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We first consider the syntax of propositional logic. A language L of propositional
logic consists of a set Var = {Ai : i ∈ I} of sentence variables, along with the
connective symbols ¬ and → and left and right parentheses (, ). Here I is an
arbitrary index set (not necessarily countable).

We next define the set WFF of well-formed formulas, or wffs. We also just call
these the “formulas” of propositional logic.

Definition 1. We define the set WFFn for n ∈ N, by recursion on n as follows.
WFF0 = {Ai : i ∈ I} is the set of sentence variables. For n > 0 we define

WFFn =
⋃
m<n

WFFm ∪ {(¬α) : α ∈
⋃
m<n

WFFm} ∪ {(α→ β) : α, β ∈
⋃
m<n

WFFm}

We set WFF =
⋃
n WFFn.

We have officially only allowed the logical connectives ¬ and → in our language.
It is convenient to use other connectives as well, so we make the following notational
conventions.

Convention 2. For any two wffs α, β, (α ∨ β) abbreviates the wff ((¬α) → β).
Also, (α ∧ β) abbreviates the wff (¬(α → (¬β))). Finally, (α ↔ β) abbreviates
((α→ β) ∧ (β → α)).

We next state and prove a unique readabilty result. We require the following
lemma.

Lemma 3. For any string α of logical symbols, let `(α) be the number of left
parentheses in α, and r(α) the number of right parentheses in α.

(1) For any wff ϕ, `(ϕ) = r(ϕ).
(2) For any wff ϕ and any non-empty proper initial segment ϕ′ of ϕ we have

`(ϕ′) > r(ϕ′).

Proof. We prove both parts of the lemma simultaneously by induction on ϕ.
Ground case: ϕ = Ai is a sentence variable. (1) follows since `(Ai) = 0 = r(Ai).

Part (2) of the lemma is trivial as there are no non-empty proper initial segments
of ϕ in this case.

Inductive step: This breaks into two cases as in the inductive definition of WFFn.
case 1: ϕ = (¬α) for some wff α. We may assume inductively that the lemma

holds for the wff α. So, `(α) = r(α). Then `(ϕ) = 1 + `(α) = 1 + r(α) = r(ϕ). This
shows part (1) for ϕ.

To show part (2) for ϕ, consider a proper initial segment ϕ′ of ϕ. If ϕ′ = (,
then `(ϕ′) = 1 and r(ϕ′) = 0 so (2) holds. If ϕ′ = (¬, we also have `(ϕ′) = 1,
r(ϕ′) = 0. If ϕ′ = (¬α′, where α′ is a proper initial segment of α, then by induction
`(α′) > r(α′). Then `(ϕ′) = 1 + `(α′) > 1 + r(α′) > r(α′) = r(ϕ′). If ϕ′ = (¬α,
then `(ϕ′) = 1 + `(α) = 1 + r(α) > r(α) = r(ϕ′).

case 2: ϕ = (α → β) for some wffs α, β. We may assume inductively that
the lemma holds for α and β. For part (1), we have `(ϕ) = 1 + `(α) + `(β) =
1 + r(α) + r(β) = r(ϕ).

Part (2) is again done by considering the possibilities for a proper initial segment
ϕ′ of ϕ. In all cases we have `(ϕ′) > r(ϕ′). �

1



2

Exercise 1. Give the details of the inductive proof of part (2) of the lemma in the
case ϕ = (α→ β).

We next show we have unique readability in the syntax.

Theorem 4 (Unique Readability for Propositional Logic). For every ϕ ∈ WFF,
there is a unique way to write ϕ as either (1) ϕ = Ai, (2) ϕ = (¬α), or (3)
ϕ = (α⇒ β) where α, β ∈WFF.

Proof. Every ϕ ∈ WFF can be written in one these forms by definition, we must
show the uniqueness part. If ϕ = Ai, then clearly ϕ cannot be written as in cases
(2), (3), as in those cases the wff begins with the symbol (. Also, the variable
symbol Ai is determined uniquely by ϕ (since ϕ = Ai).

Suppose next ϕ = (¬α) for some α ∈WFF. We must show that ϕ is not of the
form (1) or (2), and that if ϕ = (¬α′) then α = α′. We have already shown that ϕ
cannot be of case (1), so suppose ϕ = (β → γ) for β, γ ∈WFF. Thus,

(¬α) = (β → γ).

Removing the first symbol gives that

¬α = β → γ

Thus β begins with the symbol ¬. However, an easy induction shows that every wff
cannot begin with the symbol ¬. Assume next that ϕ = (¬α′). Thus, (¬α) = (¬α′).
Removing the first and least symbol from each string gives ¬α = ¬α′, and then
removing the first symbil ¬gives that α = α′.

