
1. Determinacy

We introduce the axiom of determinacy, which provides a powerful strengthening
of ZF. Although the full axiom is inconsistent with AC, various restictions of it are,
and provide a way to extexd the ZF theory of the reals presented earlier. We begin
with the basic terminology. We emphasize that out background theory throughout
this discussion is ZF set theory.

Let X be a set. By a game on X we mean a setting where two players, called I
and II alternate playing elements from the set X as follows:

I x0 x2 x4 . . .

II x1 x3 x5 . . .

The sequence ~x = (x0, x1, . . . ) that they jointly produce is called a run of the game.
The winning condition for the game is given by a payoff set A ⊆ Xω. We say I
wins the run of the game if ~x ∈ A, and otherwise II wins the run. We frequently
denote the game with payoff set A by GA.

A strategy for player I (respectively player II) is a function σ from the sequences
in X<ω of even length (respectively odd length) into X. If σ is a strategy for
I, we say a run ~x is according to σ (or I has followed σ) if for all even n ∈ ω,
xn = σ(~x � n). The definition for a strategy for II is similar, using “odd” instead of
“even.” If σ is a strategy for I, and ~z ∈ Xω, we let σ(~z) ∈ Xω be the run according
to σ where II has made moves ~z = (z0, z1, . . . ). Thus,

σ(~z) = (σ(∅), z0, σ(σ(∅), z0), z1, . . . ).

We likewise define τ(~z) when τ is a strategy for II. We let σ0(~z) denote the sequence
of moves I makes against II play of ~z, and likewise τ1(~z) denotes II’s moves against
I’s play of ~z.

Exercise 1. Let d be the standard metric on ωω, that is, d(x, y) = 1
2n where n ∈ ω

is least such that x(n) 6= y(n) (and of course d(x, y) = 0 if x = y). Let σ be a
strategy for I or II in an integer game. Show that the map x 7→ σ(x) from ωω to
ωω is one-to-one and Lipschitz continuous, that is, d(σ(x), σ(y)) ≤ d(x, y).

Exercise 2. Show that for any strategy σ for I or II in an intger game that σ[ωω]
.
=

{σ(x) : x ∈ ωω} perfect. Show that σ0[ωω] is Σ1
1. Give an example to show σ0[ωω] is

not necessarily Borel [hint: use the fact that every Σ1
1 set A in ωω is the projection

of a closed set in ωω × ωω. It may help to assume that A is dense in ωω.]

We say a strategy for I (respectively II) is a winning strategy if for all runs ~x
according to σ, ~x ∈ A (respectively, ~x /∈ A). We say the game GA is determined if
one of the players has a winning strategy.

Exercise 3. Show that for any game GA on any set X, that it cannot be the case
that both players have a winning strategy.

If X cannot be wellordered in ZF (e.g., X = R), then the notion of a winning
strategy is too strong. One uses instead the notion of a quasi-strategy. A quasi-
strategy σ for I is a function with domain the set of s ∈ X<ω of even length and
such that σ(s) is a non-empty subset of X. The definition for II is similar. Thus, a

1



2

quasi-strategy is like a strategy except that instead of giving a single move for the
player, it produces a non-empty set of possible moves. We say ~x = (x(0), x(1), . . . )
is a run according to σ if for all even n, x(n) ∈ σ(x � n). Likewise for II. The
notion of a winning quasi-strategy is then defined in the obvious manner. We say
A ⊆ Xω is quasi-determined if one of the players has a winning quasi-strategy. We
sometimes still use the term “determined” in this case. To illustrate the difference,
suppose there is a relation R ⊆ ωω × ωω which has no uniformization (this will be
the case, for example, assuming AD + V = L(R)). Consider the game on X = R
where I plays x in the first move, and II plays y in the next move. All moves after
this are irrelavant. II wins the run iff R(x, y). Then II has a winning quasi-strategy,
namely R itself, but has no winning strategy as a winning strategy for II produces
a uniformization for R.

Exercise 4. We say a game on a set X is finite if there is an n ∈ ω such that
the payoff only depends on ~x � n. Show that any finite game on any set X is
determined. [hint: Say the game is of length n which is even. Then I has a winning
(quasi) strategy iff ∃x0 ∀x1 ∃x2 · · · ∀xn−1 (x0, . . . , xn−1) ∈ A. If this fails, consider
the negation and pass the negation through the quantifiers.]

A case of particular interest in when X = ω, that is, both players play integers,
in which case the run ~x they produce is an elemnt of the Baire space ωω. In this
case, the game can be identified with a subset A ⊆ ωω of the Baire space.

Definition 1.1. The axiom of determinacy, AD, is the assertion that for every
A ⊆ ωω the game GA is determined.

So, AD asserts that every two-player integer game is determined. We will see
below that AD contradicts AC. However, restricted form are consistent with AC.

Definition 1.2. Let Γ ⊆ P(ωω) be any collection of subsetes of ωω. By det(Γ) we
mean the assertion that GA is determined for all A ∈ Γ.

Usually Γ will be a poinclass, in which case we interpret det(Γ) as meaning that
GA is determined for all A ∈ Γ which are subsets of ωω.

The fact that AD contradicts AC does not mean that the full axiom AD loses
interest. It simply means we must restrict out attention to an inner model of V
in which choice fails. A natural such model, which we discuss later, is the inner
model L(R), the smallest inner-model of set theory containg the reals. On the one
hand, AD suffices to give a reasonably complete theory for this model, while on the
other hand this model contains all the sets of real which are reasonably definable.
In particular L(R) contains all the projective sets, and much more.

We next discuss some of the basic facts about games and determinacy. First we
show that AD is inconsistent with ZFC. Note that a strategy for an integer game is
a subset of ω<ω×ω, and can thus be identified with a real. We frequently implicitly
make this identification.

Lemma 1.3. AD is inconsistent with ZFC.

Proof. By AC, let {xα}α<2ω enumerate the reals ωω (and hence all the strategies
for either I or II in integer games). We define inductively sets Aα, Bα ⊆ ωω which
are monotonically increasing (i.e., α < β → Aα ⊆ Aβ) and disjoint at each step
(i.e., Aα ∩ Bα = ∅). We also assume inductively that |Aα|, |Bα| < 2ω. We think
of the reals in Aα as being reals we wish to add to the set we are building, and the
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reals in Bα as those we wish to forbid from being in our set. At stage α, first let
A<α =

⋃
β<αAβ and B<α =

⋃
β<αBβ . Note that A<α ∩ B<α = ∅, assuming the

above inductive hypotheses. Consider then xα. If xα is not a strategy for I or II, let
Aα = A<α, Bα = B<α. Since x 7→ σ(x) is one-to-one, C

.
= {z : σ(z) ∈ A<α ∪B<α}

has size < 2ω. Let z ∈ ωω − C. If xα is a strategy for I, let Aα = A<α, Bα =
B<α ∪ {xα(z)}. If xα is a strategy for II, let Aα = A<α ∪ {xα(z)}, Bα = B<α.
Since z /∈ C, this maintains our disjointness hypothesis. Clearly xα cannot be
a winning strategy for I for any set disjoint from Bα, and cannot be a winning
strategy for II for any set containing Aα. Let A =

⋃
α<2ω Aα. So, A ∩ B = ∅,

where B =
⋃
α<2ω Bα. So, no x ∈ ωω can be a winning strategy for either I or II

in GA. �

In view of lemma 1.3, in working with the full axiom of determinacy AD we work
in the background theory ZF+AD. In fact, a weak form of choice, DC, is frequently
also added to the backgroung theory; we discuss this in more detail below. Actually,
AD implies a weak form of choice, nemrly countable choice for reals. We recall the
definitions.

Definition 1.4. For any cardinal κ, ACκ is the statement that for any κ-sequence
{Aα}α<κ of non-empty sets, there is a function f with domain κ such that ∀α <
κ (f(α) ∈ Aα). Countable choice is the statement ACω. Countable choice for reals
is the statement ACω restricted to sequences {An}n∈ω for which An ⊆ ωω for all n.

Lemma 1.5. AD implies countable choice for reals.

Proof. Let {An}n∈ω be given where each An ⊆ ωω is non-empty. consider the game
I n

II x(0) x(1) x(2) . . .

where I plays an integer n and II plays out a real x. II wins the run if x ∈ An.
Clearly I cannot have a winning strategy σ since as soon as I plays n, can play any
x ∈ An to defeat σ. A winning strategy τ for II gives a choice function. �

A small variation of this argument shows the following.

Lemma 1.6. Assume AD. Then countable choice holds in L(R).

Proof. There is a definable map π in L(R) from ωω × On onto L(R). Given the
sequence {An}n∈ω of non-empty sets, let A′n = {(x, α) ∈ ωω ×On: π(x, α) ∈ An}.
It clearly suffices to get a choice function for the A′n. For each n, let αn ∈ On
be least such that ∃x (x, αn) ∈ A′n. Let A′′n = {x ∈ ωω : (x, αn) ∈ A′n}. From
lemma‘1.5, let 〈xn〉n∈ω be a choice function for the A′′n. Then 〈π(xn, αn)〉n∈ω is a
choice function for the An. �

The axiom of dependent choice is a strengthening of countable choice.

Definition 1.7. DC is the following statement.Let X be a set and R ⊆ X<ω such
that for all s ∈ R there is an x ∈ X with sax ∈ R. Then there is a ~x ∈ Xω such
that ∀n ~x � n ∈ R. We let DCX be the statement of DC for sets R ⊆ X<ω.

Exercise 5. Show that DC implies countable choice.
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In fact, AD implies that DC holds in L(R) (Kechris). This shows that if AD is
consistent, then so is AD+DC. The proof of this theorem requires more techniques.

DC is equivalent to the assertion that every ill founded tree on a set X has a
branch. In fact the following exercise shows a bit more.

Exercise 6. Show that DC is equivalent to the assertion that every relation R on
a set X which is illfounded has an infinite decreasing sequence. Recall a relation
is wellfounded if every non-empty subset of X has an R-minimal element. [hint:
If R is illfounded, let S ⊆ X<ω be the set of sequences (x0, x1, . . . , xn) such that
xnRxn−1R . . . Rx1Rx0 (i.e., the chain is R-decreasing) and ({x : xRxn}, R) is ill-
founded. Apply DC to S.]

If X cannot be wellordered in ZF, then we need DC to even produce a run
according to a given quasi-strategy. More precisely, we need DCX to produce such
a run.

We consider next the situation for other X. We let ADX denote the assertion
that every game on X (i.e., A ⊆ Xω) is determined. So, AD = ADω. First note the
following simple fact.

Exercise 7. Show that if X ⊆ X ′ then ADX′ ⇒ ADX .

In particular, ADω ⇒ AD2. The converse is also true by the following lemma.

Lemma 1.8. AD2 ⇒ ADω.

Proof. Assume AD2, and let A ⊆ ωω. We show that GA is determined. We define
an A′ ⊆ 2ω which simulates the game GA, and such that whichever player has a
winning strategy in GA′ has one in GA. Call a finite sequence s ∈ 2<ω good if it is
an initial segment of a sequence of the form

02a0a(1, 0)a02a1a(0, 1)a02a2a(1, 0)a02a3a(0, 1)a · · · .
In other words, s is good if it is a partial play of a game on {0, 1} of the form:

I

a0︷ ︸︸ ︷
0, 0, . . . , 0 1 0, 0, . . . , 0 0

a2︷ ︸︸ ︷
0, 0, . . . , 0 1 . . .

II 0, 0, . . . , 0 0 0, 0, . . . , 0︸ ︷︷ ︸
a1

1 0, 0, . . . , 0 0 . . .

We now define GA′ . The first player to play so that the sequence is not good
loses. Suppose they produce x ∈ 2ω, and all initial segments of x are good. If x is
eventually equal to 0, then the last player to play a 1 wins (if they both play all 0’s
then II wins). Otherwise, consider the sequence y = (a0, a1, . . . ) ∈ ωω. Then I wins
the run of GA′ iff y ∈ A. Suppose σ′ is a winning strategy for I in GA′ (the case for
II is similar). We define a strategy σ for I in GA as follows. To define σ(∅), have I
follow σ′ in GA′ where II plays 0’s. I must eventually play a 1 as otherwise I loses
by definition. If there have been a0 rounds of 0’s played before the round where I
plays a 1, then we let σ(∅) = a0.

To define σ(a0, a1), have II play a1 more 0’s followed by a 1. Following σ′, I must
must respond with a 0 to all of these moves, as otherwise I loses, contradicting σ′

being a winning strategy. Have II then continue to play 0’s until I plays a 1, which I
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must do as otherwise I loses by definition. This defines a2 = σ(a0, a1) as the above
diagram illustrates. Continuing in this manner defines the strategy σ.

For any run x = (a0, a1, . . . ) of σ, there is a corresponding run x′ of σ′ where
x′ is good and both players have played infinitely many 1’s. Furthermore, x′ and
x correspond as in the diagram above. So, by definition, x′ ∈ a′ iff x ∈ A. Since σ′

is a winning strategy for I in GA′ , x
′ ∈ A′. Thus, x ∈ A. �

Corollary 1.9. AD is equivalent to ADX for any countable set X with at least 2
elements.

Determinacy is not symmetrical between the two players in the sense that I
having a winning strategy for a game GA is not the same as II having a winning
strategy for the complement GAc . However, the asymmetry is minor according to
the following lemma.

Lemma 1.10. If Γ is any pointclass then det(Γ)⇔ det(Γ̌). In fact for any A ⊆ ωω
there is a B recursively reducible to ωω − A such that I (resp. II) has a winning
strategy in GB iff II (resp. I) has a winning strategy in GA.

Proof. Given A ⊆ ωω, let B = {x : x′ ∈ ωω − A}, where x′(n) = x(n + 1).
If σ is a winning strategy for I in GA, then σ′ is winning for II in GB , where
σ′(a0, a1, a1, . . . , a2n) = σ(a1, . . . , a2n), that is, II ignores I’s first move and then
follows σ. Also, if σ′ is winning for II in GA′ , then σ is winning for I in GA.

Similarly, if τ is winning for II in GA iff τ ′ is winning for I in GA′ where τ ′ makes
an arbitrary first move, and then follows τ .

Thus, GA is determined iff BB is determined. The first statement of the lemma
follows. �

Exercise 8. Show assuming ZFC that there are two determined games A and B such
that A∩B is not determined, and likewise for unions. [hint: Let C ⊆ ωω be a non-
determined game. Let A = {x : x(0) is even ∨ x′ ∈ C}. Let B = {x : x(0) is odd ∨
x′ ∈ C}. Then I wins both GA and GB , but GA∩B is not determined.

Two natural generalizations of AD = ADω suggest themselves. One is allowing
X to be a larger ordinal (we must go to at least ω1 to have something potentially
different). Another is to allow the players to play reals (since integers can be viewed
as simple reals).

Regarding the ordinal case, we have the following lemma. In the proof, we will
borrow from an upcoming fact, namelt that AD implies the perfect set property for
all sets of reals.

Lemma 1.11 (ZF). For any uncountable well-ordered set X, the axiom ADX is
inconsistent.

Proof. Assuming ZF, it suffices to show that ADω1 is inconsistent (from exercise 7).
Suppose ADω1 . From exercise 7 we also have AD. Consider the following game on
ω1:

I α

II x(0) x(1) x(2) · · ·
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where I plays an ordinal α < ω1, and plays integers x(0, x(1), . . . , therby playing
out a real x ∈ ωω. II wins iff x ∈ WO and |x| = α. First note that I cannot have
a winning strategy σ, since if σ calls for I to play α, II can defeat σ by playing
any x ∈ WO with |x| = α. So, since we are assuming this game is determined, II
must have a winning strategy τ . Let A = {τ(α) : α < ω1}. Then A is a wellordered
subsete of WO os size ω1 (for each α < ω1 there is a unique x ∈ A with |x| = α).
We will show in theorem 2.2 below that under AD, every uncountable subset of ωω

contains a perfect set. So, let P ⊆ A be perfect. In particular A is closed in ωω.
But every Σ1

1 subset of WO codes only boundedly many ordinals since φ(x) = |x|
is a Π1

1-norm on WO. �

Although the full axiom ADκ for uncountable κ is inconsistent, nevertheless or-
dinal games are very useful in determinacy theory. We will see later that important
classes of ordinal games are determined.

When X = R, the axiom ADX becomes a powerful strengthening of AD. ADR,
as we will see later, is strictly stronger than AD. Its extra strength, however, does
not generally become apparent until one goes beyound the model L(R), and so will
not directly concern us for a while.

The next result is one of the most basic results in determinacy theory and is
used in many arguments. For X a set, we topologixe Xω by giving X the discrete
topology and Xω the corresponding product topology. So, a basic open set is of
the form Ns = {~x ∈ Xω : (~x � lh(s)) = s} where s ∈ X<ω.

Theorem 1.12 (Gale-Stewart). Assume ZF. Then for any set X, and any open
(or closed) A ⊆ Xω, the game GA is (quasi) determined.

Proof. Let E be the set of all s = (s(0), . . . , s(2n− 1)) of even length. We define a
subset W ⊆ E of winning posirions for I. Let W0 = {s ∈ e : NS ⊆ A}. In general,
for α ∈ On, first let W<α =

⋃
β<αWβ . Then set

Wα = W<α ∪ {s ∈ E : ∃x ∈ X ∀y ∈ X (saxay ∈W<α)}.

Let θ be the least ordinal such that Wθ = W<θ. So, Wα = Wθ for all α ≥ θ. Let
W = Wθ. For s ∈ W , let |s| be the least ordinal α < θ such that s ∈ Wα. Note
that if s ∈W and |s| > 0, then ∃x ∀y (|saxay| < |s|).

Suppose first that ∅ ∈W . Then I has a winning strategy σ in GA. Namely, let
(s(0), s(1), . . . , s(2n− 1)) ∈ Σ iff for all i < n either s � (2i) ∈ W0 or |s � 2i| > |s �
(2i + 2)|. From the fact mentioned at the end of the previous paragraph, σ is a
quasi-strategy for I. From the wellfoundedness of On it follows that I is a winning
quasi-strategy. that is, for any ~s a run according to Σ, we have the ranks |s � 2i|
decrease until we reach an i such that s � 2i ∈W0, and thus ~s ∈ A.

Suppose next that ∅ /∈ W . We claim that II has a winning quasi-strategy
Σ in GA. Namely, let Σ = E − W . Note that ∅ ∈ Σ. Also, if s ∈ Σ then
∀x ∃y (saxay ∈ σ). For if s ∈ σ and ∃x ∀y (saxay /∈ σ), then ∃x ∀y (saxay ∈W ).
So, s ∈ Wθ+1 = Wθ = W , a contradiction. So, Σ is a quasi-strategy for II. If

~s ∈ Xω is a run according to Σ, then ~/∈A. For if ~s ∈ A, then for some i we would
have N~s�2i ⊆ A as A is open. But then ~s � 2i ∈ W0 ⊆ W , a contradiction (as
~s � 2i ∈ Σ = E −W ). �

As an immediate corollary we have that any open or closed game on an ordinal
is determined.
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The proof of theorem 1.12 produces for any open or closed game GA a canonical
winning quasi-strategy for GA. This does not use any form of choice.

An important and deep theorem of Martin says that every Borel game on any set
is determined. We will give this proof later, but for now we just extend theorem 1.12
one step further.

Theorem 1.13 (Wolff). Assume ZF. Every Σ0
2 game on a set X is (quasi) deter-

mined.

Proof. Let A ⊆ Xω be Σ0
2, say A =

⋃
n Fn where each Fn is closed in Xω. Let

Tn be the canonical tree on X such that Fn = [Tn]. We again define a set W of
winning positions for I. Again let E be the set of all s ∈ X<ω of even length. Let
W0 be the set of all s ∈ E such that there is an n ∈ ω such that I has a winning
quasi-strategy starting at s for the game Fn. For general α, let W<α =

⋃
β<αWβ

and then define Wα to be W<α together with the set of s ∈ E such that for some
i, I has a winning quasi-strategy starting at s for Ai<α, where Ai<α is the set of
x ∈ Xω such that either ∀j x � 2j ∈ Ti or for the least j such that x � 2j /∈ Ti we
have x � 2j ∈W<α. Note that Ai<α is a closed set, so is quasi-determined.

Define θ and W = Wθ = W<θ as in theorem 1.12. Also as before define, for
s ∈W , |s| to be the least α < θ such that s ∈Wα.

First suppose ∅ ∈W , and we define a winning quasi-strategy Σ for I in GA. We
give an informal description of Σ, the underlying formal definition will be apparent.
s = (s(0), s(1), . . . , s(2n − 1)) is according to Σ provided the following holds. Let
n0 be least such that I has a winning quasi-strategy starting at ∅ in An0

<θ. I follows
the canonical winning quasi-strategy for this closed game until an i0 is reached (if it
is) such that s � 2i0 /∈ Tn0

. If this happens, then s � 2i0 ∈W<θ. Let θ0 < θ be least
such that s � 2i0 ∈ Wθ0 . Let n1 be least such that I has a winning quasi-strategy
in An1

<θ0
starting from s � 2i0. I then follows the canonical winning quasi-strategy

for this game until an i1 > i0 is reached (if it is) such that s � 2i1 /∈ Tn1
. Thus,

s � 2i1 ∈ W<θ0 . Let θ1 < θ0 be least such that s � 2i1 ∈ Wθ1 . Σ continues in
this manner. If ~s is a run according to Σ, then for some k we have that ~s is a run
starting from ~s � 2ik which stays in the tree Tnk (as otherwisw we get an infinite
decreasing sequence of θi). Thus, ~s ∈ Fnk , so ~s is a win for I.

Suppose next that ∅ /∈ W . We describe a winning quasi-strategy for II in GA.
Start with n = 0. Since ∅ /∈ Wθ, II has a canonical winning strategy for the game
A0
<θ starting from ∅. II follows this strategy until a least i0 is reached such that

s � 2i0 /∈ T0 and s � 2i0 /∈ W<θ = Wθ. This must happen as II is winning for A0
<θ.

Consider then n = 1. Since s � 2i0 /∈ Wθ, II has a winning quasi-strategy for the
game A1

<θ starting from s � 2i0. II follows this canonical strategy until an i1 is
reached such that s � 2i1 /∈ T1 and s � 2i1 /∈ W<θ = Wθ. This describes Σ. If ~s
is a run according to Σ, then clearly ~s /∈ [Tn] = Fn for all n, and thus II wins the
run. �

2. Regularity Results

In this section we show that AD implies regularity properties for sets of reals,
that is, AD eliminates the pathological sets produced from AC.

First we consider the perfect set property. The basic game argument is best
illustrated on the Cantor space.
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Lemma 2.1 (ZF+AD). Every A ⊆ 2ω is either countable or else contains a perfect
subset.

Proof. Given A ⊆ 2ω we consider the following game G∗A:

I s0 s1 s2 . . .

II i0 i1 i2 . . .

where I plays sequences sk ∈ 2<ω (possibly empty) and II plays ik ∈ {0, 1}. I
wins the run iff x = s0

ai0
as1
ai1
a · · · is in A. If I has a winning strategy σ,

then clearly σ[2ω] = {x = s0
ai0
as1
ai1
a . . . : (s0, i0, . . . ) is according to σ} is

a perfect set contained in A. Suppose then that II has a winning strategy τ .
Consider x ∈ A. We say a partial run (s0, i0, . . . , sn, in) is good for x if it is
according to τ and (s0

ai0
a · · ·asnain) is an intitial segment of x. There must

be a maximal good sequence, since if every good sequence had a good extension
then there would be a run (s0, i0, . . . ) according to τ with x = (s0

ai0
a · · · ). This

contradicts τ being winning for II. Let s = (s0, i0, · · · , sn, in) be maximal good
for x. Say s0

ai0
a · · ·asnain = x � j. So, for every t ∈ 2<ω, (x � j)ataτ(sat) is

incompatible with x. This, however, allows us to compute x from s and τ . Namely,
x(j) = 1 − τ(sa∅) (by sa∅ we mean the partial run consisting of s and the one
extra move by I consisting of sn+1 = ∅). Then x(j+1) = 1−τ(sa(x(j)), etc. Since
the set of possible s is countable (and τ is a single fixed real), this shows that A is
countable. �

As a consequence we have the following.

Theorem 2.2 (ZF + AD). Let X be a Polish soace. Then every A ⊆ X is either
countable or else contains a perfect subset.

Proof. We may clearly assume X is uncountable, and thus is Borel isomorphic to
2ω. Let π : 2ω → X be a Borel isomorphism. If A ⊆ X is uncountable, then so is
B = π−1(A). Let P ⊆ B be perfect. Then π(P ) ⊆ A is uncountable and Borel,
and so contains a perfect subset. �

We can also prove theorem 2.2 directly on an arbitrary Polish space X by a
game argument. We sketch this alternate proof. Let U be a countable base for X.
Consider the game G played as follows.

I U0
0 , U

0
1 U1

0 , U
1
1 U2

0 , U
2
1 . . .

II i0 i1 i2 . . .

