A7} for all m. Also, x ¢ By,,. Let n; > ng
be such that = ¢ Bjl. For all n < ng we have = ¢ A,, and = ¢ B,,, so may take an
ng = ny large enough so that for all n < ng, = ¢ (A2? U B2?). Then, z € C,, for all
n = ny (using ng as a witness to the first existential quantifier in the definition of
Cy,). Suppose next that z ¢ A. Let ng be least such that x € B,,. So, for all m,
x € B Let n1 = ng be such that x ¢ AZ}J, and let no = n; be large enough so
that for all n < ng, x ¢ (A2 U B?). Then for all n > ngy, x ¢ C,,. For suppose
n' < n witnessed the existential statement in the definition of C,,. We cannot have
n' < mg as the first conjunct in the square brackets would fail from the choice of
ng. We cannot have n’ = ng as the second conjunct would then fail as » € B]
for all m. We also cannot have n’ > ng as then the third conjunct would fail since
x € By for all m. This shows the claim and completes the proof. O

We now introduce the Baire hierarchy of functions. The classical case is for
functions f: Rgstq — Rgtq. In this case, a function is said to be of Baire class 1 if
it is a pointwise limit of continuous functions. In general, it said to be of Baire
class « if it is a pointwise limit of functions, each of Baire class less than «. When
considering Polish spaces other than Rgq, however, we must modify the definition
of the Baire hierarchy at the bottom level slightly to get our main result. So, we
take the following definition as our official definition of the Baire hierarchy for any
Polish space (we see below that for Rgiq this definition is equivalent to the one just
stated).
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Definition 1.64. Let X, Y be Polish spaces. We say f: X — Y is of Baire class
1if it is Zg—measurable. For a > 1, we say f is of Baire class « if it is a pointwise
limit of functions each of which has Baire class less than «.

Ezercise 30. Show that if f,g: X — R are Baire class «, then f + g is also Baire
class a.. Show this also for f, g being 23 measurable.

The nest theorem is the general statement of the Lebesgue—Hausdorff theorem.

Theorem 1.65. Let X, Y be Polish spaces, and o = 1 a countable ordinal. Then
f: X =Y is Baire class o iff f is Eg+1—mea5urable.

Proof. The theorem is true by definition for a = 1, so assume a > 1. Suppose first
that f: X — Y is of Baire class a. Let f = lim,, f,, where each f,, is of Baire class
Brn < «. By induction, each f,, is E%n 4+1-measurable, and hence Eg measurable.
Let U € Y be open. Write U = [ V,, where each V,, is an open set with V,cU.
Then,

ze fTYU) o Tk InVm = n (fm(z) € Vi).
Since {x: f.(x) € Vi.} is Hom, this shows that f~1(U) e =0, ,.

Suppose next that f is 23 4+1-measurable, and we show f is of Baire class «a.
Consider first the following special case. Suppose C' = {yo,y1,-..} € Y is countable
and Ag, A1, ... are pairwise disjoint A(;H sets which partition X, and let f be the
function which takes value y, on A,. For each n, by lemma 1.63 let A]" be a

sequence of sets such that A, = lim,, A™, and each A7 € A if o is a successor

and in Uﬂ<a A% if o is limit. Define for each m the function f,, by fi.(x) = yn
where n is the least integer < m such that = € A, if one exists, and f,,(z) = yo
otherwise. It is easy to check that f,, is Ag—measurable for a successor, and A%
measurable for some § < « if « is a limit. In either case, f,, has Baire class < a.
Also, f = lim,, f,, since if n is such that z € A,,, then for large enough m, n will
also be least such that x € A, Thus, f is Baire class a.

We return now to the general case. For each €, = %, let Cp, = {y0,yL,...} be
an €, net in Y (i.e., every point in Y is within ¢, of a point in C,,). Let

A=Az e X p(f(x),yn) < en}.

So, each A% is X° |, and for each n, the {A? };c,, partition X. By w-reduction, let
Bi c Al be X2 and such that {B };c., are pairwise disjoint and partition X. Tt
follows that each B! is A® 41 (its complement is a countable union of the By for
j # i). For each n, let g, be the function which is equal to ¥’ on Bi. Let g™ be
the sequence of functions constructed as in the special case considered above. So,
each ¢, is of Baire class < a and lim,, g]" = g,,. Define the function f,, as follows.
Consider the sequence of points

90 (), g1 (%), -, g ().
Let ag(x) = gg(x), and define inductively, a}, ,(z) = g7, (@) if p(g]} (), af (x)) <
2¢y, and a} (z) = a(z) otherwise. Then set f,(x) = aj(x). Since each g is
Ag—measurable (if « is a limit then it is Ag—measurable for some 8 < «a), and
each aj' is a Boolean combination of the g7 for j < (recall here that the range of
each g7’ is finite, and the preimage of every point is Ag), it follows that f, is also
A -measurable (A% for < aif « is a limit).
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Finally, we show that lim, f, = f. Let z € X, and let ip,41,... be such that
x € By, BY',.... For every k and large enough n we have that gj'(z) = y,".
So for 1arge enough n we w'}ll have that for all j < k that p(g} (), 971 (7)) =
p(y;],y;ff) < 2¢; since p(y;-j,f(x)) <e€asx € B;j. Thus, for all k& we have
that for all large enough n that af(z) = g (z) = y}*, and thus p(fu(z), f(z)) <

p(f(x),af(x)) + plai(z), fo(z)) < e + Z;'sz+1 €; < 2¢,. Thus, lim, f, = f. O

In definition 1.64 we defined a function to have Baire class 1 if it is 39 measurable.
This, of course, made the o = 1 case of theorem 1.65 trivial, but we are still
left with the question of whether every X9 measurable function is the pointwise
limit of a sequence of continuous functions. The argument as in the easy direction
of theorem 1.65 shows that every pointwise limit of continuous functions is 23
measurable. The other direction is not true in general. For example, if X = R
and Y = {0,1}, and f: X — Y is the characteristic function of a non-trivial AY
set, then f is 22 measurable, but f is not the limit of a sequence of continuous
functions (every continuous function from X to Y is constant). However, in the
case of classical interest, that is when X =Y = R, this direction is also true. In
fact we have the following.

Theorem 1.66. If either X is 0-dimensional or Y = R, then every f: X — Y
which is X9 measurable is the pointwise limit of a sequence of continuous functions.

Proof. If X is 0-dimensional, the proof of theorem 1.65 still works, since in this case
every Ag set is the limit of a sequence of A(f sets. So, suppose Y = R. Suppose
that we know the result for functions from X — (0,1). Let f: X — R be X9
measurable. Let 7: R — (0,1) be a homeomorphism. Let f/ = 7o f: x — (0,1).
Let g,: X — R be continuous with f’ = lim, g,,. Let

1-1 ifgy(e)>1-1
9n() = gn(e)  if £ <gn(z)<1-+
% if gn(z) < %

then ¢/,: * — (0,1) is also continuous and f’ = lim, ¢/,. Let f, = 7~ og/. Then
fn: X — R is continuous and f = lim,, f,.

So, we may assume f: X — (0,1). As in the proof of theorem 1.65, let for each
€n = 5 Cn ={y0,y},...,yk} be a (finite) €, net in (0,1). Define the A% and B,
as before. Also as before, let g, = y% on Bi. Let hg = go, and h; = g; — g;_1 for
i > 0. Clearly |h;| < 525. Also, f = >,/ h;. Note that each h; takes on only
finitely many values, decided by a AJ partition of X. We show in a moment that
each such function h; is a limit of continuous functions. Given this, note that each
h; is then actually a limit of continuous functions, each of which is at most 2%1
in absolute value (by truncating the continuous functions to lie in this range). Say
hi = lim; g/ where g/ is continuous and |g/| < 7=z. Define then f, = Y g7 It is
straightforward to check that f, is well-defined and f = lim,, f,,.

Finally, suppose By, ..., By are a partition of X into Ag sets, and h takes the
constant value y* on B;. For each i write B; = U o Fe, X—B; = U i Ex as increasing
unions of closed sets. For each k, by Urysohn’s lemma let f,é X — (0,1) be such
that fi is 1 on Fj and 0 on Ej. Let fi = Y fi. Each fy is continuous and
limk fk = h. O
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2. ANALyTIC, CO-ANALYTIC, AND PROJECTIVE SETS
Recall X, Y denote Polish spaces.

Definition 2.1. Aset A C X is 2}7 or analytic, if there is a closed set F' € X x w®
such that for all z, A(x) & Iy € w® F(x,y). A set A is II] or coanalytic if X — A
is E%. We say A is A% if it is both E% and H%.

That is, the 2% sets are the projections of closed sets in X x w®. If we require
the set F' to be closed as we did, then it is important that we use w® in the second
coordinate rather than say 2“ or R. That is because since 2% is compact, any closed
set F € X x 2“ will project to a closed set in X. Similarly, since R is o-compact,
any closed set in X x R will project to a 23 set in X.

Even with the right definition 2.1 it is perhaps not immediately clear that every
Borel set is analytic. We could have made this trivial by allowing the F' in defini-
tion 2.1 to be Borel (which we see shortly gives an equivalent definition), but we
want to have the representation afforded by definition 2.1.

Ezxercise 31. Show that every Borel set A in a Polish space X is a continuous image
image of a closed set F' € w® (note: a stronger version of this is proved below).
Deduce that every Borel set in a Polish space is 3. [hint: Prove this by induction
on the Borel rank of A. If A is open or closed, use lemma 1.24. If A =, A,
and A, = f,(F,), define F € w® by piecing together disjoint copies of the F,,
and define f on F' in the obvious manner. If A = (), A,, where A, = f,(F},), let
F < w* be the set of z such that Vn (z), € F,, and Vi,j fi((z);) = f;((z);). Show
that F is closed. For x € F, let f(z) = fo(()o0).]

Using logical notation we may rephrase the definitions of analytic and coanalytic
by saying £} = 3*'IIY and II] = —X]. Of course, more precisely we mean
2% PX =3¢° H(l) M X x w®). This suggests a natural extension of these pointclasses,
which gives the projective hierarchy.

Definition 2.2 (Projective Hierarchy). For any Polish space X and n > 1 we
define &} =3I | I} = -x! Al ==l ~ 112,

For example, a set A € X is X3 if it of the form A(z) < Iy ¥z Fw F(z,y, 2z, w),
where F € X x (w®)? is closed, and all the y,z,w quantifiers range over w®.
Similarly, A is T3 if it is of the form A(z) <> Yy 3z Yw —F(x,y, z,w), where again
F ' is closed. Thus, a bound for the level of the set A in the projective hierarchy is

obtained by counting quantifier alternations in the logical description of the set.

Lemma 2.3. For any Polish space X, all of the E}L, 1'[,11, A}l are pointclasses and
are closed under countable unions and intersections. The pointclass X7 is closed
under existential quantification over Polish spaces, and H}l 18 closed under universal

quantification over Polish spaces. Furthermore, 2;, H:L c A}H_l.

Proof. Tt follows easily that they are all pointclasses. For example, to see this for
>, suppose B €Y is X7 and f: X — Y is continuous. Let A = f~'(X). Then
A(z) < B(f(z)) & 3z € w® F(f(z),z) where F €Y x w® is closed. Since IIY is a
pointclass, {(z,z): F(f(z),z)} is closed, and so A € 31.

To show 2% is closed under countable unions, suppose A, € X are 2}, and let
F,, € X xw* be closed such that A, (z) & Jy € w* F,(z,y). Define F € X xw* by
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F(z,y) < Fyo(x,y'), where y'(n) = y(n + 1). I is easily closed. Let A =], Ay.
Then A(z) < 3y € wF(z,y), so Ae X1.

To show E} is closed under countable intersections, let A,,, F,, be as above, and
let A=), An. Then,

A(z) & VYn Jy Fo(z,y)
« dy Vn Fn(xa (y)n)

Since {(z,y): Yn F,(z, (y)n)} is closed, this shows that A € 31.

The proof that E,ll, for n > 1, is closed under countable unions and intersections
is almost identical. It follows that all the X}, II., Al classes are closed under
countable unions and intersections.

To see that Ei is closed under 3¥ for any Polish space Y, let B € X x Y be
> and let A(z) & Jy € Y B(z,y). Let m: w¥ — Y be continuous and onto.
Define B’ € X x w* by B(x,2) < B(z,7(2)). So, B’ € BL1X x w¥. Write
B'(z,2) < 3w € w*C(x, z,w), where C € II}, ;| (we assume n > 1, the case n = 1
being similar). Then

A(z) & Jye Y B(x,y)
o Jzew® B(z,n(2))
o Izew” FJwew” Oz, n(2),w)
o Juew” Cz,m((uw)o), (u)1)

Now, {(z,u): C(z,7((u)o), (u)1)} is II} | and this shows A € 3. The closure of
1}, under ¥ follows from this.

The fact that £, € I}, ; is essentially trivial: if A € £} then A(z) < Yy B(z,y)
where B(z,y) < A(x). To see that X, < X! it suffices by induction to show
that TIY C IT7, that is, 31 contains all the open sets. However X1 contains all the
Borel sets since ¥} contains all the closed sets and is closed under countable unions

and intersections. This shows £}, € Al _; and thus also IT}, € A} ;. d

Ezercise 32. Suppose Y € X are Polish spaces (Y with subspace topology from
X). Show that a set A € Y is LY iff A is I}, [ X, and likewise for I}, A}
[hint: Use the fact that Y is a G5 in X, and thus every set A €Y x w* is Borel in
Y x w¥ iff it is Borel in X x w®. Use the closure properties of the 3}, TI' ]

Exercise 33. Show that if f: X — Y and g: Y — Z are both E}l—measurable
functions, then g o f is also Ei—measurable.

The next lemma records a few simple reformulations of the notion of analytic.

Lemma 2.4. For any Polish space X the following are equivalent.
(1) A< X is analytic.
(2) AC X is the continuous image of a closed set F € w®.
(3) A< X is the image of a Borel set B C'Y in a Polish space Y by a Borel
function f:Y - X.

Proof. Clearly (1) = (2) = (3). So, suppose B € Y is Borel, f: Y — X is a Borel
function, and A = f[B]. Then A(z) & Iy e Y (f(y) = ). Now {(z,y): f(z) =y}
is a Borel set in X x Y since it is the preimage of the closed equality relation by
the Borel function (z,y) — (f(z),y). By the closure of X} under 3¥ it follows that
Aexl O
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Lemma 2.5. For every Polish space X and every n, the pointclasses E}L 1 X, H; I X
have universal sets U € 2% x X. For every uncountable Polish space X and everyn,
there is a set in 2,11 X — H}l I X and vice-versa. In particular, all of the inclusions
for the projective hierarchy are proper.

Proof. Recall there is a closed F' € 2“ x X which is universal for H? I X, for any
Polish space X. Let F € 2 x (X x w“) be universal for TI)} X x w®. Define
U(z,y) < 3z F(z,y,2). So, U € 1(2¥ x X). Suppose that A € X is X7, say
A(y) « 3z E(y, z) where E € X x w¥ is closed. Let x € 2 be such that F = F,.
Then U, (y) « U(x,y) « 3z F(z,y,2) « 3z E(y, 2z) < A(y). Thus, U is universal
for 1 X.

The inductive step is entirely similar. Suppose V € 2% x (X X w*) is universal
for II} _, [(X x w®). Define U(z,y) <> 3z V(x,y,z). Suppose that A € X is X} .

n—1
Write A(y) « 3z E(y,z) where E € X x w* is II,_;. Let x € 2* be such that
E =V,. Then U,(y) & U(z,y) < 3z V(z,y,2) < 3z E(y,z) & A(y). So, U is
universal for E}l I X. It follows immediately that 1'[711 [ X also has a universal set.
If X is an uncountable Polish space, then X contains a homeomorphic copy of
2¢. So, we may view 2¥ € X, and 2% is closed in X (since it is compact). Any
closed set in 2 x X is still closed as a subset of X x X. It follows that the universal
sets U € 2¢ x X constructed above for the 31} X, TI} [ X are still ), TI} sets in
the space X x X, and are clearly still universal. From theorem 1.39 it follows that
any such universal set U € X x X for 2711 [ X cannot lie in H}l 1 X. |

We next discuss a useful representation for Z% sets, in terms of the Suslin oper-
ation A. For sets A € w®, this will have an especially important and useful form,
and will motivate a key definition, that of a Suslin representation.

We first define the Suslin operation for a general Polish space.