Suppose now that ϕ = (α → β). We have already shown that ϕ cannot be of
cases (1) or (2). Supppose that

(α→ β) = (α′ → β′).

Removing the first and last symbols from each string gives

α→ β = α′ → β′′

Now, α is the smallest initial segment s of the left-hand side for which `(s) = r(s)
(i.e., is balanced) by Lemma 3. But, the smallest initial segment of the right-hand
side which is balanced is α′. Thus, α = α′. Removing α → from the beginning of
both sides, and ) from the end of both sides gives β = β′.

�

From Theorem 4, when we prove facts about wff by induction, we are always
unambiguously in one of the three cases, with the subformulas α (and β in case
(3)) uniquely determined.

We next consider the semantic notions of a truth value assignment and satisfac-
tion, and then we introduce the syntactic notion of a proof or deduction. These
two notions will be related by the completeness theorem for propositional logic.

Definition 5. A truth value assignment (or tva) is a map ν : Var→ {0, 1}.

When considering truth value assignments, we often write F for 0 and T for 1.
The intended meaning is “false” for 0 (or F) and “true” for 1 (or T).

We next give the inductive definition of “satisfaction” of a wff by a tva.

Definition 6. Let ν : Var→ {0, 1} be a tva. We extend ν to ν′ on WFF as follows.

(1) If ϕ = Ai, then ν′(Ai) = ν(Ai).
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(2) If ϕ = (¬α), then ν′(ϕ) = 1− ν′(α).
(3) If ϕ = (α→ β) then ν′(ϕ) = 1 iff ν′(α) = 0 or ν′(β) = 1.

We will henceforth just write ν instead of ν′, which should cause no confusion
as ν′ � Var = ν � Var.

We say a tva ν satisfies ϕ ∈ WFF if ν(ϕ) = T. If Γ ⊆ WFF, we say ν satisfies
Γ if ν(ϕ) = T for all ϕ ∈ Γ. We also just write, with a slight abuse of notation,
ν(Γ) = T.

Exercise 2. Show that if ν1 and ν2 are truth value assignments, ϕ ∈ WFF, and
ν1, ν2 agree on the variables in ϕ, then ν1(ϕ) = ν2(ϕ).

Definition 7. A formula ϕ ∈WFF is a tautology if ν(ϕ) = T for all tvas ν : Var→
{T,F}.

Example 8. Some tautologies are:

• (α→ β)→ (¬β → ¬α)
• α→ (β → α)
• ¬(α→ β)→ α

Note that we drop extra parentheses from the notation when causes no confusion
to improve readability (they are officially still there, however). We also introduce
another notational convention:

Definition 9. We let (α∨β) abbreviate ((¬α)→ β) for any α, β ∈WFF. Likewise,
we let (α ∧ β) abbreviate (¬(α→ (¬β))).

The next definition is our semantic notion of implication, which we denote by
the symbol |=.

Definition 10 (Logical Implication for Propositional Logic). Let Γ ⊆ WFF for
some language L for propositional logic. Let ϕ ∈ WFF. Then Γ |= ϕ if for every
tva ν such that ν(Γ) = T we have ν(ϕ) = T.

Note that ϕ is a tautology iff ∅ |= ϕ

Exercise 3. Show that Γ |= A where Γ is the following set of formulas:

(1) (A ∨B)→ (C ∨ ¬(A→ D))
(2) (¬A ∧ (C ∨D))→ (¬C ∧B)
(3) (B ∨ C)→ (D ∨ ¬A)
(4) ((¬A ∧ ¬B) ∨ (C ∧D))→ ((¬B → C) ∧ (D → ¬A))

You can either show this using the definition of |=, or you can give a “proof” that
from Γ you can deduce A.

We next develop the sytactical notion of a “proof” or deduction. We again have
Γ ⊆ WFF, ϕ ∈ WFF, and we define the notion Γ ` ϕ to say that there is a
deduction of ϕ from Γ.

Definition 11 (Logical Axioms for Propositional Logic). The logical axioms Λ of
propositional logic are the wffs of the following form:

(A1) α→ (β → α) for any α, β ∈WFF.
(A2) ((α→ (β → γ))→ ((α→ β)→ (α→ γ)) for any α, β, γ ∈WFF.
(A3) ((¬β → ¬α)→ ((¬β → α)→ β)) for any α, β ∈WFF.

Exercise 4. Show that all the logical axioms are tautologies.
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Exercise 5. In reverse Polish notation, the connectives are written first, and no
parentheses are used. More precisely, the set of wffs if defined by: WFF0 = Var,
WFFn =

⋃
m<n WFFm∪{¬α : α ∈

⋃
m<n WFFm}∪{→ αβ : α, β ∈

⋃
m<n WFFm}.