For the first move, I plays a pair U0
0 , U

0
1 ∈ U where U0

0 ∩U0
1 = ∅, and diam(U0

0 ),
diam(U0

1 ) < 1
20 . II plays an i0 ∈ {0, 1} signifying a choice of one of these sets. At the

next round, I again plays a pair U1
0 , U1

1 with U1
0 ∩ U1

1 = ∅, diam(U1
0 ),diam(U1

1 ) <
1
21 , and U1

0 ⊆ U0
i0

, U1
1 ⊆ U0

i0
. II plays i1 ∈ {0, 1} which picks one of these sets. The

play continues in this manner, and I wins the run iff x ∈ A where x =
⋂
n U

n
in

. If I
has a winning strategy σ, it is clear that following σ against all possible plays of II
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produces a perfect subset of A. Suppose II has a winning strategy τ . Say a partial
run of the game

(U0
0 , U

0
1 ), i0, . . . , (U

n
0 , U

n
1 ), in

is x-good if it is a run according to τ where I has followed the rules above and
x ∈ Unin . Since τ is winning for II, there is a maximal x-good seuqence, say

s = (U0
0 , U

0
1 ), i0, . . . , (U

n
0 , U

n
1 ), in. So, for any pair (Un+1

0 , Un+1
1 ) satisfying the

requirements for I, if in+1 = τ(sa(Un+1
0 , Un+1

1 )), then x /∈ Un+1
in+1

. Let W be the

union of all open sets Un+1
in+1

which are attained in this manner. So, W ⊆ Unin . Also,

x /∈W . We claim that Uin −W is a singleton. To see this, suppose x 6= y are both
in Unin −W . Let Un+1

0 , Un+1
1 be disjoint basic open sets of diameters < 1

2n+1 whose

closures are contained in Unin , and with x ∈ Un+1
0 , y ∈ Un+1

1 . Let in+1 be II’s
response. If in+1 = 0, then x ∈W , and if in+1 = 1, then y ∈W , a contradiction.

The determinacy used in theorem 2.2 was local, that is, to get the perfect set
property for a pointclass Γ requires only det(Γ). In fact, we can improve this a
little using an “unfolding argument” for an existential quantifier.

Theorem 2.3. Let Γ be a pointclass and assume det(Γ). Then for any Polish
space X and every A ⊆ X in ∃ωωΓ, A is either countable or else contains a perfect
set.

Proof. We give the proof in the case X = 2ω, leaving the general case to an exercise.
Let A ⊆ 2ω be in ∃ωωΓ. Let B ⊆ 2ω×ωω be such that A(x)↔ ∃y B(x, y). Consider
the following “unfolded perfect set game”:

I
y(0)
s0

y(1)
s1

y(2)
s2 . . .

II i0 i1 i2 . . .

where I plays sequence sn ∈ 2<ω and integers y(n) ∈ ω, and II plays in ∈ {0, 1}.
Let x = s0

ai0
as1
ai1
a · · · , and y = (y(0), y(1), . . . ). Then I wins the run iff

(x, y) ∈ B. The payoff set is in Γ, and so the game is determined. If I has a winning
strategy, then we clearly get a perfect set contained in A ( {(σ(z))0 : z ∈ 2ω} is a
perfect set conained in A). Suppose that II has a winning strategy τ . Fix for
the moment x ∈ A, and fix y ∈ ωω such that (x, y) ∈ B. We say a partial run
~s according to τ is x-good if it is of the form ~s = ((y(0), s0), i0, . . . , (y(n), sn), in)
where s0

ai0
a . . .asn

ain = x � j is an initial segment of x. Since τ is winning for
II, there is a maximal x-good sequence. Say ~s = ((y(0), s0), i0, . . . , (y(n), sn), in) is
maximal good. Thus, if I plays (y(n + 1), sn+1) as the next move, where sn+1 =
(x(j), . . . , x(` − 1)), and τ responds with in+1, then x(`) = 1 − in+1. This again
gives an algorithm for computing x from ~s and the fixed strategy τ . Since there
are only countable many possible ~s, this shows A is countable. �

Exercise 9. Give a direct game proof of theorem 2.3 on a general Polish space.
[hint: modify the previously given perfect set game on a general X to include the
witness y.]

If A is Σ1
1, then then there is a closed B ⊆ X×ωω such that A(x)↔ ∃y B(x, y).

In this case, the unfolded perfect set game is closed, and so it is determined in ZF.
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This gives another proof of the perfect set property for Σ1
1. On the other hand,

det(Π1
1) suffices to show the perfect set property for Σ1

2. We will investigate the
strength of det(Π1

1) later. Note that projective determinacy give the perfect set
property for all projective sets.

We next consider the Baire property, which is the topological notion of regularity.
Recall from definition ?? that a set A in a topological space is meager if it a
countable union of nowhere dense sets (equivalently, contained in a countable union
of closed nowhere dense sets). Also, A has the Baire property if there is an open
set U such that A4U is meager. An easy argument (c.f. lemma ??) shows every
Borel set has the Baire property, and in theorem ?? we showed that every Σ1

1 (or
Π1

1) set has the Baire property. This last fact will also follow by a game argument
below.

We again first consider the case X = ωω where the basic ideas are more clear.
Let A ⊆ ωω. We consider the game G∗∗A played as follows:

I s0 s2 s4 . . .

II s1 s3 s5 . . .

where each player playes si ∈ ω<ω. II wins the run iff x ∈ A where x = s0
as1
a · · · .

Lemma 2.4. II has a winning strategy in G∗∗A iff A is comeager in ωω. I has a
winning strategy in G∗∗A iff there is a neighborhood on which ωω −A is comeager.

Proof. First suppose A is comeager in ωω. Say A ⊇
⋂
nDn where Dn is dense open.

Define the strategy τ for II as follows. Let τ(s0, s1, . . . , s2n) be the least sequence
s2n+1 such that Ns ⊆ Dn, where s = s0

as1
a . . .as2n. This exists since Dn is dense

open. Clearly τ is a winning strategy for II in G∗∗A .
Suppose next that II has a winning strategy τ in G∗∗A . We define a sequence Dn of

dense open sets. Say a sequence s ∈ ω<ω is 1-good if it is of the form s = s0
aτ(s0)

for some s0. In general, say s is n-good if it is of the form s = s0
as1
a · · ·as2n−1

where (s0, s1, . . . , s2n−1) is a partial run according to τ .
Let M1 be a maximal set of pairwise incompatible 1-good elements. Let D1 =

∪{Ns : s ∈ M1}. To see that D1 is dense, consider a basic open set Nt. Then
u = taτ(t) is 1-good, so there is an s ∈ M1 compatible with u. So, Ns ∩Nu 6= ∅,
and so Ns ∩ Nt 6= ∅. For each 1-good sequence s, pick a canonical partial run
(s0, τ(s0)) with s0

aτ(s0) = s.
In general, suppose an antichain Mn of n-good sequences has been defined and

Dn = ∪{Ns : s ∈Mn} is dense. Assume also that for each s ∈Mn we have defined
a canonical partial run (s0, s1, . . . , s2n−1) according to τ with s = s0

a · · ·as2n−1,
and that for all m < n, (s0, s1, . . . , s2m−1) is the canonical run associated to
s0
a · · ·as2m−1. Let Mn+1 be maximal subject to being an antichain, every s ∈

Mn+1 is n+ 1-good, and every s ∈Mn+1 is of the form s′ataτ(s0, s1, . . . , s2n−1, t)
for some s′ ∈Mn with associated partial run (s0, . . . , s2n−1). LetDn+1 = ∪{Ns : s ∈
Mn+1}. To see that Dn+1 is dense, consider a basic open set Nt. Let s′ ∈ Mn be
compatible with t and let (s0, s1, . . . , s2n−1) be the partial run associated to s′

(so s′ = s0
a · · ·as2n−1). Note that u = s′a(t − s′)aτ(s0, s1, . . . , s2n−1, t − s′) is

n + 1-good and extends t (where t − s′ is the sequence such that s′a(t − s′) = t)
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if lh(s′) ≤ lh(t), and otherwise t − s′ = ∅). By maximality, there is an s ∈ Mn+1

such that s ‖ u. Then Ns ∩Nu 6= ∅, and so Ns ∩Nt 6= ∅.
If x ∈

⋂
nDn, then for each n there is an initial segment x � in of x in Mn.

x � in is of the form s0
as1
a · · ·as2n−1 where (s0, s1, . . . , s2n−1) is the canonical

partial run assosiated to x � in. Note that (s0, . . . , s2n−3) is the canonical partial
run associated to x � in−1 since Mn−1 is an atichain. Thus, the sn give a run
according to τ which produces the real x. Hence, x ∈ A.

If there is a neighborhood on which ωω − A is comeager, let s0 be such that
ωω − A is comeager on Ns0 . Have I play s0 for the first move, and then follow a
strategy for II to get into ωω − A as in the first part of the proof. Conversely, if I
has a winning strategy σ, let s0 = σ(∅). σ then gives a strategy for II in the ∗∗
game starting from s0 to get into ωω − A. The first part of the proof shows that
ωω −A is comeager on Ns0 . �

Lemma 2.4 says that every A is either comeager or else there is a basic open
set U on which it is meager. Applying this to ωω − A gives that every A is either
meager or else there is a basic open set U on which it is comeager (i.e., U − A is
meager).

As a corollary we have the following.

Theorem 2.5 (ZF + AD). Every A ⊆ ωω has the Baire property.

Proof. Let A ⊆ ωω. Let {Ui}i∈ω be a maximal, pairwise disjoint collection of basic
open sets such that A is comeager of Ui (i.e., Ui − A is meager). By countable
additivity, A is comeager on U =

⋃
i Ui. It suffices to show that A−U is meager. If

A−U is not meager, then by lemma 2.4, there is a basic open set V on which A−U
is comeager. By maximality, V ∩Ui 6= ∅ for some i. Let W ⊆ V ∩Ui be basic open.
Then ωω − U is comeager on W , a contradiction since Ui ⊆ U is nonmeager. �

We can also define an analog of the ∗∗ game on a general Polish space X. In
fact, it makes sense to define this game on a general topological space. We assume
for this discussion that X has a wellorderable base U (which, of course, holds if X
is second countable). Given A ⊆ X, X a topological space, the general game G∗∗A
is played as follows.

I U0 U2 U4 . . .

II U1 U3 U5 . . .

where the Ui are basic open sets and Ui ⊆ Ui−1 (the first player to violate this
rule loses). II wins the run iff

⋂
n Un ⊆ A. If A is comeager, then easily II has a

winning strategy as before. Assume now II has a winning strategy τ in G∗∗A . Let
M1 be a maximal pairwise disjoint collection of basic open sets U1 such that for
some U0, (U0, U1) is a partial run of τ . As before, ∪M1 is dense in X. For each
U1 ∈ M1, let s1(U1) = (U0, U1) be a partial run of τ ending with U1. We can
do this since U is wellordered. In general, assume M2n−1 has been defined and
is a pairwise disjoint collection of open sets U2n−1, and each U2n−1 is the last set
played in a partial run following τ . In fact, assume for each U2n−1 ∈ M2n−1,
a canonical run s2n−1(U2n−1) = (U0, U1, . . . , U2n−3, U2n−2, U2n−1) according to
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τ is given, where each U2j−1 ∈ M2j−1 and s2n−1(U2n−1) extends s2n−3(U2n−3).
Assume also that ∪M2n−1 is dense in X. Let then M2n+1 ⊆ U be maximal
subject to being an antichain and for every U2n+1 ∈ M2n+1, there is a partial
run (U0, U1, . . . , U2n−1, U2n, U2n+1) according to τ such that U2n−1 ∈ M2n−1 and
s2n−1(U2n−1) = (U0, . . . , U2n−1). As before, ∪M2n+1 is dense. Using the wellorder-
ing of U , we can easily define s2n+1 (the sequence of functions 〈sn〉n∈ω is actually
being constructed from the wellordering of U).

Let D2n+1 = ∪M2n+1. Suppose x ∈
⋂
nD2n+1. For each n, let U2n+1 ∈ M2n+1

be such that x ∈ U2n+1. Let s2n+1 = s2n+1(U2n+1). The antichain property of
the M2i+1 gives that s1 ⊆ s3 ⊆ · · · ⊆ s2n+1 (that is, these sequences extend each
other). Thus, there is a run of τ where the odd moves are the U2n+1. Since τ is
winning for II,

⋂
n U2n+1 ⊆ A, and so x ∈ A. Thus, A is comeager.

The same argument essentially works when I has a winning strategy, provided X
satisfies a technical assumption (∗): there are Un ⊆ U , each Un a base, such that if
Un ∈ Un for all n, then

⋂
n Un contains at nost one point. For example, any metric

space staisfies (∗) since we can take Un = {u ∈ U : diam(U) < 1
n}. To see this,

suppose I has a winning strategy σ. Let U0 = σ(∅). I’s strategy σ gives a strategy
τ for II in the game stating from U0 to produce a sequence U0, U1, . . . such that⋂
n Un * A. From τ we can easily get a strategy τ ′ for II which is also winning for II

in this game starting from U0, and with the additional property that for every U2n

which τ plays at stage n, there is a U ∈ Un such that Un ⊆ U [after I plays U2n−1,
two picks the least basic open set V ⊆ U2n−1 with V ∈ Un and follows τ against I’s
last move of V .] Define the sets D2n as before using τ ′, so the D2n are open and
dense in U0. If x ∈

⋂
nD2n, then as before there is a run (U0, U1, . . . ) following τ ′

such that ∀n (x ∈ U2n) and
⋂
n U2n * A. From (∗) we have

⋂
n U2n = {x}. Thus,

x /∈ A.
So, for X satisfying (∗), and A ⊆ X, II has a winning strategy iff A is comeager,

and I has a winning strategy iff A is meager on some non-empty open U0. If X
is second countable, then the game G∗∗A is essentially an integer game, and thus
determined. Thus, for every A ⊆ X, either A is comeager or else meager in some
open set U . Equivalently, every A ⊆ X is either meager or else comeager in some
open U . This gives the following.

Theorem 2.6 (ZF+AD). Every subset A of a second countable space X satisfying
(∗) has the Baire property.

The proof is exactly as before (theorem 2.5), using the following exercise.

Exercise 10. Assume ZF+AD, and let X be second countable. Show that a count-
able union of meager sets is meager. [hint: Let An be meager. A sequence of closed,
nowhere sets whose union is An can be coded by a real. This reduces the choice
needed to countable choice for reals, which follows from AD.]

Exercise 11. Assume ZF + ACκ. Let {Uα}α<κ be a pairwise disjoint collection of
non-empty open sets in a topological space X. Suppose {Aα}α<κ are such that
each Aα ⊆ Uα is meager. Show that

⋃
α<κAα is meager. [hint: use ACκ to write

each Aα as a union Aα =
⋃
n F

α
n , where Fαn is closed nowhere dense in X. Show

that
⋃
α F

α
n is nowhere dense for each n.]

Recall a function f : X → Y is said to be Baire measurable if for every open
U ⊆ Y , f−1(U) has the Baire property in X.
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Lemma 2.7. Let X,Y be Polish and F : X → Y have the Baire property. Then
there is a comeager A ⊆ X such that f � A is continuous.

Proof. Let {Vi}i∈ω be a base for Y . For each i, let Ui ⊆ X be open such that
Mi

.
= Ui4f−1(Vi) is meager. Let M =

⋃
iMi, so M is meager in X, and let

A = X −M . Then (f � A)−1(Vi) = Ui ∩A and so f � A is continuous. �

As a corollary we have the following theorem.

Theorem 2.8 (ZF + AD). Let f : X → Y , where X, Y are Polish. Then there is
a comeager A ⊆ X such that f � A is continuous.

We next prove a general unfolding theorem for the ∗∗ game. We do this for
the spaces X = Y = ωω, though we can generalize to arbitrary Polish spaces. Let
A ⊆ ωω, B ⊆ ωω × ωω, and suppose ∀x ∈ A ∃y ∈ ωω B(x, y) (i.e., A ⊆ p[B]).
We have the G∗∗A game defined above in which the player s play s0, s1, . . . and II
wins iff x = s0

as1
a · · · ∈ A. The unfolded version of this game Ḡ∗∗A is the following

game:
I s0 s2 s4 . . .

II s1 s3 s5 . . .
y(0) y(1) y(2)

where si ∈ ω<ω, y(i) ∈ ω. II wins the run of Ḡ∗∗A iff (x, y) ∈ B.

Theorem 2.9 (∗∗-unfolding). Assume the determinacy of G
∗∗
A . Then Player I

wins G
∗∗
A iff I wins G∗∗A iff and likewise II wins G

∗∗
A iff II wins G∗∗A .

Proof. To simplify the following argument a bit notationally, we assume Y = 2ω,
that is, y(i) ∈ {0, 1} (the case Y = ωω is similar).

Since we are assuming the determinacy of G
∗∗
A , it suffices to show that whoever

wins this unfolded game also wins the game G∗∗A . If II wins G
∗∗
A it is clear that

II wins G∗∗A (just by using the same strategy and ignoring the y(i) moves). So,
suppose I has a winning strategy σ in the unfolded game. We define a strategy σ
for I in G∗∗A . The strategy σ will have the property that for any x ∈ ωω which is
the result of a play according to σ, for all y ∈ 2ω there is a play according to σ for
which (x, y) is the pair of real produced. This will show that σ is winning for I in
G∗∗A [If x the the result of a run by σ, we must have x /∈ A since otherwise we can
fix a y with B(x, y) and (x, y) is the result of a run by σ. This will contradict σ
being a winning strategy for I in the unfolded game.].

We define σ as follows. Let s0 = σ(∅) be I’s first move in G∗∗A . That is, σ(∅) =
σ(∅). Let s1 be II’s first move in G∗∗A . We define I’s response s2 in two steps
by defining u0 ⊆ u1 = s2. Let u0 = σ(s0

a(s1, 0)). Let u1 = u0
aσ(s0, (s1

au0, 1)).
Note that s2 has the property that for either value of y(0) ∈ {0, 1}, there is an
initial segment s of s0

as1
as2 and a partial play according to σ which produces

(s, y(0)).
Assume inductively that we have defined I’s responses in G∗∗A up through the

moves s0, s1, . . . , s2n, and II now moves s2n+1 in G∗∗A . Assume inductively that
s0
as1
a · · ·as2n has the property that for every t = (y(0), . . . , y(n− 1)) ∈ 2n, there

is an initial segment st of s0
as1
a · · ·as2n and a partial play p = p(t) of the game

G
∗∗
A in which II has played t for the y(i) moves and this play has resulted in the
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sequences (s, t). We define s2n+2 in 2n+1 steps, one for each t ∈ 2n+1. We will define
u0 ⊆ u1 ⊆ · · · ⊆ u2n+1−1 and then let s2n+2 = u2n+1−1. Let t0, t1, . . . , t2n+1−1
enumerate 2n+1. Given ui, let s be the initial segment of s0

as1
a · · ·as2n such

that there is a partial play p according to σ which produces (s, ti+1 � n). Let
s0
a · · ·as2n = sav. Then let ui+1 = ui

aσ(p, (vas2n+1
aui, ti+1(n))). Clearly ui ⊆

ui+1 and there is a partial play p′ of σ which extends the partial play p and which
produces (s0

a · · ·as2n+1
aui+1, ti+1).

This defines the strategy σ for I in G∗∗A . Suppose x is a run according to σ.
Say x = s0

as1
a · · · where (s0, s1, s2, . . . ) is a run of σ. Let y ∈ ωω be arbitrary.

We define a run s̄0, (s̄1, y(0)), s̄2, . . . according to σ in which II has played y and
also s̄0

as̄1
a · · · = x. Suppose (s̄0, (s̄1, y(0)), . . . , s̄2n) has been defined, which is a

partial play according to σ and s̄0
a · · ·as̄2n is an initial segment of s0

a · · ·as2n.
Let s0

a · · · s2n = s̄0
a · · ·as̄2nav. Let ti+1 = (y(0), . . . , y(n)). By definition of

s2n+2 we have that s0
a · · ·as2n+2 extends

s̄0
a · · ·as̄2navas2n+1

aui
aσ(s̄0, (s̄1, y(0)), . . . , s̄2n, (v

as2n+1
aui, y(n)))

which show we may extend the play by σ and continue to build up (x, y). �

Exercise 12. Show the version of the unfolding Theorem 2.9 for any Polish space
X. In the unfolded game, the players play basic open sets which are decreasing and
II also plays the integers y(i) as before.

As a corollary of the unfolding we get the Baire property for Σ1
1 (and Σ1

1).

Theorem 2.10 (ZF). Every Σ1
1 (or Π1

1) set in a Polish space X has the Baire
property.

Proof. Let A ⊆ X be Π1
1. Let U = ∪{Ni : Ni−A is meager } where {Ni} is a base

for X. Clearly U −A is meager. We show A−U is also meager. Suppose A−U is
non-meager. Note that A−U is still Π1

1. Write x ∈ (A−U)c ↔ ∃y ∈ ωω (x, y) ∈ B
where B ⊆ X × ωω is closed. Using this B we define the unfolded game G∗∗B (X),
which is a closed game for II, hence determined. If II wins this game, then II
also wins G∗∗(A−U)c which gives that (A−U)c is comeager, a contradiction since we

are assuming A− U is non-meager. If I wins the unfolded game, them I also wins
G∗∗(A−U)c , and so there is a basic neighborhood V such that (A−U) is comeager on

V . By definition of U we have V ⊆ U , and so (A−U)∩V = ∅, a contradiction. �

Another important consequence of AD is comeager uniformization.

Theorem 2.11 (ZF + AD). Let X, Y be Polish and R ⊆ X × Y be such that
∀x ∃y R(x, y). Then there is a comeager A ⊆ X and a function f : A → Y such
that ∀x ∈ A R(x, f(x)).

Proof. We give the proof for the case X = ωω, Y = 2ω leaving the general case
to an exercise below. So, suppose R ⊆ ωω × 2ω and dom(R) = ωω. Consider the
“unfolded” variation of the ∗∗ game.

I s0 s2 s4 . . .

II s1
y(0)

s3
y(1)

s5
y(2)

. . .
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where si ∈ ω<ω and y(i) ∈ {0, 1}. Let x = s0
as1
a · · · , and let y = (y(0), y(1), . . . ).

Then II wins the run iff R(x, y). Applying Theorem 2.9 to the set ωω we see that II
has a winning strategy τ in the unfolded game G∗∗R . We define a sequence of dense
open sets Di as in the proof of lemma 2.4. Let M1 ⊆ ω<ω be a maximal antichain
of 1-good sequences, where s is 1-good if it is of the form s = taτ0(t) for some t
(here τ0 denotes the sequence part of τ ’s response). Let D1 = ∪{Ns : s ∈ M1}, so
D1 is dense open as in lemma 2.4. Suppose the maximal antichain Mi has been
defined and consists of i-good sequences, where s is i-good if there is a partial run
(s0, (s1, y(0)), . . . , s2i−1, (s2i−1, y(i−1))) according to τ with s = s0

as1
a . . .as2i−1.

Assume we have associated to each s ∈Mi a canonical such partial run of τ .
Let Mi+1 be maximal subject to being an antichain and every for s ∈Mi+1 there

is a (unique) t ∈Mi and associated partial run (s0, (s1, y(0)), . . . , s2i−1, (s2i−1, y(i−
1))) (so t = s0

a . . .as2i−1) such that s = tas2i
as2i+1 where

(s0, (s1, y(0)), . . . , s2i−1, (s2i−1, y(i− 1)), s2i, (s2i+1, y(i)))

is according to τ (for some y(0), . . . , y(i)). As in lemma 2.4, each Mi is a maximal
antichain, and so Di = ∪{Ns : s ∈ Mi} is dense. If x ∈

⋂
iDi, then there is a

unique run according to τ in which x is the concatenation of the sequences played.
Let y be the corresponding real resulting from the integer moves that τ makes in
this run. Since τ is winning for II, R(x, y). Note, in fact, that if A =

⋂
iDi, then

the map x ∈ A 7→ y is continuous.
�

Corollary 2.12 (ZF+AD). Let R ⊆ X×Y with X, Y Polish. Suppose ∀x ∃y R(x, y).
Then there is a comeager A ⊆ X and a continuous function f : A → Y such that
∀x ∈ A R(x, f(x)).

Exercise 13. Prove theorem 2.11 for arbitrary Polish spaces. [hint: Play the game
where I and II plau basic open sets Ui with U0 ⊇ U1 ⊇ · · · , diam(Ui) <

1
2i , and

U i ⊆ Ui−1. II also plays basic open sets Vi satisfying these same requirements.
Let {x} =

⋂
i Ui, and {y} =

⋂
i Vi. II wins the run iff R(x, y). If II has a winning

strategy, get the dense open sets Di as in the discussion after theorem 2.5. Argue
that I cannot have a winning strategy as in the proof of theorem 2.11.

Let us recall the Kuratowski-Ulam theorem, which is the “Fubibni” theorem for
category. If X is a topological space we use the abbreviation ∀∗x ∈ X A(x) to
abbreviate “for comeager many x in X we have x ∈ A”.

Theorem 2.13 (Kuratowski-Ulam). Let X, Y be topologocal spaces with Y second
countable. If R ⊆ X × Y is comeager (in the product topology on X × Y ) then
∀∗x ∈ X ∀∗y ∈ Y (x, y) ∈ R. Furthermore, if A has the Baire property and X, Y
are Baire spaces, then the reverse implication holds.

Proof. Suppose R ⊇
⋂
nDn where Dn ⊆ X × Y is dense open. We claim that for

each dense open Dn ⊆ X × Y , there is a comeager set An ⊆ X such that for all
x ∈ An, (Dn)x = {y : (x, y) ∈ Dn} is dense open in Y . To see this, let Vi ⊆ Y be
basic open. Given an open set U ⊆ X, the set U × Vi is open in X × Y , and since
Dn is dense open there is an open set U ′ ⊆ U and an open set V ′ ⊆ Vi such that
U ′ × V ′ ⊆ Dn. This shows that Ain is dense open in X, where Ain is the set of x
such that there is a neighborhood U of x and a neighborhood V ⊆ Vi such that
U × V ⊆ Dn. So, An =

⋂
iA

i
n is comeager in X, and for all x ∈ An we have that



16

(Dn)x is dense (and, of course, open). Let A =
⋂
nAn, so A ⊆ X is comeager. If

x ∈ A then all sections (Dn)x are dense open so Rx is comeager.
Assume now R has the Baire poperty and ∀∗x ∀∗y R(x, y). If R is not comeager,

then by the Baire poperty there is a basic open set U ×V on which Rc is comeager.
By the first part we have that ∀∗x ∈ U ∀∗y ∈ V Rc(x, y). We can then choose
x ∈ U such that ∀∗y ∈ V Rc(x, y) and also ∀y R(x, y) by intersecting two comeager
sets. We then get y ∈ V such that Rc(x, y) and R(x, y), a contradiction. �

Note that from AD and the Kuratowski-Ulam theorem we may switch comeager
quantifiers, that is, ∀∗x ∀∗y A(x, y) holds iff ∀∗y ∀∗x A(x, y) holds.