Definition 2.6. Let X be Polish and {B;}scw <« be a family of subsets of X indexed
by w<¢. Then A,({B,}) is defined by

z € A({Bs}) <> Jy € w” Vn (x € Byp).

When there is no danger of confusion we will just write A({Bs}).
It is important in this definition to use w=<* as the index set, as opposed to say
2<% as the next exercise shows.

Ezercise 34. Suppose {Bg}se2<w is a family of Borel subsets of the Polish space
X. Define the analog of the Suslin operation in the obvious manner, that is, = €
A'({Bs}) < Jy € 2% ¥n (z € Byy,). Show that A’'({Bs}) is still a Borel set. [hint:
Using the compactness of 2¢ (i.e., Konig’s lemma, the fact that every infinite finitely
splitting tree has an infinite branch), show that = € A'({Bs}) iff Yn 3s € 2™ (x € By).
Show this gives a Borel computation of A’({Bs}).]

Note that there is no loss of generality is assuming that if ¢ extends s then
F; € Fg, since we can replace the closed sets Fy with F! = ﬂi<1h(s) Fyyi. Clearly
A({FS}) = A{ED).

Theorem 2.7. For any Polish space X, 11X = A(TIY1X). That is, A € X is
1 iff it is of the form A = A({F.}), where the Fy € X are closed.

Proof. Suppose first that A = A({Fs}) where the Fy are closed. So, A(z) < Jy €
w* ¥n (z € Fy}y,). The relation R(z,y,n) < (x € Fy,) is closed since for any n,
{(z,y): x € Fyp,} is closed. This shows A € 37 X.



30

Suppose next that A € 311 X. Say, A(z) < Iy € wF(x,y) where F € X x w¥
is closed. For s € w=* let Fy = A, where A (z) < 3y (ylh(s) = s A F(x,y)). We
show that A = A({Fs}) which suffices. If x € A, let y € w* be such that F(x,y).
Then for any n, v € Ay, S Fy1y, using y as a witness in the definition of Ay p,.
Suppose next that € A({Fs}). Let y € w* be such that for all n, z € F,},,. So, for
each n there is an z,, and a y, such that p(z,x,) < % and y, [n = yn such that
F(zn,yn) (pis a compatible complete metric for X). But clearly (z,,yn) — (z,v),
and since F' is closed this gives (x,y) € F'. So, x € A. O

Ezercise 35. Show that for any pointclass I', A(T") is also a pointclass and is closed
under countable unions and intersections. Show also that if I' X has a universal
set U € w® x X, then so does A(T"). Deduce in this case that I' X is non-selfdual.

Ezercise 36. Show that for any pointclass T', A(A(T")) = A(T'). [hint: Let A €
A(A(T)). Say, A = A;({Bs}), where By = A({C;}), and each Cf € T'. Then
Alz) o yVn IzVm (e CY") o Iy Iz ¥nVm (z e CY\" ) o Jw Yk (z €

zMm (2)n Im

C((Eﬂw);)j)((i))z r(k)l)' Note that (w)o[(k)o and ((w)1)x), [(k)1 depend only on w'lk. So

define Dy = Cf where u = (s)o(In(s))o and v = ((5)1)(n(s)), [(In(s))1. Then
A= A({Ds}) ]

Although ©1 = A(I1Y), it is not true that X3 = A(II}). In fact, A(II}) &
Al (we give this computation later). If we iterate taking the operation A and
complements w times, we generate the smallest o-algebra closed under the operation
A. This collection is sometimes referred to as the C-sets. It is properly contained
within AJ.

Given a Suslin scheme {A}, we may improve it slightly as follows.

Definition 2.8. We say a Suslin scheme {Ag}se,<w is good if it satisfies:

(1) If t extends s then A} € A’
(2) diam(A,) < sme-

Lemma 2.9. Suppose T' is closed under intersections with closed sets, and let
{As}sew<w be a Suslin scheme with each As € T'. Then there is a good Suslin
scheme {A'} with each AL € T with A({As}) = A({AL}).

<w

Proof. Let V; be a base for X. Say a sequence u € w=% is good if

1 _
Vi < Th(u) diam(V, @) < o and Vi < 1h(u) — 1 Vi(ig1) S Vag)-

For (u,s) € (w=¥)? with lh(u) = 1h(s), Set B(y,s) = As 0 Vyn)—1) if u is good
and By, ) = & otherwise.

If x € A({Buy,s}), then there is a z and a y such that Yn x € B,y ypn S Aytn,
and so x € A({As}). If z € A({As}), let y € w* be such that Vn z € Agp,. Fix
a z € w* such that for all n, z[n is good and z € V() (which we can easily do
since {V;} is a base). Then for all n, £ € B,y ytn, 50 ¢ € A({B,,s}). Finally, by
taking a bijection between w x w and w allows us to reorganize the Suslin scheme

into one with index set w<¥. That is, define A} = B, s, where u(i) = (¢(i))o and

s(1) = (t(i))1

We next re-interpret the notion of analytic and Suslin operation when X = w®.
Here the concepts simplify down to a basic combinatorial notion, that of a Suslin
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representation. Recall that if 7' is a tree on a set Z, then [T] € Z“ is the set of
infinite branches through T, that is, [T = {f € Z¥: Vn fIne€ Z}.

Definition 2.10. Let T be a tree on Y x Z. We let
p[T]={feY“:3ge Z¥ (f,9) € [T}
={feY¥: 3ge Z¥ Vn (fIn,gIn) e T}.

Note that we identify elements of a tree T on Y x Z with pairs of sequences (s, t)
with s e Y<% ¢t € Z=<¥ and lh(s) = 1h(¢t).

Theorem 2.11. A set A C w® is X] iff there is a tree T on w X w such that

A =p[T].

Proof. first suppose T is a tree on w x w and A = p[Y]. So, A(z) & 3y €
w? ¥n (xln,yln) € T. For each n, {(z,y): (x|n,y[n) € T} is a clopen set in
w x w¥. So, {(x,y): Yn (xIn,yIn) € T} is a closed set in w® x w®. This shows
Ae Xt

Suppose next that A € E%, A C w¥. Let F € w* x w®” be closed such that
A(z) & Jy F(z,y). Let T be the tree on w x w corresponding to F, that is,
(s,t) € T iff 3x,y (x!lh(s) = s A yllh(y) = y A (z,y) € F}. Since F is closed,
F = [T]. Thus A(z) < y (x,y) € [T] and we are done. O

This representation suggests a natural generalization. We emphasize that the
next definition is made in ZF.

Definition 2.12. Let x € On. We say A € w® is k-Suslin if there is a tree T on
w x Kk such that A = p[T1].

Ezercise 37. Show that if « € On and k = |/, then a set is a-Suslin iff it is k-Suslin.
We let S(x) denote the collection of k-Suslin sets.

In view of exercise 37, there is no loss of generality in restricting to cardinals in
definition 2.12.

Thus, S(w) = 2%. It is not immediately clear for which cardinals x we pick up
new sets. We make this into the following definition.

Definition 2.13. We say « is a Suslin cardinal if S(k) —J,_,. S(\) # @.

Ezercise 38. Show that for any cardinal x that S(k) is a pointclass closed under
countable unions, countable intersections, and 3¢,

Assuming AC, every set A € w® is ¢ = 2¥-Suslin, but these trivial Suslin repre-
sentations are of no interest [define the tree T on w x ¢ by (s, @) € T iff z,, [(1h(s) = s,
where {Z4 }a<c is a wellordering of A.] We will discuss Suslin sets and Suslin car-
dinals in more detail later, but now we return to the theory of X} sets.

We next show Suslin’s theorem that A} =Borel. We prove this in the form of a
more general separation theorem.

Theorem 2.14 (Suslin). Let A, B be disjoint 7 sets in a Polish space X. Then
there is a Borel set C with A C and Cn B = @.

Proof. Let A = A({F,}), B = A({H.}), where Fy, H; are closed, and An B = @.
We may assume the Fy and H; are good Suslin schemes. We may also assume
Fy = Hyz = X. Define T to be the tree on w x w given by:

(s,t) €T & (lh(s) = 1h(t) A Fs n Hy # 2).
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We first claim that T is wellfounded. For suppose (z,y) € [T]. For each n, let
Zn € FyppnnHypy,. Since the Suslin schemes are good, {z,,} is Cauchy, so converges to
some z € X. Since the F; and H; are decreasing along any branch (from goodness),
and the Fy, H; are closed, we have z € [, Fyn, so z € A. Likewise, z € B, a
contradiction since A n B = @.

By induction on the rank of (s, t) in the tree T' we define a Borel set C, ) € X
which separates As; = {z: dz (z[lh(s) = n A Vn (2 € Fy)y,)) from B; (with a
similar definition). If (s,t) has rank 0 (which we take to mean is not in T'), then
Fyn Hy = @. Then Cy = Fy is a closed set which contains A, and is disjoint from
B; (since As € F;s and By € Hy).

For the general inductive step, fix (s,t) € T. By induction, for each i,7 € w
there is a Borel set C,~; ;~; separating A,~; from B,~;. Note that A, = (J; As~;
and By = | J; B;~;. Define then C, 1) = |, ﬂj Cy~i,t~;- This clearly works, noting
that for each 1, ﬂj Cs~;,4~; separates A ~; from Uj By-~;.

Finally, C = C(g g) is the desired Borel set. (I

Corollary 2.15. For every Polish space X, A% I X is the collection of Borel sets
n X.

Proof. If A € X is A%, apply the previous theorem to A and B = X — A. The
separating set C' must equal A. O

Corollary 2.16. For every Polish space X, sep(X]).

Corollary 2.17. A function f: X — Y is Borel (that is, Borel measurable) iff it
has a Borel graph Gy € X x Y.

Proof. First suppose that f: X — Y is Borel measurable. Let {V,,} be a base for
Y. Then f(z) =y iff Vn (z € f=1(V,,) « y € V,,). Since each f~1(V,,) is Borel, this
shows Gy is Borel.

Suppose next that Gy is Borel. Let V' € Y be open. Then f(z) € V &
Jy (G¢(z,y) Ay € V) & Yy (Gf(z,y) — y € V). This shows that f~1(V) is both
¥ 1 and II7, and hence Borel. (]

Corollary 2.18. If f: X — Y is a Borel function and A CY is X} (or II.,), then
f~Y(A) is =} (or TIV).

Proof. If A € X! then z € f~'(A) & 3y (y = f(z) Ay € A), which shows
fY(A)eX.. If Ac I}, then z € f~1(A) & Vy (y = f(z) — y € A), which shows
f~Y(A) eI, O

Thus, the projective hierarchy begins at precisely the point where the Borel ends,
at the collection of Borel sets B = Aj.

The next result on Borel sets strengthens exercise 31 and is an important fact
in its own right. We will see below that the converse of this theorem also holds.

Theorem 2.19. FEvery Borel set in a Polish space is the continuous one-to-one
image of a closed subset of w*.

Remark 2.20. It doesn’t matter whether we view the conclusion as saying there
is a closed F' € w” and a continuous f: F — X with A = f(F), or as saying there
is a closed F' € w® and a continuous f: w* — X with A = f(F'). This is because
every closed set F' € w” is a retract of w* (see exercise 20).
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Proof. Let A € X be Borel. If A is open or closed, then it is Polish (with the
subspace topology), and hence the result follows from lemma 1.26. From exercise 15
it suffices to show that the family F of subsets of X which are continuous one-to-
one images of closed subsets of w* is closed under countable disjoint unions and
countable intersections.

Suppose A = | J,, Ay, a disjoint union, where each A, € F. Say, A, = fn(Fy)
where F,, € w® is closed and f,: F,, — X is continuous and one-to-one. Define
F c w® by F(x) « ' € Fyg), where 2'(n) = x(n + 1). Easily F is closed. Define
[+ F — X by f(z) = fs)(2'). Since each f, in one-to-one on F,, f is also one-
to-one {z: x(0) = n}. Since the A, are pairwise disjoint, it then follows that f
is one-to-one on F. Since f is continuous on each of the relatively clopen pieces
{x: 2(0) = n} it follows that f is continuous on F. Clearly, f[F] = J,, fulFn] =
U, A4n = A.

Suppose next that A =, A,, and A,, = f,[F,] where again F,, € w* is closed.
Define F' € w* by

F(z) o [(Vn (z)n € Fn) A Vi, (fil(2)i) = f3((2);))].

Clearly F is closed. Define f on F by f(z) = fo((x)o) (= fi((x);) for all 4). If
x € F, then since f(z) = fi((x);), we have f(z) € A;. So, f[F] € (), An. If
y € (), An, then for each i let z; € A; with f;(x;) = y. Let € w* be such that for
all 4, (x); = 2;. Then z € F and f(z) = y.

Finally, f is one-to-one on F'. For suppose x,y € F' and x # y. Then for some n,
(2)n # (Y)n, and both are in F,. Since f,, is one-to-one on Fy,, fn((2)n) # fn((¥)n)-

Thus f(2) = fo((@)n) # fu((W)n) = (). O

Theorem 2.21 (Lusin). If f: X — Y is Borel and one-to-one, and A € X is
Borel, then f[A] is Borel.

Proof. We first do the special case where f is continuous. We have already shown
in theorem 2.19 that every Borel set is the continuous one-to-one image of a closed
set in w®. Thus, it suffices to show that a continuous one-to-one image of a closed
set in w® is Borel.

Suppose F' € w* is closed, and A = f[F] where f: FF — X is continuous and
one-to-one. Let F' = [T] where T is a tree on w. For s € T, let Fx, = F n Ny, and
let Ay, = f[Fs] € A. Since f is one-to-one, if s L ¢, then A; n A; = &. Using
Suslin’s theorem, we define Borel sets By with A, € B, and such that if s 1 ¢ then
Bsn By = @. If By is defined, using Suslin’s theorem for each i let Cy~; 2 B,~; be
Borel and such that if i # j then Cs~; n Cy~; = O (separate A,~; from U#i Ag~j,
and then disjointize these separating Borel sets). Let By~; = Cy~; n Bs. Finally,
by replacing each B, with B, n A,, we may assume that B, € A, for each s.

We next show that A = A({Bs}). First assume = € A, say © = f(y) where
y € [T]. then for all n, y € Fy},, and so € Ay, S By, so ¢ € A({Bs}). Next
suppose x € A({Bs}). Fix y € w* such that ] for all n, x € By},. Since Bsy, S Aypa,
there is for each n a y,, € w* such that y, In = yly and p(f(y(n),z) < 5. Since
Yn — Y, y € F. Since f is continuous, f(y) = lim, f(y,) = x. Thus, = € A.

Since the B, are Borel and have the property that whenever s | ¢ then Bsn By =
@, it follows that A({Bs}) is Borel. To see this, note that
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x € A({Bs}) <> 3y Yn (xz € By»)
o Yk s e Wk (z € By).

The last equivalence follows from the disjointness assumption on the B, and shows
that A({B}) is Borel.

For the general case where f: X — Y is Borel, enlarge the topology 7 on X to
a finer Polish topology 7/ making f: (X,7') — Y continuous, and then apply the
above case. To do this, consider a basis {V, }ne, for Y. Get 7' to make all of the
f~1(V,,) clopen. This makes f continuous. O

In corollary 2.16 we observed sep(37). This leads us to suspect that red(IT})
and even pwo(II}) might be true. In fact an even stronger property property called
the scale property holds for H%. We first define the notion of scale.

Definition 2.22. A semi-scale {¢pp}ne, on a set A € X is a sequence of norms
¢n: A — On such that if {x,,}mew € A, T, — x, and for each n the norms ¢, (z,,)
are eventually constant (that is, there is a A, € On such that ¢,,(z,,) = A, for all
large enough m), then x € A.

A scale {¢p}new is a semi-scale with the additional semi-continuity property: for
all n, ¢n(-r) < Ap = limy, o ¢n(xm)~

For sets in the Baire space, we first show that semi-scales are equivalent to Suslin
representations.

If T is an illfounded tree on a wellordered set (X, <), then the left-most branch
of T, 4(T) = (£(0),£(1),...) is defined as follows: £(0) is the < least element of X
such that 3f € X¢ (1 = (¢(0)) A f € [T]). In general we inductively define ¢(n)
to be the < least element of X such that 3f € X“ (fn = £€In A f € [T]). This is
well-defined, and the resulting branch ¢ € [T7] is leftmost in the sense that if f € [T']
and £ # f, then for the least n such that £(n) # f(n) we have £(n) < f(n).

Lemma 2.23. A € w¥ is k-Suslin iff A admits a semi-scale with norms into k.

Proof. Suppose first that A is k-Suslin, say A = p[T'] where T is a tree on w X k.
For each x € p[T], let ¢* = {£*(0),£(1),...» be the left-most branch of T, =
{@: (zMh(d),d) € T}. Let ¢n(xz) = €*(n). To see this works, suppose z,, € A,
Tm — x, and for each n, lim,, ¢,(x,n) = A\,. Then for each n and and all large
enough m we have that z,,[n = z|n and £*mn = (Ao,...,A\n—1). In particular,
since (2, £7m) € [T], we have (zIn, (Ao, ..., An_1)) € T. Thus, (z,X) € [T], so
x € A.

For the other direction, suppose {¢, }ne. is a semi-scale on A. Define the tree of
the semiscale Ty by:

(5,0) € Ty <> 3w (x[lh(s) = s A Po(T) = g A =+ A Pi(s)—1(T) = Q1p(s)—1)-

If x € A, then x € p[Ty], since (z,(¢o(x), p1(x),...)) € [Ty]. On the other hand,
suppose z € p[T], say (z, f) € [T]. for each n, (zIn,fIn) € T, and so there is
an x, € A with z,,, In = zn and ¢o(zm) = f(0),...,¢p—1(zm) = f(n —1). Then
T — x and for each n and all j > n, ¢, (x;) = f(n), so all the norms are eventually
constant. Since {¢,} is a semi-scale, we have x € A. O
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If A = p[T] and {¢,} is the semi-scale derived from T, we can patch-up {¢,}
to be a scale in the following manner. Say each ¢, is a norm into x € On. Let
{ag,...,q;_1)y denote the rank of (g, ..., ;1) in the lexicographic ordering on &’
(so this lexicographic ordering has length the ordinal x%). Define now the norms
¥, on A by:

(@) = (Go(@), 61(2), .., bu (®)).

Claim. {t,}new is a scale on A.

Proof. Suppose {x;,,} € A, x,, — x, and and for each n, lim,, ¥, () = A\n. Say
An =L, af, ..., al). So, for large enough m we have ¢g(Zm) = af, ..., dn(Tm) =
. In particular, for all n,n’ > i, ol = a?' = qo; = lim,, ¢;(x,,). So, for large
enough m, ¢;(x,,) = «;. Since {¢,} is a semiscale on A, z € A. Moreover, (z,d) €
[T]. For any n we then have ¢, (z) = (¢*(0),...,¢*(n)) < {ag,...,an) = A, since
/% is the left-most branch of T. O

We call {¢,,} the scale derived from T. Note that if T is a tree on w X &, then
the derived semi-scale has norms into x, but the derived scale has norms on the
slightly bigger ordinal x* (ordinal exponentiation).

Ezercise 39. Let {¢n}new be a semi-scale on A € w®. Show that we may directly
define the scale {¢,}ne, on A by:

U (z) =min{ag, ..., an): IFVm Iy e A (ytm = ztm A
¢0(y) =Qo At A ¢n(y) =an AVk>n ¢k(y) = ﬁk—n—l)}

[hint: you can trace through the definition of ¢ given before from the tree Ty, or you
can proceed directly as follows. Let z,, € A and assume z,, — = and for each n, the

(1) are eventually equal to {af,...,a”). Argue that for i, > n that of, = o..
Let o, be the common value of the o, for i > n. Then for all n and all m there
is a y with ylm = z[n and ¢o(y) = ao,...,dn(y) = a,. Since ¢ is a semi-scale,

x € A. From the definition of v, it follows easily that ¢,(z) < {ag,...,an).]

Ezercise 40. Show that if we start with a scale ¢ = {¢y, }new Oon a set A, form the
tree Ty of the scale, and then let ¢ = {¢, } e, be the semi-scale of the tree Ty, we

have ¢ = ¢.

Ezercise 41. Show that if we start with a tree T on w x &, let ¢ = {¢p, }new be the
semi-scale of the tree 7' (on the set A = p[T]), and then let 7" be the tree of the
semi-scale ¢, then T € T. Give an example where 7" # T.

The canonical scale on A = p[T] has, with a slight modification of the definition,
a few extra properties which we abstract in the following definition.

Definition 2.24. We say the scale {¢,, }new on the set A is good if whenever z,,, € A
and for each n the norms ¢, (z,,) are eventually constant, then the x,, converge to
some x (and so z € A).

We say {¢n}new is very good if it is good and for all z,y € A, and i < j, if
¢j(z) < ¢;(y), then ¢;(z) < ¢i(y).

We say {¢n }new is excellent if it is very good and whenever z,y € A and ¢,,(z) =
dn(y) then zln = y'ln.

Lemma 2.25. Suppose A = p[T'] where T is a tree on w x k. For x € A, define
Y, () = ¢%(0),2(0), (1), 2(1),...,£%(n),z(n)),
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where £% = (£*(0),£*(1),...) is the left-most branch of T,,. Then ) is an excellent
scale on A with norms into k¥ (ordinal exponentiation).

Proof. Clearly v satisfies the excellence condition. It follows that if {x,,} € A are
such that all the norms ¢, (z,,) are eventually constant, then the z,, converge to
some x. As before, we must have x € A. The previous proof of the scale property
still holds here since z[n will also equal the limiting values of the x,, [n. The very
good condition follows from the definition of ,,. |

We can also go directly from a scale to an excellent scale.

Lemma 2.26. Let A € w* and {¢n} be a scale on A, with say norms into k.
Define . on A by pu(x) = (po(), 2(0), 61(2), 5(1), . ., (), 2(n)) (the rank in
the lexicographic ordering on 2n+ 2 tuples from k). Then {1} is an excellent scale
on A.

Proof. The excellence and very good conditions easily hold. If {z,,} € A and
for each n the norms ¥, (x,,) are eventually constant, then also the ¢, (z,,) are
eventually constant, and x,, — z for some x. Since {¢,} is a scale, it follows that
z e Aand ¢,(x) <lim,, ¢p (). It follows that b, () < lim,, ¥, (2.m,). O

Although the canonical scale (or excellent scale) derived from a Suslin represen-
tation A = p[T], T a tree on w X &, has norms into a slightly bigger ordinal than
k (though of the same cardinality as k), we nevertheless have the following.

Theorem 2.27. For any A € w® and cardinal k, the following are equivalent.
(1) A is k-Suslin.
(2) A admits a semi-scale with norms into k.
(3) A admits an excellent scale with norms into k.

Proof. 1t is clear that (3) = (2), and we have already shown that (2) = (1). So,
assume A = p[T] with T a tree on w X k, and we show that A admits an excellent
scale with norms into &.

We consider two cases. First assume that cof(k) > w. Let T’ be the tree on
w X K defined by

(s, (g, - yan—1)) €T o [ap = max{ag,...,Qn_1} A
(8 f" - ]-a (al, ceey an—l)) € T]
Since cof(k) > w we easily have that p[T] = p[T"]. Let
Un(x) = (€7(0),2(0),£°(1), (1), ..., £*(n), x(n)),

where now this refers to the rank of the tuple in lexicographic ordering on the
tuples of length 2n + 2 from x having the first element maximal. The rank of any
such tuple is less than &, so ¥, (xz) < k. As before, {¢,,} is an excellent scale on
A= p[T"] = pIT].

Suppose next that cof(k) = w. Let {kn }new be an increasing sequence of cardinals
with k = sup,, k. Let T” be the tree on w x k consisting of all (s, t) with Ih(s) = lh(t)
and ¢ an initial segment of a sequence of the form

<n0,0,...,O,ao,n1,0,...,0,a1,...>
&_v__/ —. —

—
no+1 ni+1

where (s, (ag,1,...,0m(s)—1)) € T and each t(i) < k;. Clearly, p[T] = p[T]'.
Let {1} be the excellent scale derived from 7", where for 1, we use lexicographic
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ordering on n + 1 tuples (Bo, ..., Bn+1) from k satisfying 5; < k; for all j. So, ¥,
maps into (k;)* < k. O

One use of scales is that they provide a way to uniformize relations. To see this,
suppose R € w* x w* is k-Suslin, say R = p[T] where T is a tree on w x w X . Note
that = € dom(R) iff 3y T}, , is illfounded iff T, is illfounded. For = € dom(R), let
07 = (€5, 47) be the leftmost branch of T,,. The map = — y = £ is a uniformization
of R. We can also give the previous uniformization argument directly in terms of
scales. We state this in the following lemma.

Lemma 2.28. Let R € w® x w* and let {¢p}new be an excellent scale on R. For
each x € dom(R) and n € w, let

AT ={y: (z,y) € R A ¢n(x,y) is minimal}
={y: Vz (z,9) <5 (z,2)},
where <% is the norm relation corresponding to ¢,. Then for each x € dom(R),
A 2 AT D .-+, and there is unique point f(x) in (), AL. Also, R(z, f(x)) for all
x € dom(R). That is, [ is a uniformization for R.

Proof. Fix x € dom(R), and let A be as above. If y € A%, then for any z such
that R(x,z) we have ¢, (y,y) < ¢n(x,z). Since ¢ is very good, we have ¢;(z,y) <
¢i(x, z) for all i < n as well. Thus, y € A? for all ¢ < n. Let A, be the minimal
value of ¢, (z,y), among all y € R,. Let y,, € A* for each n. So, ¢n(,yn) = An.
By very goodness, we also have ¢;(y,) = A; for all ¢ < n. So, for each 4, the norms
oi(x,y,) are eventually equal to \;. Since ¢ is a good scale, R(x,y). From the scale
property, ¢, (z,y) < Ay, and hence ¢, (z,y) = A, for all n. If z € (), A}, then for
all n, ¢n(x,2) = ¢n(x,y) = A\n. By the excellence condition, z = y. Thus, (), AZ
is a singleton set {f(x)}, and thus the map z — f(z) is a uniformization of R. O

We next identify some useful coding sets.

Definition 2.29. LO is the set of x € 2¥ such that {(n,m): z({n,m) = 1} is a
linear order of field(z) = {n: Im z((n,m)) =1 v z({m,n)) = 1}.
WO is the set of z € 2% such that {(n,m): z({n, m) = 1} is a wellorder of field(z).
WF is the set of x € 2¢ such that {(n,m): z({n,m)y = 1} is wellfounded.

Thus, WO < LO, and WO € WF. We let <, denote the binary relation
{(n,m): z({n,m) = 1}. So, x € LO iff <, is a linear order, and x € WO iff
<, is a wellorder.

Lemma 2.30. LOe I}, WO, WF e II;..

Proof. x € LO iff the following conditions defining a linear ordering are satisfied:
(1) Vn (z({n,np) = 0)
(2) Yn,m e field(z) (z({n,m)) =1vn=mvz((m,ny) =1)
(3) VYn,m € field(z) (z({n,m)) =1 - —z({m,n)) = 1)
(4) Yn,m, k € field(z) (z({n,m)) =1 A z({m,k)) =1 - z({n,k)) = 1)
Each of these is a TI{ condition, so LO € ITJ. Since z € WO < z € LO Az € WF, it
suffices to show that WF e IT7. But, z € WF « =3y Vn (z({y(n + 1),y(n))) = 1),
which shows WF € II7. 0

We show below that WO and WF are H%—complete sets, which we introduce in
the following definition.
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Definition 2.31. If A, B < w* we say A is Wadge reducible to B if there is a
continuous function f: w¥ — w* such that Yo (r € A & f(z) € B). If T'is a
pointclass, we say B is I'-hard if every A € T' is Wadge reducible to B. We say B
is T-complete if B € T and B is I'-hard.

The following general definition shows how to turn tree orderings into linear
orderings, and is useful in a variety of settings.

Definition 2.32. Let T be tree on a wellordered set (X, <x). The Kleene-Brouwer
ordering <kp on T is defined by:
s <kp t < [s extends ¢ v i < min{lh(s),1h(t)} (s(¢) # ¢(¢) A s(i) <x t(4)
AV < (5G) = )]

Thus, the Kleene-Brouwer ordering is like lexicographic ordering except that
extensions of sequences are smaller in the Kleene-Brouwer order.

Theorem 2.33. WF, WO are H%—complete.

Proof. We first show WF is ITj-complete. Let A € w* be IIj. Let T be a tree on
w X w with A(z) & T, is wellfounded. For x € w* we define a linear-order <, as
follows. Let 7: w — w=% be a bijection. Define

n <, m < (r(n),m(m) € T, A w(n) extends m(m)).
since Ty, is wellfounded, so is <,. Let f(x) € 2* be the real coding <., that is,
f(z)(i) = 1iff (¢)o <z (i)1. So, z € A iff f(x) € WF. Note finally that = — f(z) is
continuous. This is because f(z)(7) is determined by T, restricted to sequences of
length at most k& = max{lh(w((#)o),7((¢))1)}. This, in turn, is determined by x k.
Thus, f is a continuous reduction of A to WF, which shows WF is H%—complete.
Consider next WO. Define <, now using the Kleene-Brouwer order on T}:
n <, m o (n(n),m(m) € T, A m(n) <kp w(m)).

Again let f(x) code <,. As before, f is continuous. Note that f(z) € LO for all z.
Also, xz € A iff T, is wellfounded iff <, is a wellordering iff f(x) € WO. This shows
WO is ITj-complete. O

We can give a version of this for general Polish spaces as the next exercise shows.

Ezercise 42. Let X be Polish and A € X be II7. Show that there is a Borel function
f: X — 2% such that Vo € X (z € A & f(z) € WF), and likewise for WO. Show
that in fact we may take f to be X9-measurable. [hint: Say X —A = A({F.}), where
{Fs}sew<~ 18 a closed good Suslin scheme. Let 7: w — w=* again be a bijection.
Define <, by: n <, m iff x € F;(,y A 2 € Fr(sn) A 7(n) extends 7(m).]

We use these ideas to show the prewellordering property for II7.
Theorem 2.34. For any Polish space X, pwo(TI7).

Proof. Let A< X be ITj. Let f: X — LO be Borel such that Vo (r € A « f(x) €
WO). Define the norm ¢ on A by ¢(x) = |f(x)| = the rank of the wellordering
f(x). So, ¢: A — wi. We show that ¢ is a TI}-norm. We have

r <*y < [f(r) e WO A =3z (2 codes an order-preserving map from <y, to <jf())
< [f(x) e WO A =3z (Vn,m (z <pg) n — 2(n) <f@) 2(m)))
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Also,
r <"y o [f(r) e WO A =32 (2 codes an order-preserving map from <y, to
a proper initial segment of < f(y))
< [f(x) e WO A =3a € dom(<j(,)) Iz (Vn,m (n <j,) m —
2(n) <f(z) 2(M) <f(z) a))
The above computations show that <* and <* are both H%, and thus ¢ is a
H%—norm. ([l

From lemma 1.57 we have:

Corollary 2.35. H% has the number uniformization property (and hence the w-
reduction and reduction properties).

We have the following boundedness principle for norms.

Lemma 2.36. Let T' be a nonselfdual pointclass closed under Y*°, A, v, and
assume pwo(I'). Let ¢ be a T'-norm on a T'-complete set A. If B C A isin A, then

sup{o(x): x € B} <sup{¢(x): x € A}.

Proof. Suppose B € A is in A and sup{¢(x): x € B} = sup{¢(z): © € A}. Then
we would have z € A « 3y € B (¢ <p y). This computes A to be in T', a
contradiction. O

Corollary 2.37. If B < WO is Borel, then sup{|z|: z € B} < w;.

We pause to note that the prewellordering property propagates in ZF by exis-
tential quantification.

Lemma 2.38. Let I' be a pointclass closed under V<, and assume pwo(T). Then
pwo(3«°T).
Proof. Let A€ 3*°T, say A(x) « Iy B(z,y) where BCS X x w* is T'. Let ¢ be a
T'-norm on B. For z € A define ¢(x) = inf{¢(x,y): (z,y) € B}. We have:

x <;’L y o 3z Vw ((z, 2) <f; (y, w)),
which shows S;’Z}e T'. We also have

r <y y o 3z Yo ((7,2) <§ (y,0)),

SO S;’L isalsoin I. O

Corollary 2.39. pwo(X3).

So, 2% has the w-reduction and reduction properties, and H% has the separation
property.

We next introduce the notion of a I'-scale which adds a definability hypothesis
to the Suslin representation. Viewing the Suslin representaion via the norms (i.e.,
considering the corresponding scale) suggests how to add the definability hypothe-
sis.

Definition 2.40. Let I" be a pointclass and A € X. A sequence of norms {¢y, }new
on A is said to be a I'-semiscale (or scale, very good scale, etc.) if it is a semiscale
(or scale, etc.) and each of the norms ¢,, is a I'-norm.