Show that unique readability holds for the wffs defined this way. [hint: consider the
function w which assigns to each variable A ∈ Var the value w(A) = 1, w(¬) = 0,
and w(→) = −1].

Definition 12. Let Γ ⊆ WFF for some language L of propositional logic. Let
ϕ ∈WFF. A deduction of ϕ from Γ is a finite sequence α0, α1, . . . , αn of wffs such
that αn = ϕ, and for each i < n we have one of the following:

(1) (Hypothesis) αi ∈ Γ
(2) (Logical Axiom) αi ∈ Λ
(3) (Modus Ponens) For some j, k < i we have αk = (αj → αi)

We say Γ ` ϕ (Γ proves ϕ) if there is a deduction of ϕ from Γ.

Lemma 13. For every α ∈WFF, ∅ ` (α→ α).

Proof. We have the following deduction:

∅

α→ ((α→ α)→ α) (A1)

(α→ ((α→ α)→ α))→ ((α→ (α→ α)→ (α→ α)) (A2)

(α→ (α→ α)→ (α→ α) (MP )

α→ (α→ α) (A1)

α→ α (MP )

�

It becomes too tedious to write down actual deductions in many cases. So we
prove metatheorems which tell us that deductions exist in certain cases, without
having to actually write them down. Metatheorems will be important in first-order
logic as well.

Theorem 14 (Deduction Metatheorem). If Γ ∪ {ϕ} ` α, then Γ ` (ϕ→ α).

Proof. By induction on the (shortest) length of a deduction of α from Γ∪{ϕ}. Say
α0, α1, . . . , αn = α is a deduction of α from Γ ∪ {ϕ}.

Case 1: α ∈ Γ.
Then we have the following deduction of (ϕ→ α) from Γ:

Γ

α (Hypothesis)

α→ (ϕ→ α) (A1)

ϕ→ α (MP )

Case 2: α = ϕ
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Then Γ ` ϕ→ ϕ since ∅ ` ϕ→ ϕ by Lemma 13.

Case 3: α ∈ Λ.
We have the following deduction of ϕ→ α:

Γ

α (Logical Axiom)

α→ (ϕ→ α) (A1)

ϕ→ α (MP )

Case 4: α obtained by Modus Ponens from β and β → α, which occur earlier in
the deduction.

By induction we have Γ ` ϕ→ β and Γ ` ϕ→ (β → α). We have the following
deduction of ϕ→ α from Γ:

Γ

ϕ→ (β → α) (Induction)

(ϕ→ (β → α))→ ((ϕ→ β)→ (ϕ→ α)) (A2)

(ϕ→ β)→ (ϕ→ α) (MP )

ϕ→ β (Hypothesis)

ϕ→ α (MP )

This completes the proof of the deduction metatheorem, Theorem 14. �

Theorem 15 (Contradiction Metatheorem). If Γ∪ {¬ϕ} ` α and Γ∪ {¬ϕ} ` ¬α,
then Γ ` ϕ.

Proof. Since Γ,¬ϕ ` α, by the deduction metatheorem we have that Γ ` (¬ϕ)→ α.
Likewise, Γ ` (¬ϕ → ¬α). But (¬ϕ → ¬α) → ((¬ϕ → α) → ϕ) is a logical axiom
in (A3). Applying MP twice we get that Γ ` ϕ. �

We will need the following two facts about double negation.

Lemma 16. ∅ ` (¬(¬α))→ α.

Proof. By the deduction metatheorem, it suffices to show that ¬¬α ` α. By the
contradiction metatheorem, it suffices to show that Γ = {¬¬α,¬α} is inconsistent,
that is, proves β and ¬β for some β. But Γ ` ¬α clearly, and also Γ ` ¬¬α. So Γ
is inconsistent. �

Exercise 6. Give a deduction from ∅ of ¬(¬α) → α. [hint: use the proofs of the
metatheorems.]

Lemma 17. ∅ ` (α→ ¬¬α).

Proof. By the deduction metatheorem it suffices to show that α ` ¬¬α. By the
contradiction metatheorem it suffices to show that Γ = {α,¬¬¬α} is inconsistent.
Clearly Γ ` α, and also Γ ` ¬¬(¬α). From Lemma 16 we have that ∅ ` (¬¬(¬α)→
¬α. By Modus Ponens, Γ ` ¬α. Thus, Γ is inconsistent.
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�

One direction of the completeness theorem is easier and called the soundness
theorem.

Theorem 18 (Soundness Theorem for Propositional Logic). If Γ ` ϕ, then Γ |= ϕ.