From these results on category we now have the following basic fact.

Theorem 2.14 (ZF+AD). There does not exist an uncountable wellordered set of
reals.

Proof. Suppose {xα}α<ω1
⊆ ωω was a sequence of distinct reals. Let P ⊆ {xα}α<ω1

be perfect. Since P is in bijection (in fact, homeomorphic to) to 2ω, we may assume
that we have a wellordering ≺ of 2ω of length ω1. Consider ≺ as a subset of 2ω×2ω.
For every y, {x : x ≺ y} is countable, and therefore is meager. So, ∀∗y ∀∗x ¬(x ≺ y).
Since ≺ has the Baire property, by Kuratowski-Ulam we have (2ω × 2ω)− ≺ is
comeager, and thus ∀∗x ∀∗y ¬(x ≺ y). This is a contradiction since for any x,
{y : x ≺ y} is co-countable and thus comeager. �

Remark 2.15. The proof of theorem 2.14 shows in ZF that if there is a wellordering
of the reals, then there is a set without the Baire property. See also remark 2.22.

Exercise 14. Show from AD that there does not exists an ω1 sequence of distinct
closed or open sets in a Polish space. [remark: the same is actually true for any
level of the Borel hierarchy; we’ll show this later.]

Another application of this argument gives the following important fact, the full
aditivity of the category ideal.

Theorem 2.16 (ZF + AD). A wellordered union of meager sets is meager.

Proof. Suppose {Aα}α<θ is given with each Aα meager, but A =
⋃
α<θ Aα non-

meager. Let ρ ≤ θ be the least ordinal such that
⋃
α<ρAα is non-meager. Since A

has the Baire property, there is a basic open set U in X such that A is comeager
on U . Let

≺= {(x, y) ∈ U × U : ∃α < β (x ∈ Aα −
⋃
α′<α

Aα′ ∧ y ∈ Aβ −
⋃
β′<β

Aβ′)}.

For all x in U , {y ∈ U : x ≺ y} is comeager in U . So, for comeager many y ∈ U ,
{x ∈ U : x ≺ y} is comeager in U . However, the last set is meager by the minimality
of ρ. �

We now discuss the situation concerning measure.

Exercise 15. Let µ be a Borel probability measure on 2ω. Let A be a µ measurable
set. Show that for any ε > 0, there are basic open sets Nj (in the usual base for
2ω) such that A ⊆

⋃
j Nj and |µ(A) −

∑
j µ(Nj)| < ε. [hint: Since µ is regular, it

is enough to show this for open A. Write A as a countable disjont union of basic
open sets.]
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Theorem 2.17. Let µ be a Borel probability measure on a Polish space X. Then
every A ⊆ X is µ-measurable.

Proof. We first argue that it is enough to prove the theorem in the case X = 2ω.
Let µ be a Borel measure on the Polish space X, and let π : X → 2ω be a Borel
bijection (we assume X is uncountable, or the result is trivial). Let ν = π(µ). That
is, ν is the measure on 2ω given by ν(B) = µ(π−1(B)). Suppose A ⊆ X is given.
Let B = π[A]. By the 2ω case of the theorem, there is a Borel set C ⊆ 2ω such that
Z
.
= B4C has ν meqasure 0. So, there is a Borel set D with Z ⊆ D and ν(D) = 0.

Then, π−1(C) and π−1(D) are Borel sets in X and µ(π−1(D)) = 0. Since π is a
bijection, A4π−1(C) = π−1(D). Thus, A is µ-measurable.

Suppose now A ⊆ 2ω, and µ is a Borel probability measure on 2ω. Let M be
a maximal collection of Borel sets of positive measure which are pairwise almost
disjoint, and almost contained in A (“almost” refers to the measure µ). M must be
countable, say M = {Bi}i<ω. Let B =

⋃
iBi. So, µ(B − A) = 0 and every Borel

subset of A−B has µ measure 0. It suffices to show that A−B has measure 0, as
then A = (A−B)∪ (B− (B−A)), which is a union of a measure 0 set and a Borel
set minus a measure 0 set.

Changing notation, let us assume that A ⊆ 2ω and every Borel subset of A has
µ measure 0. We must show that A has µ measure 0. Note that in fact every
µ-measurable subset of A has µ measure 0.

For every fixed ε > 0 we consider the following “covering” game Gε(A) (due to
Harrington).

I x(0) x(1) x(2) . . .

II a0 a1 a2 . . .

where I plays x(i) ∈ {0, 1} building a real x ∈ 2ω, and II plays integers ai ∈ ω
which we think of as coding a finite sequence N i

0, . . . , N
i
ki

of basic open sets in 2ω.

II must must play so that
∑
j≤ki µ(N i

j) ≤ ε
4n (otherwise II loses). If II follows the

rules, then II wins the run iff (x ∈ A→ x ∈
⋃
i

⋃
j≤ki N

i
j).

Suppose I had a winning strategy σ. Note that B = σ[ωω] ⊆ A, and B ∈ Σ1
1.

In particular, B is µ measurable, and so µ(B) = 0. Let N1, N2, . . . be a sequence
of basic open sets in 2ω with A ⊆

⋃
j Nj and such that

∑
j µ(Nj) < ε. Let a0 code

the first k0 of the Nj, where k0 is large enough so that
∑
j>k0

µ(Nj) <
ε
4 . Let a1

code the sets Nk0+1, . . . N − k1 where k1 is large enogh so that
∑
j>k1

µ(Nj) <
ε
42 .

Continue in this manner to define ai, so that the sum of the µ(Nj) for j coded by
ai is less than ε

4i . If II plays the ai, then II wins the run, a contradicion.
Suppose now that τ is a winning strategy for II. For each i, let Ui be the union

of all the N i
j = N i

j(s) coded by some ai of the form τ(s) for s ∈ 2i. The µ measure

of Ui is at most 2i · ε4i = ε
2i . Then U =

⋃
i Ui contains A and µ(U) ≤

∑
i
ε
2i = 2ε.

So, for every ε > 0, A can be covered by an open set of µ measure less than ε.
This shows that A has µ measure 0. �

Many of the sets constructed with AC give rise to sets which are non-measurable
and without the Baire property. For example, consider an ultrafilter U on ω. We
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view U as a subset of 2ω by identifying an A ⊆ ω with its characteristic function
χA ∈ 2ω. We then have the following.

Theorem 2.18 (ZF). Suppose U is a non-principal ultrafilter on ω. Then U is
non-measurable and does not have the Baire property (measurable here refers to the
standard Bernoulli measure on 2ω).

Proof. Suppose first that U has the Baire property. Note that for any x, y ∈
2ω, if ∃n ∀m ≥ n (x(m) = y(m)), then x ∈ U iff y ∈ U (by x ∈ U we mean
{n : x(n) = 1} ∈ U). This is because every co-finite set is in the ultrafilter. If
s ∈ 2<ω is such that U is comeager on Ns, then it follows that U is comeager on
every Nt with lh(t) = lh(s). This is because the natural bijection between Ns and
Nt is a homeomorphism, and so preserves category. Thus, either U is meager or
else comeager. Consider now the map π : 2ω → 2ω defined by π(x)(n) = 1− x(n).
Clearly π is a homeomorphism, and so U is meager (or comeager) iff π(A) is meager
(or comeager). However, x ∈ U iff π(x) /∈ U , and so U is meager (or comeager) iff
2ω − U is meager (or comeager), a contradiction.

Suppose next that U is measurable. If U has positive measure, then for any ε > 0
there is a basic open set Ns such that µ(U ∩Ns) > (1− ε)µ(Ns) (Lebesgue density
theorem). Again, the natural bijection between Ns and Nt, where lh(s) = lh(t) is
measure preserving, and so µ(U ∩Nt) > (1− ε)µ(Nt). It follows that µ(U) ≥ 1− ε.
Since this holds for all ε > 0, we have µ(U) = 1. So, either µ(U) = 0 or µ(U) = 1.
Consider again the map π, and note that π is also measure preserving. So, µ(U) = 0
(or = 1) iff µ(π(U)) = 0 (or = 1). Since π flips menbership in U , we have that
µ(U) = 0 (or = 1) iff µ(2ω − U)) = 0 (or = 1), a contradiction. �

As a consequence of this, we have the following.

Theorem 2.19 (AD). Every ultrafilter on a set X is countably additive.

Proof. Let U be an ultrafilter on X. We may assume U is non-principal since
principal untrafilters are arbitrarily additive. Suppose U is not countable additive,
say An ⊆ X are such that An /∈ U but A

.
=

⋃
nAn ∈ U . We may assume the An

are increasing by finite additivity of U . Define f : x→ ω by f(x) = the least n such
that x ∈ An. Let µ = f(U), so µ is an ultrafilter on ω. µ is non-principal since
each An /∈ U . From theorem 2.18, µ does not have the Baire property as a subset
of 2ω. This contradicts theorem 2.5. �

Definition 2.20. A measure on a set X is a countably aditive ultrafilter on X.

So, assuming AD, every ultrafilter on a set X is a measure. As another excample
we have the following.

Lemma 2.21. If there is a wellordering of the reals, then there is a set without the
Baire property, and there is a set which is not measurable.

Proof. Suppose {xα}α<c is a wellordering of 2ω. suppose that every subset of 2ω

has the Baire property. Let ρ ≤ c be least such that Aρ
.
= {xα}α<ρ is non-meager.

Let ≺= {(xα, xβ) : α < β < ρ}. We have that ∀y ∈ 2ω ∀∗x ∈ 2ω ((x, y) /∈≺). Since
≺ has the Baire property, by Kuratowski-Ulam we have ∀∗x ∀∗y ((x, y) /∈≺). Since
Aρ is non-meager, there is an x ∈ Aρ such that ∀∗y ((x, y) /∈≺). Say x = xα, where
α < ρ. Since {xβ : α < β < ρ} must be non-meager, there is an xβ in this set such
that (xα, xβ) /∈≺, contradicting the definition of ≺.
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The argument for measure is similar, using Fubibi’s theorem instead of Kuratowski-
Ulam. �

Remark 2.22. Shelah has shown in ZF + DC that if there is an uncountable
wellordered set of reals, then there is a non-measurable set. The proof of this also

shows that if every Σ1
3 is measurable, then ∀x (ω

L[x]
1 < ω1). Thus, the statement

that every Σ1
3 set is measurable has the consistency strength of an inaccessible

cardinal. On the other hand, Shelah has shown that if ZF is consistent then so is
ZF+“every set of reals has the Baire property”. So, even the Baire property for all
sets of reals doesn’t have consistency strength beyond ZF. This is an interesting
asymmetry between measure and category.

3. Turing Degrees

If x, y are in ωω or 2ω, then we say x is Turing reducible to y, x ≤T y iff x can
be effectively computed from y. This can be made precise in several different ways.
For example, one use the notion of computation from an oracle. In this approach,
the ordinary notion of a Turing machine is modified to include an auxiliary tape
(the “oracle”) which is read-only, and which the machine is allowed to scan at any
time (in the current position). The action the machine takes at any step is allowed
to depend on this scanned value as well as the value on the read-write tape (and
the state of the machine as usual). Thus, when we say “x is computed from y,”
we mean that there is a Turing machine which when started with input n on the
read-write tape and y on the read-only tape will terminate with the correct value
of x(n).

We identify subsets of ω with elements of 2ω via their characteristic functions,
and we frequently pass between the two points of view. We say an x in ωω or 2ω (ar
a subset of ω) is recursive if x is computable from the constant 0 sequence (i.e., x is
just outright computable). We say x ≡T y if x ≤T y and y ≤T x. It is clear that ≡T
is an equivalence relation on the reals and ≤T is a partial order on the equivalence
classes. By a Turing degree we mean an equivalence class [x]T = {y : y ≡T x}.
Clearly each Turing degree is a countable set of reals. We sometimes write 0 for
the Turing equivalence class of the contsnt 0 real, that is, the class of all recursive
reals. We write D for the set of Turing degrees. We frequently use d to denote a
Turing degree (i.e., d = [x]T for some x ∈ ωω).

By the cone above x, we mean the set {y : x ≤T y}. This is clearly a set of
Turing degrees. We have the following fundamental theorem of Martin.

Theorem 3.1 (Martin). Every set of Turing degrees either contains or omits a
cone of degrees.

Proof. Let A ⊆ D be a set of degrees. Consider the usual game GA:

I x0 x2 x4 . . .

II x1 x3 x5 . . .

So, I wins the run iff x ∈ A. Suppose that I has a winning strategy σ. Let d ∈ D
and σ ≤T d (i.e., d is in the cone above σ). Consider the run of the game where I
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follows σ and II plays any x with d = [x]T . The resulting run σ(x) is computable
from σ and x, and thus computable from x (since σ ≤T x). Clearly x is also
computable from σ(x) (x = (σ(x))1). So, d = [x]T = [σ(x)]T . Since σ is winning
for I, σ(x) ∈ A, and since A is a set of degrees, d ∈ A. So, A contains the cone
above σ. A similar argument shows that if II has a winning strategy τ , then D−A
contains the cone above τ . �

In view of theorem‘3.1 we make the following definition.

Definition 3.2. The Martin measure on the set of turing degrees D is the measure
defined by cones, that is, A ⊆ D has measure one iff A contains a cone of degrees.

Theorem 3.1 says that the Martin measure is in fact a measure (i.e., a countably
additive ultrafilter) on D (recall that from AD every ultrafilter is countably additive,
although here it is obvious directly that the Martin measure is countably additive).

We can give an improvement to theorem 3.1. To state this, we make the following
definition.

Definition 3.3. A tree T on {0, 1} (or on ω) is said to be pointed if for any x ∈ [T ],
T ≤T x.

Thus, a tree T is pointed if T is computable from any of its branches. We now
state our improvement to theorem 3.1.

Theorem 3.4 (ZF + AD). Let A ⊆ 2ω (or ωω). Then there is a perfect pointed
tree T on {0, 1} (or on ω) such that [T ] ⊆ A or [T ] ⊆ 2ω −A.

Proof. Suppose A ⊆ 2ω, and consider again the basic game GA. Suppose I has a
winning strategy σ (the case for II is similar). For any x = (x(0), x(1), . . . ) ∈ 2ω,
let σ(x) = (y(0), x(0), y(1), x(1), . . . ) be the real produced when II plays x and I
follows σ. So, for any x ∈ 2ω, σ(x) ∈ A. consider the set C ⊆ 2ω of those x such
that for all n, x(2n) = 1 iff σ(n) = 1 (viewing σ as an element of 2ω). Clearly
σ[C] = [T ] for some perfect tree T . So, [T ] ⊆ A. If z ∈ [T ], then ((z)1)0 = σ,
and so σ ≤T z. However, T is computable from σ, and so T ≤T z. Thus, T is
pointed. �

We note that theorem 3.4 is indeed a strengthening of theorem 3.1. For suppose
A ⊆ D, and T is perfect pointed with [T ] ⊆ A. Suppose x ≥T T . Define a branch y
of T as follows. Let y = s0

ax(0)as1
ax(1) . . . , where s0 is the least splitting node of

T (i.e., such that s0
a0, s0

a1 are both in T ), s1 is the least splitting node extending
s0
ax(0), etc. Clearly y is computable from T an x. Since x ≥T T , we have y ≤T x.

On the other hand, x is computable from y and T . Since T is pointed, T ≤T y,
and so x ≤T y. Thus, x ≡T y. Since y ∈ [T ], y ∈ A and thus x ∈ A as A ⊆ D. So,
A containsa the cone above T .

To give an application of the Martin measure we use the following fact, whose
proof uses the coding lemma, which we give later (in fact, the coding lemma provides
a much stronger version of the fact).

Fact 3.5 (ZF + AD). If there is a map from ωω onto an ordinal λ, then there is a
map from ωω onto P(ωω).

We make the following important definition.

Definition 3.6. Θ is the supremum of lengths of the prewellorderings of ωω.
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Of course, it makes no difference in the definition of Θ whether we use ωω, 2ω, or
any other uncountable polish space (as they are all isomorphic). Easily Θ is a limit
ordinal. Equivalently, we can say that Θ is the supremum of the ordinals λ such
that there is a surjection from ωω onto λ. Assuming AC, where ωω has a welldefined
cardinality, Θ = (2ω)+ (so Θ = ω2 assuming CH). However, the definition is meant
primarily in the determinacy context, and provides an AD version of the cardinality
of the reals.

Assuming countable choice gives that cof(Θ) > ω according to the following
exercise.

Exercise 16. Assume ZF+ countable choice. Show that cof(Θ) > ω. [hint: sup-
pose {αn}n∈ω were a cofinal ω sequence in Θ. By countable choice, let �n by a
prewellordering of ωω of length αn. Glue the �n together to get a prewellordering
of length Θ, a contradiction.]

Theorem 3.7 (ZF + AD). Every countably additive filter F on an ordinal λ < Θ
can be extended to a measure on λ.

Proof. Since λ < Θ, from fact 3.5 there is a map π : ωω
onto−→ P(λ). For every degree

d, define

Ad =
⋂
{π(x) : x ∈ d ∧ π(x) ∈ F}.

Let f(d) be the least element of Ad, which makes sense since F is countably additive.
So, f : D → λ. Let µ = f(ν), where ν is the Martin measure on D. So, µ is a
measure on λ. If F ∈ F , then consider x such that π(x) = F . If d ∈ D with
x ≤T d, then Ad ⊆ F , and so f(d) ∈ F . So, ∀∗νd (f(d) ∈ F ). Thus, µ(F ) = 1. so,
µ extends the filter F . �

Corollary 3.8. If λ < Θ and cof(λ) > ω, then there is a measure µ on λ such that
µ([0, α]) = 0 for all α < λ.

Proof. Let F be the co-bounded filter on λ. Since cof(λ) > ω, F is countably
additive. From theorem 3.7, there is a measure µ on λ extending F . Since µ
extends F , every co-bounded set has µ measure 1, and so every bounded in λ set
has µ measure 0. �

As another application of the Martin measure, we give the following theorem of
Kunen.

Theorem 3.9 (ZF+AD). Let λ < Θ. Then the set of measures on λ is wellorder-
able.

Proof. Again let π :
onto−→ P(λ). Suppose µ1, µ2 are measures on λ. For µ a measure

on λ and d ∈ D, again let

Aµd =
⋂
{π(x) : x ∈ d ∧ µ(π(x)) = 1}.

Let also fµ(d) be the least element of Aµ(d). Define µ1 ≺ µ2 iff ∀∗νd (fµ1(d) <
fµ2(d)). For any two measure µ1, µ2 we have either µ1 ≺ µ2 or µ2 ≺ µ1. To see
this, let A ⊆ λ such that (without loss of generality) µ1(A) = 0, µ2(A) = 1. Let
π(x0) = A, π(x1) = λ−A. If x0, x1 ≤T d ∈ D, then fµ1(d) ∈ λ−A and fµ2(d) ∈ A,
and thus fµ1(d) 6= fµ2(d). So, ∀∗νd (fµ1(d) 6= fµ2(d)), and it follows that that either
µ1 ≺ µ2 or µ2 ≺ µ1. Easily ≺ is transitive and irreflexive. So, ≺ is a linearordering
of the measures on λ. To see it is wellfounded, suppose µn+1 ≺ µn for all n. Let
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An ⊆ D be such that for all d ∈ An, fµn+1(d) < fµn(d). By countable additivity of
ν,

⋂
nAn 6= ∅. Let d ∈

⋂
nAn. Then fµ1(d) > fµ2(d) > · · · , a contradiction. �

In view of theorem 3.9, we make the following definition.

Definition 3.10 (ZF + AD). For λ < Θ, let β(λ) denote the cardinality of the set
of measures on λ.

We will give estimates for β(λ) later.

4. Wadge Degrees

We now turn to a discussion of the basic facts concerning Wadge degrees. The
objects of study now are not reals but sets of reals. It is most convenient for this
discussion to work in the space ωω, which we do for the rest of this section. We
will frequently write Ac for the complement ωω −A.

Recall that a function f from a metric space (X, d) to a metric space (Y, ρ) is said
to be Lipschitz continuous, with Lipschitz constant C, if ρ(f(x), f(y)) ≤ Cd(x, y)
for all x, y ∈ X. In the case X = Y = ωω, and d = ρ = the usual metric:
d(x, y) = 1

2n , where n is least such that x(n) 6= y(n) (and d(x, y) = 0 if x = y), to say
that f is Lipschitz continuous (with constant 1) simply means that if x � n = y � n,
then f(x) � n = f(y) � n. We simply call such a function Lipschitz continuous.
Note that Lipschitz continuous functions are essentially strategies for II in integer
games (a strategy for I is also Lipschitz continuous, and in fact slightly better).

Definition 4.1. Lat A, B ⊆ ωω. We say A is Wadge reducible to B, A ≤w B,
if there is a continuous function f : ωω → ωω such that A = f−1(B). We say A
is Lipschitz reducible to B, A ≤` B, if there is a Lipschitz continuous function
f : ωω → ωω such that A = f−1(B).

Note that to say A = f−1(B) means that for all x we have x ∈ A iff f(x) ∈ B.
Thus f reduces the question of membership in A to that of membership in B.
Trivially, if A ≤` B then A ≤w B. Both ≤` and ≤w are clearly reflexive and
transitive (the composition of two Lipschitz functions is Lipschitz), that is, both
are partial orders. Note also that Γ ⊆ P(ωω) is a pointclass iff Γ is closed under
Wadge reduction.

Note that A ≤` B iff Ac ≤` Bc, and likewise for ≤w.
AD gives us direct information about the partial order ≤`. The following funda-

mental lemma, due to Wadge, is known as Wadge’s lemma.

Lemma 4.2 (ZF + AD). Let A,B ⊆ ωω. Then either A ≤` B or B ≤` Ac.

Proof. Consider the game GA,B where I plays out x ∈ ωω and II plays out y ∈ ωω,
and where II wins the run iff (x ∈ A ↔ y ∈ B). If II has a winning strategy for
GA,B , then a winning strategy τ gives a Lipschitz continuous function, which we
also call τ , from ωω to ωω such that x ∈ A iff τ(x) ∈ B. Thus, A ≤` B. A winning
strategy σ for I also gives a (slightly better than) Lipschitz continuous function
from ωω to ωω such that for all x, x ∈ B iff σ(x) /∈ A. Thus, B ≤` Ac. �

We can also define a game GwA,B corresponding to Wadge reduction. In this
game, the players make integer moves but II is also allowed to pass. If II makes
a terminal sequence of passes, II loses. Otherwise, the payoff is exactly as in the
Lipschitz game GA,B . It is easy to see that A ≤w B iff II has a winning strategy
in the game GA,B .
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Of course, it follows immediately that for any A,B that either A ≤w B or
B ≤w A.

So, ≤` and ≤w are not linear orders on P(ωω), but if we amalgamate sets with
their complements, then they are. We make this precise in the next definition.

Definition 4.3. By a Lipschitz degree we mean the equivalence class {A,Ac} of a
set A ⊆ ωω together with its complement Ac under the relation {A,Ac} ≡` {B,Bc}
iff A is Lipschitz reducible to either B or Bc, and B is Lipschitz reducible to either
A or Ac. Likewise, we define a Wadge degree to be the equivalence class of a pair
{A,Ac} using ≤w instead of ≤`.

Note that ≤` is welldefined on the Lipschitz degrees, and likewise ≤w is wellde-
fined on the Wadge degrees. That is, {A,Ac} ≤` {B,Bc} iff A ≤` B or A ≤` Bc.
We write [A]` and [A]w for the Lipschitz and Wadge degrees of a set A (that is,
[A]` is the equivalence clas of {A,Ac}). From Wadge’s lemma it follows that ≤`,
and thus also ≤w, is a linear ordering of the Lipschitz (resp. Wadge) degrees. As
usual, we write [A]` < [B]` to mean [A]` ≤ [B]` and [B]` � [A]`.

We next present the following important result of Martin and Monk which states
that the Lipschitz and Wadge degrees are actually wellordered by these orders.

Theorem 4.4 (ZF + DC + AD). The Lipschitz degrees are wellordered under ≤`.
Likewise, the Wadge degrees are wellordered by ≤w.

Proof. Suppose [A0]` > [A1]` > [A2]` > · · · . For each n, II does not have a strategy
in the Lipschitz game GAn,An+1

, and so I has a winning strategy σn for this game.
So, σn(x) ∈ An iff x /∈ An+1. Likewise, II does not win GAn,Acn+1

, so let τn be a

winning strategy for I in this game. Thus, τn(x) ∈ An iff x ∈ An+1.
So, σn “flips” membership between An+1 and An, and τn preserves menbership.

It is important for the following argument that all of the σn, τn are strategies
for I. For z ∈ 2ω we fill in the following diagram in such a way that for all n,
xn = σn(xn+1) if z(n) = 1 and xn = τn(xn+1) if z(n) = 0.

A0 A1 A2 A3 A4 · · ·
x0(0) x1(0) x2(0) x3(0) x4(0) · · ·
x0(1) x1(1) x2(1) x3(1) x4(1) · · ·
x0(2) x1(2) x2(2) x3(2) x4(2) · · ·

...
...

...
...

... · · ·
x0 x1 x2 x3 x4 · · ·

For n such that z(n) = 1, let xn(0) = σn(∅), and for n such that z(n) = 0 let
xn(0) = τn(∅). In a similar manner we fill in all of the xn(i). Let x0(z) be the
value of x0 produced as described above using z ∈ 2ω. Let B0 = {z : x0(z) ∈ A0},
and B1 = {z : x0(z) /∈ A0}. At least one of B0, B1 must be non-meager. Say
Ns be a basic open set in 2ω on which one of these sets is comeager. Say, B0 is
comeager on Ns (the other case is similar). So, B0 is comeager on Nsa0 and on
Nsa1. Consider the map π from Nsa0 to Nsa1 obtained by flipping the lh(s) digit.
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So, π is a homeomorphism between Nsa0 and Nsa1. Since B0 is comeager in Nsa0,
π(B0) is comeager in Nsa1. However, for any z, x0(z) ∈ A0 iff x0(π(z)) /∈ A0 (as τn
does not flip membership but σn does). Thus, π(B0 ∩Nsa0) = B1 ∩Nsa1). Thus,
B1 is also comeager in Nsa1, a contradiction (as B0, B1 are disjoint).

The proof also works for Wadge degrees, since if [A0]w >w [A1]w >w · · · , then
it is also the case that for each n that [An]` >` [An+1]`. �

Variations of the Martin-Monk method are frequently used in the abstract theory
of pointclasses.

As an immediate consequence of Wadge’s lemma we have the following.

Theorem 4.5 (ZF + AD). If Γ is a non-selfdual pointclass, then Γ � ωω has a
universal set.

Proof. Let A ∈ Γ − Γ̌. If B ∈ Γ, then we must have B ≤` A, as otherwise we
would have A ≤` Bc which would give A ∈ Γ̌. Define then U(x, y) ↔ x(y) ∈ A,
where we view every real x as coding a Lipschitz continuous map from ωω to ωω

(for example x(s) = m, for s ∈ ω<ω, iff x(〈s〉) = m). The map (x, y) 7→ x(y) is
continuous, and so U ∈ Γ. Since every B ∈ Γ is Lipschitz reducible to A, it follows
that U is universal for Γ � ωω. �

Definition 4.6. If A ⊆ ωω, we define the Wadge rank of A, o(A) to be the rank
of {A,Ac} in ≤w. Likewise we define the Lipschitz rank o`(A). If Γ is a pointclass,
we define o(Γ) = sup{o(A) : A ∈ Γ}.

So, if Γ is non-selfdual, then o(Γ) = o(A) for any A ∈ Γ− Γ̌.
We develop some of the facts concerning the Lipschitz and Wadge hierarchies.

Note that every Wadge degree is a union of Lipschitz degrees. The following lemma
is another connection.

Definition 4.7. We say {A,Ac} is a selfdual Lipschitz (or Wadge) degree if A ≡`
Ac, otherwise we say the degree is non-selfdual.

Note that if A ≤` Ac then Ac ≤` A, and so A ≡` Ac. The following important
lemma is due to Steel.

Lemma 4.8 (ZF + AD). A ≡w Ac iff A ≡` Ac.

Proof. Suppose A ≤w Ac. Let f : ωω → ωω be continuous such that x ∈ A iff
f(x) ∈ Ac. Suppose A �` Ac. Then I wins the game GA,Ac , say by σ. For each
z ∈ 2ω, we consider the diagram as in the proof of theorem 4.4, where for n such
that z(n) = 1 we use σ (that is xn = σ(xn+1), and if z(n) = 0 we use f (i.e.,
xn = f(xn+1). Since f is just assumed to be continuous, it is no longer the case
that the diagram can always be filled in. However, we claim that for comeager
many z ∈ 2ω, the diagram can be filled in. This is because the the set of z such
that x0 � n, . . . , xn � n are defined is dense open in 2ω. To see this, note that for
any s ∈ 2<ω, there is a t extending s of the form t = sa1m such that a sufficiently
large initial segment of xn is defined so that x0 � n, . . . , xn � n are all defined.
Let C ⊆ 2ω be the comeager set of z such that the diagram can be completely
filled in. Let xi(z) denote the corresponding reals produced. Note that σ preserves
membership in A and f flips membership.

The argument is now similar to that of theorem 4.4. Let C0 = {z ∈ C : x0(z) ∈
A}, and C1 = {z ∈ C : x0(z) /∈ A}. At least one of the Ci is nonmeager, and
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so comeager on some neighborhood Ns of 2ω. So, Ci is comeager in Nsa0 and
Nsa1. Let π be the natural homeomorphism between Nsa0 and Nsa1. Let D =
Nsa0 ∩ Ci ∩ π−1(C), so D is comeager in Nsa0. Thus, π(D) is comeager in Nsa1,
and π(D) ⊆ C1−i, a contradiction since Ci is also comeager in Nsa1 and Ci, C1−i
are disjoint. �

In view of lemma 4.8, we may speak unambiguously of a degree being selfdual
or non-selfdual.

Definition 4.9. If A,B ⊆ ωω, their join is defined by

A⊕B = {x : (x(0) is even and x′ ∈ A) ∨ (x(0) is odd and x′ ∈ B)},
where x′(n) = x(n+ 1). Similarly, if An ⊆ ωω are given for each n, their join is

⊕nAn = {x : x′ ∈ Ax(0)}.

Lemma 4.10 (ZF + AD). For any A,B ⊆ ωω, A,B ≤` A ⊕ B. Furthermore, if
{C,Cc} <` A⊕B then {C,Cc} ≤` A or {C,Cc} ≤` B.

Proof. Clearly A,B ≤` A ⊕ B. For example, to see that A ≤` A ⊕ B, have II
play first play a 0 in the game GA,A⊕B , and then copy I’s moves. Suppose now
that C ≤` A ⊕ B, but A ⊕ B �` C. Thus, I wins the game GA⊕B,C by σ.
suppose σ’s first move is even (the other case is similar). Then σ gives a winning
strategy for II in the game GC,Ac . Thus, C ≤` Ac. So, {C,Cc} ≤` {A,Ac}. So,
o(C) ≤ max{o(A), o(B)}. �

Note that lemma 4.10 does not say that o`(A⊕B) = max{o`(A), o`(B)} (it does
say that o`(A⊕B) ≤ max{o`(A), o`(B)}+ 1). We do get the following.

Lemma 4.11. If A is non-selfdual, then A⊕Ac is the least `-degree strictly above
the degree of A. Also, A ⊕ Ac �w A, so A ⊕ Ac is also the least Wadge degree
strictly above A. Furthermore, A⊕Ac is selfdual.

Proof. First note that A ⊕ Ac �w A. For if A ⊕ Ac ≤w A, then Ac ≤w A. This
contradicts A being non-selfdual. To see that II wins GA⊕Ac,(A⊕Ac)c , if I plays i for
the first move, have II play i + 1 (to change the parity), and then copy I’s moves.
Thus, A ⊕ Ac is selfdual. So, A ⊕ Ac is selfdual and o(A ⊕ Ac) > o(A). Finally,
suppose {B,Bc} <` A⊕Ac. So, I has a winning strategy σ in GA⊕Ac,B . If I’s first
move is even (the other case is similar), then σ gives a strategy for II in the game
GB,Ac , and so o(B) ≤ o(A). �

Corollary 4.11 identifies the next Lipschitz (in fact Wadge) degree after {A,Ac}
when A is non-selfdual. We now identify the next Lipschitz degree when A is
selfdual.

Lemma 4.12 (ZF + AD). Suppose A is selfdual. Then A′
.
= {0ax : x ∈ A} is the

next Lipschitz degree above A. Also, A′ is selfdual.

Proof. Clearly A ≤` A′. Suppose A′ ≤` {A,Ac}. Since A is selfdual, we have
A′ ≤` Ac. So, II has a winning strategy τ in the game GA′,Ac . From the definition
of A′, it follows that τ give a strategy for I in the game GA,A (make a 0 for the
first move, and then follow τ as a strategy for I). II can defeat this, however, by
copying. To see that II wins GA′(A′)c , if I plays 0, then have II play 0 and then
follow a strategy for II in GA,Ac . If I make a first move other than 0, have II play a
0, and then any sequence in A. Thus, A′ is selfdual. Finally, supose {B,Bc} <` A′.
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So, I has a winning strategy σ in GA′,B . σ must make a first move of 0 as otherwise
II could defeat σ by playing a real not in B. Ignoring I’s first move, σ then gives a
winning strategy for II in the game GB,Ac , and so o(B) ≤ o(A). �

Exercise 17. Show that if A is selfdual, then A′ ≡w A (where A′ is as in lemma 4.12).

Exercise 18. Show that if A is non-selfdual, then A′ ≡` A. [hint: Since A is non-
selfdual, I wins the game GA,Ac . This gives a winning strategy for II in the game
GA′,A.]

Lemmas 4.11, 4.12 identify the Lipschitz degrees at successor stages in the Lip-
schitz hierarchy. We next consider limit stages. First we consider limit stages of
cofinality ω.

Lemma 4.13. Suppose {An}n∈ω is given with o`(An) < o`(An+1) for all n. Then
o`(⊕nAn) = supn o`(An). Also, ⊕nAn is selfdual. Furthermore, if An ≡w A0 for
all n, then ⊕nAn ≡w A0.

Proof. Let A = ⊕nAn. Clearly An ≤` A for all n. To see that A is selfdual,
we show that II wins GA,Ac . If I makes first move n, II plays any m such that
o`(An) < o`(Am). II then follows any winning strategy for II in GAn,Acm . Suppose
{B,Bc} <` A. Since A �` B, I has a winning strategy σ in GA,B . From the
definition of join, this gives a winning strategy for II in the game GB,Acn , where
n = σ(∅). Thus, {B,Bc} ≤` {An, Acn}. Thus, o`(A) = supn o`(An).

Finally, suppose An ≡w A0 for all n. II has a winning strategy in GwA,A0
defined

as follows. If I makes first move n, II passes, and then follows a strategy for II in
the game GwAn,A0

. �

Thus, at limit stages of cofinality ω in the Lipschitz hierarchy, there is a selfdual
degree. From lemma 4.13 it follows that after a non-selfdual degree {A,Ac}, the
next ω1 Lipschitz degrees are all selfdual and all of the same Wadge degree as
{A,Ac}.

Now we consider stages in the Lipschitz hierarchy of uncountable cofinality.

Lemma 4.14. Suppose cof(α) > ω. Then the A such that o`(A) = α is non-
selfdual.

Proof. Suppose o(A) = α, and A is selfdual. For each n ∈ ω, let An = {x : nax ∈
A}. Thus, A = ⊕nAn. Let αn = o(An). If αn < α for all α, then o`(A) =
supn αn < α, a contradiction. So, fix n such that o`(An) = o`(A), in particular, An
is selfdual. Thus, II has a winning strategy in GA,Acn . If we fix I’s first move as n,
and then copy II’s moves, we defeat II’s winning strategy. �

From the previous lemmas, we now have a comnplete picture of the Lipschitz
and Wadge hierarchies.

Theorem 4.15 (ZF+AD). The non-selfdual and the selfdual Wadge degrees alter-
nate. At limit stages of countable cofinality there is a selfdual Wadge degree which is
the degree of the join of Waadge degrees from a cofinal ω sequence. At limit stages
of uncountable cofinality there is a non-selfdual Wadge degree. Every non-selfdual
Lipschitz degree is non-selfdual as a Wadge degree. Every selfdual Wadge degree
consists of an ω1 block of selfdual Lipschitz degrees.
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Along the way, we have also obtained some additional information about the
degrees. For A ⊆ ωω and n ∈ ω, recall An = {x : nax ∈ A}. Also, for s ∈ ω<ω, let
As = {x : sax ∈ A}.

Lemma 4.16. If A is a selfdual degree, then for every n ∈ ω, Am <` A. Also, for
every x ∈ ωω there is an n such that Ax�n <w A. If A is non-selfdual, then there
is an x ∈ ωω such that for all n, Ax�n ≡w A (thus, this property characterizes the
non-selfdual degrees).

Proof. Clearly As ≤` A for any s and any A. If A is selfdual, then we showed in
the proof of lemma 4.14 that for every n that An <` A. So, for any x ∈ ωω, the
sequence Ax�0, Ax�1, . . . is strictly decreasing as Lipschitz degrees until we hit a
non-selfdual degree Ax�n (which we must eventually do by wellfoundedness). We
then have that Ax�n <w A as otherwise A is non-selfdual.

Suppose now that A is non-selfdual. If for each n we had An <w A, then
A = ⊕nAn would be selfdual. Namely, II could win Gw(A,Ac) as follows: I plays
n, II passes, and then II follows a strategy Wadge reducing An to Ac. So, for some
n we have An ≡w A, and in particular An is also non-selfdual. Repeating the
argument gives an x such that for all n, Ax�n ≡w A. �

Exercise 19. Show the property of lemma 4.16 for Wadge degrees directly, that is
without mentioning Lipschitz degrees. [hint: suppose A is selfdual, and suppose
x ∈ ωω were such that for all n, Ax�n ≡w A. For each n, fix winning strategies σn,
τn for II in the Wadge games Gw(A,Ax�n) and Gw(A,Acx�n). Define a sequence of
integers kn inductively so that for all n, if we set sn = x � kn and for m < n let
sm = (x � km)aρkm(sm+1), then lh(s0) ≥ n (for all choices of ρkm ∈ {σkm , τkm}).
For every z ∈ 2ω, this defines a filling-in of a diagram producing x0, x1, . . . with
xn � kn = x � kn, and where xn = σkn(xn+1) if x(n) = 0 and xn = τkn(xn+1) if
x(n) = 1. This gives a contradiction as in theorem 4.4.]

The analysis of Wadge degrees (Theorem 4.15) gives immediately an analysis of
the pointclasses.

Theorem 4.17 (ZF + AD). Let Γ be a pointclass. then one of the following cases
holds.

(1) There is a non-selfdual Wadge degree [(A,Ac)]w with Γ = {B : B ≤w A}
(note: this case is symmetrical between A and Ac).

(2) There is a selfdual Wadge degree [(A)]w such that Γ = {B : B ≤w A}.
(3) There is a non-selfdual Wadge degree [(A,Ac)]w with Γ = {B : B ≤w A} ∪
{B : B ≤w Ac}.

(4) There is a limit ordinal α such that Γ = {B : ow(B) < α}.
In the first case, Γ is non-selfdual, and in the last three cases Γ is selfdual.

Proof. Consider I = {α ∈ On: ∃A ∈ Γ ow(A) = α}. Clearly I is an ordinal (if
A ∈ Γ and (B,Bc) <w (A,Ac), then B,Bc ∈ Γ by Wadge). If I is a limit ordinal
(that is, there is no largest α in I), then we have that Γ is selfdual (if A ∈ Γ, let
B ∈ Γ with (A,Ac) <w (B,Bc), then Ac ≤ B and so Ac ∈ Γ). Suppose then that
there is a largest ordinal α in I. Let ow(A) = α. If A is selfdual, then for every
B ∈ Γ we have B ≤w A and so Γ = {B : B ≤w A}. As A is selfdual, so is Γ in
this case. If (A,Ac) is a non-selfdual Wadge degree, at least one of A, Ac must
be in Γ (as α is in I). If exactly one of these sets, say A, is in Γ, then for every
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B ∈ Γ we must have B ≤w A as otherwise, by Wadge, Ac ≤w B would be in Γ.
So, Γ = {B : B ≤w A}. Γ is clearly non-selfdual in this case. If Γ contains both A
and Ac, then Γ ⊇ {B : B ≤w A} ∪ {B : B ≤w Ac}. We must have equality here as
otherwise α is not the largest element of I. Clearly Γ is selfdual then. �

5. Theory Of Pointclasses

We continue with the AD theory of Wadge degrees, developing an abstract theory
of pointclasses. Recall the definitions of the separation and reduction properties.

Definition 5.1. Let Γ be a pointclass. Γ has the separation property if for all
A,B ∈ Γ with A ∩B = ∅, there is a C ∈∆ = Γ ∩ Γ̌ with A ⊆ C and C ∩B = ∅

Note that this definition is symmetrical between A and B. We say the set C (as
in the definition) separates A from B. We let sep(Γ) denote the statement that Γ
has the separation property.

Definition 5.2. Let Γ be a pointclass. Γ has the reduction property if for all
A,B ∈ Γ there are A′, B′ ∈ Γ with A′ ⊆ A, B′ ⊆ B, A′ ∩ B′ = ∅, and A′ ∪ B′ =
A ∪B.

Note that (in the notation of the definition), A− B ⊆ A′ and B − A ⊆ B′. the
points in A ∩ B can go in either A′ or B′ (but only one of them). We let red(Γ)
denote the reduction property for Γ.

The reduction property is a stronger property in the sense of the following.

Fact 5.3 (ZF). red(Γ)→ sep(Γ̌).

Proof. Asssume red(Γ), and let A,B ∈ Γ̌ with A∩B = ∅. Let A1 = Bc, B1 = Ac,
so A1, B1 ∈ Γ and A1 ∪B1 = ωω. �

First we consider the separation property. We have the following general result
of Steel and Van-Wesep.

Theorem 5.4 (ZF+AD). For every non-selfdual pointclass Γ, exactly one of sep(Γ)
or sep(Γ̌) holds.

Steel showed [?] that for every non-selfdual Γ that either sep(Γ) or sep(Γ̌) holds.
Van-wesep [?] showed that both sides of a non-selfdual class cannot have the sepa-
ration property.

We first prove Steel’s theorem, which we state separately in the following.

Theorem 5.5 (Steel). Assume ZF + AD. For every non-selfdual pointclass Γ,
either sep(Γ) or sep(Γ̌).

Proof. Let Γ be non-selfdual, and let ∆ = Γ ∩ Γ̌. We say a pair of sets A,B ⊆ ωω
is ∆-inseparable if there is no ∆ set C separating them, that is, A ⊆ C, C ∩B = ∅
(this is symmetric in A and B).

Lemma 5.6. Let A0, A1 be sets which are ∆ inseparable. Then for any pair B0, B1

of disjoint sets both of which in Γ or both of which are in Γ̌, there is a strategy σ
for I (i.e., a Lipschitz 1

2 function) such that for all x ∈ ωω, (x ∈ B0 → σ(x) ∈ A0)
and (x ∈ B1 → σ(x) ∈ A1).
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Proof. Play the game where I plays out z ∈ ωω and II plays out x ∈ ωω and I wins
the run iff

(x ∈ B0 → z ∈ A0) ∧ (x ∈ B1 → z ∈ A1).

If I has a winning strategy σ, then we are done. If II has a winning strategy τ ,
then note that ∀z (τ(z) ∈ B0 ∪B1). Also, if z ∈ A0, then τ(z) ∈ B1, and if z ∈ A1

then τ(z) ∈ A1. So, {z : τ(z) ∈ B1} = ωω − {z : τ(z) ∈ B0}, and so these are both
∆ sets. This gives a separation of A0 and A1, a contradiction. �

To prove theorem 5.5, suppose toward a contradiction that ¬ sep(Γ) and ¬ sep(Γ̌).
Let A0, A1 be Γ sets which are ∆ inseparable, and let B0, B1 be Γ̌ sets which are ∆-
inseparable. From the lemma (applied to the ∆-inseparable pair B0, B1) there is a
continuous function f such that (x ∈ A0 → f(x) ∈ B0) and (x ∈ A1 → f(x) ∈ B1).
Let C0 = f−1(B0), C1 = f−1(B1). Thus, C0, C1 ∈ Γ̌, A0 ⊆ C0, A1 ⊆ C1, and
C0 ∩ C1 = ∅.

From the lemma (appplied to the ∆-inseparable pair A0, A1) there is a strategy
σ0 for I such that (x ∈ C0 → σ0(x) ∈ A1), and (x ∈ C1 → σ0(x) ∈ A0). There
is also a strategy σ1 for I such that (x ∈ A0 → σ1(x) ∈ A0) and (x ∈ Cc0 →
σ1(x) ∈ A1). Finally, there is a strategy σ2 for I such that (x ∈ A1 → σ2(x) ∈ A1),
and (x ∈ Cc1 → σ2(x) ∈ A0). For any z ∈ 3ω there is a filling-in of the diagram
to produce reals x0, x1, . . . such that xn = ρ(xn+1) where ρ = σ0 or σ1 or σ2 if
z(n) = 0 or 1 or 2 respectively. Let x0(z) be the value of x0 produced for this
particular z. Note that all of the σi have the property that if x ∈ A0 ∪ A1 then
σi(x) ∈ A0 ∪A1.

We now get the usual contradiction an in theorem 4.4. Namely, let E0 =
{z : x0(z) ∈ C0}, E1 = {z : x0(z) ∈ C1}, and E2 = {z : x0(z) /∈ C0 ∪ C1}. Let
s ∈ ω<ω be such that one of the Ei is comeager on Ns. Suppose E0 is comeager on
Ns. So, E0 is comeager on the neighborhood determined by t = sa0kas for any k.
By choosing k of the appropriate parity, we have that for almost all z in Nt that
x0(z) ∈ A1 ⊆ C1, a contradiction. The argument in the case E1 is comeager on Ns
is identical. Finally, suppose E2 is comeager on Ns. Then E2 is also comeager on
Nt, for t = sa1as. However, for almost all z in Nt we have x0(z) ∈ A0 ∪ A1 from
the definition of σ1 (we use here the fact that if x /∈ C0, then σ1(x) ∈ A1, and so
all further σi applied to this point stay in A0 ∪ A1). This is a contradiction and
completes the proof of theorem 5.5. �

We now give the other half of theorem 5.4.

Theorem 5.7 (Van Wesep). Assume ZF + AD. If Γ is non-selfdual, then sep(Γ),
sep(Γ̌) cannot both hold.

Proof. Suppose toward a contradiction that sep(Γ), sep(Γ̌) both hold. Let A ∈
Γ− Γ̌. We again regard every real x ∈ ωω as coding a Lipschitz continuous function
from ωω to ωω. Define A0(x, y) ↔ ((x)0(y) ∈ A) and A1(x, y) ↔ ((x)1(y) ∈ A).
Then A0, A1 ∈ Γ and form a Γ-universal pair. That is, for every pair B0, B1 of
Γ sets, there is an x such that B0 = (A0)x, B1 = (A1)x (recall Cx denotes the
section {y : C(x, y)} of the set C). We cannot have that A0 −A1 and A1 −A0 can
be separated by a ∆ set. This is the same argument that red(Γ)→ ¬ sep(Γ). Here
briefly is the argument again. Suppose C ∈∆ and A0−A1 ⊆ C, C∩(A1−A0) = ∅.
Then C ∈ ∆ and is universal for ∆ sets, a contradiction (since we then define
D(x) ↔ ¬C(x, x), so D ∈ ∆, and for all x, D 6= Cx). Since we are assuming
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sep(Γ̌), it follows that A0 − A1 and A1 − A0 cannot be separated by disjoint Γ̌
sets (that is, there does not exist disjoint Γ̌ sets D1, D2 with A0 − A1 ⊆ D0 and
A1 −A0 ⊆ D1).

Consider the game G0 where I plays out x, II plays out y, and II wins the run iff

(y ∈ A0 ∪A1)

∧ ((x ∈ A0 −A1)→ (y ∈ A0 −A1))

∧ ((x ∈ A1 −A0)→ (y ∈ A1 −A0)).

If II had a winning strategy τ , then D0 = τ−1(Ac1) and D1 = τ−1(Ac0) would be
disjoint Γ̌ sets with A0 − A1 ⊆ D0, A1 − A0 ⊆ D1, a contradiction. Let σ0 be
a winning strategy for I in G0. Then y ∈ (A0 − A1) → (σ0(y) ∈ A1 − A0), y ∈
(A1−A0)→ (σ0(y) ∈ A0−A1), and y ∈ (A0∪A1)→ σ0(y) ∈ ((A0−A1)∪(A1−A0)).

Now apply the same argument to to the pair Ac0, Ac1, which is a universal pair
for Γ̌. As before, we cannot have that Ac0 −Ac1 = A1 −A0 and Ac1 −Ac0 = A0 −A1

can be separated by disjoint Γ sets. We consider the game G1 where I plays out x,
II plays out y, and II wins the run iff

(y ∈ Ac0 ∪Ac1)

∧ ((x ∈ A0 −A1)→ (y ∈ A1 −A0))

∧ ((x ∈ A1 −A0)→ (y ∈ A0 −A1)).

If II had a winning strategy τ , then D0 = τ−1(A1), D0 = τ−1(A0) would be disjoint
Γ sets separating A0 −A1 and A1 −A0. Let σ1 be a winning strategy for I in G1.
Then y ∈ (A0 − A1) → (σ0(y) ∈ A0 − A1), y ∈ (A1 − A0) → (σ0(y) ∈ A1 − A0),
and y ∈ (Ac0 ∪Ac1)→ σ0(y) ∈ ((A0 −A1) ∪ (A1 −A0)).

Notice that σ0 flips menbership between A0−A1 and A1−A0, while σ1 preserves
menbership. Also, σ0 maps A0∪A1 into the union of these two sets, while σ1 maps
(A0 ∩A1)c into these two sets.

We get the usual Martin-Monk contradiction. For every z ∈ 2ω, consider the
filling-in to produce x0, x1, . . . where xn = σ0(xn+1) if z(n) = 0, and xn = σ1(xn+1)
if z(n) = 1. Suppose that for nonmeager many z that x0(z) /∈ (A0−A1)∪(A1−A0).
Say for nonmeager many z that x0(z) ∈ (A0 ∪A1)c (the case where for nonmeager
many z we have x0(z) ∈ A0 ∩ A1 is similar). Say E = {z : x0(z) /∈ A0 ∪ A1} is
comeager on Ns. So, E is also comeager on Nt, where t = sa1as. But y /∈ (A0∪A1)
implies σ1(y) ∈ (A0 − A1) ∪ (A1 − A0). So, for comeager in Nt many z we have
that x0(z) ∈ (A0 − A1) ∪ (A1 − A0), a contradiction. So, for comeager many z
we have x0(z) ∈ (A0 − A1) ∪ (A1 − A0). Suppose without loss of generality that
F = {z : x0(z) ∈ A0 − A1} is comeager on Ns. Then F is comeager on Nt, where
t = sa0kas, and this is a contradiction as σ0 flips membership between A0 − A1

and A1 −A0, provided we take k of the appropriate parity. �

This completes the proof of theorem 5.4.
One use of the separation property is to transfer closure properties from ∆ to

Γ.

Theorem 5.8 (Steel). Assume ZF+AD. Let Γ be non-selfdual and assume sep(Γ̌).
Then:

(1) If ∆ is closed under finite (countable) unions, then Γ̌ is closed under finite
(resp. countable) unions.

(2) If ∆ is closed under ∃ωω , then Γ̌ is closed under ∃ωω .
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Proof. To prove (1), let A, B ∈ Γ̌ and assume A ∪ B /∈ Γ̌. By Wadge, every Γ set
is Wadge reducible to A ∪ B, and thus every Γ set can be written as the union of
two Γ̌ sets. Say A′, B′ are Γ̌ sets with A′ ∪ B′ ∈ Γ − Γ̌. By sep(Γ̌), let C ∈ ∆
and separate A′ from (A′ ∪B′)c, and let D ∈∆ separate B′ from (A′ ∪B′)c. Then
A′ ∪B′ = C ∪D ∈∆, a contradiction.

To prove (2), suppose ∃ωω Γ̌ * Γ̌. By Wadge, Γ ⊆ ∃ωω Γ̌. We will show sep(Γ),
a contradiction. Let A, B be disjoint Γ sets. Let A(x)↔ ∃y A′(x, y), and B(x)↔
∃y B′(x, y), where A′, B′ are Γ̌ subseteq of ωω × ωω. Define A′′(x, y, z)↔ A′(x, y)
and B′′(x, y, z) ↔ B′(x, z). Clearly A′′, B′′ are disjoint Γ̌ sets. Let A′′ ⊆ D ⊆
(B′′)c, wirh D ∈ ∆, from sep(Γ̌). Let E(x)↔ ∃y ∀z D(x, y, z). Then E ∈ ∆ and
A ⊆ E ⊆ Bc. [Note that if x ∈ B∩E then ∃z ∀y B′′(x, y, z) and ∃y ∀z D(x, y, z).Fix
z, y witnessing these two existential statements. Then B′′(x, y, z) and D(x, y, z), a
contradiction as B′′ and D are disjoint.] �

Remark 5.9. Using the coding lemma one has that if ∃ωω∆ ⊆ ∆ and α <
cof(o(∆)), then ∆ is closed under α-length unions. The proof of (1) then gen-
eralizes (using the coding lemma) to show that Γ̌ is closed under α-length unions.

An example due to Van Wesep shows that there is a non-selfdual class with
neither sider having the reduction property. However, we have the following.

Theorem 5.10 (Steel, Van Wesep). Assume ZF+AD. Suppose Γ is non-selfdual,
sep(Γ̌), and the intersection of two ∆ sets is in Γ. Then red(Γ).

Proof. The proof of (1) of theorem 5.8 shows that Γ̌ is closed under finite unions
(so Γ is closed under finite intersections). Since we are assuming sep(Γ̌), we have
¬ sep(Γ). Let C, D be a disjoint pair of Γ sets which are not separable by a ∆ set.
Let A, B be a pair of Γ sets. Consider the game where I plays out x, II plays out y,
and II wins iff y ∈ A ∪B, (x ∈ C → y ∈ (A−B)), and (x ∈ D → y ∈ (B −A)). If
II had a winning strategy τ , then τ−1(Bc), τ−1(Ac) would be disjoint Γ̌ sets with
C ⊆ τ−1(Bc), D ⊆ τ−1(Ac). From sep(Γ̌) we would then have a ∆ set separating
C from D, a contradiction. Let σ be a winning strategy for I. So, y ∈ (A ∪ B) →
σ(y) ∈ (C ∪D), (y ∈ (A−B)→ σ(y) ∈ D), and (y ∈ (B −A)→ σ(y) ∈ C). Then
A′ = {y ∈ A : σ(y) ∈ D} and B′ = {y ∈ B : σ(y) ∈ C} are in Γ (since Γ is closed
under intersections) and reduce A, B. �

Corollary 5.11. If Γ is non-selfdual and ∆ is closed under finite intersections
(equivalently, finite unions), then red(Γ) or red(Γ̌).

Corollary 5.12. If Γ is non-selfdual, sep(Γ̌), and Γ is closed under finite inter-
sections, then red(Γ).

In particular, if Γ is non-selfdual and Γ is closed under finite unions and inter-
sections, then red(Γ) or red(Γ̌) holds.

6. The Coding Lemma

The coding lemma of Moschovakis is a basic tool in determinacy theory. It
provides a choice-like principle which holds assuming AD. We first need to some
abstract recursion theoretic or “lightface” notions.

Let Γ denote a non-selfdual pointclass. Recall that we may define a univer set
U ⊆ ωω × ωω for the Γ subsets of ωω by fixing a set A ∈ Γ− Γ̌ and then leting

U(x, y)↔ x(y) ∈ A,
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where every x ∈ ωω is viewed as giving a Lipschitz continuous function (strategy
for II) from ωω to ωω.

Recall we also have recursive coding and decoding functions on ωω which we
collectively denote by (x, y) 7→ 〈x, y〉, (x0, x1, . . . ) 7→ 〈x0, x1, . . . 〉, z 7→ ((z)0, (z)1),
z 7→ ((z)0, (z)1, . . . ), etc. Exactly which of these coding/decoding functions the
notation refers to will be clear from the context.

In effective (“lightface”) descriptive set theory, the existence of continuous (even
recursive) so-called s-m-n functions is a basic starting point for much of the theory.
We first show that this set-up can be developed for an arbitrary non-selfdual Γ.
This is the content of the next lemma. For the lemma, we only require that Γ
have a universal set (which under AD holds for all non-selfdual Γ). By a “product
space” we mean the smallest collection of spaces containing ωω and closed under
finite products, e.g., X = (ωω × ωω × ωω)× (ωω × ωω). The coding and decoding
functions extend naturally to these product spaces.

We assume Γ is a pointclass for products spaces as defined above.

Lemma 6.1 (s-m-n theorem). Let Γ be a pointclass and assume Γ has a universal
set. Then for every product space X there is a universal set UX ⊆ ωω×X such the
following holds:

(s-m-n property) for every pair of product spaces of the form X = X1×· · ·×Xn,
Y = X1,× · · · , Xn × · · · ×Xm (m > n) there is a continuous function sX,Y : ωω ×
X → ωω such that

UY (y, x1, . . . , xn, . . . , xm)↔ UX′(sX,Y (y, x1, . . . , xn), xn+1, . . . , xm),

where X ′ = Xn+1 × · · · ×Xm.

Proof. Let U ⊆ ωω × ωω be the universal Γ set for subseteq of ωω as mentioned
above. The idea is to define all the UX by referring to this single set U . For
X = X1 ×X2 × · · · ×Xn we define

UX(y, x1, . . . , xn)↔ U((y)0, 〈(s)1, x1, . . . , xn〉).
Let Y = X1 × · · · ×Xn ×Xn+1 × · · · ×Xm. So we also have

UY (y, x1, . . . , xn, . . . , xm)↔ U((y)0, 〈(y)1, x1, . . . , xn, . . . , xm〉)
and

UX′(s, xn+1, . . . , xm)↔ U((s)0, 〈(s)1, xn+1, . . . , xm〉).
So, we take

sX,Y (y, x1, . . . , xn) = 〈ε, 〈y, x1, . . . , xn〉〉
where ε ∈ ωω is a fixed real such that

U(ε, 〈〈y, x1, . . . , xn〉, xn+1, . . . , xm〉)↔ U((y)0, 〈(y)1, x1, . . . , xm〉)
holds for all y, x1, . . . , xm. This can be done by choosing ε such that

U(ε, z)↔ U(z0,0,0, 〈z0,0,1, z0,1, . . . , z0,n, z1, . . . , zm−n〉),
where in this last equation we have simplified the notation, so that z0,0,0 means
(((z)0)0)0, etc. �

Exercise 20. Show that the s-m-n functions of Lemma 6.1 may be taken to be recur-
sive. [hint: we need to show that there is a recursive function f : z = 〈y, x1, . . . , xn〉 7→
ε such that for all z, xn+1, . . . , xm ∈ ωω we have (f(z))(〈z, xn+1, . . . , xm〉) = z0,0(w),
where w = 〈z0,1, z1, . . . , zn, xn+1, . . . , xm〉. It suffices to get a recursive f such that
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for all z, xn+1, . . . , xm, u ∈ ωω we have (f(z))(〈u, xn+1, . . . , xm〉) = z0,0(w), where
w = 〈u0,1, u1, . . . , un, xn+1, . . . , xm〉. Argue this directly, assuming our coding and
decoding functions are reasonable, in particular, the first k digits of 〈a0, . . . , a`〉
determine the first k digits of a0, . . . , a` for all of our coding functions.]

An important consequence of the s-m-n theorem is the recursion theorem. Again,
this is a classical result in recursion theory (due to Kleene) which also generalizes to
arbitrary non-selfdual pointclasses. The recursion theorem says the remarkable fact
that in defining a Γ set, we may actually use the code for the set we are defining in
its definition. This can also be viewed as a fixed-point property on the set of codes
for Γ sets.

Theorem 6.2 (recursion theorem). Let Γ have a universal set. Then for every
product space X = X1 × · · · ×Xn and every Γ set A ⊆ ωω ×X, there is a y∗ ∈ ωω
such that UX(y∗, x1, . . . , xn) iff A(y∗, x1, . . . , xn) for all x1, . . . , xn.

Proof. Let X = X1 × · · · × Xn and fix A ⊆ ωω × X in Γ. Let s : ωω × ωω → ωω

be the s-m-n function corresponding to the product spaces ωω and ωω × X. Fix
ε ∈ ωω such that Uωω×X(ε, y, x)↔ A(s(y, y), x).

We thus have for all x, y:

UX(s(ε, y), x)↔ Uωω×X(ε, y, x)↔ A(s(y, y), x).

We then set y = ε, that is we take y∗ = s(ε, ε). �

We first prove a version of the coding lemma which applies to prewellorderings,
and then prove a more general version which applies to wellfounded relations.

Theorem 6.3 (AD). Let Γ be a nonselfdual pointclass closed under ∃ωω and ∧
(and assume Γ ⊇ Π0

1). Let � be a prewellordering with both � and the strict part
≺ in Γ. Let R ⊆ dom(�) × ωω be a relation with dom(R) = dom(�). Then there
is a Γ relation R′ ⊆ R such that dom(R′) meets every [x] for x ∈ dom(�) (here
[x] = {y : y � x ∧ x � y}).

Proof. Let U ⊆ ωω × ωω × ωω be universal for Γ � ωω × ωω, and we assume all
universal sets are good, that is, we have continuous s-m-n functions. We prove the
coding lemma by induction on the length | � | of the prewellordering �. If | � | =
α + 1 is a successor ordinal, the result follows easily by induction. Namely, given
R ⊆ dom(�)×ωω, apply induction to �′ where x �′ y ↔ (x � y∧y ≺ z), where [z]
is maximal in �. Note that �′ and the strict part ≺′ are in Γ. Applying induction
to �′ and S = R ∩ (dom(�′) × ωω) given an S′ ⊆ S ∈ Γ. Let R′ = S′ ∪ {〈z, y〉}
where R(z, y). Since by induction dom(S′) meets every class below [z], dom(R′)
meets every class of �. Also, R′ ∈ Γ since S′ ∈ Γ, Γ is closed under ∨ (since it is
closed under ∃ωω ), and Γ contains all closed sets.

So, assume that | � | = λ is a limit. If α ≤ λ we say ε ∈ ωω is α-good if Uε ⊆ R
and for all for all x ∈ dom(�) with |x| < α we have dom(Uε) ∩ [x] 6= ∅ (i.e., Uε
is a choice relation below α). Note that if ε is α-good for some α, then there is a
maximal α ≤ λ such that ε is α-good wheich we denote by α(ε). So, α(ε) is defined
iff Uε ⊆ R. By induction, for any α < λ there is an ε which is α-good. To see this,
pick z ∈ dom(�) with |z| = α. Let �′=� ∩{(x, y) : y ≺ z}, so �′ and the strict
part ≺′ are in Γ. Apply induction to �′ and S = R ∩ {(x,w) : x ≺ z} to produce
S′. If Uε = S′, then ε is α-good.
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Consider now the following game G: I and II play out reals ε, δ respectively in
ωω. II wins the run provided: (Uε ⊆ R)→ (Uδ ⊆ R ∧ α(δ) > α(ε)).

Suppose first that I has a winning strategy σ for G. Let A = σ[ωω]. For every
ε ∈ A, Uε ⊆ R. Furthermore {α(ε) : ε ∈ A} is unbounded in λ since if δ is such that
α(δ) = β, then α(σ(δ)) ≥ β, and there are δ which are β-good for arbitrarily large
β < λ. Define then R′(x, y)↔ ∃ε ∈ A (Uε(x, y)). R′ ∈ Γ from our assumed closure
properties, and clearly R′ is λ-good so we are done.

Assume next that II has a winning strategy τ for G. The relation

S(ε, z, x, w, )↔ Uε(x,w) ∧ (x ≺ z)

is in Γ, and so S(ε, z, x, w)↔ U(a, ε, z, x, w)↔ U(s(a, ε, z), x, w) for some a ∈ ωω,
and where s is our continuous s-m-n function. Let f(ε, z) = s(a, ε, z), so f is
continuous. Note that if z is in the field of �, then Uf(ε,z) = Uε ∩ {(x,w) : x ≺ z}.
If z is not in the field of �, then Uf(ε,z) = ∅. In particular, for any z and ε, if
Uε ⊆ R, then Uf(ε,z) ⊆ R.

From the recursion theorem, let ε be such that

Uε(x,w)↔ ∃z (z � x ∧ x � z ∧ U(τ(f(ε, z)), x, w).

We claim that R′ = Uε works. Note that Uε(x,w) → x ∈ dom(�). We show by
induction on |x| that Uε(x,w) → R(x,w). For any z ∈ [x], by induction we have
Uf(ε,z) = Uε ∩ {(x,w) : x ≺ z} ⊆ R. It follows that Uτ(f(ε,z)) ⊆ R as well, and so
R(x,w).

Finally, we prove by induction on |x| that for all x ∈ dom(�) that dom(R′)∩[x] 6=
∅. Let x ∈ dom(�), and by induction we may assume that dom(R′) ∩ [x′] 6= ∅
for all x′ ≺ x. It follows that for any z ∈ [x] that dom(Uf(ε,z)) ∩ [x′] 6= ∅ as
well. That is, Uf(ε,z) is |x|-good. It follows that τ(f(ε, x)) is > |x| good, that is,
Uτ(f(ε,z)) ∩ [x] 6= ∅. Since the definition of Uε involves unioning of all possible
z ∈ [x], it follows that Uε ∩ [x] 6= ∅. �

Remark 6.4. The hypothesis that both � and ≺ are in Γ from theorem 6.3 is more
than necessary. The result holds just assuming the strict part ≺ is in Γ, although
a different proof must be given. Theorem 6.5 below contains this stronger result,
and also requires ≺ to only be a wellfounded relation.

Theorem 6.5 (AD). Let Γ be a nonselfdual pointclass closed under ∃ωω and ∧ (and
assume Γ ⊇ Π0

1). Let ≺ be a wellfounded relation in Γ. Let R ⊆ dom(�)×ωω be a
relation with dom(R) = dom(≺). Then there is a Γ relation R′ ⊆ R such that for
every β < |≺|, dom(R′) meets {x ∈ dom(≺) : |x|≺ = β}.

Proof. Let ≺β denote {x ∈ dom(≺) : |x|≺ = β}. We again proceed by induction
on |≺|, and we may assume |≺| is a limit. Similar to before, we say ε is α-good,
for α ≤ λ =|≺|, if Uε ⊆ R and for all β < α with have dom(Uε)∩ ≺β 6= ∅. Also
as before, if Uε ⊆ R, then we let α(ε) be the largest α ≤ λ such that ε is α-good.
As before we consider the game G where I and II play out reals ε, δ respectively in
ωω and II wins the run provided: (Uε ⊆ R) → (Uδ ⊆ R ∧ α(δ) > α(ε)). Note that
by induction, considering ≺� z = {(x, y) : x ≺ y ∧ y ≺ z} for z ∈ dom(≺), we have
that there are ε which are α-good for arbitrarily large α below λ.

Suppose first that I has a winning strategy σ for G. Let A = σ[ωω]. So, for ε ∈ A,
Uε ⊆ R. Also, sup{α(ε) : ε ∈ A} = λ. Define R′ by R′(x,w) ↔ ∃ε ∈ A (Uε(x,w)).
Then R′ ⊆ R and dom(R′)∩ ≺β 6= ∅ for all β < λ.
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Suppose next that II has a winning strategy τ for G. Here we must argue a little
differently from theorem 6.3. We attempt to define using the recursion theorem a
relation Uε with dom(Uε) = dom(≺) and such that Uε(x, u) implies Uu ⊆ R and
α(u) > |x|≺. Consider the relation

S(ε, x, y, w)↔ ∃z ∃u (z ≺ x ∧ Uε(z, u) ∧ Uu(y, w)).

From the s-m-n theorem, let s : ωω×ωω → ωω be continuous such that S(ε, x, y, w)↔
U(s(ε, x), y, w). Define then, using the recursion theorem,

Uε(x, u)↔ (x ∈ dom(≺)) ∧ u = τ(s(ε, x)).

Clearly dom(Uε) = dom(≺), and for every x ∈ dom(≺) there is exactly one u
such that Uε(x, u). We prove by induction on |x|≺ that Uε(x, u) implies that Uu ⊆ R
and α(u) > |x|≺. By induction, it follows that Us(ε,x) is a union of relations which
are β-good for various β whose supremum is at least |x|≺. Thus, s(ε, x) is |x|≺-good.
Since τ is winning for II, u = τ(s(ε, x)) is |x|≺ + 1-good.

Finally, define R′ by:

R′(x,w)↔ ∃y ∃u (y ∈ dom(≺) ∧ Uε(y, u) ∧ Uu(x,w)).

Clearly R′ ⊆ R since Uε(y, u) implies Uu ⊆ R. Also, since α(u) > |y|≺, it follows
that dom(R′)∩ ≺β 6= ∅ for all β < λ. �

As a corollary it follows that if we can map the reals onto an ordinal λ, then we
can map the reals onto P(λ). First we note a general fact, Suppose A ⊆ ωω. Define
the pointclass Σ1

1(A) to be collection of B which can be written in the form

B(x)↔ C(x) ∨ ∃y (∀n (y)n ∈ A ∧D(〈x, y〉)),
where C,D ⊆ ωω are Σ1

1. We likewise define Σ1
1(A) � (ωω)n for any n, using the

same formula and our recursive bijection between (ωω)n and ωω.

Exercise 21. Show that Σ1
1(A) is a pointclass which contains A and is closed under

∃ωω , ∧ and ∨. Also, Σ1
1(A) has a universal set. [hint: closure under continuous

preimages is immediate. Note that A(x) ↔ ∃y (∀n (y)n ∈ A ∧ D(〈x, y〉)) where
D(z) ↔ ∀i, j (((z)1)i = ((z)1)j ∧ x = ((z)1)0). Thus, A ∈ Σ1

1(A). To see closure
under ∨ notice that ∃y (∀n (y)n ∈ A∧D(〈x, y〉))∨∃z (∀n (z)n ∈ A∧D′(〈x, y〉))↔
∃w (∀n (w)n ∈ A ∧ (D(〈x,w〉) ∨ D′(〈x,w〉))). To see closure under ∧, note that
C(x) ∧ ∃y (∀n (y)n ∈ A ∧D(〈x, y〉))↔ ∃y (∀n (y)n ∈ A ∧D(〈x, y〉) ∧C(x)). Also,
∃y (∀n (y)n ∈ A ∧ D(〈x, y〉)) ∧ ∃z (∀n (z)n ∈ A ∧ D′(〈x, z〉)) ↔ ∃w (∀n (w)n ∈
A∧∃u ∃v (D(〈x, u〉)∧D′(〈x, v〉)∧∀j ((u)j = (w)2j∧(v)j = (w)2j+1)). To see closure

under ∃ωω , suppose that B′(x) ↔ ∃z B(〈x, z〉) ↔ ∃z [C(〈x, z〉) ∨ ∃y (∀n (y)n ∈
A∧D(〈〈x, z〉, y〉)]. Then B′(x)↔ ∃z C(〈x, z〉)∨∃y (∀n (y)n ∈ A∧∃z D(〈〈x, z〉, y〉)).
Finally, if U ⊆ ωω ×ωω is universal for Σ1

1 � ωω, then define V (ε, x)↔ U((ε)0, x)∨
∃y (∀n (y)n ∈ A ∧ U((ε)1, 〈x, y〉)). Then V is universal for Σ1

1(A) � ωω.]

Definition 6.6. The ordinal Θ is the supremum of the lengths of the prewellorder-
ings of ωω.

The ordinal Θ plays a role in AD models similar to that of the continuum in ZFC
models. Note that for any α < Θ thete is a map from ωω onto α (since there is a
prewellordering of length α). With ZFC we clearly have Θ = (2ω)+. Note that Θ
is a limit ordinal.

Corollary 6.7 (AD). If λ < Θ, then there is a map f from ωω onto P(λ).
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Proof. Suppose λ < Θ, and let � be a prewelordring of ωω of length λ. Let Γ be a
nonselfdual pointclass closed under ∃ωω , ∧ and with �,≺∈ Γ. Let U ⊆ ωω×ωω be
universal for Γ � ωω. If A ⊆ λ, then the coding lemma applied to the characteristic
function of A show that the relation R(x, y) ↔ (x ∈ dom(�) ∧ ((|x| ∈ A ∧ y =
1̄)∨ (|x| /∈ A∧ y = 0̄))) is in Γ. In particular, the code set of A, CA = {x ∈ dom(�
) : |x| ∈ A} is in Γ. Define f(ε) = A if Uε is the code set for A, and f(ε) = ∅
otherwise. Then, f is onto P(λ). �

Corollary 6.8 (AD). Θ is a limit cardinal.

Proof. Suppose α < Θ but Θ ≤ α+. Since α < θ, there is a prewellordering of
length α, and hence a map from ωω onto α. From corollary 6.7 there is a map π
from ωω onto P(α). Since there is map from P(α) onto α+ (send A ⊆ α to |A| if
A is a wellordering, and to 0 otherwise), we have that there is a map from ωω onto
α+. Since the supremum defining Θ is not atained, we have α+ < Θ. �

Exercise 22. Show that countable choice implies that cof(Θ) > ω.

Theorem 6.9 (AD). Θ = sup{|A|w : A ⊆ ωω} is the supremum of the wadge ranks
of sets of reals.

Proof. If A ⊆ ωω, then there is a map π from ωω onto |A|w, namely, π(x) =
|τ−1(A)|w, where x ∈ ωω codes the strategy τx as before. Thus, Θ ≥ sup{|A|w : A ⊆
ωω}.

For the other direction, fix a prewellordering � of ωω. There is a function
F : P(ωω)→ P(ωω) such that for all A ⊆ ωω, F (A) >w A. Namely, let F (A) = A′

be defined by A′(x)↔ (x(0) = 0 ∧ τx′(x) /∈ A) ∨ (x(0) = 1 ∧ τx′(x) ∈ A), where as
before x′(n) = x(n+ 1) and τy is the continuous function from ωω to ωω coded by
y (in some fixed coding scheme of the continuous funcions). By construction, A′ is
not Wadge reducible to either A or Ac, so has strictly higher Wadge degree [if say
τy reduced A′ to A then 0ay ∈ A′ iff τy(0ay) ∈ A, however by definition 0ay ∈ A′
iff τy(0ay) /∈ A].

Now define by induction on α < |�| a set Aα by A0 = ∅, and for α > 0:

Aα = F ({〈x, y〉 : (x ∈ dom(�)) ∧ (|x|� = α) ∧ (y ∈ A|x|�)}).
A straightforward induction on α shows that |Aα|w ≥ α. �

Using the recursion theorem we can prove an effective strengthening of Theo-
rem 6.9.

Theorem 6.10 (AD). Let � be a prewellordering of ωω, and let Γ be the point-
class (see exercise 21) Γ = Σ1

1(� ⊕ �c ⊕ (dom(�))c). Then there is a sequence
{Aα : α < |�|} of sets in ∆ = Γ ∩ Γ̌ which is strictly increasing in Wadge degree.

Proof. Let Γ = Σ1
1(� ⊕ �c ⊕ (dom(�))c), so Γ is non-selfdual and closed under

∃ωω ,∧ (and so also ∨). Also, �∈ ∆. Let ≺ denote the strict part of �, that is,
x ≺ y iff x � y ∧ ¬(y � x). Note that �, ≺, dom(�) are also in ∆. Note that ∆
is closed under ∧, ∨, ¬. Let U denote the universal Γ sets with continuous s-m-n
functions. The idea is to define a Γ relation Uε with domain dom(�) (which will
actually be a function) such that Uε(x,w) implies that w0, w1 code Γ sets which
are complements (so they jointly code a ∆ set) which is the “jump” (as in the proof
of Theorem 6.9) of the ∆ set B(y, z) of those (y, z) such that y ≺ x and z in the
∆ set coded by Uε(y).
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Consider the relations S1, S2 defined by:

S1(ε, x, y, z)↔ (x ∈ dom(�) ∧ (y ≺ x) ∧ ∃w(U(ε, y, w) ∧ U(w0, z)))

S2(ε, x, y, z)↔ (x /∈ dom(�) ∨ [¬(y ≺ x) ∨ ∃w(U(ε, y, w) ∧ U(w1, z))])

From the closure properties of Γ we see that S1, S2 ∈ Γ. Let S1(ε, x, y, z) ↔
U(a1, ε, x, y, z) ↔ U(s(a1, ε, x), y, z), and let s1(ε, x) = s(a1, ε, x). Similarly define
s2 using S2 (and some real a2). Note that if x ∈ dom(�), and we assume ε is such
that for all y ≺ x there is a unique w such that U(ε, y, w), and this w codes a ∆
set (i.e., Uw0

= (Uw1
)c), then for this fixed ε and x, S2(ε, x, y, z) iff ¬S1(ε, x, y, z)

for all y, z. Roughly speaking, (S1)ε,x is the “join” of the ∆ sets corresponding to
y ≺ x.

Define

T1(w, u)↔ [(u(0) = 0 ∧ U(w1, τu(u′))) ∨ (u(0) = 1 ∧ U(w0, τu(u′)))]

T2(w, u)↔ [(u(0) /∈ {0, 1}) ∨ (u(0) = 0 ∧ U(w0, τu(u′))) ∨ (u(0) = 1 ∧ U(w1, τu(u′)))]

Clearly T1, T2 ∈ Γ. Let T1(w, u) ↔ U(b1, w, u) ↔ U(s(b1, w), u). Let t1(w) =
s(b1, w). Similarly define t2(w) using T2 (and some real b2). Note that if w codes
a ∆ set, then t1(w) codes the jump of this ∆ set and t2(w) codes the complement
of the jump. So, 〈t1(w), t2(w)〉 is a ∆ code for the jump.

Finally, using the recursion theorem let ε be such that

U(ε, x, w)↔ [(x ∈ dom(�)) ∧ w = 〈t1(〈s1(ε, x), s2(ε, x)〉), t2(〈s1(ε, x), s2(ε, x)〉)〉].
Clearly U ∈ Γ, dom(U) = dom(�), and Uε is a function. By induction on |x|�

we have that if U(ε, x, w) then w codes a ∆ set Ax (that is Uw0
= (Uw1

)c, which we
take to be Ax), and |Ax|w ≥ |x|�. For α < |�| we can then let Aα = {z : (|z0|� =
α) ∧ z1 ∈ Az0}.

�

As another application of the coding lemma we prove the following.

Theorem 6.11. Suppose Γ is a nonselfdual pointclass closed under ∀ωω , ∧, ∨.
Suppose also pwo(Γ). Let U ⊆ ωω × ωω be a universal set for Γ � ωω. Let φ
be a Γ-norm on U . Then |φ| = δ(Γ)

.
= the supremum of the lengths of the ∆

prewellorderings = the supremum of the lengths of the Γ̌ welfounded relations.

Proof. Let φ be a Γ-norm on U . All the initial segments of the prewellordering are
in ∆ since π is a Γ-norm. Thus, |φ| ≤ δ(Γ). It suffices therefore to show that any
Γ̌ wellfounded relation ≺ has length less than |φ|. From the recursion theorem let
ε be such that

Uε(x)↔ ∀y (y ≺ x→ (ε, y) <∗φ (ε, x)),

where <∗ is the norm relation corresponding to φ (recall for a norm ψ on a set A
that x <∗ψ y iff (x ∈ A ∧ (y /∈ A ∨ ψ(x) < ψ(y)))). Uε is attempting to define an

embedding from ≺ into |φ| by x 7→ |(ε, x)|.
We show by induction on |x|≺ that Uε(x) and that for all y ≺ x that φ(ε, y) <

φ(ε, x). Let x be least such that the stated property fails. So, for all y ≺ x we have
Uε(y). If ¬Uε(x), then by definition of <∗φ we have that for all y ≺ x that y <∗φ x.

From the definition of Uε it now follows that Uε(x), a contradiction. So, Uε(x).
From the definition of Uε it now follows that for all y ≺ x that φ(ε, y) < φ(ε, x).
Thus, x 7→ φ(ε, x) is orderpreserving from ≺ to |φ|, so | ≺ | ≤ |φ|. We must in fact
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have | ≺ | < |φ| as given any Γ̌ wellfounded relation ≺ we can easily get another Γ̌
welfounded relation ≺′ with | ≺′ | > | ≺ |. �

As another application we have the following.

Theorem 6.12. Let Γ be a nonselfdual pointclas closed under ∃ωω , ∧. Then δ
.
=

the supremum of the lengths of the Γ wellfounded relations is a regular cardinal.

Proof. Suppose ρ = cof(δ) < δ. Let f : ρ→ δ be cofinal. Let ≺ be a Γ wellfounded
relation of length ρ. Let U ⊆ ωω ×ωω ×ωω be a universal Γ set. Apply the coding
lemma to the relation R(x, y) ↔ (x ∈ dom(≺)) ∧ (Uy is wellfounded ∧ |Uy| ≥
f(|x|≺)). Let R′ ⊆ R with R′ ∈ Γ be from the coding lemma, so dom(R′) ∩ | ≺
|β 6= ∅ for all β < ρ (recall | ≺ |β = {z : |z|≺ = β}). Let A(y) ↔ ∃x (x ∈ dom(≺
)∧R′(x, y)), so A ∈ Γ and consists of codes of Γ wellfounded relations whose lengths
are unbounded in δ. Define then (y, z) � (y′, z′) ↔ (y = y′ ∧ y ∈ A) ∧ (Uy(z, z′)).
Then � is a wellfounded relation in Γ, and | � | = δ. �

7. The Prewellordering Property

The prewellordering property is one the important structural properties of poinclasses.
It is also an important ingrediant in the scale property. The prewellordering prop-
erty for Γ says that every set in Γ can be written as an increasing union of sets in
∆, in an effective manner. We recall the precise definition. There are two almost
equivalent definitions of the notion of a Γ-norm. We take as our official definition
the slightly stronger version.

Definition 7.1 (Γ-norm). Let Γ be a pointclass, and A ⊆ X. We say a norm φ
on A is a Γ-norm if the relations <∗, ≤∗ are in Γ, where

x <∗ y ↔ x ∈ A ∧ (y /∈ A ∨ (y ∈ A ∧ φ(x) < φ(y)))

x ≤∗ y ↔ x ∈ A ∧ (y /∈ A ∨ (y ∈ A ∧ φ(x) ≤ φ(y)))

If A ∈ Γ, and φ is a Γ-norm on A, then we can consider the componenets of
A with respect to the norm. Say (without loss of generality) that φ is regular,
so φ : A → λ is onto. For α < λ, let Aα = Aφα = {x ∈ A : φ(x) = α}, and let
A≤α = {x ∈ A : φ(x) ≤ α}. If x ∈ A is such that φ(x) = α, then we have

A≤α = {y : y ≤∗ x} = {y : ¬(x <∗ y)}
which shows that A≤α ∈∆. Thus A =

⋃
α<λA≤α writes A as an increasing union

of ∆ sets, the length of the union being the length of the norm φ.
A similar argument shows that each set A<α = {x ∈ a : φ(x) < α} is in ∆. So

we can also write A =
⋃
α≤λA<α. In practice, λ will always be a limit ordinal,

so we can write A =
⋃
α<λA<α. Written this way, the sets are continuous with

respect to union at limit ordinals.

Definition 7.2. A pointclass Γ has the prewellordering property (written pwo(Γ))
if every A ∈ Γ admits a Γ-norm.

so, if pwo(Γ) holds, then every Γ (or Γ̌) set admits a representation as an in-
creasing union (or intersection) of simpler, anmely ∆, sets.

We will restrict our attention now to Levy pointclasses.

Definition 7.3. Γ is a Levy pointclass if it is non-selfdual and either ∃ωωΓ ⊆ Γ
or ∀ωωΓ ⊆ Γ.
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So, a Levy pointclass is non-selfdual and is closed under either existential or uni-
versal quantification over the reals (possibly closed under both). The first few Levy
pointclasses are the levels of the projective hierarchy, the Σ1

n, Π1
n sets. The Levy

classes are the important pointclasses in descriptive set theory. Although there are
certainly poinclasses between the Levy classes, they are of less significance.

Our goal in this section completely classify the prewellordering property among
the Levy pointclasses. We will see that for every Levy pointclass Γ, either pwo(Γ)
or pwo(Γ̌).

We first prove two transfer results which allow us to propagate the prewellorder-
ing property up a projective-like hierarchy, that is, by applications of real quanti-
fiers. This is the simplest case of the so-called periodicity theorems of Moschovakis
and Martin.

First we do the easy case of transfer by ∃ωω , and then we give the first periodicity
theorem, which gives the transfer by ∀ωω . The transfer under ∃ωω just uses the inf.

Theorem 7.4 (ZF). Let Γ be a pointclass and assume pwo(Γ). Then every set in
∃ωωΓ admits a ∃ωω∀ωωΓ-norm.

Proof. Let A(x)↔ ∃y ∈ ωω B(x, y), where B ∈ Γ. Let φ br a Γ-norm on B, with
norm relations <∗φ, ≤∗φ. Define the norm ψ on A by:

ψ(x) = min{φ(x, y) : (x, y) ∈ B}.
Let <∗ψ, ≤∗ψ be the corresponding norm relations on A. We have x1 <

∗
ψ x2 if

∃y1 ∀y2 (x1, y1) <∗φ (x2, y2). Likewise, x1 ≤∗ψ x2 iff ∃y1 ∀y2 (x1, y1) ≤∗φ (x2, y2). �

Exercise 23. Show that for any non-selfdual pointclass Γ that ∃ωΓ admits a ∃ω∀ωΓ-
norm. Deduce that pwo(Σ0

α) holds for all α ≥ 2 for general Polish X, and for all
α ≥ 1 if X = ωω.

We next do the transfer under ∀ωω . Here we use the “fake sup” which is defined
using a game.

Theorem 7.5 (∆-determinacy). Let Γ be a non-selfdual pointclass, and assume
pwo(Γ). Then every set in ∀ωωΓ admits a ∀ωω∃ωωΓ-norm.

Proof. Let A(x)↔ ∀y ∈ ωω B(x, y), and let φ be a Γ-norm on B with corresponding
norm relations <∗φ, ≤∗φ. We define a relation ≤A on A as follows. Let x1, x2 ∈ A.

Consider the following game GA(x1, x2):

x1 I y1(0) y1(1) y1(2) . . .

x2 II y2(0) y2(1) y2(3) . . .

II wins the run iff φ(x1, y1) ≤ φ(x2, y2). Note that this makes sense as B(x1, y1),
B(x2, y2) since x1, x2 ∈ A. Note also the game GA is determined ae payoss set is
{(y0, y1) : (x0, y0) ≤∗φ (x1, y1)} = {(y0, y1) : ¬(x1, y1) <∗φ (x1, y1)} (using here that

x0, x1 ∈ A).

Claim. ≤A is reflexive.

Proof. Have II copy I’s moves. �
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Figure 1. Showing transitivity
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Figure 2. Showing wellfoundedness

Claim. ≤A is transitive.

Proof. Suppose x0, x1, x2 ∈ A and x0 ≤A x1, x1 ≤A x2. We must show that
x0 ≤A x2, that is, II wins the game GA(x0, x2). To do that, we fix strategies τ0, τ1
for II in GA(x0, x1) and GA(x1, x2), and then move as shown in Figure 7.

Claim. ≤A is connected, that is, ∀x0, x1 ∈ A (x0 ≤A x1 ∨ x1 ≤A x0).

Proof. Let x0, x1 ∈ A. If II wins GA(x0, x1) then x0 ≤A x1 by definition. So,
suppose I wins GA(x0, x1). Note that since x0, x1 are in A, the payoff condition
for I, namely ¬((x0, y0) ≤∗φ (x1, y1)), is equivalent to saying (x1, y1) <∗φ (x0, y0).

However, if I wins this game, then II can clearly win the same game (use the same
strategy but just ignore tha last move of the opponent). So, x1 ≤A x0. �

At this point we have shown that ≤A is a prelinearorder on the set A. We next
show that it is wellfounded, so that it is actually a prewellorder (and thus gives a
norm on A).

Claim. ≤A is wellfounded, that is, there does not exist a sequence x0 >A x1 >A
x2 · · · with all xi ∈ A (recall x <A y means x ≤A y and ¬(y ≤A x)).

Proof. Suppose xi ∈ A, and x0 >A x1 >A x2 · · · . For each i we have that ¬(xi ≤A
xi+1), so I wins the game GA(xi, xi+1) for each i. Fix (countable choice for reals)
winning strategies σi for I in GA(xi, xi+1). We play these strategies against each
other as shown in Figure 7.
Since xi ∈ A, all of the (xi, yi) are in B. So, since ¬((xi, yi) ≤∗φ (xi+1, yi+1)) we

have that (xi, yi) >
∗
φ (xi+1, yi+1) for all i, a contradiction. �

At this point we know that ≤A is a prewellordering on the set A. Let ψ : A→ On
be the corresponding norm on A. We must show that the corresponding norm
relations ≤∗ψ, <∗ψ are in ∀ωω∃ωωΓ.
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Consider first ≤∗ψ. We claim that x0 ≤∗ψ x1 iff II wins the game GA(x0, x1)

(recall that the payoff condition for this game is (x0, y0) ≤∗φ (x1, y1)). Suppose
first that x0 ≤∗ψ x1. In particular, x0 ∈ A. If x1 ∈ A as well, then x0 ≤A x1,

and so by definition we have that II wins GA(x0, x1). If x1 /∈ A, Then II can win
GA(x0, x1) by playing any real y1 such that (x1, y1) /∈ B. Suppose next that II
wins the game GA(x0, x1). We must have that x0 ∈ A as otherwise I could win this
game by playing a real y0 such that (x0, y0) /∈ B. If x1 /∈ A then by definition we
have x0 ≤∗ψ x1. If x1 ∈ A, then since II wins the game we have by definition that

x0 ≤A x1, that is ψ(x0) ≤ ψ(x1). so, x0 ≤∗ψ x1 holds in this case as well.

So, x0 ≤∗ψ x1 iff II has a winning strategy in the game GA(x0, x1). This last

condition is easily a ∀ωω∃ωωΓ condition.
Consider next the relation x0 <

∗
ψ x1. We claim that x0 <

∗
ψ x1 iff I wins the

game G′A(x0, x1), which is the game where I plays the y1(i), II plays the y0(i), and
the payoff condition for I to win is (x0, y0) <∗φ (x1, y1). This will again show that

<∗ψ is a ∀ωω∃ωωΓ relation.

Suppose first that x0 <
∗
ψ x1. In particular, x0 ∈ A. If x1 /∈ A, I wins G′A by

playing any y1 such that (x1, y1) /∈ B. If x1 ∈ A as well, then ¬(ψ(x1) ≤ ψ(x0)),
so I wins GA(x1, x0). Since both x0, x1 are in A, this gives a strategy for I in
G′A(x0, x1).

Suppose next that I winsG′A(x0, x1), say by σ. We must have x0 ∈ A as otherwise
II could win this game by playing any y0 such that (x0, y0) /∈ B. If x1 /∈ A then
we are done, so assume x1 ∈ A also. II can clearly win the game GA(x0, x1) (by
ignoring the last move of I), so ψ(x0) ≤ ψ(x1). We must show strict inequality.
Suppose ψ(x1) ≤ ψ(x0). This says that II can win GA(x1, x0), say by τ . Playing σ
and τ against each other gives a contradiction. �

This completes the proof of Theorem 7.5, the first periodicity theorem.
�

Corollary 7.6 (PD). The pointclasses Π1
2n+1, Σ1

2n+2 have the prewellordering
property for all n ≥ 0.

Our next goal is to classify the pointclasses having the prewellordering property
among the Levy pointclasses. We will see that for Levy classes Γ, either pwo(Γ) or
pwo(Γ̌).

First we state a useful general fact.

Definition 7.7. A projective algebra is a pointclass Λ closed under ∃ωω , ¬, ∧, ∨
(and so also ∀ωω ).

Exercise 24. Show that a projective algebra Λ does not have a largest Wadge degree
in it. [hint: if it did, it would either have successor Wadge rank and so be a join of
a nonselfdual degree immediately below it, or else have limit rank of cofinality ω.
In the first case Λ would not be closed under finite unions, and in the second case
would not be closed under ∃ω.]

Lemma 7.8. Let Λ be a projective algebra. Then o(Λ) = sup{|A|w : A ∈ Λ} is
equal to δ(Λ) = sup{| � | : �∈ Λ is a prewellordering }.

Proof. If α < o(Λ), then let A ∈ Λ with |A|w = α. The initial segment of A in the
Wadge hierarchy then determines a prewellordering of length α which is in Λ from
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the closure properties of Λ. Namely, let x � y iff x−1(A) ≤w y−1(A) where x, y
are viewed as coding continuous functions from ωω to ωω. This is easily projective
over A, and so in Λ. So, α < δ(Λ), and so o(Λ) ≤ δ(Λ).

For the other direction, suppose α < δ(Λ), and fix a prewellordering � in Λ
of length α. It suffices to show that there is an α increasing sequence of Wadge
degrees. Given a set A ⊆ ωω, let A′ be the set defined by:

A′(x)↔ (x(0) = 0 ∧ fx′(x) ∈ A) ∨ (x(0) > 0 ∧ fx′(x) /∈ A)

where fx is the continuous function from ωω to ωω coded by x. Easily A′ >w A. For
if fx′ were a reduction of A′ to A, then considering x = 1ax′ gives a contraction, and
if fx′ were a reduction of A′ to Ac, the considering x = 0ax′ gives a contradiction.

Now we define by induction on α <|�| a set Aα. Let A0 = ∅. Let Aα+1 = (Aα)′.
For α limit let Aα(x)↔ (|(x)0|� < α∧(x)1 ∈ A|(x)0|�). A straightforward induction
shows that the Aα are strictly increasing in Wadge degree.

Finally, we show that each Aα ∈ Λ. Let R(x, y) ↔ x ∈ dom(�) ∧ y ∈ A|x|� . It

suffices to show that R ∈ Λ. Consider the relation W (x, y, i, z, w, j) where i, j ∈
{0, 1}, and x, y, z, w ∈ ωω. The intention is that i = 1 and (z, w, j) witnesses that
R(x, y), or i = 0 and (z, w, j) witnesses that ¬R(x, y). We define W (x, y, i, z, w, j)
to hold if one of the following cases holds:

(1) i = 1, x is an immediate successor of z in �, and either y(0) > 0, w = fy′(y),
and j = 0, or y(0) = 0, w = fy′(y), and j = 1.

(2) i = 0, and either x /∈ dom(�) or x is an immediate successor of z in �, and
either y(0) > 0, w = fy′(y), and j = 1, or y(0) = 0, w = fy′(y), and j = 0.

(3) i = 1, x has limit rank in �, (y)0 ≺ x, (y)0 = z, w = (y)1, and j = 1.
(4) i = 0, and either x /∈ dom(�) or x has limit rank in � and the following:
¬(y)0 ≺ x, or (z = (y)0 ∧ w = (y)1 ∧ j = 0).

(5) i = 0, x /∈ dom(�), or |x|� = 0.

W is easily in Λ. We then have that

R(x, y)↔ ∃z, w, r ∈ ωω [(z)0 = x ∧ (w)0 = y ∧ r(0) = 1

∧ ∀i W ((z)i, (w)i, r(i), (z)i+1, (w)i+1, r(i+ 1))].

�

Lemma 7.9 (Martin). Let Γ be nonselfdual, closed under ∀ωω , ∧, ∨, and assume
pwo(Γ). Let δ = δ(Γ) = sup{| � | : �∈ ∆ is a prewellordering }. Then ∆ is
closed under < δ unions and intersections.

Proof. Assume not, and let ρ < δ be the least ordinal such that there is a ρ
increasing sequence {Aα}α<ρ of sets in ∆ with A =

⋃
α<δ /∈ ∆. As ρ < δ, the

coding lemma implies that A ∈ Γ̌ (which is closed under ∃ωω ,∧). By Wadge,
every set if Γ̌ can be written as a ρ union of ∆ sets. Given a set B ∈ Γ̌ − Γ, let
B =

⋃
α<δ Bα where Bα ∈ ∆, and we may assume the sequence in increasing by

minimality of ρ. Let ϕ be the norm on B given by ϕ(x) = µα (x ∈ Bα). The norm
relations ≤∗ϕ, <∗ϕ are both in Γ̌ as they can be written as ρ unions of ∆ sets. This

shows pwo(Γ̌), a contradiction to pwo(Γ) (as both Γ, Γ̌ now have the reduction
property, and so both sides have the separation property). �
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We first show that every Levy pointclass falls into a projective-like hierarchy,
which can be one of four types. We then analyze the prewellordering property
within each of these four possible types.

Fix a Levy pointclass Γ.

Definition 7.10. Let

Λ = Λ(Γ) =
⋃
{∆ : (∆ ⊆ Γ) ∧ ∃ω

ω

∆ ⊆∆ ∧ (¬∆ ⊆ ∆) ∧ (∩∆ ⊆ ∆)}

So, Λ ⊆ Γ and Λ is a projective algebra, that is, Λ is closed under ∃ωω , ¬, and
finite unions and intersections (and so also ∀ωω ). Λ(Γ) is the largest projective
algebra contained in Γ.

We show that Λ(Γ) is the base of a projective-like hierarchy containing Γ. Let
λ = o(Λ) = sup{|A|w : A ∈ Λ} be the supremum of the Wadge ranks of the sets in
Λ (we also call λ the Wadge ordinal of Λ). We consider the following cases.

Case 1: cof(λ) = ω.
Let An be such that |An|w = αn < λ and supn αn = λ. We also assume that

|An|w < |An+1|w. Let A = ⊕nAn be the countable join of the An. Recall that
|A|w = supn |An|w = λ. Also, A is selfdual. Let Σ0 =

⋃
ω Λ be the pointclass of

sets which are countable unions of sets in Λ. Note that A ∈ Σ0 from the definition
of the join.

Σ0 is closed under countable unions by definition. Also Σ0 is closed under ∃ωω .
For suppose B(x)↔ ∃y C(x, y) with C ∈ Σ0. Say C =

⋃
n Cn with Cn ∈ Λ. Then

B(x)↔ ∃y C(x, y)

↔ ∃y ∃n Cn(x, y)

↔ ∃n ∃y Cn(x, y)

so B =
⋃
nBn where Bn(x) ↔ ∃y Cn(x, y) is in Λ. note also that Σ0 is closed

under finite intersections (since Λ is).
Finally, Σ0 is nonselfdual. To see this, note that we may assume that each of

the An is nonselfdual (recall the selfdual and nonselfdual Wadge degrees alternate).
Let Un be universal for Γ′n = {B : B ≤w An}. Let U(x, y)↔ ∃n Un((x)n, y). Then
easily U is in Σ0 and is universal for Σ0.

So, Σ0 is a Levy class containing Λ, which is closed under ∃ωω , ∧, ∨. Let
Π0 = Σ̌0 be the dual class, so Π0 is nonseldual and closed under ∀ωω (and countable
intersections), ∧, ∨. Note that any Levy class which contains Λ must contain either
Σ0 or Π0, since any nonselfdual class which is closed under ∃ωω is closed under
countable unions.

Clearly Σ0 is not closed under countable intersections (as it is nonselfdual, so
doesn’t contain Π0) so not closed under ∀ω, so certainly not closed under ∀ωω . We
thus the projective-like hierarchy starting from Σ0, Π0 in the usual way: Σn+1 =
∃ωωΠn, Πn+1 = Σ̌n+1 = ∀ωωΣn. for n ≥ 1, the Σn, Πn are closed under countable
unions and intersections, just as for the projective hierarchy. We must have Γ ⊆⋃
n Σn, as otherwise

⋃
n Σn would be a projective algebra contained in Γ which

is larger that Λ. An easy argument using that Γ is a Levy class now shows that
Γ = Σn or Γ = Πn for some n [Let n− 1 be largest so that Γ contain both Σn−1
and Πn−1. As Γ is a Levy class, it must contain either Σn or Πn. If, say, Σn ⊆ Γ
but Πn * Γ, then by Wadge Γ = Σn.].

We now place the prewellordering property within the Σn, Πn classes.
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Claim. pwo(Σ0).

Proof. Let A ∈ Σ0, say A =
⋃
nAn, an increasing union with An ∈ Λ. For x ∈ A

let ϕ(x) = µn [x ∈ An]. The relations <∗ϕ, ≤∗ϕ are easily both countable unions of
sets in Λ, hence in Σ0. �

From first periodicity it now follows that pwo(Σ2n, pwo(Π2n+1) for all n ≥ 0.
So, we either have pwo(Γ) or pwo(Γ̌).

This ends Case 1.
In the remaining cases we have cof(λ) > ω. Recall in this case that there is a

nonselfdual pointclass Γ′ of Wadge rank λ. So, ∆′ = Γ′ ∩ Γ̌
′

= Λ. Also, exactly

one of Γ′, Γ̌
′

has the separation property, so choose Γ′ so that sep(Γ̌
′
). From

Theorem 5.8 it follows that Γ′ is closed under ∀ωω .
We refer to Γ′ as the Steel pointlcass associated to Λ. We emphasize that Γ′,

in general, is not closed under both ∧ and ∨. Of course, Γ′, being nonseldual and

closed under ∀ωω is closed under countable intersections, and likewise Γ̌
′

is closed
under ∃ωω and so countable unions.

Before considering further cases, we prove some results about the Steel pointclass
Γ′ in general. We will assume that Λ is not closed under arbitrary length wellordered
unions (equivalently intersections). This follows immediately from the hypothesis
that there is no proper (i.e., 6= P(ωω)) pointclass closed under complements and
arbitrary length wellorderded unions and intersection. This, in turn, follows from
AD+, as one of the axioms of this theory asserts that every set is ∞-Borel.

Lemma 7.11. ρ = cof(λ) is the least ordinal such that Λ is not closed under
wellorderded unions of length ρ.

Proof. Since Λ is a proper pointclass, fix a Λ prewellordering �∈ Λ with |�|= ρ.
Let δ be the least ordinal such that there is a δ increasing seqquence of sets in Λ,

say {Aα}α<δ with A =
⋃
α<δ Aα not in Λ. Easily δ is a regular cardinal. Suppose

first that ρ < δ. Since ρ = cof(λ) and δ is regular, we may thin the sequence Aα to
a δ length subsequnce where all the Aα now have Wadge degree ≤ λ′ < λ. Assume
for the moment that δ < λ. We may then fix a nonselfdual pointclass Γ′ ⊆ Λ
closed under ∃ωω , ∧, ∨, with all the Aα ∈ Γ′ and such that there is a δ length
prewellordering in Γ′. The coding lemma then gives that A =

⋃
α<δ Aα ∈ Γ′, a

contradiction. If δ > λ, then from the minimality of δ we have that there is a λ
prewellordering in Λ, a contradiction. If δ = λ, then λ is regular, so ρ = δ = λ, and
we are done.

Thus, δ ≤ ρ. Suppose that δ < ρ ≤ λ. As ρ = cof(λ), there is a λ′ < λ such that
all the Aα have Wadge rank < λ′. As δ < λ, the coding lemma again shows that
A ∈ Λ, a contradiction. �

We next see how to generate the Steel pointclass from Λ. Let Λ be a projective
algebra with ρ = cof(λ) > ω (where λ = o(Λ)), and let Γ be the Steel pointlcass
(so |Γ|w = λ, sep(Γ̌)). Recall Γ is closed under ∀ωω . From Lemma 7.11 we have
that

⋃
ρ Λ ) Λ. We cannot have

⋃
ρ Λ = Γ̌ as then Martin’s argument would show

pwo(Γ̌) (c.f. Lemma 7.9), and since Γ̌ would also be closed under ∨, ∧ (as
⋃
ρ Λ

is) we would then have red(Γ̌) which contradicts sep(Γ̌). So, by Wadge we have⋃
ρ Λ ⊇ Γ. But since Λ is closed under ∃ωω , we also have that

⋃
ρ Λ is closed under

∃ωω , and so we have
⋃
ρ Λ ⊇ ∃ωωΓ.
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Let Γ′ be the pointclass of Σ1
1-bounded ρ length unions of Λ sets. By this we

mean A can be written as A =
⋃
α<ρAα, where Aα ∈ Λ, is an increasing union,

and if S ⊆ A is Σ1
1 then ∃α < ρ (A ⊆ Aα).

Claim. Γ′ = Γ.

Proof. First note that Γ′ is closed under ∀ωω . To see this, let A(x) ↔ ∀y B(x, y)
where B ∈ Γ′. Let B =

⋃
α<ρBα be an increasing Σ1

1 union of Λ sets. If A(x),

then there is an α < ρ such that ∀y Bα(x, y) as {(x, y) : y ∈ ωω} is a Σ1
1 set.

So, A =
⋃
α<δ Aα where Aα(x) ↔ ∀y Bα(x, y). Each Aα ∈ Λ by the closure

of Λ. Also, {Aα} forms a Σ1
1-bounded union, since if S ⊆ ωω is Σ1

1, then so is
S′ = {(x, y) : x ∈ S}.

Let A ∈ Γ. Let U ⊆ ωω × ωω be a universal Σ1
1 set. Let B = {x : Ux ⊆ A}.

So, B(x)↔ ∀y (U(x, y)→ A(y)), which shows B ∈ Γ provided we know that Γ is
closed under disjunctions with Π1

1 sets. If P ∈ Π1
1, say P (x) ↔ ∀y U(x, y) where

U is open. If C ∈ Γ then then x ∈ P ∪ C iff ∀y (U(x, y) ∨ C(x)) and since Γ is
closed under ∀ωω , it suffices to know that Γ is closed under disjunction with open
sets. To see this, let C ∈ Γ and U be open. We define a strategy τ Wadge reducing
C ∪ U to C. τ will copy I’s moves as long as I has played so far an s ∈ ω<ω

such that Ns ∩ (C ∪ U) is not Borel (if C ∪ U is Borel, the result is immediate).
Suppose I plays saan which is the first position to violate this condition. Since
Ns∩(C∪U) is not Borel, it follows that Ns∩C is not Borel. Thus Ns∩C is Wadge
above Nsaan ∩ (C ∪ U). In this case, τ then switches to a strategy which reduces
Nsaan ∩ (C ∪ U) to Ns ∩ C. τ is easily a continuous reduction of C ∪ U to C.

So, B ∈ Γ ⊆
⋃
ρ Λ. Write B =

⋃
α<ρBα with each Bα ∈ Λ. Define Aα(y) ↔

∃x ∈ Bα(U(x, y)). Each Aα is in Λ, and clearly A =
⋃
α<ρAα (each singleton is a

Σ1
1 set). Also, {Aα}α<ρ is Σ1

1-bounded [If S ⊆ A is Σ1
1, then S = Ux for some x,

and x ∈ B. So, x ∈ Bα for some α, and thus S ⊆ Aα.]. This shows Γ ⊆ Γ′.
We claim that

⋃
ρ Λ ⊆ ∃ωωΓ. If ρ < λ, this follows immediately from the coding

lemma (as there is a Λ ⊆ ∃ωωΓ prewellordering of length ρ in this case; note here
that ∃ωωΓ is closed under ∧, ∃ωω ). So assume ρ = λ, so λ is regular. It suffices by
the coding lemma to show that there is a λ length wellfounded relation in ∃ωωΓ.
We show, in fact, there is a Γ wellfounded relation of length λ. Fix A ∈ Γ− Γ̌ and
write A =

⋃
α<λAα, an increasing Σ1

1 union of sets in Λ. Play the game where I
plays out x, II plays out y and II wins iff

(x ∈ A→ (σ(y)0(A) = (σ(y)1(A))c is a prewellordering of length ≥ |x|),

where |x| = µα (x ∈ Aα). In this game I is playing out an element of A and II is
playing a code of a Λ prewellordering of length at least |x|.

II wins this game by Σ1
1 boundedness of the Aα. Let τ be a winning strategy

for II. Define then

(x0, y0) ≺ (x1, y1)↔ (x0 = x1 ∈ A) ∧ (y0 ≺τ(x) y1).

Here≺τ(x) is the Λ wellfounded relation coded by τ(x), that is, ≺τ(x)= (σ(τ(x))0)−1(A).
Thus, ≺ is the “join” of the wellfounded relation ≺τ(x) for x ∈ A. Since each ≺τ(x)
is wellfounded, so is ≺. Clearly |≺|≥ λ (in fact = λ). Finally, as Γ is closed under
∧ we see that ≺∈ Γ. This completes the proof that

⋃
ρ Λ ⊆ ∃ωωΓ.
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To summarize, we know that Γ ⊆ Γ′ ⊆
⋃
ρ Λ ⊆ ∃ωωΓ. If Γ is closed under ∃ωω

(and so closed under both quantifiers, then clearly Γ = Γ′. If Γ ( ∃ωωΓ, Then as Γ′

is closed under ∀ωω we must have Γ′ = Γ. For if Γ′ is properly larger than Γ, then
by Wadge it must contain Γ̌, and so must contain ∀ωω Γ̌, which is the dual class of
∃ωωΓ. This contradicts Γ′ ⊆ ∃ωω and the fact that ∃ωωΓ is nonselfdual (since Γ
has a universal set, so does ∃ωωΓ). This completes the proof that Γ = Γ′. �

To summarize, we have shown that the Steel pointclass corresponding to a pro-
jective algebra Λ (defined when cof(λ) > ω, where λ = o(Λ)) can be described as the
collection of Σ1

1-bounded, ρ-length increasing unions of sets in Λ, where ρ = cof(λ)
is the least ordinal such that Λ is not closed under ρ-length unions.

Theorem 7.12. Let Λ be a projective algebra with λ = cof(o(Λ)), and assume
cof(λ) > ω. Let Γ be the Steel pointclass corresponding to Λ (so |Γ|w = λ and
sep(Γ̌)). Then pwo(Γ).

Proof. Let ρ = cof(λ). Let A ∈ Γ − Γ̌, and write A =
⋃
α<ρAα, an increasing,

Σ1
1-bounded union with each Aα ∈ Λ. Let ϕ be the norm on A given by ϕ(x) =

µα (x ∈ Aα). The norm relation <∗ϕ can be written as <∗ϕ=
⋃
α<ρBα where

Bα(x, y) ↔ x ∈ Aα ∧ y /∈ Aα. Clearly Bα ∈ Λ, and we see that the sequence
{Bα}α<ρ is Σ1

1-bounded. To see this, suppose S ⊆ ωω × ωω is Σ1
1 and S ⊆<∗ϕ.

In particular, if S(x, y) then x ∈ A. As the {Aα}α<ρ is Σ1
1-bounded there is an

α0 < ρ such that S(x, y) implies x ∈ Aα0
. If x <∗ϕ y we then have that there is an

α ≤ α0 such that x ∈ Aα and y /∈ Aα, and so (x, y) ∈ Bα for some α < α0. Thus,
<∗ϕ is a Γ relation. A similar computation show that ≤∗ϕ is a Γ relation, so ϕ is a
Γ-norm. �

It is worth recording another fact about Γ-prewellorderings.

Lemma 7.13. Let Λ, Γ be as in Theorem 7.12. Then there is a Γ prewellordering
of length λ = o(Λ). Furthermore, all strict initial segments of this prewellordering
are in Λ (in particular, there is λ increasing sequence of Λ sets).

Proof. Let ρ = cof(λ). Assume first that ρ < λ. Let {Aα}α<ρ be a Σ1
1-bounded

increasing sequence of sets in Λ with A =
⋃
α<ρAα ∈ Γ − Γ̌. We must have that

{|Aα|w : α < ρ} is cofinal in λ (as otherwise the coding lemma shows that A ∈ Λ).
Let f(α) = |Aα|w. By thinning the sequence, we may assume that f is strictly
increasing and discontinuous. Also, we may assume that for each α < ρ there is a
prewellordering of length f(α) which is Wadge reducible to any set of Wadge degree
f(α+ 1). We may also assume that there is a prewellordeing of length ρ in Γ0. Let
Γα = Σ1

1(Aα+1), and let Uα be a universal set for Γα+1 (this is defined uniformly
from Aα+1, see exercise 21). So, Γα is nonselfdual, closed under ∃ωω , ∧, and has a
prewellordering of length f(α).

Fix for the moment an α < ρ. By the coding lemma applied to Γα, there is a
Γα set E such that

(1) Every z ∈ E codes, relative to Uα a set Bz of Wadge degree g(z) ∈
[supβ<α f(β), f(α)). Here Bz = σ−1(z)0

(Uα) = (σ−1(z)1
(Uα))c.

(2) For every γ ∈ [supβ<α f(β), f(α)) there is an z ∈ E with g(z) = γ.

By the coding lemma again, there is a D ⊆ ωω×ωω ∈ Γ0 ⊆ Λ (using now ρ < λ)
such that
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(1) dom(D) ⊆ A× ωω.
(2) For all α < ρ there is an (x, y) ∈ D with x ∈ Aα −

⋃
β<αAβ .

(3) If D(x, y) and x ∈ Aα −
⋃
β<αAβ , then y codes, relative to Uα, a Γα set

Ey satisfying (1) and (2) above (for the set E) and this α.

For α < ρ define Eα by:

z ∈ Eα ↔ ∃x ∃y (D(x, y) ∧ x ∈ Aα −
⋃
β<α

Aβ ∧ z ∈ Ey)

where “z ∈ Ey” means σy(z) ∈ Uα. So, each Eα is a Γα set of codes (relative
to Uα) for sets of Wadge degrees in [supβ<α f(β), f(α)) (and every ordinal in this
interval is coded by a real in Eα).

We now define an increasing sequence {Cγ}γ<λ of sets in Λ as follows. Fix γ < λ,
and let α be such that γ ∈ [supβ<α f(β), f(α)). Let

(x, z) ∈ Cγ ↔ ∃α0 ≤ α[(x ∈ Aα0 −
⋃
β<α0

Aβ) ∧ z ∈ Eα0 ∧ ((α0 < α)

∨ (σ−1(z)0
(Uα) = (σ−1(z)1

(Uα))c has Wadge degree ≤ γ))]

As Γα+1 is closed under f(α) unions (by the coding lemma), we easily have that
each Cγ is in Γα+1. The Cγ clearly form a λ-length increasing sequence. Let ψ be
the norm corresponding the sequence {Cγ}γ<λ, so ψ has length λ. We may write

<∗ψ=
⋃
α<ρ

⋃
γ<f(α)

(Cγ × (ωω − Cγ)))

This is a ρ union of sets, say Fα, each of which is easily in Λ (since for γ < f(α),
Cγ has Wadge degree < f(α + 1)). Also, the sequence {Fα}α<ρ is a Σ1

1-bounded

union, since if S ⊆
⋃
α<ρ Fα =<∗ψ is Σ1

1, then {x : ∃y (x, y) ∈ S} is a Σ1
1 subset of

A, and hence is contained in some fixed Aα. This completes the proof in the case
ρ < λ.

The case ρ = λ is immediate, since in this case we may write a set A ∈ Γ− Γ̌ as
as λ increasing, Σ1

1-bounded, union of Λ sets, and this gives a Γ prewellordering of
length λ. �

Case 2: cof(λ) > ω and Γ is not closed under ∨.
First we note that this case includes the case where λ is singular (and cof(λ) > ω).

To see this, let ρ = cof(λ), so ω < ρ < λ. Let A =
⋃
α<ρAα where A ∈ Γ− Γ̌ and

each Aα ∈ Λ. Let Γ0 be a pointclass closed under ∃ωω , ∧ such that there is a Γ0

prewellordering of length ρ. By the coding lemma there is a Γ0 set B such that
each x ∈ B is a Γ̌ code for one of the Aα and each Aα is coded by some x ∈ B. We
then have

y ∈ A↔ ∃x [(x ∈ B) ∧ σx(y) ∈ Ac]
and since Γ̌ is closed under ∃ωω , this shows that Γ̌ is not closed under intersection
with Γ0 sets.

Since Γ is not closed under ∨, it is not closed under ∃ωω . Let Π1 = Γ be the
Steel pointclass, and define the Σn, Πn classes for n ≥ 1 as usual. Note that these
classes are all distinct, for example Σn is not closed under ∀ωω as otherwise, since
Πn = ∀ωωΣn−1, we would have that Σn ⊇ Πn and so Σn = Πn, a contradiction
as all the Σn are nonselfdual.
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We have pwo(Π1), and by periodicity we have pwo(Π2n+1), pwo(Σ2n+2) for
all n ≥ 0. Note that for n ≥ 2, Σn, Πn are closed under countable unions and
intersections.

Case 3: cof(λ) > ω, and Γ is closed under ∨ but not ∃ωω .
As we remarked above, in this case λ is regular. As in Case 2, let Π1 = Γ and

define the Σn, Πn as usual. Since by assumption Π1 is not closed under ∃ωω , we
again have that all the Σn, Πn are distinct. As in Case 2, by periodicity we again
have pwo(Π2n+1), pwo(Σ2n+2) for all n ≥ 0.

Case 4: cof(λ) > ω and Γ is closed under ∃ωω .
In this case Γ is closed under ∀ωω , ∃ωω , and hence also countable unions and

intersections. As we noted in Case 2, we must have λ is regular in this case. We
have pwo(Γ), but in this case we cannot propagate from Γ by periodicity as Γ is
closed under quantifiers.

Let Π1 = Γ ∧ Γ̌, Σ1 = Π̌1 and define the Σn, Πn as usual. Note that Π1

is closed under ∀ωω and countable intersections, but not ∨ (as otherwise it would
contain Σ1, which it does not as it is nonselfdual, as it easily has a universal set).
In particular Π1 is not closed under ∃ωω , and as before we have that all the Σn,
Πn are distinct. Thus, we have a projective-like hierarchy defined over Π1.

We show pwo(Π1). For this, we use the following representation of Π1 sets.

Claim. Π1 is the collection of Σ1
1-bounded increasing unions of Γ̌ sets of length λ.

Proof. Let Π′1 be the collection of Σ1
1-bounded increasing unions of Γ̌ sets of length

λ. Suppose A ∈ Π1, say A = B ∩C where B ∈ Γ, C ∈ Γ̌. Write B =
⋃
α<λBα, an

increasing, Σ1
1-bounded union of Λ sets. Then A =

⋃
α<λ(Bα ∩C). This is easily a

Σ1
1-bounded union of Γ̌ sets (note here Γ̌ is closed under intersections with Λ sets,

in fact, Γ and Γ̌ are closed under unions and intersections). So, Π1 ⊆ Π′1.
Since Γ̌ is closed under ∀ωω , the argument of Claim 7 shows that Π′1 is closed

under ∀ωω . On the other hand, since there is a Γ prewellordering of length λ, the
coding lemma shows that

⋃
λ Γ̌ ⊆ ∃ωω (Γ∧ Γ̌) = Σ2. Since Π1 ⊆ Π′1 ⊆ Σ2 and Π′1

is closed under ∀ωω , by Wadge it follows that Π′1 = Π1.
Let A ∈ Π1, and as above write A = B ∩C =

⋃
α<λ(Bα ∩C), where C ∈ Γ̌ and

the Bα form a Σ1
1-bounded union of ∆ sets. Let Aα = Bα ∩C, so A =

⋃
α<λAα is

Σ1
1-bounded union of Γ̌ sets. Let ϕ be the norm on A associated to this union, that

is, ϕ(x) = µx (x ∈ Aα). We show that ϕ is a Π1-norm. Write ωω −C =
⋃
β<λ Cβ ,

a Σ1
1-bounded union of ∆ sets. Note that ωω − Aα =

⋃
β<λ(Cβ ∪ Bcα). Note also

that the Cβ form a Γ̌-bounded union. This is because the norm ψ associated to
the Cβ is a Γ-norm (as shown above) and since Γ is closed under ∧, ∨ the usual

boundedness argument shows every Γ̌ subset of ωω −C is bounded in the ψ norm.
From this it follows that each sequence {Cβ∪Bcα}β<λ is actually a Γ̌-bounded union

(since if S ⊂
⋃
β(Cβ ∪Bcα) = Cc ∪Bcα is Γ̌, then S −Bcα ⊆ Cc is in Γ̌).

We then have

x <∗ϕ y ↔ ∃β < λ ∃α ≤ β [(x ∈ Aα) ∧ (y ∈ Cβ ∪Bcα)].

For a fixed β < λ, the rest of the above equation after the ∃β quantifier defines
a Γ̌ set (it is a β-union of Γ̌ sets, and Γ̌ is closed under < λ unions by the coding
lemma). So, <∗=

⋃
β Eβ , where Eβ ∈ Γ̌. Moreover, this is a Σ1

1-bounded union.

To see this, let S ⊆<∗ be Σ1
1. Then S1 = {x : ∃y (x, y) ∈ S} ∈ Σ1

1 and S1 ⊆ A,
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and so there is an α0 < λ such that S1 ⊆ Aα0
. For α ≤ α0, let Sα = {(x, y) ∈

S : x ∈ Aα −
⋃
γ<αAγ} = {(x, y) ∈ S : x ∈ C ∩ (Bα −

⋃
γ<αBγ)} which shows

that Sα ∈ Γ̌. By Γ̌-boundedness of the {Bcα ∪ Cβ}β<λ we have that there is a
β(α) < λ such that for all (x, y) ∈ Sα, y ∈ (Bcα ∪

⋃
β<β(α) Cβ). Since λ is regular,

β0 = supα≤α0
β(α) < λ. We then have that S ⊆ Eβ0 . This shows that <∗ϕ is in Π1.

A similar computation shows that ≤∗ϕ is in Π1.
This completes the proof of pwo(Π1). By periodicity we then have pwo(Π2n+1),

pwo(Σ2n+2) for all n ≥ 0. �

8. Wellordered Unions

In this section we investigate wellordered unions from a pointclass Γ. the main
closure theorem is the following.

Theorem 8.1. Let Γ be nonselfdual, closed under ∃ωω , and assume pwo(Γ). Then
Γ is closed under wellordered unions.

Before starting the proof, we note that there is no harm in adding the assumption
that Γ is also closed under ∧. For inspecting the hierarchy analysis for the Levy
poinclasses of §7 we see that in all cases if Γ is nonseldudal and closed under ∃ωω

and pwo(Γ), then Γ is also closed under ∧. For if Λ = Λ(Γ) is of type I, then Γ
must be of the form Σ2n for some n ≥ 0, and all these classes are closed under ∧.
If Λ is of types II or III, then Γ must be of the form Σ2n for n ≥ 1), since in these
cases the Steel class Γ = Π1 is not closed under ∃ωω . All of these classes are closed
under ∧, in fact, closed under countable unions and intersections (if Γ′ = ∃ωωΓ
where Γ is nonselfdual and closed under ∀ω, then Γ′ is closed under countable
unions and intersections by the same argument for Σ1

1). If Λ is of type IV (that
is, the Steel class is closed under both quantifiers), then either Γ is the Steel class
(since we are assuming pwo(Γ), Γ must be the Steel class, not the dual class), or Γ
is of the form Σ2n for n ≥ 1, where recall Σ2 = ∃ωω (Γ ∧ Γ̌) (since pwo(Π1) where
Π1 = Γ ∩ Γ̌). All of these classes are closed countable unions and intersections by
the above comment.

So, in all cases, a nonselfdual Γ closed under ∃ωω with pwo(Γ) is also closed
under ∧ (of course, Γ is also closed under ∨ as it is nonselfdual and closed under
∃ω). Note also we showed above that Γ is actually closed under countable unions
and intersections in all cases except one: Λ is of type I and Γ = Σ0 =

⋃
ω Λ.

The proof of Theorem 8.1 breaks into two cases depending on whether Γ is closed
under ∀ωω or not. In both cases we are also assuming Γ is nonselfdual, Γ is closed
under ∃ωω , and pwo(Γ), and by the above comments also closed under ∧, ∨.

Case 1: Γ is closed under ∀ωω .
In this case (the type IV case), Γ is closed under ∃ωω , ∀ωω , and so also count-

able unions and intersections. So, Γ̌ is also closed under these operations. Go-
ing by contradiction, let ρ be the least ordinal such that there is a ρ-union of Γ
sets which is not in Γ. Easily, ρ is a regular cardinal. Let δ = sup{|≺| : ≺∈
Γ̌ is a wellfounded relation}. Γ̌ is closed under < δ length unions by the coding
lemma, so δ ≤ ρ. Since we are assuming

⋃
ρ Γ * Γ we have Γ̌ ⊆

⋃
ρ Γ by Wadge.

We have, in fact, that every Γ̌ set can be written as a Σ1
1-bounded ρ-union of

sets in Γ. To see this, let B ∈ Γ̌, and let U be a universal Σ1
1 set. Let C(x) ↔

∀y (Ux(y)→ B(y)), so C ∈ Γ̌ by the closure properites of Γ̌. Write C =
⋃
α<ρ Cα,
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an increasing union with Cα ∈ Γ. Then let Bα(y) ↔ ∃x[(x ∈ Cα) ∧ (y ∈ Ux)].
Then B =

⋃
α<ρBα, each Bα ∈ Γ, and the Bα form a Σ1

1-bounded union.

Fix now an increasing Σ1
1-bounded union A =

⋃
α<ρAα with each Aα ∈ Γ and

A ∈ Γ̌−Γ. For x ∈ A let |x| = µα (x ∈ Aα). Consider the game where I plays out
x, II plays out y, z, and II wins the run iff

(x ∈ A→ ((y ∈ A) ∧ (|x| < |y|) ∧A|y| = Vz)),

where V denotes a universal Γ set. By Σ1
1-boundedness, II has a winning strategy

τ . Consider the relation ≺ defined by

x0 ≺ x1 ⇔ (x0, x1 ∈ A) ∧ (τ(x1)0 /∈ V(τ(x0))1)

which is clearly a Γ̌ relation. Note that for x0, x1 ∈ A we have x0 ≺ x1 iff ϕ(x0) <
ϕ(x1) where ϕ(x) = |(τ(x))0|. Thus, ≺ is a prewellordering. Since ρ is regular, it
follows that ≺ has length at least ρ [By induction on α < ρ there is a β(α) < ρ
such that every x ∈ A with |x| ≥ β(α) has ≺-rank ≥ α. At limit stages we use
the regularity of ρ, and at successor stages the result easily follows.] So, ≺ is a Γ̌
prewellordering on length ρ. This shows that ρ < δ, a contradiction.

Case 2: Γ is not closed under ∀ωω , but closed under ∀ω.
Going by contradiction again, let ρ be the least ordinal such that there is a ρ-

union of Γ sets which is not in Γ. Again, ρ is a regular cardinal. Let Γ′ =
⋃
α<ρ Γ.

By minimality of ρ, any ρ-length union of Γ sets has the same union as a ρ-length
increasing union. We are assuming Γ′ * Γ, and so by Wadge, Γ̌ ⊆ Γ′. Since Γ′ is

clearly closed under ∃ωω we have ∃ωω Γ̌ ⊆ Γ′. Let

δ1 = sup{|≺| : ≺∈ Γ is a wellfounded relation},

and let δ2 = sup{|≺| : ≺∈ ∃ωω Γ̌ is a wellfounded relation}. From the coding
lemma, both δ1 and δ2 are regular cardinals. Also, δ1 < δ2 since we may put
all the Γ wellfounded relations together into a single Γ ∧ Γ̌ ⊆ ∃ωω Γ̌ relation (this
uses the closure of Γ under ∀ω).

Suppose first that ρ < δ2. By periodicity we have pwo(∀ωωΓ), and it follows by
Theorem 7.9 that ∆1 = ∃ωω Γ̌∩∀ωωΓ is closed under < δ2 unions and intersections.
This would give that

⋃
ρ Γ ⊆∆1, contradicting ∃ωωΓ ⊆

⋃
ρ Γ.

Suppose next that ρ ≥ δ2. Let ≺ be a ∃ωω Γ̌ wellfounded relation of rank > δ1.
Write ≺=

⋃
α<ρAα an increasing unions with Aα ∈ Γ. For x ∈ dom(≺), let

|x|α = |x|Aα be the rank of x in the wellfounded relation Aα. So, |x|α < δ1. Since
ρ is regular, there is an α(x) < δ1 such that for all α ≥ α(x), |x|α = |x|α(x). The
map x 7→ |x|α(x) is an order-preserving map from ≺ to δ1, a contradiction.

This completes the proof of Theorem 8.1. �

Case 3: Γ is not closed under ∀ω.
Inspecting the hierarchy analysis we see that there is a type I projective algebra

Λ, that is cof(λ) = ω such that Γ = Σ0 =
⋃
ω Λ. Recall that in this case Σ0 is

closed under ∧, ∨, ∃ωω , and we have pwo(Σ0) and also Σ0 is not closed under ∀ω,
so this case does occur.

9. Scales

For the basic definition and facts about semi-scales, Suslin representations, and
scales, see the notes on Polish spaces. We cary on from that discussion.
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For T a tree on ω × κ (κ ∈ On) with A = p[T ], let ~ϕT be the coresponding
semi-scale on A, so each norm ϕTn maps into α. Similarly, given a semi-scale ~ϕ on
the set A, let Tϕ denote the tree of ~ϕ (we drop the vector notation when it causes
no confusion). So, Tϕ is a tree with A = p[T ].

In general the maps ϕ 7→ T (ϕ) = Tϕ and T 7→ ϕ(T ) = ϕT are not inverses of
each other.

Fact 9.1. If ~ϕ is a scale on A, then ϕ = ϕ(T (ϕ)).

Proof. Let X ∈ A, and let ~ψ denote the semi-scale ϕ(T (ϕ)). Then ψn(x) is the
nth digit of the leftmost branch of T (ϕ)x. Clearly ϕ0(x), ϕ1(x), . . . ) is a branch

through T (ϕ)x, and since ~ψ is a scale, it is the (true) leftmost brach of T (ϕ)x. So,
ψn(x) = ϕn(x). �

Fact 9.2. If T is a tree, then T (ϕ(T )) ⊆ T .

Proof. If (s, ~α) ∈ T (ϕ(T )), then there is an x extending s in A = p[T ] such that
ϕn(T )(x) = α(n) for all n < ln(s). So, for all such n we have that the leftmost
branch of Tx begins with ~α � n. In particular, (s, ~α) ∈ T . �

From the last fact we have the following.

Fact 9.3. For any tree T we have ϕ(T (ϕ(T ))) = ϕ(T ).

Proof. We have that T (ϕ(T )) ⊆ T , and both of these trees project to the same set
A = p[T ]. To see that ϕ(T (ϕ(T ))) = ϕ(T ) it is enough to observe that for any
x ∈ A that the leftmost branch of T (ϕ(T )))x is the leftmost branch of Tx. For this
it is enough to see that the leftmost branch of Tx is a branch through T (ϕ(T )))x.
If f is the leftmost branch of Tx, then for all n, (x � n, f � n) is in T (ϕ(T ))) since
we can use x as the witness (as x extends s and its leftmost branch f starts out
with f � n). This shows ϕ(T (ϕ(T ))) = ϕ(T ). �

Corollary 9.4. The maps Σ: ϕ 7→ ϕ(T (ϕ)) and Π: T 7→ T (ϕ(T )) are idempotent
(that is, Σ2 = Σ, Π2 = Π).

Proof. Since ϕ(T (ϕ(T ))) = ϕ(T ) holds for any tree T , we have in particular that
ϕ(T (ϕ(T (ϕ)))) = ϕ(T (ϕ)), which says that Σ2 = Σ. Similarly, we can “apply T”
to both sides of the equation to get T (ϕ(T (ϕ(T )))) = T (ϕ(T )), which says that
Π2 = Π. �

The scale property and basic facts about it were discussed in the other set of
notes, we just recall here without proof some of these facts.

Definition 9.5. A Γ-scale on a set A ⊆ ωω is a scale {ϕn}n∈ω on A such that each
norm ϕn is a Γ-norm. Likewise we define Γ-semi-scale, Γ-good scale, etc. We say
Γ has the scale property if every Γ set A ⊆ ωω has a Γ-scale.

We write scale(Γ) to say that Γ has the scale property. Clearly scale(Γ) implies
pwo(Γ).

Fact 9.6. If Γ is closed under ∧, ∨, and scale(Γ), then every A ∈ Γ admits a
Γ-excellent scale.

Recall that if pwo(Γ) and Γ is closed under ∀ω, then Γ has the number uni-
formization property. We state next the corresponding result for the full uniformiza-
tion property.
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Fact 9.7. If scale(Γ) and Γ is closed under ∀ωω , ∧, ∨, then every R ⊆ ωω ×ωω in
Γ has a Γ uniformization.

Proof. From Fact 9.6 we may assume {ϕn} is an excellent scale on R. As in
Lemma 2.28 of the other notes, this gives a uniformization of R which is also
in Γ using the closure of Γ under ∀ωω . �

Fact 9.8. If Γ is a pointclass and unif(Γ), then unif(∃ωωΓ).

Also (from the other notes) we have the following fundamental fact.

Fact 9.9 (ZF). Π1
1 has the scale property.

Corollary 9.10 (ZF). Π1
1 and Σ1

2 have the uniformization property.

We now begin the analysis of the scale property assuming AD. The arguments
will be similar in some respects to the analysis of the prewellordering property given
before, but new ingredients arise.

First we give the periodicity theorems which propagate the scale property under
quantifiers, similar to what the first periodicity theorem did for norms. As with the
prewellordering property, the propagation by the ∃ωω quantifier is easy and done
in ZF (see Lemma 2.48 in the other notes).

Fact 9.11. Let Γ be a pointclass closed under ∀ωω , ∧, ∨ and assume scale(Γ).
Then scale(∃ωωΓ).

Next we have the second periodicity theorem which transfers the scale property
by the ∀ωω quantifier.

Theorem 9.12 (Second Periodicity). Let Γ be closed under ∃ωω , ∧, ∨ and assume
∆ determinacy. If scale(Γ) then scale(∀ωωΓ). More generally (without assuming
the closure properties of Γ), if B ⊆ ωω × ωω admits a very good scale in Γ, then
A = ∀ωωB admits a scale in ∀ωω∃ωωΓ.

Let A ∈ ∀ωωΓ, say A(x) ↔ ∀y B(x, y) where B ∈ Γ. Let {ϕn} be a scale on
B. We define norms {ψn} on A as follows. Let {sn} enumerate ω<ω with all sn
preceding any of its proper extensions (so s0 = ∅). To define the norm ψn we
consider, for x0, x1 ∈ A, the following game:

Gn(x0, x1)

sn

sn

I

II

y0(0)

y1(0)

y0(1)

y1(1)

y0(2)

y1(2)

· · ·

· · ·

where I and II play out y0 and y1 respectively and II wins the run iff (x0, sn
ay0) ≤∗ϕn

(x1, sn
ay1). Since x0, x1 are in A, this game is in ∆ and hence determined. We

define x0 ≤n x1 iff II has a winning strategy in Gn(x0, x1). Exactly as in the first
periodicity theorem, ≤n is a reflexive, transitive, connected, wellfounded relation
on A, that is, it defines a prewellordering on A. Let ψn be the corresponding norm
on A.

We next show that {ψn} is a scale on A. Suppose {xm} ⊆ A, Xm → x, and for
each n the norms ψn(xm) are eventually equal to λn. First we show that x ∈ A.
Fix y ∈ ωω, and we show B(x, y). Let i0 < i1 < · · · be a sequence such that
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∀m ≥ ik(ψl(xm) = λl, where sl = (y(0), . . . , y(k − 1)) (for k = 0 we stabilize
ψ0, that is, l = 0). For each k, let τk be a winning strategy for II in the game
Gl(xik+1

, xik), with l as above. Using the τk we fill in the following diagram.

xi0

xi1

xi2

xi3

xi4

...

yi0(0)

y(0)

y(0)

y(0)

y(0)

...

x y(0) y(1) y(2) y(3) · · ·

yi0(1)

yi1(1)

y(1)

y(1)

y(1)

...

yi0(2)

yi1(2)

yi2(2)

y(2)

y(2)

...

yi0(3)

yi1(3)

yi2(3)

yi3(3)

y(3)

...

· · ·

· · ·

· · ·

· · ·

· · ·

τ0

τ1

τ2

τ3

This produces reals yik which converge to the real y. Since each τk is a winning
strategy for II in Gl(xik+1

, xik) we have that ϕlk(xik+1
, yik+1

) ≤ ϕlk(xik , yik) for
each k, where slk = (y(0), . . . , y(k − 1)). Since lk ≥ k and ~ϕ is very good, we have
ϕk(xik+1

, yik+1
) ≤ ϕk(xik , yik) for all k. Since ~ϕ is very good, this says that for all

n that the norms ϕn(xik , yik) are eventually constant. Since ~ϕ is a semi-scale on

B, this says that (x, y) ∈ B. This shows that ~ψ is a semi-scale on A.

The proof that ~ψ is a scale is very similar. To see that ~ψ is a scale, it suffices to
show that for each s ∈ ω<ω, II can win the game Gs(x, xm) for all large enough m.
Fix such an s, and let i0 now be a large enough integer so that the norms ψs(xm)
are constant for all m ≥ i0. If now I makes move first move y(0) in Gs(x, xi0), then
II chooses an i1 > i0 such that the norms ψsay(0)(xm) are constant for m ≥ i1 and
fixes a winning strategy τi0 in the game Gs(xi1 , xi0) and copies the move y(0) to be
I’s first move in this game. II then plays according to τi0 to get the first move of II
in Gs(x, xi0). If I then plays y(1) as the next move of Gs(x, xi0), II then chooses a
xi2 so that the norms ψl1(xm) are constant for m ≥ i2 and picks a winning strategy
τi1 for the game Gsa(y(0),y(1))(xi2 , xi1) and copies y(1) as the first move of that
game. This is illustrated in Figure 9.

If we let zik = sayik be the real produced by following τik on the kth board,
then we have again that for all k:

ϕsa(y(0),...,y(k−1))(xik+1
, zik+1

) ≤ ϕsa(y(0),...,y(k−1))(xik , zik).

Since ~ϕ is very good, all the norms ϕn(xik , zik) are eventually constant, say with
constant value αn, and since ~ϕ is a scale we have ϕn(x, z) ≤ αn. In particular
ϕs(x, z) ≤ ϕs(xi0 , zi0), which shows II has won the run of the game Gs(x, xi0).
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xi0

xi1

xi2

xi3

xi4

...

yi0(0)

y(0)

y(0)

y(0)

y(0)

...

x y(0) y(1) y(2) y(3) · · ·

yi0(1)

yi1(1)

y(1)

y(1)

y(1)

...

yi0(2)

yi1(2)

yi2(2)

y(2)

y(2)

...

yi0(3)

yi1(3)

yi2(3)

yi3(3)

y(3)

...

· · ·

· · ·

· · ·

· · ·

· · ·

τ0

τ1

τ2

τ3

s

s

s

s

s

s

Figure 3. Showing ~ψ is a scale.

So far we have shown that the ψn form a scale on A. If we let ψ′n(x) =
〈ψ0(x), ψn(x)〉lex for x ∈ A, then it follows that {ψ′n} is also a scale on A. Moreover,
each of the norms ψ′n is now a ∀ωω∃ww Γ norm. For example, we have

x0 ≤∗ψ′n x1 ↔ [(x0 <
∗
ψ0
x1) ∨ ((x0 ≤∗ψ0

x1) ∧ (x1 ≤∗ψ0
x0) ∧ (x0 ≤∗ψn x1))]

From the first periodicity theorem we have that ψ0 is a ∀ωω∃ωω Γ-norm on A.
For n > 0 the norm ψn is not necessarily a ∀ωω∃ωω Γ-norm on A (for example, if
x0 ∈ A and x1 /∈ A, we don’t necessarily have that II wins the game Gs(x0, x1),
so we can’t say that x0 ≤∗ψn x1 holds iff II wins this game as we did in the first

periodicity theorem). However, in the above equation we can replace “x0 ≤∗ψn x1”

with “II wins the game Gsn(x0, x1)” as at this point in the formula we have already
guaranteed that both x0, x1 are in A.

This completes the proof of the second periodicity theorem.

Corollary 9.13 (projective determinacy). We have scale(Π1
2n+1), scale(Σ1

2n+2)
for all n ≥ 0.

Corollary 9.14 (projective determinacy). We have unif(Π1
2n+1), unif(Σ1

2n+2) for
all n ≥ 0.

We next give the third periodicity theorem. Although this is not needed for the
propagation of scales, it is an impotant theorem in descriptive set theory, and the
proof is similar to that of the second periodicity theorem. The third periodicity
theorem concerns the existence of canonical/definable winning strategies for games
whose payoff sets are Suslin (i.e., have scales).
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Theorem 9.15 (Third Periodicity). Let A ⊆ ωω and assume A admits a scale
{ϕn} in a pointclass Γ. Assume det(Γ). If I has a winning strategy in the game
GA (recall I tries to get in the set A), then I has a canonical winning strategy σ
for the game GA which is a aΓ real.

Proof. Consider s = (a(0), a(1), . . . , a(2n − 1)) ∈ ω<ω of even length (so I’s turn
to move). Suppose s is a winning position for I in the game GA. We compare the
possible next moves for I by the following game. For a, b ∈ ω the game Gs(a, b) is
played as shown:

Gs(a, b)

I

II

s

s

b

a

x1(0)

x0(0)

x1(1)

x0(1)

x1(2)

x0(2)

· · ·

· · ·

Figure 4. The position comparison game.

In the game Gs(a, b), players I and II alternate moves as usual with I moving first.
They play in somewhat different locations, however. I makes first move x0(0),
and then II responds with move x1(0). This is illustrated by the straight arrow in
Figure 4. On the next round, I first makes the move x1(1), and then II responds
with x0(1) as illustrated by the arrow again. This two-round cycle of moves then
repeats. We think of the moves x0(0) and x1(0) as being offensive moves made by
the players; they are playing as the ∀ω player on their opponent’s board. Likewise,
we likewise think of the moves x0(1) and x1(1) as defensive moves; they are playing
as the ∃ω player on their home boards (in this description, we view II as responsible
for the board corresponding to saa. II is trying to get z0 = saaax0 to be “more
in the set” A than the real z1 = sabax1 which I is responsible for). At the end of
the rounds, we have reals z0 = saaax0 and z1 = sabax1. II then wins the run of
the game iff z0 ≤∗ϕn z1, where n = |s|.

Claim. For each s which is a winning position for I (with I to move) in the game
GA, let Ws be the set of a such that saa is still a winning position for I (with now
II to move). Then the relation on Ws defined by a ≤s b iff II has a winning strategy
in the game Gs(a, b) is a prewellordering on the set Ws.

We prove the claim shortly, but first we see how it defines a canonical winning
strategy for I in GA. Let σ be the quasistrategy for I in G which plays by always
playing moves which are minimal in the prewellorderings ≤s. That is, if s =
(a(0), . . . , a(2n − 1)) has followed σ so far, then a ∈ σ(s) iff a ∈ Ws is minimal in
≤s. We show this is a winning quasistrategy for I.

Fix a winning strategy σ′ for I in G. Let y = (y(0), y(1), . . . ) be a play according
to σ. We must show that y ∈ A. Consider the diagram shown in Figure 5.

The moves y0(2k) on the top row come from the strategy σ′. Since y(0) ≤0

y0(0), we can fix a winning strategy τ0 in the game G∅(y(0), y0(0)). The vertical
arrows between the first and second rows of the diagram come from τ0. The move
y(1) is copied as shown by the dashed arrow, and this then determines the moves
y0(1), y0(2), and y1(2). Note that (y(0), y(1), y(2)) and (y(0), y(1), y1(2)) are both
in W(y(0),y(1)). For (y(0), y(1), y(2)) this is because this is following σ, which by
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∃ ∀ ∃ ∀ ∃ ∀ ∃ · · ·

y(0) y(1) y(2) y(3) y(4) y(5) y(6)

y0(0)

y(0)

y(0)

y(0)

y(0)

...

y0(1)

y(1)

y(1)

y(1)

y(1)

...

y0(2)

y1(2)

y(2)

y(2)

y(2)

...

y0(3)

y1(3)

y(3)

y(3)

y(3)

...

y0(4)

y1(4)

y2(4)

y(4)

y(4)

...

y0(5)

y1(5)

y2(5)

y(5)

y(5)

...

y0(6)

y1(6)

y2(6)

y3(6)

y(6)

...

· · ·

· · ·

· · ·

· · ·

· · ·

σ′

τ0

τ1

τ2

τ3

Figure 5. Showing the canonical strategy is winning.

definition always stays inside the corresponding Ws sets. For (y(0), y(1), y1(2)) this
is because the pair s = (y0(0), y0(1), y0(2)), t = (y(0), y(1), y1(2)) is according to τ0
(if t were not a winning position for ∃ in the basic game Gt(A), then I could defeat
τ0 starting from s, t by following a winning strategy for ∀ in the second board; this
would give y1 /∈ A which defeats τ0). Since y(2) ≤(y(0),y(1)) y1(2), we can fix a
winning strategy τ1 for II in the game G(y(0),y(1))(y(2), y1(2)). The vertical arrows
between the second and third rows of the diagram come from τ1. Continuing, we
fill-in the diagram.

Let y0, y1, . . . be the reals produced in the diagram. Clearly ym → y. Since each
τk is winning for II, yk+1 ∈ A for all k. Also ϕ2k(yk+1) ≤ ϕ2k(yk) for all k. Since
~ϕ is very good, it follows that y ∈ A.

Next we prove the claim. Fix s a winning position in GA with I to move, and let
Ws again denote the set of moves a such that I can win the basic game from saa.
Consider the relation ≤s on Ws. The transitivity of ≤s follows easily by composing
strategies as in the first and second periodicity theorems.

We make the subclaim that given any sequence a0, a1, . . . from Ws, there is a k
such that ak ≤s ak+1. Suppose not, and let σk be a winning strategy for I in the
game Gs(ak, ak+1). Fix a winning strategy σ for I in the game G(A) starting from
position saa0. We fill in the diagram as shown in Figure 6.

Each σk first makes the move yk(0). This fills in the first column of the diagram.
Each σk then moves (viewing II’s move as yk+1(0)) yk+1(1). This gives the second
column except for the move y0(1) which comes from the strategy σ (indicated by the
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∀ ∃ ∀ ∃ · · ·σ

σ0

σ1

σ2

σ3

a0

a1

a2

a3

a4

...

y0(0)

y1(0)

y2(0)

y3(0)

y4(0)

...

y0(1)

y1(1)

y2(1)

y3(1)

y4(1)

...

y0(2)

y1(2)

y2(2)

y3(2)

y4(2)

...

y0(3)

y1(3)

y2(3)

y3(3)

y4(3)

...

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 6. Proving the claim.

vertical arrow from the ∃ to y0(1)). This then repeats to fill in the entire diagram.
Since σ is a winnimg strategy in G(A) we have that z0 = saa0

ay0 ∈ A. Since
each σk is winning for I in Gs(ak, ak+1), we have that ¬(zk ≤∗|s| zk+1) where zk =

saak
ayk and zk+1 = saak+1

ayk+1. Since zk ∈ A inductively, this says zk+1 ∈ A.
So, zk ∈ A for all k and also ϕ|s|(zk+1) < ϕ|s|(zk) for all k, a contradiction.

It follows that ≤s is reflexive on Ws as otherwise the sequence a, a, a, . . . would
violate the above subclaim. Likewise, if a, b ∈ Ws than we must have a ≤s b
or b ≤s a as otherwise a, b, a, b, a, b, . . . violates the subclaim. The subclaim also
immediately shows that ≤s is wellfounded on Ws. This proves the claim, that is,
shows that ≤s is a prewellordering on Ws.

So far we have shown that the canonical quasistrategy for I in GA is a winning
quasistrategy. We next consider the complexity of this strategy. Let ≤∗s, <∗s be the
relations associated to the prewellordering ≤s on Ws.

Let G′s(a, b) be the game, similar to Gs(a, b), played as shown in Figure 7. Here
I makes the first move x1(0), and then II responds with x0(0) (these are their
“offensive” moves on their opponent’s boards; here we view I’s home board as the
one corresponding to saa as shown). I then makes the move x0(1) followed by II’s
move of x1(1) (these are their “defensive” moves). I wins the run of the game iff
z0 <

∗
s z1 where z0 = saaax0 and z1 = sabax1.

Claim. For all a, b, we have a ≤∗s b iff II has a winning strategy in the game
Gs(a, b). Also, a <∗s b iff I has a winning strategy in G′s(a, b).

To prove the claim, first suppose that II has a winning strategy in Gs(a, b).
We must have that a ∈ Ws (i.e., I can win G(A) starting from saa) as otherwise
II can make the moves x0(0), x0(2), x0(4), . . . in Gs(a, b) according to a winning
strategy for ∀ in G(A). This would result in a play of Gs(a, b) where z0 /∈ A, where
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Figure 7. The game G′s(a, b).

z0 = saaax0. Thus, ¬(z0 ≤∗s z1), contradicting that II has won Gs(a, b). So,
a ∈ Ws. If b /∈ Ws then a ≤∗s b holds by definition. If b ∈ Ws as well, then by
definition we have a ≤s b, and so a ≤∗s b holds.

Next suppose that a ≤∗s b. By definition we have a ∈ Ws. If b /∈ Ws then II can
win Gs(a, b) as follows: II plays (makes the moves x1(2k)) in the top board (the
sab board) to ensure z1 /∈ A, which is possible since b /∈ Ws. II plays (makes the
moves x0(2k + 1)) in the bottom board to ensure z0 ∈ A, which is possible since
a ∈ Ws. We then have z0 ≤∗ϕ|s| z1. If b ∈ Ws as well, then by definition a ≤s b,
that is, II wins Gs(a, b).

Now we consider the relation <∗s. First assume that I has a winning strategy
in the game G′s(a, b) (we refer to Figure 7). We must have a ∈ Ws as otherwise
II can make the moves x0(2k) according to a strategy to ensure z0 /∈ A. This will
give ¬(z0 <

∗
ϕ|s|

z1), contradicting I winning the game. So, a ∈ Ws. If b /∈ Ws then

a <∗s b holds by definition. If b ∈ Ws as well, then we must show that a ≤s b and
¬(b ≤s a) that is, II wins Gs(a, b) and II doesn’t win Gs(b, a). A winning strategy
σ for I in G′s(a, b) immediately gives a strategy for II in Gs(a, b), as II just uses the
same strategy σ, but ignores the initial moves of I each round of the game. If II also
won Gs(b, a) by τ , then we have a contradiction by playing σ and τ against each
other. Inspection of Figures 4, 7 (where in Figure 4 we switch a and b now) shows
that this makes sense. We then have z0 <

∗
ϕ|s|

z1 as σ is winning, and z1 ≤∗ϕ|s| z0 as

τ is winning, a contradiction. So, a <∗s b holds in all cases.
Finally, assume a <∗s b. In particular, a ∈ Ws. We must show that I wins

G′s(a, b). If b /∈Ws then I can win G′s(a, b) by making the moves x1(2k) (of Figure 7)
according to a strategy to ensure z1 /∈ A, and making the moves x0(2k+1) according
to a strategy to ensure z0 ∈ A. So, assume b ∈ Ws as well. So, ψs(a) < ψs(b).
Assume towards a contradiction that II wins G′s(a, b) by τ . Since ¬(ψs(b) ≤ ψs(a)),
we have that I wins Gs(b, a), say by σ. Fix also a strategy σ′ for I in the game
Gsaa(A). We then fill in the diagram as shown in Figure 8.
In the first column, the moves y2k+1(0) are first made by σ. The moves y2k(0) are
then made by τ is response. For the second column, all the moves y2k(1) are made
by σ except for y0(1) which is made by σ′. The y2k+1(1) are then all made by τ
in response. This cycle of filling in the moves then repeats. Let z2k = saaay2k
and z2k+1 = sabay2k+1. As σ′ is winning for Gsaa(A) we have z0 ∈ A. It then
follows that all of the zi are in A and ϕ|s|(z0) ≥ ϕ|s|(z1) > ϕ|s|(z2) ≥ ϕ|s|(z3) · · · ,
a contradiction.

It follows immediately from the claim that all of the norms ψs on Ws are aΓ
norms. An easy computation now shows that the best winning strategy σ for G(A)
is a aΓ-real, where we define

σ(s) = a↔ [(∀b a ≤∗s b) ∧ ∀b < a (a <∗ b)]
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Figure 8. Showing I wins G′s(a, b) from a <∗s b.

As aΓ is easily closed under ∧,∨, we have that σ is a aΓ strategy.
This completes the proof of the third periodicity theorem. �


