
We define the notion of a metric.

Definition 0.1. A metric ρ on a set X is a fuction ρ : X2 → R satisfying the
following:

(1) ρ(x, y) ≥ 0 for all x, y ∈ X, and ρ(x, y) = 0 iff x = y.
(2) (symmetry) ρ(x, y) = ρ(y, x) for all x, y ∈ X.
(3) (triangle inequality) ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X.

Remark 0.2. If we remove the requirement that ρ(x, y) = 0 iff x = y, then we get
the notion of a pseudometric.

If ρ is a metric on a set X, then we define the ρ-metric topology τρ on X as
follows. U ⊆ X is τρ iff ∀x ∈ U ∃ε > 0 (Bρ(x, ε) ⊆ U), where Bρ(x, ε) = {y ∈
X : ρ(x, y) < ε}.

Show this is a topology on X. Note, this does not use the triangle inequality, or
the other axioms of a metric, only the fact that if ε1 < ε2, then Bρ(x, ε1) ⊆ Bρ(x, ε2),
which is immediate from the definition of of Bρ(x, ε).

On the other hand, using the triangle inequality we have the following basic fact.

Fact 0.3. For any metric ρ on a set X, the ball Bρ(x, ε) is open.

Proof. Let y ∈ Bρ(x, ε). So, ρ(x, y) < ε. Let δ = ε − ρ(x, y) > 0. If z ∈ Bρ(y, δ),
then ρ(x, z) ≤ ρ(x, y) + ρ(y, z) < ρ(x, y) + δ = ε. This shows Bρ(x, ε) is open in
τρ. �

Example 1. Some examples:

(1) X = R, ρ(x, y) = |x−y|, the standard metric on R. This gives the standard
topology τstd on R. We call the space Rstd.

(2) X = Rn. The standard Euclidean metric is

ρ(~x, ~y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

(3) On X = Rn we also have the following metrics.

ρ2(~x, ~y) = |x1 − y1|+ · · ·+ |xn − yn|
ρ3(~x, ~y) = max{|x1 − y1|, . . . , |xn − yn|}

We show below that these metrics are equivalent, that is, they give the
same topology on Rn.

(4) X any set. The discrete metric on X is the metric given by

ρ(x, y) =

{
0 if x = y

1 if x 6= y
.

Show this is a metric, and it gives the discrete topology on X.

Example 2. If (X, ρ) is a metric space and Y ⊆ X, then ρ � (Y × Y ) is also a
metric.

Proof. It is trivial that the axioms go down from X to Y as they are all universal.
�

We say two metrics ρ, d on a set X are equivalent if they give the same topology
on X.
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Fact 0.4. If ρ, d are metrics on X, then τρ ⊆ τd iff

(1) ∀x ∈ X ∀ε > 0 ∃δ > 0 (Bd(x, δ) ⊆ Bρ(x, ε)).

Proof. Suppose first that (1) holds. Let U ∈ τρ. Let x ∈ U . Since U ∈ τρ,
there is an ε > 0 such that Bρ(x, ε) ⊆ U . From (1), there is a δ > 0 such that
Bd(x, δ) ⊆ Bρ(x, ε) ⊆ U , which shows U ∈ τd.

Conversely, suppose τρ ⊆ τd. We show (1). Let x ∈ X and fix ε > 0. Since
Bρ(x, ε) ∈ τρ ⊆ τd, we have from the definition of τd that there is a δ > 0 such that
Bd(x, δ) ⊆ U . This shows (1).

�

Corollary 0.5. Given two metrics ρ, d on a set X, we have that τρ = τd iff
∀x ∈ X ∀ε > 0 ∃δ > 0 (Bd(x, δ) ⊆ Bρ(x, ε)) and ∀x ∈ X ∀ε > 0 ∃δ > 0 (Bρ(x, δ) ⊆
Bd(x, ε)).

We have the particular special case of Fact 0.4.

Fact 0.6. If ρ, d are metrics on a set X and there is a constant C ∈ R such that
ρ(x, y) ≤ Cd(x, y) for all x, y ∈ X, then τρ ⊆ τd.

Proof. Let x ∈ X, and fix ε > 0. We need to find a δ > 0 such that Bd(x, δ) ⊆
Bρ(x, ε). Let δ = ε

C (note that wlog C > 0). Then if y ∈ Bd(x, δ) we have
d(x, y) < δ = ε

C , so ρ(x, y) < C ε
C = ε, so y ∈ Bρ(x, ε). �

Corollary 0.7. If ρ, d are metrics on X and there are constants C, D such that
ρ ≤ Cd and d ≤ Dρ, then τρ = τd, that is, ρ and d are equivalent metrics.

Using the above we have the following fact.

Fact 0.8. Let ρ be a metric on X. Let f : X → R. Define d by d(x, y) = ρ(x, y) +
|f(x)− f(y)|. Then d is a metric on X and τρ ⊆ τd.

Proof. It is easy to show that d is a metric on X. Since we clearly have that ρ ≤ d,
it follows that τρ ⊆ τd. �

Example 3. Let ρ(x, y) = |x − y| be the standard metric on R, and let d(x, y) =
ρ(x, y) + |x2 − y2|. From Fact 0.8 we have that τρ ⊆ τd. Using the fact that the
function f(x) = x2 is continuous, it is easy to see that τd ⊆ τρ. So, ρ and d are
equivalent metric on R. However, it is not the case that there is a constant C such
that d ≤ Cρ (easy to see).

Fact 0.9. The metrics ρ, ρ2, and ρ3 on Rn of Example 1 are all equivalent.

Proof. The three metrics are all bounded in terms of each other. We have ρ3 ≤
ρ ≤ ρ2 ≤ nρ3 (for the second inequality, square both sides).

�

Example 4. Let X = Rω be the set of all sequences x = (x0, x1, . . . , ) of real
numbers. For 1 ≤ p ≤ ∞, we define the map x ∈ X 7→ ‖x‖p ∈ R≥0 ∪ {∞} as

follows. If p <∞ then we set ‖x‖p = (
∑
i |xi|p)

1
p (if the sum diverges then we set

‖x‖ =∞). For p =∞ we define ‖x‖∞ = sup{|xi|}, where we take the “sup” to be
∞ if the sequence of |xi| is not bounded. For 1 ≤ p ≤ ∞ we let `p ⊆ X be the set
of sequences x such that ‖x‖p <∞. It can be shown that this is norm on `p, that
is we have:

(1) ‖cx‖p = |c|‖x‖p for all c ∈ R.
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(2) ‖x+ y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ `p.
From these it follows that we have a metric dp on `p defined by dp(x, y) = ‖x− y‖p
(note that addition and scalar multiplication are defined on `p, and that it is a vector
space over R). For p = 1, 2,∞, these metrics generalize the metrics of Example 1
from Rn to infinite dimensional versions of these spaces. For finite dimensional
spaces, the Rn, these metrics are equivalent as shown in Fact 0.9. On Rω, however,
they are not equivalent. If 1 ≤ p ≤ q ≤ ∞ we do have ‖x‖q ≤ ‖x‖p, and so `p ⊆ `q.
Thus, as topological (metric) spaces we have that τdq ⊆ τdp (on the space `p) To
see this norm inequality note that we may assume wlog that p <∞ and ‖x‖p <∞,
in which case the terms ‖xi‖ must tend to 0. So, B = max{|xi|} is well-defined.
Since both norms scale under scalar multiplication, we may assume that B = 1.
We then have:

‖x‖q =

(∑
i

|xi|q
) 1

q

≤

(∑
i

|xi|p
) 1

q

=

(∑
i

|xi|p
) 1

p
p
q

= (‖x‖p)
p
q ≤ ‖x‖p.

The first inequality is from |xi| ≤ 1 (since B = 1), and the last inequality is from
‖x‖p ≥ 1 and p

q ≤ 1. In particular, `1 ⊆ `2 ⊆ `∞. The metrics d1, d2, d∞ (or more

generally, dp, dq for 1 ≤ p ≤ q ≤ ∞) are not equivalent metrics on `1, though we
do have that τd∞ ⊆ τd2 ⊆ τd1 (and more generally τdq ⊆ τdp for 1 ≤ p ≤ q ≤ ∞
on `p). To see, for example, that the metrics d1 and d2 are not equivalent on `1 let

xn ∈ Rω be the point defined by xnm =

{
1
m if m ≤ n
0 otherwise

. Clearly all of the xn are

in `1 (so are in all of the `p) as their supports are finite. For any ε > 0, there is an
N so that if m,n ≥ N then d2(xn, xm) < ε, since the series

∑
i

1
i2 converges. On

the other hand, if we fix m ≥ N , then if we let n get large enough we have that
d1(xn, xm) get arbitrarily large (since

∑
i>m

1
i diverges). Using this, it follows that

{xn} is a closed set in τd1 but not in τd2 .

Fact 0.10. For any metric ρ on a set X, Bρ̄(x, ε) = {y : ρ(x, y) ≤ ε} is a closed set.

Proof. Let y /∈ Bρ̄(x, ε), so ρ(x, y) > ε. Let δ = ρ(x, y) − ε > 0. Then Bρ(y, δ) ∩
Bρ̄(x, ε) = ∅. To see this, suppose z ∈ Bρ(y, δ) ∩Bρ̄(x, ε). Then ρ(x, y) ≤ ρ(x, z) +
ρ(z, y) ≤ ε+ ρ(z, y) < ε+ δ = ρ(x, y), a contradiction. �

Thus, we always have that Bρ(x, ε) ⊆ Bρ̄(x, ε), but in general we do not have
equality. For example, let ρ be the discrete metric on X and let ε = 1. Then
Bρ(x, ε) = {x}, but Bρ̄(x, ε) = X.

Another example: let Y = R2 − S1 ⊆ R2, and ρ the standard metric on R2.
Then in the metric space (Y, ρ) we have Bρ((0, 0), 1) = Bρ((0, 0), 1), so Bρ((0, 0), 1)
is closed. So, the open ball Bρ((0, 0), 1) is closed.

Theorem 0.11. For every metric ρ on a set X, there is an equivalent metric ρ′

on X which is bounded, in fact ρ′(x, y) ≤ 1.

Proof. Let ρ′(x, y) = min{ρ(x, y), 1}. To show the triangle inequality: let x, y, z ∈
X. We must show that ρ′(x, z) ≤ ρ′(x, y) + ρ′(y, z). If (at least) one of ρ′(x, y),
ρ′(y, z) is ≥ 1 then the RHS is ≥ 1, and the LHS is ≤ 1, so the result is immediate.
If both ρ′(x, y), ρ′(y, z) are < 1, then ρ′(x, y) = ρ(x, y) and ρ′(y, z) = ρ(y, z). So,
ρ′(x, z) ≤ ρ(x, z) ≤ ρ(x, y) + ρ(y, z) = ρ′(x, y) + ρ′(y, z).
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To see the metrics are equivalent, first note that ρ′ ≤ ρ, so τρ′ ⊆ τρ. For the
other direction, let x ∈ X and fix ε > 0. Let δ = min{ε, 1}. If ρ′(x, y) < δ, then
since δ ≤ 1 we have ρ′(x, y) = ρ(x, y), so ρ(x, y) < δ ≤ ε. So, Bρ′(x, δ) ⊆ Bρ(x, ε).
This shows τρ ⊆ τρ′ .

�

It is also true that we can define ρ′(x, y) = ρ(x,y)
1+ρ(x,y) , and also get an equivalent

metric.

Exercise 1. Show that if ρ is a metric on the set X, then so is ρ′ = ρ
1+ρ . [hint: in

showing the triangle inequality, there are are two ways to proceed. One is purely
algebraic, just multiply both sides of the desired inequality out and see what it
becomes. The other way is use the fact that the function f(x) = x

1+x is increasing

and convex. Show that f(a+ b) ≤ f(a) + f(b).]

If ρ is a metric on a set X, we extend ρ to define ρ(x,A) for x ∈ X and A ⊆ X
(with A 6= ∅) as follows:

ρ(x,A) = inf{ρ(x, a) : a ∈ A}.

Fact 0.12. If F ⊆ X is closed in the ρ-metric topology, then for all x ∈ X we have
that x ∈ F iff ρ(x, F ) = 0. Conversely, if F ⊆ X and for all x ∈ X we have that
x ∈ F iff ρ(x, F ) = 0, then F is closed.

Proof. Suppose F is closed. If x ∈ F we clearly have that ρ(x, F ) = 0. If x /∈ F ,
then for some ε > 0 we have Bρ(x, ε) ⊆ F c. That is, if y ∈ F , then ρ(x, y) ≥ ε, and
so ρ(x, F ) ≥ ε.

Suppose next that F ⊆ X and for all x ∈ X we have that x ∈ F iff ρ(x, F ) = 0.
Suppose x ∈ F . Then for any ε > 0 we have that Bρ(x, ε) ∩ F 6= ∅. In particular,
this says that ρ(x, F ) ≤ ε for any ε > 0. Thus, ρ(x, F ) = 0. By assumption this
means x ∈ F . So, F = F and thus F is closed. �

Example 5. Let X = {0}∪ (1,∞) ⊆ R and let ρ be the restriction of the standard
metric on R to X. Let F = (1,∞) ⊆ X. Then F is a closed set in X. We have
that d(x, F ) = 1, but d(x, y) > 1 for all y ∈ F . So, distances to closed sets are not
necessarily attained in metric spaces.

Exercise 2. Show that ρ(y,A) ≤ ρ(x,A) + ρ(x, y) for any A ⊆ X (with A 6= ∅),
x, y ∈ X. Deduce that for any A and ε > 0 the set Bρ(A, ε) = {x : ρ(x,A) < ε} is
open, as is the set {x ∈ X : ρ(x,A) > ε}. Also, the set Bρ̄(A, ε) = {x : ρ(x,A) ≤ ε}
is closed, as is the set {x ∈ X : ρ(x,A) ≥ ε}.

Exercise 3. Show that in every metric space (X, ρ), every open set U is a countable
increasing union of closed sets U =

⋃
n Fn. [hint: define the Fn by considering

distances to the closed set U c.]

We can further extend a metric ρ on the set X to the non-empty subsets of X
by ρ(A,B) = inf{ρ(a, b) : a ∈ A, b ∈ B}. This is not, however, a metric in general.
In fact, if X has more that two elements it is not a metric: Let x, y, z be distinct
elements of X, and let A = {x}, B = {x, y}, and C = {y, z}. Then ρ(A,B) = 0,
ρ(B,C) = 0, but ρ(A,C) > 0.