Proof. Suppose Γ ` ϕ. By induction on the length of a deduction of ϕ from Γ we
show that Γ |= ϕ. For the first case, suppose ϕ ∈ Γ. In this case, Γ |= ϕ trivially,
since if ν(Γ) = T, then ν(ϕ) = T as ϕ ∈ Γ. Next consider the case that ϕ ∈ Λ.
then Γ |= ϕ as all the logical axioms are tautologies. For the third case, suppose ϕ
is obtained by MP from β and β → ϕ which have shorter length deductions from
Γ. By induction, Γ |= β and Γ |= (β → ϕ). But if ν is a tva with ν(β) = T and
ν(β → ϕ) = T, then clearly ν(ϕ) = T. So, Γ |= ϕ. �

The other direction in the completeness theorem is often just called the com-
pleteness theorem.

Theorem 19 (Completeness Theorem for Propositional Logic). If Γ |= ϕ, then
Γ ` ϕ.

Proof. Suppose Γ |= ϕ where Γ ⊆ WFFL in some language L and ϕ ∈ WFFL.
To show Γ ` ϕ, it is enough, by the contradiction metatheorem, to show that
Γ ∪ {¬ϕ} is syntactically inconsistent (i.e., proves a contradition). Assume toward
a contradiction that Γ ∪ {¬ϕ} is syntactically consistent. We will define a tva ν
which satisfies Γ∪{¬ϕ}, which will be a contradiction as Γ |= ϕ and thus ν(ϕ) = T.
More generally, we prove the following theorem. We assume the axiom of choice
AC in the proof, although we actually only need a weaker form of it (we discuss
this afterwards, c.f. Theorem 32).

Theorem 20. Let Γ ⊆ WFFL be a syntactically consistent set. Then there is a
tva ν : VarL → {T,F} which satisfies Γ.

Proof. The idea is to enlarge Γ to a maximally (syntactically) consistent set of wffs.
Let {ϕi}i<θ be an enumeration of WFFL (we may need to use AC here to get this
wellordering in the general case; the reader unfamiliar with this can consider the
case where L is countable in which case we can take θ = N). Let Γ0 = Γ. We define
by induction on i < θ a set Γi. We will have that if i < j then Γi ⊆ Γj . For i > 0
define

Γi =

{⋃
j<i Γj ∪ {ϕi} if

⋃
j<i Γj ∪ {ϕi} is consistent⋃

j<i Γj otherwise

Clearly the Γi are (monotonically) increasing.

Claim 21. For all i < θ, Γi is consistent.

Proof. If not, let i < θ be least such that Γi is syntactically inconsistent. By
assumtion, Γ0 is consistent, so i > 0. From the definition of Γi we must have
Γi =

⋃
j<i Γj . By minimality if i we have that each Γj is consistent for all j < i.

Suppose Γi =
⋃
j<i Γj ` α,¬α. Let β0, . . . , βm be a deduction from Γi. The key

point is that the deduction is a finite sequence. For each k < m, if βk ∈
⋃
j<i Γj ,

let jk < i be such that βk ∈ Γjk . Let j = max{j0, . . . , jk}, and so j < i. Note that
~β is still a deduction from Γj , as Γjk ⊆ Γj for all k. This contradicts the fact that
Γj is consistent as j < i. �
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The same argument in Claim 21 show that Γ′ =
⋃
i<θ Γi is consistent.

Claim 22. Γ′ is a maximally consistent set of wffs, that is, if Γ′′ ) Γ′, then Γ′′ is
inconsistent.

Proof. Suppose ϕ ∈ Γ′′ − Γ′. Say ϕ = ϕi, where i < θ. Since ϕ /∈ Γ′, we have
ϕ /∈ Γi. From the definition of Γi we then have that

⋃
j<i ∪{ϕ} is inconsistent (as

otherwise ϕ ∈ Γi). Thus, Γ′ ∪ {ϕ} is also inconsistent. �

Claim 23. For evey ϕ ∈WFFL, either ϕ ∈ Γ′ or (¬ϕ) ∈ Γ′.

Proof. Suppose ϕ /∈ Γ′ and ¬ϕ /∈ Γ′. By maximal consistency of Γ′, this gives that
Γ′ ∪ {ϕ} and Γ′ ∪ {¬ϕ} are both inconsistent. Since Γ′ ∪ {¬ϕ} in inconsistent,
the contradition metatheorem gives that Γ′ ` ϕ. Since Γ′ ∪ {ϕ} is inconsistent, it
follows that Γ′ is inconsistent. This contradicts the consistency of Γ′. �

So, for every wff ϕ ∈WFFL, exactly one of ϕ, ¬ϕ is in Γ′.