40

Definition 2.41. We say a pointclass T' has the scale property, scale(T), if every
A e T admits a I'-scale.

The notions of I'-scale and the scale property were introduced by Moschovakis
and have their motivation in the methods used in the Novikov-Kondo solution to
the uniformization problem.

The next lemma says that passing from a scale to a very good or excellent scale
does not usually increase the complexity of the scale.

Lemma 2.42. Let T' be a pointclass closed under A, v. If A € w* and A admits
a T'-scale, then A admits an excellent T'-scale.

Proof. Let {¢,} be a I'-scale on A. As before, define

Un(z) = {bo(2), 2(0), ¢1(2), 2(1), . .., on(2), x(n)).
We showed in lemma 2.26 that {1, } is an excellent scale on A. The definability
conditions are easily checked, for example:

T<y YT <[y

y(0))

y(0) Az <Fiy)...

y(0) A -+ Ax(n) <y(n))

vec<Eoyny<iorax(0) <

vz <§oyny<goraz(0)

v (z g:;,o YAy g:;,o z A z(0)
d

Ezercise 43. Show that if T' is closed under A, v, and contains 28, then if every
A € X admits a I'-scale, then every A € X admits a I'-excellent scale. Here the
excellemce condition in interpreted as meaning that if i, (z) = ¥, (y), then p(z,y) <
%' [hint: For z € A let Zﬁn(iﬂ) = <¢0(x)aXO(x)a¢1(x)aX1(m)v e ~7¢n(x)7Xn(x)>a
where the x,, are define inductively as follows. Let {V;} be a base for X. Let xo(z)
be the least i € w such that « € V; and diam(V;) < g5. Let x(2) be the least i € w
such that z € V; € Vi1 (z) and diam(V;) < 2% Show that each ), is a T'-norm
and {1} is an excellent scale on A.]

We next show the scale property for H?[, which is the essence of the solution to
the uniformization problem.

Theorem 2.43. scale(IT}).

Proof. We prove it for the case X = w®, leaving the general case as an exercise.

Let A C w® be IT}, and let f: w* — LO be the continuous function of theorem 2.33

so that Yz (z € A & f(x) € WO). For x € A, let ¢o(x) = |f(z)| (the rank of the

wellordering f(z)). For n > 0let ¢y, (z) = {po(z), |n —1|<,,,), where [n—1|-,  is

the rank of n—1 in the wellordering < y(,) if n—1 € dom(<j(y)), and is 0 otherwise.
We fist show that each ¢,, is a ITI{-norm on A. We have:

z<iyo(x<iy) v(e<i ry<{xa—Iz (z codes an order-preserving map
from I7W to 17(®))),

where I,{(m

) = {m: m <y n} is the initial segment of the order <y (,) determined
by m. In theorem 2.34 we showed that ¢g is a H%—norm, so <g, < are H% relations.

It follws that <* is also II}. A similar computation shows that <* is IT}.
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Next we show that {¢,} is a scale on A. Suppose {x,,} € A, x, — =z, and for
all n, ¢n(rm) is eventually equal to A\, = {an,B,). We must show that <y, is
wellfounded. To see this, note that if & <j(,) I, then (since f is continuous) for all
large enough m we have k <j(,, [, and hence |k|<,,  <|l|<,, . It follows that
Br+1 < Bi+1. Thus, n — B,41 is an order-preserving map from <j,) to On, and
S0 <j(z) is wellfounded.

Finally, we show the lower semi-continuity property. Note that o = a,, doesn’t
really depend on n, it is the limiting value of ¢o(z,,). Also, 5, < « for each n.
Since n — B, 41 is order-preserving on <y(,), this shows that ¢o(z) = f(z) < a.

Similarly, for each n the map k — B is order-preserving from I 7]:(_951) to B,. Thus,

In — 1|<f(g;) < By 8o, ¢n(x) =<{o(z),|n — 1|<f(g;)> <L, By = An. 0
Corollary 2.44. Every I} set A C w* admits an excellent T} -scale.
Corollary 2.45. Every I relation R € X x Y has a II} uniformization.

Proof. First suppose X =Y = w*. From corollary 2.44, let {¢,} be an excellent
scale on R. Let R’ € R be the uniformization from the scale ¢ as in lemma 2.28.
Thus,

Rl(z,y) & ¥n ¥z ((z,y) <7, (2, 2)).
Since <* is IT}, R’ € II;.

Consider now the general case R € X x Y. Let m1: w* — X and 7my: w¥ —» Y
be Borel bijections. Let S € w® x w* be defined by S(u,v) « R(m (z),71(y))-
Note that S is TI as it is the inverse image of a IT] set by a Borel function (c.f.
corollary 2.18). Let S’ be a ITj uniformization of S. Define R’ by R'(z,y) <
S'(n7 (x), 75 (y)). Then R’ is T as 7', m; ' are also Borel functions. Clearly
R’ is a uniformization of R. O

It makes sense to ask whether a IT7 set in an arbitrary Polish space X admits a
H}—scale (though the analagous question about Suslin representations doesn’t make
sense). The next exercise shows that this is the case.

Ezercise 44. Show that if A € X is I}, then A admits a IIj-scale. [hint: let
{F’s}sew<« be a closed good Suslin scheme such that X — A = A({F;}), that is, A(z)
iff T(x) is wellfounded, where T'(z) = {s € w<¥: z € Fs}. For z € A, let ¢p(x) =
|T'(z)| = the rank of T'(z). For n > 0, let ¢,,(z) = |r(n—1)|p(s), where 7: w — W=
is a bijection. Let {V;} be a base for X. Let x,(z) = =1 if x € Fy(,,) (we allow —1
as a value of the norms for convenience), and otherwise x, () = the least i such
that z € V; € X — Fr(,y. For z € A, let ¢, (x) = {$o(x), X0(2), - .., dn(x), Xn(2)).
Show that each 1, is a H}-norm on A. To see that it is a scale on A, suppose
{xm} € A, x,, — z, and for each n the ¥, (x,,) are eventually equal to A,. So,
the ¢, (z,,) are eventually constant as well. Using the x;, show that the trees
T'(z;) converge to the tree T'(x) in the sense that for every s € w<%, s € T(z) iff
s € T(xy,) for large enough m. Let {«, 8,) be the limiting value of the ¢,(z,,). As
in theorem 2.43, show that the map s +— B;-1(,) is order-preserving and follow the
proof of theorem 2.43].

Ezercise 45. Show that if A € X is TI3, then A admits an excellent IT}-scale. Here
excellent means very good and with the property that if x,y € A and ¢, () = ¢, (y),
then p(x,y) < 2%, where p is a compatible complete metric for X. [hint: let

¢n(9€) = <¢)0($), XO(x)a 0'0(1’), ceey ¢n(x)’Xn(x)’0n(x)> where the ¢n($)7 Xn(x) are
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above and o, (z) is defined recursively as follows. Let og(z) = 0. Let 0,41(x) be
the least ¢ € w such that z € V; €V, (,) and diam(V;) < g5t

Ezercise 46. Show directly using exercise 45 that every Hi relation R € X x Y
has a H% uniformization.

The next fact shows that the uniformization property passes up through exis-
tential quantification. Let unif(T') be the statement that every R € X xY in T’
has a uniformization R’ € R in I.

Lemma 2.46. Let T' be a pointclass and assume unif(T). Then unif(3¥°T).

Proof. Let R € X x Y be in 3T, say R(z,y) < 3z € w* S(z,y, z) with S € T.
View S as a subset of X x (Y x w¥) (ie., (X xY) x w* is homeomorphic to
X x (Y xwv¥)). Let " € X x (Y x w?) be in I and uniformize S. Then define
R'(z,y) & 3z S'(x,y, z). Clearly R’ is a uniformization of R. |

Corollary 2.47. unif(33).

Likewise, it is easy to show that the scale property propagates upward through
existential quantification, according to the next lemma. Note that the scale prop-
erty for X3, for example, does not directly imply uniformization for 3 (the proof
of uniformization from scales required I' to be closed under V*”; see the proof of
corollary 2.45). However, establishing scale(X3) is important for propagating the
scale property further (assuming stronger axioms).

Lemma 2.48. Let T be a pointclass closed under ¥*°, A, v. Assume scale(T").
Then scale(3*°T).

Proof. Let A€ 3“"T, say A(z) < 3y B(x,y) where B € . Let {¢,} be a I-scale
on B, and without loss of generality we may assume that {¢,} is very good. Define
1, on A by:

¢n(9€) = 1nf{¢n(x,y) ((E,y) € B}

Note that z <j y < 3z Vw (z,2) <3, (y,w), so <y, s in J@“T. Suppose
{xm} € A and for each n, 1, (x,,) is eventually equal to \,,. For each m, let y,, be
such that ¢, (Tm, Ym) = Ym(Tm). By very goodness, (2, , y¥m) has minimal value
for all the norms ¢; for i < m (amongst all y € A,). So, for all n we have that
for all large enough m that ¢, (€, Ym) = An. Thus, (2., ym) converges to some
(z,y) € B, and so z,, — x € A. Also, ¢n(z,y) < A, as {¢,} is a scale. Thus,
Yn(x) < dn(z,y) < N\, and so {¢,} is a scale. O

The scale on a Hi set in w* constructed in theorem 2.43 implicitly also builds
a Suslin representation for H% sets. We construct directly now a related, but
somewhat different, Suslin representation called the Shoenfield tree which also has
other useful properties, specifically it is a homogeneous tree (we define this concept
later).

Let A € w® be I3, and let T be a tree on w x w such that w* — A = p[T], that
is, A(z) iff T, is wellfounded. Let 7: w — w=“ be a reasonable bijection, say with
7-1(s) = Ih(s) for all s. Note that 7(0) = @ (which we consider to be the root
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node of any tree). Define the tree S on w X w; by:

(s,(ag,..., ) € SIETVO <4, j <n (o < ) <
[(7 (i), w(j) € Ts A m(i) <xB 7(4))
v (m(i) ¢ Ts A m(j) € T)
v (m(i),m(j) ¢ Ts Ai < j)]

We refer to the tree S defined above as the Shoenfield tree for A. Note that
S only depends on the tree T' projecting to w* — A. We claim that A = p[S].
If x € A, then T, is wellfounded. Let <, be the ordering on w defined by the
last three disjuncts in the above definition of S. <, is easily a wellorder using the
fact that <kp [T, is a wellorder in this case. Let ¢(n) be the rank of n in <,.
Then (x, (¢(0),$(1),...)) is a branch through S, so x € p[S]. If = ¢ A, then T, is
illfounded, say (z,y) € [T]. Then S, must be wellfounded, for suppose (z, &) € [5].
Let k; = m(y14). Then ay, > ag, > ..., a contradiction.

Thus, for all x we have S, is illfounded iff T}, is wellfounded. In particular, z € A
iff T, is wellfounded iff S, is illfounded, that is, A = p[S].

We state two important properties of the Shoenfield tree. The first is that
the Shoenfield tree construction is absolute to transitive models of enough of ZF
containing wy. That is, if V3 € V5 are transitive models of enough of ZF and
(w1)V* = (w1)"2, and T € V; is a tree on w x w, then (S)** = (5)"2, where ()"
denotes the Shoenfield tree computed in V; and likewise for V5. This is immediate
from the fact that both models compute the same set of countable ordinals, and
the fact that the conditions for (s, @) to be in S are clearly absolute.

Secondly, note that S is homogeneous, which here means that if (s, @) € S and E
is order-isomorphic to @, then (s, 5) € S. That is, being in the tree S only depends
on the relative ordering of the ordinals in & (we give the general definition of a
homogeneous tree later).

Note also that if (s, (ag,...,a,)) € S then ag > aq,...,q, (since 7(0) = & is
the maximal element in the ordering <,).

The Shoenfield tree construction also give a Suslin representation for X3 sets.
For suppose A C w* is X3, say A(x) <> Iy B(z,y) where B € TI7. Let T be a tree
on w x w X w such that B(x,y) & T, is wellfounded. Let S be the Shoenfield tree
on w X w x wy constructed from T in the obvious manner. So, B(x,y) <> Sy is
illfounded. But then we also have A(z) « Jy S, is illfounded < S is illfounded
(here S, is a tree on w x wy). If we identify w x w; with wy, then S may be
viewed as a tree on w X w; (identifying the second and third coordinates with
a single coordinate). So, A = p[S] which gives a Suslin representation for A.
Again, the operation T — S is absolute between transitive models of enough of
ZF having the same w;. Now however, S is no longer homogeneous but rather
weakly homogeneous, which in this case we can take to mean that S is isomorphic
to a homogeneous tree on w X w X wy by an identification of the second and third
coordinates (we will give a more official and general definition later).

We summarize this discussion in the following theorem.

Theorem 2.49. If A € w* is I, then the Shoenfield tree S on w x wy is such that
A = p[S]. Furthermore S is homogeneous and the map T — S is absolute between
transitive models of (enough of ) ZF having the same w1 (where T is a tree on w X w
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such that w® — A = p[T]). If A is 33, then these facts also hold except S is only
weakly homogeneous.

Suppose again that A € w® is H}, T is a tree on w x w with w* — A = p[T], and
S is the Shoenfield tree on w x w; constructed from T. We claim the S has true
left-most branches.

Definition 2.50. Let V' be a tree on a wellordered set (X, <). We say f € [V] is
a true left-most branch if Vg € [V] Vn (f(n) < g(n)).

To see this, suppose S, is illfounded, that is x € A. So, T, is wellfounded.
Again let ¢(n) be the rank of n in the wellordering <, of w defined above. So,
(z,(¢(0),¢(1),...)) € [Sz]. Suppose (z,g) € [Sz]- Then n — g(n) is order-
preserving from <, to On. It follows that for every m € w, g(m) is greater than or
equal to the rank of m in <,, which is ¢(m).

We thus have:

Lemma 2.51. For A € w” in H{ and S the Shoenfield tree for A, S has true
left-most branches.

For x € A, if we define ¢, (z) = the rank of n in <, as above, then {¢,} is
a scale on A. In fact, this scale is essentially the same one given in the proof of
theorem 2.43. The only difference is that we had to take ¥, (x) = {¢o(x), dn(x)) to
get the scale to be a IT}-scale. Thus, the IT}-scale on A we constructed is more or
less the values of the true left-most branch of S,.

Ezercise 47. Let A € w® be II}. Let w* — A = p[T], T a tree on w x w, and let S
be the corresponding Shoenfield tree on w x wy. Let {¢,} be the scale on A given
by the true left-most branch (i.e., ¢,(z) is the rank of n in the wellordering <,
defined above). Let S’ be the tree of the scale {¢,}. Show that S’ < S.

Although the tree of a scale always has true left-most branches, as does the
Shoenfield tree, it is not true that the Shoenfield tree S corresponding to an arbi-
trary T will be the tree of a scale.

Ezercise 48. Show that if a tree T is the tree of a scale, then the scale is uniquely
determined by the tree. [hint: Show that if T is the tree of a scale {¢,} then for
z € p[T], ¢n(z) is the n' coordinate of the left-most branch of T}.]

Ezxercise 49. Consider WF € 2¥. Let T be the canonical tree on 2 x w with
29— A = p[T] given by (s,t) € T iff Vi < 1h(t) —(s(<t(4),t(i—1))) = 0), that is, if it is
consistent with the amount of the ordering <, determined by s that ¢t(¢) <s t(i —1).
Let S be the Shoenfield tree on 2 x wy corresponding to T'. Actually, use the slight
variation of S which is defined as before except if (s, &) € S and (i) ¢ Ts, then we
require «; = —1 (we will still consider this tree to be homogeneous). Show that S
is the tree of a scale. [hint: Fix (s, (ag,...,ay)) € S. We must show that there is
an x € WF extending s such that ¢;(z) = «; for i < n, where {¢,,} is the scale on
WF corresponding to the true left-most branch of S,. That is, ¢,,(x) is the rank
of m(m) in the ordering <kp of T, (we assume m(m) € T, here). So, show that
there is an € WF extending s such that for all i < n (with 7 (i) € Ts) we have
that |i|<, = a;.]

The Shoenfield tree immediately gives an important absoluteness pripciple. First
recall the following simple fact. By a “Zi statement about ” we mean a statement
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of the form ¢(z) = Jy Vn R(xz|n,yn), where R is a recursive relation on w<% xw<«.
Thus, ¢(x) < Jy (z,y) € [T] where T'(s,t) < Vi < 1h(s) R(sli,t4). So, T is in all
transitive models of enough of ZF.

Lemma 2.52. If M © N are transitive models of enough of ZF, then Ei statements
ars absolute between M and N.

Proof. Let T be a tree on w x w with T'€ M such that ¢(z) & y (z,y) € [T]. Let
x € M. Then ¢(z)™ « (T}, is illfounsded)™, and ¢(z)V <« (T} is illfounsded)? .
Since T, € M N, by absoluteness of wellfoundedness we have (T}, is illfounsded )
iff (7, is illfounsded). O

Using the Shoenfield tree, we can extend this result as follows. For any tree T
on w X w, and any ordinal «, let S(T, ) be the Shoehfield tree constructed from
T, but using the ordinal « instead of w;. The same proof as before shows (in ZF)
that if o > wy, then T, is wellfounded iff S, is illfounded, for all x € w*.

Theorem 2.53. If M N are transitive models of enough of ZF and w)¥ € M,
then X3 statements are absolute between M and N.

Proof. Let ¢(x) be a 33 statement, that is ¢(z) = Iy T(z, ) is wellfounded, where
T is a recursive tree on wxwxw. So, T € M. Let S = S(T,wl"), and note that this is
the same constucted in M or N, that is, S (T,wd) = SN (T,w]) = S. Let re M
and assume ¢(z)V, so (Jy T, is wellfounded))™, and thus (S, is illfounded)?.
By absoluteness, (S, is illfounded)™. So, 3y € M (S,,, is illfounded)™, and so
dy € M (T, is wellfounded)™ since w{¥ > w}. Thus, ¢(z)™. The other direction
is immediate by X7 absoluteness. ]

Corollary 2.54. IfV is a transitive model of enough of ZF and V[G] is a generic
extension of V, then X5 statements are absolute between V and V[G].

FEzxercise 50. Show that there are countab;e transitive models M of ZF 5 such that
35 absoluteness fails between M and V. [hint: Suppose X3 absoluteness held
between V and every countable transitive model M of ZF . Let A be a H% set, say
A(x) & ¢(x) where ¢ is a II} statement. Then we would have A(z) iff 3E In (M =
(w, E) is a countable wellfounded model of ZFy, m(n) = z, and ¢(n)™), which
computes A to be 23]

3. SUSLIN REPRESENTATIONS AND THE PERFECT SET PROPERTY

We show how Suslin representations give us structural information about the set.
In this section we consider the perfect set property. Recall that in theorem 1.42 we
showed that every Borel set in a Polish space is either countable or else contains a
perfect set.

Theorem 3.1 (ZF). Let A € w® be k-Suslin. Then either |A| < & (i.e., there is a
map of k onto A), or A contains a perfect set.

Proof. Let A = p[T], where T is a tree on w x s. If (s,d&) € T, we say T left-splits
below (s, @) if there are (¢, 3), (u,7) in T extending (s, &) with ¢ L u. In general,
for S a tree on w X k, let S” be the set of all (s, &) € S such that S left-splits below
(s,d). Let Ty = T, and define the derivatives inductively by Tp+1 = (T4)’, and for
limit o, T,, = ﬂ[ka Ts. Since T has size at most k, there is a least ordinal § < k™
such that Ty = Th1.
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First assume Ty # @. Then it is easy to build a perfect set in [T]. Namely, let
(sg,dg) be any node of Ty. In general, suppose (S.,d,) € Ty has been defined
for w € 2<%, Let (Syy~0, @w~0); (Sw~1,@w~1) be extensions of (s, d,) in Ty with
Sw~0 L Sp~1. Define 7m: 2% — [T] by w(x) = the union of the s;pp.

Suppose next that Ty = &. If © € [T], let £* be the left-most branch of Tj.
Let 8 < 6 be the unique ordinal such that (x,¢*) € [Tg] — [Ip+1]. Let (s, &) be
the least initial segment of (z, £*) such that (s, &) ¢ Ts4+1. We show that the map
x — (f, s, a) is one-to-one, which thus maps A into an ordinal of size k. To see this,
suppose z, y € A and (z,£%), (y,0¥) € [T3] — [Tp+1] for some B (otherwise we are
done). Likewise, we may assume that (s, @) is the longest initial segment of (z, £*)
in T and also for (y, ¢¥) (or else we are done). Thus, T3 does not left-split below
the node (s, @). This says that x|n, y[n are compatible for all n, that isz =y. O

Corollary 3.2 (ZF). Every X1 set in a Polish space is either countable or else
contains a perfect set.

Proof. For X = w* the result follows immediately from theorem 3.1. For the general
case, let 7: X — w* be a Borel bijection. If A € X is T}, then A’ = 7[A] C w*
is also IT] (since 7~' is Borel). If A’ is countable, then so is A. So, suppose A’
contains a perfect set P. Then A contains 7~![P] which is an uncountable Borel
set in X. By theorem 1.42, 7~ ![P] contains a perfect set. O

Similarly we have:

Corollary 3.3 (ZF). Every X3 set in a Polish space either has size < wy or else
contains a perfect set.

We also have the following refinement of the perfect set theorem, sometimes
called the effective perfect set theorem.

Theorem 3.4 (ZF). Let A = p[T], where T is a tree on w x k. Then either A
contains a perfect set or else A € L[T] and there is in L[T] a one-to-one map from
A into k.

Proof. Work inside L[T], and define the derivatives T, as before. Note that the
map S — S’ (the left-splitting derivative) is absolute for transitive models of ZF.
Thus, the sequence Ty, as computed in L[T] is the same as computed in V. Likewise,
the least 6 such that Ty = Tp; is the same computed in L[T] or in V. If T # &,
then A contains a perfect set as before. Suppose then that Ty = @. Let z € A,
and let B3, (s,@) be as in theorem 3.1. Then z may be defined in L[T] as the
union of all the ¢ such that for some 7, (¢,7) extends (s, &) and (¢,7) € Tg. This
is because on the one hand all such (¢,7) are compatible in their first coordinates,
and on the other hand T'(s, &) = {(z,7) € [T5]: (z,7) extends (s, d)} is non-empty
in L[T] by absoluteness. So, x € L[T]. The proof of theorem 3.1 shows that the
map z — (3, s,@) (which is now defined in L[T]) is one-to-one. O

The effective perfect set theorem gives more information, for example, we have
the following corollary.

Corollary 3.5. If Vo ((w1)**] < wy), then every X3 is either countable or else
contains a perfect set.
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Proof. We may assume A C w* is 3. Say A(z) < 3y B(z,y), where B € TI}. Let
T be a tree on w X w x w with B = p[T]. T may be coded as a real, so are assuming
that (w;)"”] < w;. Let S be the Shoenfield tree corresponding to T', so S € L[T]]
(note: in defining S we use (w;)V). By theorem 3.4 it then follows that either A
contains a perfect set or else A € L[T]. Since L[T] k= CH, |A| < (wi)“" < wy,
that is, A is countable. O

On the other hand, the perfect set property for even H% is not decidable within
ZFC. This follows from the previous corollary and the following theorem of Gdédel.

Theorem 3.6. Assume V = L. Then there is an uncountable II} set which does
not contain a perfect set.

Proof. Let < be the canonical A%—good wellorder of the reals assuming V' = L. For
each o < wy, let x4 be the <-least element of WO with |z| = a. Let A = {z,: a <
w1 }. Clearly A is uncountable. Also, A € 33 since

x€ Ao xe WO AIM [M is a countable transitive wellfounded model
of ZFC+V =L rnzeM A (Vy <z —(ye WO A |y| = |z])™]
o 12eWOAIECwxwiInew [(w, E) is a wellfounded model of
ZFC+V =L An(n)=2A (w,E)E=Vz<n (—(z2e WO A |z| =|n])],
where 7 is the transitive collapse map of (w, E). Let A(x) & Jy B(x,y) where
B € ;. By uniformization for II}, let C' € B be a II] uniformization of B.
Clearly C'is uncountable. Suppose P € C' were perfect. Since P contains a copy of
2%, we may assume by shrinking P that P is compact. Let R = 7[P], where 7 is
the projection map onto the first coordinate. Since w[C is one-to-ome, R € WO is

uncountable and compact, hence Borel. However, a Borel subset of WO is bounded

in the ordinals coded by corollary 2.37, contradicting |R| = w;. O
We can extract a bit more from the proof of theorem 3.6.

Theorem 3.7. Assume there is an x € w* such that wlL[CE] = wi. Then there is an

uncountable TI1 set with no perfect subset.

Proof. Suppose wlL[z] = w;. We follow the proof of theorem 3.6. Let <, be the
canonical wellordering of L[z]. Define
reA e (e WONL[z]) AIM [M is a countable transitive wellfounded model
of ZFC+V =L[z] rze M A (Yy <.z —(ye WO A |y| = |z|))M]
o 2eWOAIECwxwImew Inew [(w, E) is a wellfounded model of
ZFC+V =Llm] Am(m) =z A7m(n) = zA
(w, E) EYw < n (—(we WO A Jw| = |nl])],
where again 7 is the transitive collapse map. So, A € 2% as before. Note that since

wlL[Z] = w, it follows that A is uncountable. We obtain the II; set B from A as
before, and the same proof shows that B is uncountable and does not contain a
perfect set. ([l

We show next that ZFC 4 (the perfect set property for IT}) is equiconsistent with
ZFC + 3 an inaccessible cardinal.
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Lemma 3.8. Assume the perfect set property for H%. Then wy is an inaccessible
cardinal in every L[x].

Proof. Clearly wy is regular in L[z]. Suppose w; were a successor cardianl in L[z],
say w1 = (k1)L where & is a cardinal of L[z]. since k < w}’, there is a real y
such that  is countable in L[z,y]. But then w; = (wl)L[I’yL contradicting our

assumption. Thus, w) is inaccessible in L[z]. O

Corollary 3.9. CON(ZFC + perfect set property(II})) = CON(ZFC + 3 an inac-
cessible cardinal).

Thus, the perfect set property for Hi cannot be proved in ZFC. On the other
hand, we have the following. Let P = coll(w, < k) be the forcing for collapsing
all ordinals less than x to be countable. Recall P consists of all finitely supported
functions f with domain a subset of w x k, and such that f(n,8) < g for all
n € w and B < k. If G is generic for P, we regard G as a sequence G = {gq o<k,
where go: w — a. For v < &, we let G be those f € G with domain contained
in w x . We regard G, as the initial segment {(go)a<y of G. G, is generic for
P, = coll(w, < 7).

Lemma 3.10. Assume k is an inaccessible cardinal. Let G be P = colllw, < k)
generic over V. Then in V[G] we have Yz (wlL[I]

perfect set property for X3 in V[G].

< wy), and thus we have the

Proof. Let G = {ga)a<x be generic over V for P. Since k is regular, P is s-c.c.,
and so forcing with P does not collapse k (but does collapse every o < k to be
countable). So, (w)VI¢l = k.

Let « be a real in V[G]. Since  is regular and P is k-c.c., the usual nice-
name argument shows that x € V[G,] for some v < . It is enough to show that
(w1)VI6] < w,. Since |P,| = |y|, forcing with P, preserves all cardinals greater
than . Since £ is a limit cardinal, it follows that (w;)V[%] <k = (wp)VIC]. O

Thus we can improve corollary 3.9 to an equiconsistency result:

Corollary 3.11. CON(ZFC + perfect set property(II})) & CON(ZFC + 3 an in-
accessible cardinal).

Remark 3.12. In Solovay’s model above obtained by forcing with P = coll(w, < k)
with  inaccessible, we actually have that all ordinal definable sets of reals in V[G]
have the perfect set property, and that in the L(R) of this model, every set of reals
has the perfect set property. Thus, ZF + (the full perfect set property) still only
has the consistency strength of an inaccessible cardinal.

The perfect set property for II} implies Va (wlL[x] < wi), and this in turn was
enough to get the perfect set property for 35. However, this is easy to show directly
as the following exercise shows.

Exercise 51. Show that if every H} set has the perfect set property, then every
>} set has the perfect set property. [hint: If A is an uncountable X1 set, write
A(z) « 3y B(zx,y) where B € II. Let B’ uniformize B. Use the perfect set
property for B’.]
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4. MEASURE AND CATEGORY

We consider the measure theoretic and topological notions of regularity of sets,
namely the notions of measurability and the Baire property. Unlike the perfect set
property, the situation now is symmetrical between a pointclass and its dual. We
recall first the basic notions.

First consider the case of measure. By a measure on a set X we mean a countably
additive function p: M — R* =R U {400}, where M € P(X) is a o-algebra. By
countably additive we mean that if {4, },ec. are pairwise disjoint sets in M, then
w(U,, An) = 2, 1(An). If X is a topological space and M is the collection of Borel
subsets of X, then we call u a Borel measure. If u(X) = 1, we call p a probability
measure. We say pi is o-finite if we can write X = | J,, X, where p(X,,) < oo for each
n. There is little difference in the arguments for o-finite measures and probability
measures, so we frequently just consider the case of a probability measure.

Ezercise 52. Let u be a Borel probability measure on a metric space X. Show that
1 is regular, that is, show that for any Borel set B € X and any € > 0, that there
is an open set U and a closed set F' with ' € B € U such that u(U) — u(F) < e.
[hint: Prove this by induction on the Borel rank of B. Use the fact that every open
set in a metric space is the increasing countable union of closed sets.]

If v is a Borel probability (or o-finite) measure on a metric space X, then we
extend p from the Borel sets to a larger o-algebra, call the measurable sets, as
follows. First, we define the null sets to be those sets Z such that Z < A for
some Borel set A with p(A) = 0. Clearly the null sets for a o-ideal (i.e., they are
closed under subsets and countable unions). We then define a set A € X to be
measurable if there is a Borel set B such that AAB = Z is null. The collection
M of p-measurable sets is easily seen to be a g-algebra containing the Borel sets.
Moreover, the measure p naturally extends from the o-algebra of Borel sets to the
the o-algebra of measurable sets. Namely, if A € M and say AAB = Z is null, set
w(A) = p(B). This is easily well-defined.

Exercise 53. Let p be a Borel probability measure on a metric space X. Show
that the extension of u to M is also regular, that is, for every A € M and any
€ > 0, that there is an open set U and a closed set F' with F' € B € U such that
n(U) = p(F) <e.

Ezxercise 54. Let p be a Borel probability measure on a metric space X. Show that

A € X is p-measurable iff for every € > 0 there is an open set U and a closed set
F with F € B € U such that u(U) — u(F) <e.

We say a set A in a metric space X is universally measurable if it is measurable
with respect to every Borel probability measure on X (equivalently, with respect
to every o-finite Borel measure).

We recall the following fact. Recall for a measure p on a set X, that a point x € X
is said to be an atom if u({z}) > 0. u is atomless if there are no atoms. Clearly
there can be only countably many atoms. It follows that if x4 is a Borel probability
measure on the Polish space X then p can be written as = mu = apy + Sue where
a+ 8 =1, uy is a discrete probability measure (i.e., u1 concentrates on a countable
set), and pe is an atomless Borel probability measure.

Theorem 4.1. Any two atomless Borel probability mesures on Polish spaces are
Borel isomorphic.
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Proof. Let p be a Borel probability measure on the Polish space X. It suffices
to show that p is Borel isomorphic to Lebesgue measure on [0,1]. Clearly X is
uncountable as p is atomless. Since any two Polish spaces are Borel isomorphic, we
may assume that X = [0,1]. Define f: [0,1] — [0, 1] by f(z) = u([0,z]). Since u
is atomless it follows easily that f(0) = 0, f(1) = 1, and f is continuous. Also, f
in monotonically increasing. We claim that f(u) is Lebesgue measure A on [0, 1].
To see this, consider f(u)([a,b]) = u(f([a,b]) = u([c,d]) where f(c) = a and
F(d) = b. So, u([0,]) = a and u([0,d]) = b. But then p([e.d]) = p((c,d]) =
w([0,d]) — p([0,¢]) = f(d) = f(c) = b—a = A([a,b]). Since f(u) and A agree on
all basic open sets, it follows that f(\) and p agree on all Borel sets in [0, 1]. The
remaining problem is that f need not be one-to-one.

Let {I,}ne. be a maximal family of pairwise disjoint open intervals in [0, 1] on
which f is constant (such a family is clearly countable). Using countably additivity
we easily have that p(Z,) = 0 for all n (each I, is a countable union of intervals [c, d]
such that f is constant on [¢,d]. Then p([c,d]) = pu((c,d]) = p([0,d]) — ([0, c]) =
f(d) — f(e) = 0). Since p is atomless, we also have u(I,) = 0. Let C be the
Cantor set in [0,1], so A(C) = 0. Let F = f~1(C). Since A(C) = 0, u(F) = 0.
Let E=F ulJ, In, so u(E) = 0. Note that if z,y € [0,1] and f(x) = f(y) then
x,y € E. This is because f is constant on (z,y), and so (z,y) € I, for some n.
Hence, x,y € I,,. In particular, f in one-to-one on [0,1]—E. Also, f maps [0,1]—F
in a continuous one-to-one way to a Borel set B disjoint from F. In fact [0,1] — B
is C'u D where D is countable (the points in D are of the form f(z) where z is an
endpoint of an interval I,,). Since [0,1] — B and E both measure 0 (with respect
to A, p respectively), it follows that f is a measure preserving bijection between
([0,1— E,u) and (B, A). Finally, take a Borel bijection g between E and C. Then
the union of f restricted to [0,1] — E and g restricted to E is a measure preserving
Borel bijection between ([0, 1], ) and ([0, 1], A). O

If 1 is a Borel probability measure on the metric space X, we let Z,,, = Z,,,()
denote the o-ideal of p-null sets.
We generalize these concepts to an arbitrary ideal on a Polish space.

Definition 4.2. If 7 is a countably additive ideal on a Polish space X, we say a
set A € X is Z-measurable if there is a Borel set B € X such that AAB e 7.

The Z-measurable sets form a o-algebra containg the Borel sets in the Polish
space X.

Definition 4.3. Anideal Z on a set X is c.c.c. if there does not exist an uncountable
collection {Ag}a<w, of Z-measurable, Z-positive sets (i.e., each A, ¢ Z) such that
Aq N Ag € T whenever o # 3.

Lemma 4.4. For any Borel probability (or o-finite) measure on a Polish space X,
the ideal Z,,, of p-null sets is countably closed and c.c.c.

Proof. We have already note Z,, is countably closed, as p is countably additive.
To see that Z,, is c.c.c., suppose {Aq}a<w, 1S a sequence of p-measurable sets such
that p(Aq) > 0 and p(Ay N Ag) =0 for all o # 5. We assume p is a probability
measure, the o-finite case easily following from that. Thinning out the sequence,
we may assume that for some n € N* that u(Ay) > L for all a. It folows that
w(AguA,u---UAE) > %, which is a contradiction for k£ > n (since p is a probability
measure). O
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FEzercise 55. Show how to prove lemma 4.4 in the case where p is just assumed to
be o-finite.

We consider now the topological notion of category. Recall a set A is a topological
space X is aid to be nowhere dense if int(E) = @. This is equivalent to saying that
for every open set U, there is an open set V € U with V n A = @. Recall that a
set A in a topological space X is said to be meager if A < |, F,, where each F),
is closed and nowhere dense. Equivalently, A = ( J,, E,, where each E,, is nowhere
dense (since the closure of a nowhere dense set is nowhere dense). We say a set A
is comeager if X — A is meager.

Clearly a subset of a measger set is meager, and a countable union of meager sets
is meager, so the meager sets form a o-ideal. Let Z. denote the o-ideal of meager
sets. Recall X is said to be a Baire space is every open set is non-meager (that is,
every comeager set is dense).

The Baire category theorem says that every complete metric space, and hence
every Polisg space, is a Baire space. In particular, in every Polish space the ideal
T, is proper.

The analog of measurability in the topological context is the Baire property.

Definition 4.5. A set A in a toplogical space X has the Baire property if there is
an open set U such that AAU is meager.

In analogy with measure, it perhaps would have seemed more natural in defini-
tion 4.5 to require only that there be a Borel set B such that AAB € Z.. However,
the stronger conclusion of definition 4.5 follows from this as the next standard
lemma shows.

Lemma 4.6. Every Borel set in a topological space has the Baire property.

Proof. If A is open, let U = A. If A is closed, let U = int(A). Note that AAU =
A —U € T, since for any closed set F in a topological space, F' — int(F') is (closed)
nowhere dense. If A = {J,, A, by induction let U,, be open such that A4, AU, € Z..
Let U = |, Un. Then AAU < |J,(AnAU,) € Z. since Z. is a o-ideal. Suppose
finally that A has the Baire property, and we show X — A does as well. Let U be
open such that AAU = M € Z,. Then (X — A)A(X —U) = M € Z. also. Let
V=it(X —U), so (X —U)AV €Z.. Thus, (X —AAV (X -AAX -U) v
(X —A)AVeT. O

As in the measure case, the meager ideal is countable closed and c.c.c.

Lemma 4.7. Let X be Polish. Then I, is countably closed and c.c.c. That is, there
does not exist an uncountable sequence {Ay}a<w, 0f sets with the Baire property
and each A, ¢ Z., and such that A, n Ag € I, for all a # 5.

Proof. Let U, be open such that A,AU, € Z.. Since X is a Baire space and
Ag ¢ Lo, Uy # @. For a # 3, we must have U, n Ug = @, since A, N Ag € I,
[note that (Uy N Ug)A(Aq N Ag) € I, and so U, n Ug € Z,.. Since X is a Baire
space, this implies U, n Us = @.] However, in a separable space we cannot have
an uncountable sequence of pairwise disjoint open sets. (I

The analog of Fubini’s theorem in the category context is the Kuratowski-Ulam
theorem. The next lemma is the key point. Recall that if D € X x Y, then D,
denotes the section D, = {y: (z,y) € D}.
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Lemma 4.8. Let X, Y be metric spaces with Y second countable. Let D € X XY be
dense open (in the product topology). Then {x: D, is open dense inY'} is comeager
n X.

Proof. For every x € X, D, is open in Y. We show that for comeager many = € X
that D, is dense in Y. Let {V,,}necw be a base for Y. Let U, be the union of all
open sets U € X such that for some open V € V,, we have U x V € D. Then U is
dense in X. To see this, let W € X be open. Then (W x V,,) n D # & since D is
dense, and since D is also open we have that W’ x V € D for some open W/ € W
and open V € V,,. Thus, W' € U, showing U is dense.

Since each U, is dense open, A = (), U, is comeager in X. If z € A, then
D, is dense since for any basic open set V,,, there is an open V € V,, such that
{z} x V. € D, that is, V € D,. O

A useful notation is to write “V%2” to abbreviate “for comeager many z € X.”
We also write “I%2” for “for non-meager many x € X.” If the space is clear from
the context we just write “V*x.”

We now prove the Kuratowski-Ulam theorem.

Theorem 4.9. Let X, Y be Polish spaces. If C € X x Y is comeager, then
{x € X: Cy is comeager in Y} is comeager in X. If C € X x Y has the Baire
property and {x € X : Cy, is comeager in Y} is comeager in X, then C is comeager
in X xY.

Proof. First assume C' € X x Y is comeager in X x Y. Say C 2 (), D,, where
D,, € X xY is open dense. From lemma 4.8, each A,, = {x € X: D,, is open dense
in Y} is comeager in X. Thus, A = (), 4, is comeager in X. For z € A, each
(D). is open dense in Y, and so C, is comeager in Y.

Suppose now C' € X x Y has the Baire property and Yz Viy (z,y) € C. If
C' is not comeager, then D = (X x Y) — C is nonmeager. Let W be an open set
such that DAW € Z. So, W # @. Shrinking W, we may assume W = U x V|,
and so D is comeager on U x V. Then E = (Dn (U xV))u (X xY -U xV)
is comeager in X x Y. By the first case, we have Vi Viy (z,y) € E. It follows
that Vi Viy [(z,y) € C A (2,y) € E]. Since X is a Baire space and U is open, fix
x € U such that Viy [(z,y) € C A (z,y) € E]. Since Y is a Baire space and V is
open, there is a y € Y such that (z,y) € C n E, a contradiction as C, E are disjoint
onU x V. O

To summarize, in both the measure and category contexts, we have a countable
additive, c.c.c. ideal Z, and the “measurable” sets are those which are equal to a
Borel set modulo a set in Z (though in the category case we can improve “Borel”
to “open”).

Essentially by definition the Borel sets in X are measurable and have the Baire
property (when we say measurable we are referring to some Borel probability or
o-finite measure on the Polish space X). We consider the question of which sets are
measurable. Most of this discussion is symmetric between measure and category
(though not everything is), and the only thing relevant is that the corresponding
ideal Z is countably additive and c.c.c. We abstract this in the following definition.

Lemma 4.10. LetZ be a countably additive, c.c.c. ideal on a Polish space X. Then
for every A € X there is a Borel set B with A € B and such that for every Borel
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set C € B— A, C eZI. Likewise, there is an Z-measurable set N with A € N and
such that for every Z-measurable set C € N — A, C e L.

Proof. Let A € X. Let B be a collection of Borel subsets of X which is maximal
subject to satisfying:
(1) Forevery Be B, BnA=o and B¢ T.
(2) For every By # By in B, By n Bs = @.
Since Z is c.c.c., B is countable. Let C = uB, so C' is Borel, and if we let
B = X — C, then B is Borel and contains A. By maximality of B, every Borel set
contained in B — A must be in Z. The proof for Z-measurability is the same. [

Theorem 4.11. Let T be a countably additive, c.c.c. ideal on the Polish space X.
Suppose A = A({Ms}) where each My is T-measurable. Then A is T-measurable.

Proof. For each s € w=%| recall As denotes the result of the Suslin operation starting
from M, that is, As = {z: 3y (yllh(s) = s A Vn z € My,}. Thus, A = Ay, and
A, € M,. For each s, let Ny, 2 A, be Z-measurable as in lemma 4.10. So,
As; € Ny ©€ Mg, N, is Z-measurable, and every Z-measurable set contained in
N, —A;isin 7.

Let Es = Ny — ;e Ns~i- Clearly E is T-measurable and E; & N,. Also,
Esn Ay = @ since Ay = U;e, As~i» and Ag~; © Ng~;. Thus, Es € Z. Let
E =|J, Es, so E € T as well. We claim that Ny — Az € E and so is in Z, which
shows that A = Ag is Z-measurable. Toward a contradiction, suppose x € Ny — Ag,
and = ¢ E. Since x ¢ Egy, there is an iy € w such that € N,,. Since = ¢ Ay, we
must have x ¢ A;,. So, x € N;, — A;,. Continuing, we define a y € w* such that for
all n, € Nypp, — Ay Since Ny, © My 1y, this shows that « € A({M,}). That is,
r € A= Ag, a contradiction. O

Corollary 4.12. FEwvery E% or H% set in a Polish space is universally measurable
and has the Baire property.

We earlier alluded to the following definition.

Definition 4.13. The C sets in a Polish space X are the smallest o-algebra closed
under the operation A.

Corollary 4.14. Every C set in a Polish space X is universally measurable and
has the Baire property.

Ezercise 56. Show that every C set in a Polish space is Aj. [hint: Show that if each
B, € A} then A = A({B,}) € A}. A direct computation will show that A € 33.
To see that X — A is E%, note that x € X — A iff T, is wellfounded, where T, is
the tree on w given by T, = {s € w<“: x € Bs}. Then, x e X — Aiff Jye w* [(y €
WF) AVn,m e w (y({n,m)) =1 <> x € Brpy AT € Brgmy A (n) extends m(m))]
where 7: w — w=¥ is a bijection.]

In general, E% sets in a product space X X Y cannot be uniformized by E% sets,
even when Y = w (otherwise E% would have the reduction property, hence E%
wouls not have the separation property, which it however does). However, the next
result shows that X7 sets in a product can be uniformized by sets in the o-algebra
generated by the E%, sets, and in fact by fairly simple sets in this collection. In
particular, 2% sets can be uniformized by sets which, when viewed as functions,
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are measurable also Baire measurable. The next result is due to Jankov and Von
Neumann.

Theorem 4.15. Let A S X x Y be X1. Then there is an A’ € A uniformizing A
with A€ N, U, (Z1 A ).

Proof. Since 2%, H% sets are preserved under Borel isomorphisms, and isomor-
phisms respect the set operations, it is enough to consider the case X =Y = w®.

So, let A € w* xw* be T}. Let T be a tree on w x w x w such that A(z,y) « Ty,
is illfounded. Let B = dom(A) = {z: y A(x,y)}. So, B(x) < T is illfounded.
For x € B, let (¢y(x),¢1(x)) be the leftmost branch of T, (we implicitly identify
w X w with w). Let A'(z,y) < (y = £o(x)). Clearly A’ is a uniformization of A. We
compute the complexity of A’:

He,y) o Vn e wite o [(yhn,1) = (folx) tn, fa(x) )]
oVnew Itew” [Iz,w e w? ((z,w) extends (yIn,t) A (x,z,w) € [T])
AVt ew” ((s,t) < (yIn,t) = —3z,w e w” ((2,w) extends
(5,8) A (2 2,w) € [T])].

The expression in square brackets defines an intersection of a X7 and a II} set. [

Suppose A € X x Y is 1. Let B = dom(A), and let A’ € A be the uniformiza-
tion produced in theorem 4.15. Let f: B — w* be the corresponding uniformizing
function, that is, A’(x, f(z)) for all z € B. Then as a function from X to Y, f
is T-measurable, where T' = | J_ (2] A II7). To see this, note that f(z)|n = s iff
3t € w™ [(s,t) = (Lo(x)[n,l1(z)[n)], and then follow the above computation. It
follows that f is a measurable function, and also a Baire neasurable function.

5. LIGHTFACE POINTCLASSES

Up to this point we been discussing only the theory of “boldface poinclasses.”
Recall a (boldface) pointclass T' is a collection of subsets of Polish spaces which
is closed under continuous preimages. In the boldface theory, the simplest sets
are open and closed sets, that is, the 2(1) and 1'[? sets, and the simplest functions
are the continuous functions. In the lightface theory we refine these notions. The
lightface class XY, for example, will be the sets obtined by taking not arbitrary
unions of basis open sets but just “effective” or simply computable unions (the
precise definition will follow). In fact, for each real x € w®, we will define the
lightface class Y{(x), which will denote those sets which are unions of basic open
sets which can be computed from x. Since every union of basic open sets can be
coded by some real, it will follow that 29 = |J,. . 39(x). Similarly, the basic
notion of continuous is relaced by the effective notion of recursive, or computable.

The lightface theory has its origins in recursion theory, and many of the main
notions draw their motivation from that subject. It is possible to develop the main
technical results we need without recourse to recursion theory (and in fact we do
this this, see theorems 7?7, ??), but nevertheless an understanding of the underlying
recursion theory is helpful. We begin with a quick review of some basic concepts
in recursion theroy.

A total function from w to w is a function whose domaun is w. A partial function
is one whose domain is a subset of w. If f is a partial function we say f(n) is
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defined, or write f(n) |, if n € dom(f), and otherwise say f(n) is not defined, or
write f(n) 1.

A total function f: w — w is recursive, intuitively, if there is an algorithm which
computes f. That is, the algorithm when started with input n terminates after
a finite number of steps with the output f(n). Now, an arbitrary algoritm when
started with a given input n does not have to terminate at all (e.g., it can go ino an
infinite loop). Thus, a general algorithm correspons to a partial recursive function.
There are several ways to make these intuitive notions precise. One way is to
give a precise definition of what a “machine computation” is, that is, formulate a
mathematically rigorous notion of machine computation. Of course, there are many
equivalent ways of doing this. For example, one could takr a formal programming
language such as C or Fortran, and use this as the basis for the definition. These
languages are designed to be flexible enough to be actually practical, and so lead to
very cumbersome formal definitions. The attempt to develop the simnplest possible
model of computation (or “programmin language”) leads to the notion of a Turing
machine.

Definition 5.1. A Turing machine is a finite set of quadruples {n, s,a, m) where
n,m € w, a € {0,1}, and a is one of the symbols {0, 1, L, R}.

A Turing machine executes as follows. We picture a tape which is infinite in
both directions, and at each place on the tape there may be either a 0 or a 1. The
Turing machine initially starts at position 0 of the tape. The machine is viewed
as having finitely many states that it can be in, each state being identified with an
integer. Each quadruple (n, s, a, m) is interpreted as the following instruction: if
the machin is currently in state n and is scanning symbol s at the current position,
then take action a and go into state m. If @ = 0 or 1, then the action is to print a
o or a 1 at the current position of the tape. If @ = L or R, the action is to move
on position to the left or right respectively. To have the machine be given input
n, we start the machine (at position 0) on a tape which is 0 everywhere except for
a string of n + 1 ones in positions 0 to n — 1. It is convenient to designate one of
the states as a distinguished “halting state,” and declare that everything ceases if
and when this state is reached. If it is, then the number of ones on the tape at
that moment is declaredf to be the output value (one can require that these ones
also be in consecutive positions starting at position 0). We can also view Turing
machines as computing k-ary functions with an appropriate input convention, say
to compute the value on input (aq, ..., ar) we start with the tape containg a string
of a; + 1 ones, then a 0, then as + 1 ones, etc.

It is tedious but straightforward to show that the usual programming constructs
can be done at the Turing machine level, and that any operation which can done
by a C or Fortran command, for example, can be done by a Turing machine. Then
next exercise gives some such simple operations.

Ezercise 57. Show that functions f(n) =n+1, f(n,m) =n+m, f(n,m)=n-m
are Turing computable.

Ezxercise 58. Show that if f: w — w is computed by the Turing machine 7', then
there is a Turing machine 7" which also computes f and such that 7" never moves
to a negative position (i.e., to the left of the starting position). [hint: simulate
a bi-infinite tape with a subset of the positive positions on the tape, for example
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using positions of the form 4k + 10. Show that any action of T can be simulated
by an action of 7" which stays on the non-negative portion of the tape.]

Another approach is to give an abstract definition of the class of recursive (total)
functions as follows.

Definition 5.2. The collection of (total) recursive functions (of any arity) is the
smallest collection of functions (each of which is a function from w* to w for some
k) satisfying the following:

(1) fn) = n+1, f(n,m) = n+m, f(n,m) = n-m are recursive. Any
constant function is recursive. Any projection function f(aq,...,ax) = a;
is recursive.

(2) Any composition of recursive functions is recursive. More precisely, if f :
wk — wisrecursive and g1, ..., gr: w' — w are recursive, then h(as,...,a;) =
flgi(ar, ... ai),...,gx(ar,...,a;)) is recursive.

(3) The collection is closed under primitive recursion. That is, suppose g: w* —
w is recursive and h: wkt? — w is recursive, Define h: wb*! — w as follows:

ce, Qg ift=0
f(t,ah...,ak) _ g(al, 7ak) 1
h(t,aq,...,ag, f(t—1,a1,...,a;)) ift>0

(4) The collection is closed under total minimalization. That is, suppose g: w**! —

w is recursive and assume that for all (ai,...,ax) there is a ¢ € w such that
g(d,t) = 0. Define f(a1,...,ax) = pt (g(d,t) = 0), where ut means “the
least t.”

We also define a relation R € wF to be recursive iff its characteristic function
XR is a recursive function.

It is easy to see that this is a welldefined class of functions (in case (4) this is
because of the asumption on g). A moments reflection will convince one that any
recursive function by definition 5.2 is machine computable. The other direction is
also true, but perhaps not quite as obvious. The following exercises develop some
of the basic properties of recursive functions and relations.

Ezercise 59. Show that the functions

1 ifz>0 . a—b ifa-b=0
sgn(z) = . anda=b= )
0 ifx=0 0 ifa—b<0

are recursive. [hint: both can be defined by simple primitive recursions.]
FEzercise 60. Show that the relations = and < are recursive.

Ezercise 61. Show that exponentiation is recursive, that is, the function defined by
f(n,m) =n" (=0if n = 0) is recursive.

Ezercise 62. Show that if Ry, ..., Ry are recursive relations, then so is any Boolean
combination of the R;.

Exercise 63. Show that a function f: w* — w is recursive iff its graph Gy c whtt

is a recursive relation.

Ezercise 64. Show that if R C w” is recursive and f1,. .., fi are reursive functions,
then S(@) « R(f1(d),..., fr(d)) is recursive.
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Ezercise 65. Show that a function defined by cases is recursive. That is, if Ry, ..., Rg
are recursive relations and fi,..., fr are recursive functions, then the function

fi(@) if Ri(a)
£o(@)  if Ro(d@
f(@) = (@) | (a)
fr(@) if Re(a)

is recursive.

Ezercise 66. Show that if o(x1,...,x) is a quantifier free formula in the language
of number theory (i.e., in the first order language with symbols +,-, E,S,0, =, <)
then R(aq,...ar) < N = @(a,...,ax) is recursive (here E is interpreted as ex-

ponentiation, s the successor function, and the other symbols have their usual
aenings). [hint: Prove this by induction on the formula ¢. Collect the previous
exercises. |

Ezercise 67. Show that the recursive relations are closed under bounded quantifi-
cation. That is, if R(d@,b,n) is recursive then so is S(d@,b) < In < b R(d,b,n).
Likewise for bounded universal quantification. Similarly, show that if R is a recur-
sive relation and f(@,b) = un < b (R(d,b,n)) (if one exists and = 0 otherwise),
then f is recursive. [hint: Show more generally that if f(d,b,n) is a recursive
function, then so is g(d,b) = >, <, f(@,b,n). Use a primitive recursion to do this.]

Say a formula ¢ in the language of number theory is A§ if it is the smallest class
of forulas containing the quantifier free formulas and closed under bounded number
quantification.

Exercise 68. Show that if ¢ is a A formula then the relation defined by ¢ is
primitive recursive. [hint: proceed inductively on ¢ as in exercise 67, and note that
the minimalization operator is never needed.]

FEzercise 69. Show that the relations Prime(n) < (n is prime) and Seq(n) <
(n codes a sequence) are recursive, in fact their chacteristic functions are primi-
tive recursive. Show that f(k) = (the k" prime) is primitive recursive. Show that
the functions f(n) = up = n (Prime(p)), lh(n) = (the length of the sequence coded
by n if n codes a sequence, and 0 otherwise). are primitive recursive. Show that the
deocding function (n); = ay if n codes a sequence n = {ay, ..., a;y of length I > k,
and = 0 otherwise, is also primitive recursive. [hint: the Prime and Seq relations
are defined by AJ formulas. For the next prime function, use the fact that there is
a prime between n and n! + 1 (actually by Bertrand’s theorem between n and 2n).
Use this and a primitive recursion for the £*" prime function.]

Theorem 5.3. The class of recursive functions coincides with the class of (total)
Turing computable functions.

proof (sketch). The proof that every recursive function is Turing computable is
tedious but relatively straightforward, using a few Turing machine “programming
tricks” such as exercise 58. Suppose then that f: w — w is Turing computable
(the higher arity case is similar). Recall our coding of finite sequences of integers:
lag,ay,...,ay = 2%+l . gaa+l.. -pZ’“H, where p; denotes the i*" prime (py = 2).
At any stage of a computation, the values on the tape, the position of the machine,
and the current state of the machine can all be coded by an integer (note that



58

there are only finitely many nonzero values on the tape at any given time). For
eaxmple, this information could all be coded by the integer (s, p,b, ¢, t) where s is
an integer giving the current state of the machine, p gives the current position, —b
is the leftmost 1, ¢ is the rightmost 1, and ¢ is a sequence of length b 4+ ¢ + 1 which
codes the tape values from positions —b to ¢. We will call such an integer a stage
code. An entire compuation of the machine which starts with input & and ends
in a halting state with output value [ can then be coded by a finite sequence of
these stage codes. The relation Stage(n) <> n is a stage code) is clearly primitive
recursive. The relation

Step(T,n,m) < T codes a Turing machine A Stage(n) A Stage(m)A

(m is obtained from n by a valid step of the Turing machine)

is primitive recursive, using the above exercises (all quantifiers used in computing
this relation are bounded). It follows that the relation

Comp(T,n, k,l) < T codes a Turing machine A Seq(n) A Vi < lh(n) (Stage(n);) A
((n)o codes an input stage with input value k) A
(Mn(n codes a halting stage with output value [) A
Vi < 1h(n) (n;.; is obtained from n; by a valid step of the

Turing machine)

is also primitive recursive.

Finally, the function fr computed by the Turing machine can be expressed by
fr(k) = (h(k)); where h(k) = pm Comp(T,(m)o, k,(m);). Note the essential
use of the minimalization operator in the definition of h (though Comp is primitive
recursive). This is the Kleene normal form for a recursive function. In particular, it
shows that that every recursive function can be defined with at most one application
of the minimalization operator.

Theorem 5.3 gives a little more information. It shows that there is a universal
Turing machine. For every e € w, let {e} denote the partial function from w — w
computed by e, if e codes a Turing machine, and otherwise {e} is the 0 function.
That is, there is a Turing machine U computing a partial binary function, such
that for all e,n € w,

Ule,n) {e}(n) if e codes a Turing machine A {e}(n) |

e,n) =

’ undefined  otherwise

Namely, U(e,n) = (h(e,n))1, whete h(e,n) = um Comp(e, (m)o,n, (m)). O

FEzercise 70 (Halting Problem). Show that the halting function

1 ifU(e,n) |

Hie,n) = {0 it Ue,n) 1

with U(e, n) the partial recursive function above, is not recursive. In particular, the
partial recursive function U is not total. [hint: Suppose H were recursive. Define



59

f:w — w by a diagonal argument:

_JUMm,n)+1 ifH(n,n)=1
J(n) = {0 it H(n,n) =0

Since H is recursive, this definition shows that f is also recursive. However, by
construction f cannot be equal to any recursive function, say {e}, since f(e) #

{e}(e)]

We next give Kleene’s s-m-n theorem. We will shortly show, without using
recursion theory, that every pointclass that has a universal set has one for which
the s-m-n property holds, and this will suffice for applications to descriptive set
theory. However, the original fact that this holds for recursive functions is still of
interest.

Theorem 5.4 (s-m-n theorem). For every integers m < n, there is a total recursive
function s: w™ ! — w such that for all partial recursive functions {e} we have

{s(e,a1,...;am) @ms1s---an) ={e} a1, ..., am,Gmt1,---,an).
Proof. Let T'(b,aq,...,an) be the Turing machine which on inputs (am41,...,an)
shifts those to the right on the tape and adds aq,...,a,, before them so as to
end with the tape containing the standard input configuration for (ay,...,a,), and
such that the least state of the machine used is b. It is straightforward to check
that T is recursive. Let s(e,a1,...,a,,) be the Turing machine which computes
{e}oT(e,a1,...,an), which is essentually the union of the machines T'(e, a1, . .., am)
and the Turing machine coded by e. Since (e,aq,...,am,) — T(e,a1,...,an) is
recursive, 8o is (e, a1, ..., am) — s(e,a1,...,amn). O

We next introduce the arithmetical hierarchy for sets of integers (or subsets of
wk for some k).

Definition 5.5. A subset of w* is A{ iff it is recursive. A set A € wF is said
to be X} (also called semi-recursive or recursively enumerable) if it of the form
A(@) <> 3b R(@,b), where R is recursive. A set A is IT{ (or co-r.e.) if w* — A is AY.
In general for n > 1 we define 0 = 3*T19 |, 1% = 39 and A% = 30 ~ 119,

n—1»
The next exercise checks that AY = X A T1{ as well.

Ezercise T1. Show that a set A € w (or w*) is recursive iff both A and w — A
are recursively enumerable. [hint: If A is recursive then so is B = w — A, and
so both are recursively enumerable. Suppose that A and B are both r.e. Say
A(n) & Im R(n,m) and B(n) < Im S(n,m) where R, S are recursive. Let f(n) =
pum (R(n,m) v S(n,m)). Thus, f is (total) recursive and A(n) < R(n, f(n)).]

The next two exercises give alternate characterizations of X9 sets.

Ezercise 72. Show that A is XV iff A is the range of a total recursive function.
[hint: If f is total recursive then n € ran(f) < Im (f(m) = n). Since the graph
of f is recursive, this shows ran(f) is 9. Suppose then that A € X9, say A(n) <
Im R(n,m) where R is recursive. Let f(a) = (a)o if R((a)o, (a)1), and otherwise
f(a) = ng, where ng is the least element of A.]

Exercise 73. Show that A is ¥ iff A = dom(f) for some partial recursive function
f. [hint: Ta A € X9, say A(n) & Im R(n,m), then let f(n) = pm R(n,m) (and
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f(n) is undefined if Ym —R(n,m)). Then f is partial recursive and A = dom(f).
Suppose next that A = dom(f) for some partial recursive f. Then A(n) < Im (m
codes a computation starting with input n which terminates). The relation inside
the quantifier is recursive.|

Remark 5.6. The theory of recursive functions can be developed entirely from def-
inition 5.2, that is, without appealing to the notion of Turing machine or machine
computability. One must be a little careful this way about some points related
to partial functions. For example, it is not true that the class of partial recursive
functions is the smallest class as defined in definition 5.2 where we allow all func-
tions to be partial (with the natural conventions on when a composition, primitive
recursion, etc. are defined); see the following exercise. One could define the partial
recursive functions to be those of the form f(n) = h(um (g(n,m) = 0)), where f,
g are primitive recursive functions. One has to redo the proof of the normal form
theorem to show that this includes all the total recursive functions.

Ezercise 74. Show that there is a partial recursive f on w x w such that
Vn dm (f(nvm) ! /\f(n,m) = 0)
and the (total) function g defined by

g(n) = pm (f(n,m) L Af(n,m)=0)

is not recursive. [hint: define f(n,1) = 0, and f(n,0) = {n}(n) (so f(n,0) is defined
iff {n}(n) |). If g were recursive, then so would be {n: g(n) = 0} = {n: {n}(n) |}.
This set is not recursive, though, by exercise 70.]

The next lemma summarizes the closure properties of these classes. We write
30 tw* for the ¥0 subsets of w®. We will shortly extend these arithmetical classes
to more general Polish spaces.

Lemma 5.7. X0 w* is closed under A, v and 3¢. 119 is closed under A, v and V*.
AY s closed under A, v. All of these classes are closed under recursive substitution,
that is, preimages under recursive functions. For eample if A € w* is X0, then so

is Blay, ..., an) < A(f1(@), ..., fn(@)).

Proof. Suppose A € X{w* and B(a@) < A(f1(@),..., fr(@)) where the f; are recur-
sive. Write A(d) <> 3m R(d@, m) where R is recursive. Then

The relation insider the quantifier is still recursive, so B € £Y. Tt follows immedi-
ately that all the X0 19 and A are closed under recursive substitution. To show
closure of X{ under 3¢, let A(a@, m) be XY, say A(veca,m) < In R(@,m,n), where
R is recusive. Then B(d@) « Im A(d, m) < ImIn R(d,m,n) <« Ip R(d, (p)o, (p)1),
which shows B € 9. The same argument shows X0 is closed under 3, and so 19
is closed under V*. The other cases are similar. g

We construct universal sets for all of the arithmetical classes X0, TI9 in wk.

Define UF < wF+! by U*(e,ay,...,a;) < {e}(ai,...,ax) |. Since the X9 sets are
the domains of the partial recursive functions, it follows that U is universal for
Y9 1wk, Applying the operations — and 3* immediately gives universal sets for all
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of the classes X0 [w*, TI2 fw¥. Moreover, the s-m-n theorem for recursive functions
immediately gives a corresponding result for these universal sets. Namely,

U(e,aq,...,a,) © {e}(ar,...,a,) |
o {s(e,at, .. am)H@ma1y- - an) |
« Unim(s(evalv"'7am)7a’m+17"'7an)

where s: w™t! — w is the total recursive function from theorem 5.4. Since the

universal sets for the other classes are obtained from these by the operations, —,
3% it also follows immediately that the universal sets for all the X0, TI2 class have

the s-m-n property as well. We summarize this in the following lemma.

Lemma 5.8. For all of the lightface classes T' = X0 wF or T' = 19 [w¥, there are
universal sets UE € wh*tl for T'fw* such that the following holds. For all m < n

there are total recurive functions sp, n: w™tt W such that
n n—m
Ub(e, a1, Qm, Qmst, .-y Qn) < UL (Smon(e a1, .. am), Gmgt, -5 Qn),
forallay,...,a, €w.

We will give a different proof, avoiding recursion theory, of the existence of
universal sets admitting s-m-n functions in a general context.

One of the uses of the s-m-n functions is to be able to do operations effectively
on the codes for sets. For example, suppose I' is one of the arithmetical classes
2 or II2. then there is a total recursive function ¢: w x w — w such that for all
a,b € w, Uyapy = Uy 0 Uy (where U refers to the universal lg sets of lemma 5.8).
To see this, note that A(a,b,n) « U,(n) A Uy(n) is in T. Let e € w be such that
Ue((a,b,n) < A(a,b,n). By the s-m-n property, Uc(a,b,n) <> Usc qp)(n), 50 we
can take t(a,b) = s(e,a,b).

We next extend these lightface notion to more general Polish spaces.

Definition 5.9. A polish space (X, p) with a dense set D = {rg,r1,...} is said
to be recursively presented if the relations R(i,j, k,1) & p(r;,rj) < %, S(i,j, k) <
p(ri, ;) < % are recursive (we assume [ > 0).

When we discuss a recursively presented space (X, p), B, we will implicitly use
the corresponding basis B for X given by open sets of the form B,(r;,q), where
q € Q. More specifically, For n € w, let U;X € X be the basic open set

n

Uy = By(T(n)o> En;;),

so the UX form a basis B for X. We will just write U, when X is understood.
We will always implicitly use the recursive presentation for w with r; = ¢. If
(X1, p1,D1), (Xo, p2,ds) are recursive presentations for Polish spaces X, X5, then
(X1 x X5,p1 X p2, Dy x D) is a recursive presentation for X; x X, (with the
product topology) where p1 x p2((z1,22), (y1,y2)) = max{pi(z1,y1), p2(22, y2}. We
will implictly use this presentation when discussing products.

All of the usual Polish spaces such as w*, 2¥, R, C[0, 1] have recursive presen-
tations, and in fact their usual bases work. In particular, in the case of w® we
use 7; = 5,70 (0 is the constant 0 real), where s; is the i sequence in some out
(recursive) coding of sequences into integers. the corresponding basis B is just the
usual basis for the Baire space.



62

We now extend the lightface classes to a recursively presented space, starting
with 9.

Definition 5.10. Let (X, p), D be a recursively presented space with corresponding
basis B = {Uy}. Aset AC X is X0 if A =J{Un: S(n)} where S € w is Y.
We let IV 1 X = 01X, %0 =310 | forn > 1, and A2 X =301 X A TI9 1 X.

Thus, A € X is 3 if there is a recursive function f: w — w which enumerates
codes for basic open sets unioning to A. Note that in the case of the Baire space,
there is a simple recursive function t: w — w such that t(n) € Seq for all n and
B (T(n),> %) = N, where (s) = t(n). So the definition of A being in X in this
case is equivalent to saying that there is a recursive function which enumerates the
codes of sequences giving basic open sets which union to A.

Note that all £ sets are open, that is X9, and so every X9 or IT? set is X° or
Hg respectively. We call the AY subsets of X the recursive subsets, using the same
terminology as in the X = w case. Of course, if X is connected, like Rgq, then
there are no non-trivial AY subsets. The next exercise, on the other hand, shows
that this is a reasonable terminology in the case of X = w®.

Exercise 75. Show that A < 2¢ is A{ iff it is computable in the following sense:
there is a Turing machine T such that when started on a tape with the real x € w®
on it (i.e., the i*® position of the tape has value x(i)), then the machine will halt
with output value 1 if € A and will halt with output value 0 if x ¢ A. Show
also that every A  2* which is computable in this sense is A}. Show that the
same is true for subseteq of w® using a reasonable input convention for elements
of w¥. [hint: If A € 2¢ is AY, let f, g be total recursive functions such that
A=U{N¢my:new}l, B=2°—A=J{Nyw: n € w} (here we write N, for the
neighborhood Ny where {(s) = a). Let T be the machine which at even 2n computes
f(n) and then checks to see if x € Ny(,), and at odd steps 2n + 1 computes g(n)
and checks to see if n € Ny(,). If the machine first gets a positive check at an even
stage, it outpus 1, and if at an odd stage, outputs a 0.]

We now define the relativized lightface pointclasses. for each x € w* we define
the classes X0 (), 112 (z), and AY ().

Definition 5.11. A € X is X9 (z) (or 1% (), AY(z)) if there is a 32 set B € w* x X
such that A(y) < B(z,y) for all y € X. More generally, if I is any w-parametrized
pointclass, we define I'(z) in a similar manner.

The following lemma connects the lightface and boldface pointclasses.

Lemma 5.12. X9 = [ ¥9(z), and likewise for all of the lightface classes X9,

o, A, 21 I, AL,

TEWY

Proof. Tt suffices to prove the result for X9, the other cases following by applying
quantifiers or negations. Suppose X is recursively presented and A € X is E?
(i.e., open). Let A = U{N,: z(n) = 1}, for some = € 2¢. Define B(z,y) <
3 (2(i) = 1 Ay € N;). Easily B € ¥91w¥ x X [consider the recursive function
which enumerates all pairs ({(s), k) where s is a finite sequence endind in 1 and
k = lh(s). Then B = U{N; x By: (s,k) € ran(f)}.] Then A(y) « B(z,y), so
AeX{(z). O
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For functions between Polish spaces, in the boldface theory the basic notions are
continuity and, more generally, f being I'-measurable. The corresponding lightface
notions are f being recursive and f being I'-recursive.

Definition 5.13. Let I' be an w-parametrized pointclass, and X, Y recursively
presented Polish spaces. We say f: X — Y is I'-recursive if the relation R(z,n) <
f(@)eUY isin T}(X x w). We say f is recursive if it is ¥9-recursive.

Clearly if f is recursive then f is continuous. If f is continuous, then {(z,n): f(z) €
U,} is open, and so X9(z) for some x. Thus, f is ¥9(x)-recursive for some z.

Ezercise 76. Show that f: w* — w“ is recursive (that is, XV-recursive) iff f is
AY-recursive. [hint: Let S = {(x,s): f(x) € Ng}, so S € X0. Then (z,s) ¢ S iff
there is a ¢ L s such that f(z) € N;.]

FEzercise 77. Show that id f: X - Y and g: Y — Z are recursive, then so is g o f,
and likewise for X{(x).

The nest lemma extends lemma 5.7 and gives the basic closure propeties of the
lightface classes.

Lemma 5.14. For any recursively presented Polish space X we have the following.
YO1X is closed under A, v, 3%, and substitution by recursive functions (between
recursively presented Polish spaces). I 1 X is closed under A, v, V*, and recursive
substitutions. A%1X is closed under A, v, and recursive substitutions. ¥ is closed
under A, v, 3%, ¥¥, 3%7 and recursive substitutions. I} is closed under A, v,
3@, v, ¥ and recursive substitutions. Al is closed under A, v, 3, V¥, and
recursive substitutions. The same holds also for all of the corresponding relatixized
pointclasses.

Proof. Suppose A, B € X are X{. Say
A= By g5 SO B = B (e (13D T

where S, T € w are X9. Then A n B = | {B,(7(n),, gzg; ): R(n)} where

R(n) <> 3a 3b (S(a) AT() A (p(T(n)g> T(a)e) T 77 < 777)

n)1 b)y
A (P(r(n)es T0)e) + En;2 = Eb;z)'

R is a XY subset of w using here the definition of a recursive presentation. Unions
are easier: Au B = J{B,(r (”)1) R(n) v S(n)}, and R u S is 9. Suppose

0 ) (’n,)g

that B € x x w is ¥Y, and A( ) <> Im B(x,m). Say B = |J{B,(7(n),, gngz) X
{m}: S(n,m)} where S € £ (w x w). Then A = [J{B,(x (W1y. 7(n)} where

ne)o’ (n),
T(n) < 3m S(n,m), so T € 3. So, A € X{1X. To see XY is closed under
recursive substitution, suppose A € X is XY and f: (Z,d) — X is recursive. Let

B(z) & A(f(z)). Say, A = U{B,( r(n)m@) S(n)}, with S € X9 fw. Then B(z) <

2
Im (S(m) A (f(2) € UX)). Since the relation f(z) € U;X is X9, it follows from the
closure properties already established that B € ¥9. The closure properties for the
other pointclasses folow from these. [
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We next extend lemma 5.8 on universal sets and s-m-n functions to more general
space.

Theorem 5.15. Let X be a recursively presented Polish space, and I' any of the
classes X0, 119, ©31 or IIL. Then there is a universal set U € w x X for T'1X.
First, we have the following.

Proof. Tt is enough to show the result for I' = £¢. Let V € w x w be universal for
¥ w. Define U € w x X by

U(n,z) < Im (V(n,m) Az e UY).

U is X¢ from lemma 5.14. For the definition of X{}X it is immediate that U is
universal for X9 X. O

From theorem 5.15 we can obtain universal sets for the boldface classes which
respect the lightface classes in a certain sense.

Theorem 5.16. Let X be a recursively presented Polish space, and I' any of the
classes X0, 1%, 331 or TIL. Let T denote the corresponding boldface class. Then
there is a UX € w* x X in T' which is universal for T} X and with the following
property. If A S X is inT'(z), for z € w¥, then there is a real € Tecursive in z such

that A = (U*).

Proof. Let U € w x w* x X be universal for I'[(w* x X) from theorem 5.15. Define
UX(e,7) € w¥ x X by UX(e,z) « U(e(0),€,z), where €' (n) = e(n+1). UX €T by
closure of I' under recursive substitutions. Suppose A € X is I'(z) for z € w®. So,
A(z) © B(z,z) where B € w® x X isin I'! X. Let e € w be such that B(z,z) <
Ul(e,z,z). Then if € = {e,2), we have UX(¢,7) < Ule, z,7) < B(z,2) < A(x).
Also, € = {e, z) is recursive in z. O

We now turn to the existence of s-m-n functions. Now must restrict out attention
to spaces for which we have recursive coding and decoding functions (at least if we
want to keep the s-m-n functions recursive). We first show the existence of the
s-m-n functions using the s-m-n theorem for recursive functions. Then we give a
more general abstract argument which avoids recursion theory.

Definition 5.17. We say a Polish space X is reasonable if it is a product X =
X1 x--- x X, of spaces with each X; = w, w¥, or 2¢.

Theorem 5.18. Let I' any of the classes X2, IV, L or L. For every X =
X1 x ---x X,, which a product of reasonable spaces X;, let UX be the universal sets
from theorem 5.16. Then for every m < n there is a recursive function s: w* X

X1 X - x X, — w¥ such that
UY(S(evxla"'7xm)7xm+1~~~axn)HUX(eaxlu"wxmw"axn)
for all e e w¥, and x; € X;, where Y = X1 x --- x X,

Proof. 1t is enough to consider the case where each X; is one of the basic spaces w,
w® or 2¢. We have UX (¢, 21, ...,2,) © U(€(0),€,z1,...,2,) where U is universal
for the X subsets of w® x X1 x - x X,,. Also, U(e(0),¢,21,...,2,) < In V(e(0),n) A
Wial€', z1,. .., x,) where W, refers to the recursive presentation for w® x Xy x - - - x
X,,. Let U;, V; be the recursive presentations for the spaces w* x X1 X -+ x X,
and X,,41 % --- x X, respectively. Let (a,b) — 7r(a,b) be recursive such that
Wiap) = Ua x V. Let B, be the recursive presentation for w® x X, 11 x -+ x Xp,
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and C), the recursive presentation for w*. Let m — (a(m), b(m)) be recursive such
that By, = Cy(m) X V). Let m: w® — w® x Xy x- -+ x X, be a recursive bijection,
and let g: w — w be recursive such that 7(Cj) = Ugy;). Define

S(e,m) « In (V(e,n) A r(g(a(m)),b(m)) = n).

Clearly S € 39 }(w x w), so by the s-m-n theorem on w, there is a total recursive

function ¢: w — w such that V(t(e),m) « S(e,m). Let s(¢,x1,...,%m) = 2z where
2(0) = t(e(0)) and 2’ = 7 (¢, x1,...,2m). Clearly s is recursive. Then
UY(s(e, @1, Tm)s Tmats s n) < Im (V(t(e(0)),m) A B (2, g1y - - Tn))

< Im (S((0),m) A B (2, Zmi1y - Tn))
< Im In (V(e(0),n) A (r(g(a(m)),b(m)) =n) A Bp(2', Tmit1s- - T0))
< 3n (V(e(0),n) A Wo(€, 21, ., %))
o UX(e, 21, ,xp)
([l

We now present a more general abstract srgument for the existence of universal
sets admitting s-m-n functions. This argument makes no appeal to recursion theory.

Theorem 5.19. Let T be a pointclass with I' fw® having a universal set. Then there
are universal sets UX € w® x X for all reasonable spaces X satisfying the following.
For any product of reasonable spaces X = X1 x -+ x X, x-+-x X,, and m < n with

Y = Xpq1 %+ -x X, there is a continuous function sXY 1 w¥ x X1 x - x X,,, = w®
such that

UX(y,xl,...,a:m,...,xn) <—>UY(s(y,xl,...,xm),xmﬂ,...,xn)
for ally € w¥ and (z1,...,z,) € X.

Proof. Let U € w® x w® be universal for I' fw®. Define I' X to those subsets of X
which are recursively reducible to U. If X = X; x --- x X, is a reasonable space,
define

UX(y’xlv s 7xn) « U((y)07<(y)1a APRER ’xn>)

(recall y = ((y)o, (y)1) is our recursive bijection between w* and w* x w*, and {--- )
denotes our recursive coding functions). Clearly UX € I'. To see it is universal,
suppose A € X in in I'. Define A’ by A'(x) & A((x)1,...,(x)n). Clearly A’ € T,
so let € be such that U(e,z) <> A'(z). Let y = {¢,0). Then UX(y,x1,...,2,) <
U(()0,{(y)1, 1y .- xn)) = U(€,40,21,...,20)) & A(T1,...,2p).

To construct the s-m-n functions, note that

UX(y7x17 LR 7mn) <« U((y)0,<(y)1,m1, v ’xn>)

and
UY(s,xm+1, cosy) © U(8)0,(8)1, Tmt1y -y Tny)-

therefore we can take s*Y (y,z1,...,2m) = {6, {y,21,...,Tm)y, where € is such
that U(e,{y, T1, -, Tm ) Tmat, -, Tny) < U)o, {(y)1,21,-..,2ny). That is,
let € be such that Ule,z) < U(20,0,0,$20,0,15 20,15+ - - s 20,ms 215« - - s Zn—my)s Where
20,0,0 abbreviates (((2)0)o)o, etc.

[l
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Definition 5.20. We say universal sets UX € w* x X, for X a reasonable Polish
space, are good if there are continuous s-m-n functions as in the statement of
theorem 5.19.

One important consequence of the existence of s-m-n functions in the recursion
theorem, which says that in defining a I" set, we may use the eventual code for the
set we trying to define in its definition. a precise statement follows.

Theorem 5.21. Let T be a pointclass and UX € w¥ x X good universal sets for
' X for X a reasonable Polish space. For any A € w* x X in T, there is an € € w*
such that

UX(e,2) & Ale, z)
forallze X.

Proof. Let ¢y € w* be such that Ul(eg, d, x) <> A(s(d,d),x), where U € w* x w® x X
and s: w* x w¥ — w¥ is the corresponding s-m-n function. Then, A(s(d,9),x) <
Ul(eg,d,x) < U(s(eg,d),z). In particular, for 6 = e¢g we have U(s(eg,€0),x) <
A(s(eo, €0), ), and so we can take e = s(eg, €p). O

Remark 5.22. It is possible to improve theorem 5.19 to obtain recursive s-m-
n functions, and so get a reasonable abstract notion of an associated lightface
class. One way to do this is as follows. View every real y as coding a Lipschitz
continuous function 7, from w® to w®, say by 7,(s) = y({s)). Fix the universal
set U € w* x w* for T'fw®. Let U’ € w* be the image of U under our recursive
bijection, U’(z) « U((2)o,(2)1). Define for X = X; x --- x X, a reasonable space,

UX(y,z1,...,2,) < T(y)o ({T15 -+ -, Tn, (y)1)) €U,
Clearly each UX e I. It is straightforward to check that U¥ is universal for
T'tX. To see there are recursive s-m-n functions, note that for m < n and Y =
X1 X --- x X, we have
UY (S, Tmgt1y..-»Tp) & T(s)o ({Zms1s -y 2, (8)1)) €U
So, we let s(y,x1,...,%m) =<2, {Y,X1,...,%Tm)), where z will be described shortly,
and thus
UY(8,Zmi1y-r@n) © To((@mits oo Ty Yy Ty ooy T y)) € U

It remains to show that there is a recursive map (y,x1,...,Z,) — z such that

T (a1 s Ty Yy 15 T ) = Ty (T2 - Ty (Y)1)-
We may effectively from y, x1,...,z,, use this equation to define z. The point is
that if we are given k digits of (Tm+1,---,Zn,{Y, T1,--.,Tmyy, using our standard
coding maps, then we compute at least the first k digits of {z1,...,z,, (y)1) (note
that only the digits of x,,41,..., 2, are problematic since (y,x1,...,&m) — 2 is
not required to be Lipschitz).
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