Claim 24. If Γ′ ` ϕ, then ϕ ∈ Γ′.

Proof. Suppose Γ′ ` ϕ. If ϕ /∈ Γ′, then by claim 23 we have that ¬ϕ ∈ Γ′. But
then Γ′ ` ¬ϕ, and so Γ′ is inconsistent, a contradiction. �

We now define the tva ν. For A ∈ VarL, define ν(A) = T iff A ∈ Γ′. Note that
ν(A) = F iff A /∈ Γ′ iff (¬A) ∈ Γ′ by the previous line.

We show that ν satisfies Γ′, and thus satisfies Γ. To show ν satisfies Γ′ it suffices
to show the following claim.

Claim 25. for every ϕ ∈WFFL, ν(ϕ) = T iff ϕ ∈ Γ′.

Proof. We prove the claim by induction on the wff ϕ. If ϕ = A for some A ∈ VarL,
then the claim holds by definition of ν.

Suppose next that ϕ = (¬α). Then ν(ϕ) = T iff ν(α) = F. By induction,
ν(α) = F iff α /∈ Γ′. From Claim 23, α /∈ Γ′ iff (¬α) = ϕ ∈ Γ′.

Suppose next that ϕ = (α→ β). By induction the claim holds for α and β. We
consider cases on ν(α), ν(β). First assume ν(α) = F. In this case ν(ϕ) = T. By
induction, α /∈ Γ′, and so ¬α ∈ Γ′. By Claim 24 it suffice to show that ¬α ` (α→
β). By the deduction metatheorem, it suffices to show that {α,¬α} ` β. This is
immediate from the contradiction metatheorem, as {α,¬α,¬β} is inconsistent.

Next assume ν(α) = T and ν(β) = T. In this case ν(ϕ) = T. By induction,
α ∈ Γ′ and β ∈ Γ′. But β ` (α → β) since β → (α → β) is a logical axiom. So,
Γ′ ` (α→ β), and so by Claim 24 we have ϕ = (α→ β) ∈ Γ′.

Finally, assume ν(α) = T and ν(β) = F. In this case ν(ϕ) = F. By induction,
α ∈ Γ′, and β /∈ Γ′, and by Claim 23, ¬β ∈ Γ′. From Claim 24 it suffices to show
that {α,¬β} ` ¬(α → β), as then ¬(α → β) ∈ Γ′ and so ϕ = (α → β) /∈ Γ′ by
the consistency of Γ′. To see {α,¬β} ` ¬(α → β), it suffices by the contradiction
metatheorem to show that {α,¬β,¬¬(α→ β)} is inconsistent. From Lemma 16 it
suffices to show that {α,¬β, α → β} is inconsistent. This set of wffs easily proves
β and ¬β, so is inconsistent.

�

This completes the proof of Theorem 20, and thus completes the proof of the
completeness theorem for propositional logic. �
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Exercise 7. The followinig exercise is a variant of “Einstein’s Zebra Puzzle.” It
can be formulated formally in propositional logic, but we will not formally do so.
There are five houses, each of which is a different color, has a person of different
nationality living in it, they have different pets, etc. You are given the following:

(1) The Russian lives in the blue house.
(2) The German owns the dog.
(3) Water is drunk in the red house.
(4) The Norwegian drinks coffee.
(5) The red house is immediately to the right of the white house.
(6) The Ford driver owns a horse.
(7) The Dodge driver lives in a yellow house.
(8) Milk is drunk in the middle house.
(9) The Japanese person lives in the first house.

(10) The Volvo driver lives next to the person who owns the rabbit.
(11) The Dodge driver lives next to the fox owner.
(12) The Chevy driver drinks orange juice.
(13) The Englishman drives a Rolls Royce.
(14) The Japanese person lives next to the green house.

Question: Who owns the Zebra?

�

The following corollary of the completeness theorem is called the compactness
theorem for propositional logic.

Corollary 26. Let Γ ⊆ WFF. If every finite subset of Γ is satisfiable, then Γ is
satisfiable.

Proof. Suppose every finite Γ0 ⊆ Γ is satisfiable. If Γ is not satisfiable then Γ |= (A∧
¬A) (trivially, as Γ is not satisfiable). By the completeness theorem, Γ ` (A∧¬A).
Since proofs are finite, Γ0 ` (A ∧ ¬A) for some finite Γ0 ⊆ Γ. By the soundness
theorem, Γ0 |= (A∧¬A), a contradtion as Γ0 is satisfiable and (A∧¬A) is not. �

Remark 27. One can prove the compactness theorem directly, without referring
to the notion of `, by a proof similar to that of the completeness theorem. Starting
with a Γ which is finitely satisfiable (every finite subset is satisfiable), one enlarges
Γ to a Γ′ which is a maximal finitely satisfiable set. From Γ′ one reads off a tva ν
which satisfies Γ′ and hence Γ, as in the proof of the completeness theorem.

As an application of the completeness/compactness theorem, we prove a result
about graph colorings. Recall a graph (G,E) is a set G with a binary relation E
(the edge relation) which is irreflexive and symmetric. If G0 ⊆ G, the induced
subgraph on G0 is (G0, E∩G0×G0). A chromatic k-coloring of the graph is a map
c : G→ {1, 2, . . . , k} such that if x, y ∈ G and (x, y) ∈ E, then c(x) 6= c(y).

Fact 28. Let (G,E) be a graph. If every finite induced subgraph G0 ⊆ G can be
chromatically k-colored, then G can be chromatically k-colored.

Proof. Let L = {Ag,i : g ∈ G, 1 ≤ i ≤ k} be a language for propositional logic.
Intuitively, we think of Ag,i as being the assertion that c(g) = i. We let Γ be the
union of following set of wffs, which attempt to assert that we have k-coloring of
G.
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(1) For each g ∈ G we have the wff Ag,1 ∨Ag,2 ∨ · · · ∨Ag,k.
(2) For each g ∈ G, and each 1 ≤ i, j ≤ k with i 6= j, the wff Ag,i → ¬Ag,j .
(3) For each g, h ∈ G with (x, y) ∈ E, and each 1 ≤ i ≤ k, the wff Ag,i → ¬Ah,i.

Then Γ is finitely satisfiable as all induced subgraphs are k-colorable. Namely, a
finite Γ0 ⊆ Γ only mentions finitely many Ag,j . Let G0 be the g ∈ G such that Ag,j
appears in Γ0 for some j. The induced subgraph (G0, E∩G0×G0) has a k-coloring
c0 which defines a tva ν0 satisfying Γ0. That is, let ν0(Ag,i) = T iff c0(g) = i.

By the compactness theorem, Γ is satisfiable, say by the tva ν. This defines the
map c by c(g) = i iff ν(Ag,i) = T. From the definition of Γ we easily see that c is
a chromatic k-coloring. �

The next exercise asks you to use the compactness theorem for propositional
logic to prove a result known as König’s lemma. Bt a tree on a set X we mean a
set T ⊆ X<ω closed under initial segment, that is, if s ∈ T then s � k ∈ T for all
k < |s| (the length of s). A tree T is finitely splitting if every s ∈ T has only finitely
many immediate successors in T (an immediate successor of s ∈ T is a t ∈ T with
|t| = |s|+ 1 and s = t � (|t| − 1).

Exercise 8. Show that if T is a finitely splitting tree on a set X, and T is infinite,
then there is a branch b through T . This means b ∈ Xω and ∀n ∈ N b � n ∈ T .
[hint: Let L be the language with variables As for each s ∈ T . Think of As as
asserting “s is in the branch b.” Write a Γ such that a tva satisfying Γ gives a
branch b through the tree T .]

The proof of Theorem 20 we gave used AC in the general case (uncountably
many propositional variables). The amount of choice needed is actually not full
AC, but a somewhat weaker principle. The completeness theorem for propositional
logic is equivalent (in ZF, that is, not assuming choice) the prime ideal theorem
which is equivalent to the statement that every filter on a set can be extended to
an ultrafilter (the actual staement of the prime ideal theorrem is that every filter
on any boolean algebra can be extended to an ultrafilter). This is also equivalent
to Tychnoff’s theorem for Hausdorff spaces.

The following exercise shows directly that the completeness theorem for proposi-
tional logic implies products of the two element space (with the discrete topology)
are compact.

Exercise 9. Let I be an arbitrary index set. Let Xα, for α ∈ I, be the space
Xα = {0, 1} with the discrete topology. Show that the completeness theorem of
propositional logic implies that X =

∏
α∈I Xα is compact (without assuming any

form of choice). [hint: Let F be a collection of closed subsets of X with the finite
intersection property. Let L be the language with variables Aα for each α ∈ I. For
each F ∈ F , let BF be the collection of all basic open sets contained in X − F ,
so X − F = ∪BF . For each basic open set B, say B = π−1

α1
(i1) ∩ · · · ∩ π−1

αn
(in),

let ϕB be the wff ¬(ψ1(Aα1
) ∧ · · · ∧ ψn(Aαn

)) where ψ(Aαk
) = Aαk

if ik = 1 and
ψ(Aαk

) = ¬Aαk
if ik = 0. Let W = {ϕB : ∃F ∈ F (B ∈ BF )}. Show that W is

finitely satisfiable, and apply the compactness theorem.]

We show that the completeness theorem implies the (equivalent form of) the
prime ideal theorem.

Fact 29. (ZF) Assume the completeness theorem for propositional logic. Then
every filter F on a set X can be extended to an ultrafilter on X.
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Proof. Let F be a filter on the set X. Let L be the language with variables AY for
each Y ∈ P(X). Let W be the following collection of wffs:

(1) ¬A∅
(2) AX
(3) AY → AZ for all Y ⊆ Z in P
(4) (AY ∧AZ)→ AY ∩Z for all Y, Z ∈ P
(5) AY for all Y ∈ F
(6) AY ∨AX−Y for all Y ∈ P

W is finitely satisfiable. To see this, let W0 ⊆ W be finite. Then there are only
finitely many Y ∈ P such that AY appears in a wff of W0. Say Y1, . . . , Yn are these
elements of F . Let B be the finite boolean algebra generated by {Y1, . . . , Yn} (this
has size at most 2n). Let A0 = ∩{Yi : Yi ∈ F}. Note that A0 6= ∅ as F is a filter.
Define A0 ⊇ A1 ⊇ · · · ⊇ An inductively by: Ak+1 = Ak ∩Yk+1 if this intersection is
non-empty, and AK+1 = Ak otherwise. Let A = An. We clearly have that A 6= ∅,
and A ⊆ Yi if Yi ∈ F . This defines an ultrafilter U0 on B, namely, Z ∈ U0 iff
A ⊆ Z. Also, for each Yi we have that either A ⊆ Yi or A ⊆ X −Yi. It follows that
for every Z ∈ B that either A ⊆ B or A ⊆ X −Z, and so U0 is an ultrafilter on B.

Then U0 defines a tva ν0 satisfying W0, namely ν0(AZ) = 1 iff Z ∈ U0 for all
variables AZ in W0. Note that (6) is satisfied as U0 is an ultrafilter on B.

By the compactness theorem, there is a tva ν satisfying W . Let U = {Y ⊆
X : ν(AY ) = T}. (1)-(4) guarantees that U is a filter on X. Property (5) gives that
F ⊆ U . Property (6) gives that U is an ultrafilter.

�

Remark 30. The proof of Fact 29 can easily be modified to show that any filter
F on a boolean algebra B (not necessarily P(X)) can be extended to an ultrafilter
on B. Use variables Ab for each b ∈ B, and write down the analogs of (1)-(6).

Fact 31. (ZF) Assume every filter on a set can be extended to an ultrafilter. Then
the completeness theorem for propositional logic holds.

Proof. It is enough to prove Theorem 20 under the current assumption. So, let
Γ be a syntactically consistent set of wffs in a language L = {Aα}α∈I . Let F be
the collection of all F ⊆ TVAL such that for some finite Γ0 ⊆ Γ we have that
F ⊇ {ν : ν(Γ0) = T}. We claim that F is a filter on TVAL. Clearly if F1 ∈ F and
F1 ⊆ F2 then F2 ∈ F . Also we clearly have that if F1, F2 ∈ F then F1 ∩ F2 ∈ F .
We need to show that F is non-trivial, that is, ∅ /∈ F . This is equivalent to saying
that if Γ0 ⊆ Γ is finite, then there is a tva ν which satisfies Γ. If Γ0 ⊆ Γ is finite,
then Γ0 is syntactically consistent since Γ is. Now, the proof of the completeness
theorem for finite sets Γ0 does not require any form of AC (we extend Γ0 to a
maximal Γ′0 in finitely many steps, as there are only finitely many wffs that use
the varibales in Γ0). Thus, F is a non-trivial filter on TVAL. By assumption,
we can extend F to an ultrafilter U on TVAL. For each sentence variable Aα, let
s(Aα) = {ν ∈ TVAL : ν(Aα) = T}. More generally, for any wff ϕ, let s(ϕ) be the
set of tvas ν such that ν(ϕ) = T. Note that the complement of s(Aα) is the set of
tvas that make Aα false, that is, TVAL−s(Aα) = s(¬Aα). Since U is an ultrafilter,
one (and exactly one) of the sets s(Aα), s(¬Aα) ∈ U . So, we define the tva νU by

νU (Aα) =

{
T if s(Aα) ∈ U
F if s(¬Aα) ∈ U
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We show that νU satisfies Γ. It suffices to show the claim that that for all wffs ϕ
that νU (ϕ) = T iff s(ϕ) ∈ U , since if ϕ ∈ Γ then s(ϕ) ∈ F ⊆ U by the definition of
F . We prove this claim by induction on ϕ.

If ϕ = Aα, then by definition of νU , νU (Aα) = T iff s(Aα) ∈ U .
If ϕ = ¬α, then νU (ϕ) = T iff νU (α) = F. By induction, νU (α) = T iff s(α) ∈ U .

So, νU (α) = F iff ¬(s(α) ∈ U) iff TVAL − s(α) ∈ U (as U is an ultrafilter). Since
s(ϕ) = s(¬α) = TVAL − s(α), this holds iff s(ϕ) ∈ U .

If ϕ = (α → β), then νL(ϕ) = T iff νL(α) = F or νL(β) = T . By induction,
this happens iff ¬(s(α) ∈ U) or s(β) ∈ U . As U is an ultrafilter this happens iff
TVAL − s(α) ∈ U or s(β) ∈ U . This happens iff (TVAL − s(α)) ∪ s(β) ∈ U (the
union of two sets is in an ultrafilter iff at least one of the two sets is in). But
s(ϕ) = s(α→ β) = (TVAL−s(α))∪s(β) by definition of the truth value of α→ β.
So, νL(ϕ) = T iff s(ϕ) ∈ U . �

Putting these results together we get the following.

Theorem 32. (ZF) The following are equivalent:

(1) The completeness theorem for propositional logic.
(2) The prime ideal theorem (every filter on a boolean algebra can be extended

to an ultrafilter).
(3) Every filter on a set can be extended to an ultrafilter.
(4) Tychnoff’s theorem for Hausforff spaces (a product of compact Hausdorff

spaces is compact).

Remark 33. The full Tychnoff theorem (an arbitrary product of compact spaces–
not necessarily Hausdorff–is compact) is equivalent to AC, the full axiom of choice.
This is known to be strictly stronger than the prime ideal theorem.

Proof. (1) implies (2) by Remark 30, and (2) implies (3) as P(X) is a boolean
algebra for every set X. (3) imlies (1) by Fact 31. Thus, (1), (2), and (3) are
equivalent.

(3) implies (4) by one of the usual proofs of Tychnoff’s theorem. Namely, let
Xα, α ∈ I, be compact Hausdorff spaces. Let X =

∏
α∈I Xα with the product

topology. A topological space is compact iff every filter F on X has a cluster point
(a point x ∈ X such that every (open) neighborhood of x is F-positive, that is,
meets every element F ∈ F). So, let F be a filter on X. By (3), let U ⊇ F be
an ultrafilter on X. For each α ∈ I, let Uα = πα(U), where πα : X → Xα is the
projection map from X to Xα (projection on the αth coordinate). Since U is an
ultrafilter, so is each Uα. Since each Xα is compact, each Uα has a cluster point.
Since Uα is an ultrafilter, any cluster point y of Uα is actually a limit point of Uα
(i.e., each neighborhood of y is in Uα). Since Xα is Hausdorff, limit points of filters
are unique. Let xα ∈ Xα be the unique limit point of Uα (the key point is that the
limit point is unique, so we don’t need AC to pick one out). Let x ∈ X be the point
defined by the xα, that is, πα(x) = xα for all α ∈ I. Then x is a limit point of U
[If B = π−1

α1
(Vα1) ∩ · · · ∩ π−1

αn
(Vαn) is a basic open set in X about x (so xαi ∈ Vαi

for each i), then each Vαi
∈ Uαi

= παi
(U), that is, π−1

αi
(Vαi

) ∈ U for each i, so we
have B ∈ U as well.] As x is a limit point of U and F ⊆ U , it follows that x is a
cluster point of F .

Finally, we show (4) implies (1). Let L be a language of propositional logic with
variables VarL = {Aα}α∈I . It is enough to show, as in the proof of Theorem 19,
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that if Γ ⊆WFFL is syntactically consistent, then there is a tva ν with ν(Γ) = T.
For each α ∈ I, let Xα = {0, 1} with the discrete topology (of course, this is
compact Hausdorff space). Let X =

∏
α∈I Xα. By (4), X is compact (it is also

Hausdorff, as any product of Hausdorff spaces is Hausdorff). For each finite Γ0 ⊆ Γ,
let FΓ0

⊆ TVAL = X be the set of all tvas ν such that ν(Γ0) = T. since Γ0 is
finite and syntactically consistent, this set is non-empty by the finite version of
the completeness theorem. Each FΓ0

is a closed (in fact, clopen) subset of X,
and F = {FΓ0 : Γ0 ⊆ Γ is finite} has the finite intersection property. Since X is
compact, ∩F 6= ∅. If ν ∈ ∩F , then ν(Γ0) = T for all finite Γ0 ⊆ Γ. In particular,
ν(ϕ) = T for all ϕ ∈ Γ, and so ν satisfies Γ. �


