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1. Arithmetic

We give now a more or less standard axiomatization for “the natural numbers.”
That is, we write down axioms which intend to capture the intuitive properties
we ascribe to the natural numbers. As we will see below, however, we must be
careful in using a phrase such as “the natural numbers.” The following axiom
scheme is referred to as the Peano axioms for the natural numbers. It consists
of a finite set of axioms (sometimes called the Frege subsystem) together with an
infinite schema of induction axioms. We present the axiom scheme in the language
L “ t`, ¨, E, S,ă, 0u, but note that the language consisting of just ` and ¨ would
suffice (the other functions, relations, and 0 can be defined from ` and ¨ within
the version of the Peano axiom scheme mentioning only the axioms for these two
functions). It simplifies things a little to have these extra symbols in the language,
however.

Definition 1.1. The Peano axiom scheme is the following set of sentences in the
language of number theory.
(Successor Axioms)
@x  pSpxq « 0q.
@x @y pSpxq « Spyq Ñ x « yq

(Order axioms)
@x  px ă 0q
@x @ypx ă y _ x « y _ y ă xq.
@x @y px ă Spyq Ø x ď yq

(Addition axioms)
@x px` 0 « xq
@x @y x` Spyq « Spx` yq.

(Multiplication axioms)
@x x ¨ 0 « 0.
@x @y x ¨ Spyq « x ¨ y ` x

(Exponentiation axioms)
@x xE0 « Sp0q
@x @y xESpyq « pxEyq ¨ x

(Induction axioms)
For every formula φpxq the axiom rφp0q ^ @x pφpxq Ñ φpx` 1qqs Ñ @x φpxq

We let PA denote the Peano axioms scheme, and let F denote PA minus the
induction axioms. Thus, F is a finite set of axioms. Note that F just says that the
various functions and relations are correctly computed at Spyq from their values at
y. As we said above, we could get by, in defining the Peano axioms, with just the
addition and multiplication axioms for F.

Remark 1.2. To show that PA $ @xϕpxq, it does not suffice to show that PA $

ϕpSkp0qq for all k P ω. That is, Γ “ tϕpSkp0qqunPω does not logically imply @xϕpxq.
The existence of non-standard models explains why this is not necessarily the case.

As an exercise in using PA we show the following.
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Lemma 1.3. PA proves that ă is a strict linear ordering.

Proof. Assume PA. We first show

Claim 1. @x pSpxq ff xq.

Proof. Let ϕpxq be the formula Spxq ff x. We have ϕp0q from the first succes-
sor axiom. Assume ϕpxq and we show ϕpSpxqq. suppose towards a contradiction
that SpSpxqq « Spxq. Then by the second successor axiom we have Spxq « x, a
contradiction. By the induction schema we have that @xϕpxq. �

Claim 2. @x px ă xq.

Proof. Consider @xψpxq, where ψpxq “ @y py ď xÑ  py ă yqq. We show @xψpxq
by induction, that is, using the induction scheme in PA.

First we show ψp0q. If y ď 0, then y « 0 by the first order axiom. Also,  p0 ă 0q
by this axiom. so, ψp0q. Assume now ψpxq, and we show ψpSpxqq. Assume towards
a contradiction that y ď Spxq and y ă y. If y ă Spxq then y ď x by the third order
axiom. Then we are done by ψpxq. So, assume y “ Spxq. So, we have Spxq ă Spxq.
By the third order-axiom, Spxq ď x. By ψpxq we then have that  pSpxq ă Spxqq.
By the induction scheme this shows @xψpxq, which logically implies @x px ă xq.

�

At this point we have shown, assuming PA, thet ă is irreflexive, and connected-
ness is the second order axiom. So, it remains to show transitivity. Consider the
statement @xχpxq where

χpxq “ @y @z @w ppw ď x^ pz ă wq ^ py ă zqq Ñ py ă wqq.

We show @xχpxq by induction. χp0q follows since if w ď 0, then w “ 0, in which
case the assumption z ă w does not hold (by the first order axiom). So, assume
χpxq and we show χpSpxqq. So, consider y, z, w with w ď Spxq. If w ă Spxq,
then w ď x, and we are done by χpxq. So, assume that w “ Spxq. Since z ă w,
z ď x by the third order axiom. If z “ x, then since y ă z, y ă x. By the third
order-axiom, y ă Spxq “ w. If z ă x, then y ă x by χpxq. By the third order
axiom, y ă Spxq “ w.

By the induction axioms we now have @xχpxq, and this immediately implies
@x@y @z ppx ă yq ^ py ă zq Ñ px ă zqq (using χpzq).

�

Exercise 1. Show that PA gives the following “strong induction” principle. Let
ϕpxq be a wff in the language of number theory, with the variable y not occurring
in ϕ. Show that

PA $ ϕp0q ^ @x pp@y ď xϕpyqq Ñ ϕpSpxqqq Ñ @xϕpxq.

[hint: let ψpxq “ @y py ď xÑ ϕpyqq. Prove @xψpxq by an induction axiom.]

Exercise 2. Show that PA proves @x@y px` y « y ` xq and @x@y px ¨ y « y ¨ xq.
[hint: first show by an induction axiom that PA $ @y p@x pSpxq ` y « Spx` yqqq.]

Exercise 3. Let F 1 be the version of PA in the language L1 “ t`, ¨0u consisting of
the addition, multiplication, and zero axioms together with the induction axioms.
Define ă by x ă y iff Dz pz ff 0 ^ y « x ` zq. Show from F 1 that ă satisfies the
order axioms.
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Exercise 4. Show that PA proves the following stronger induction axiom: let
ϕpx1, . . . , xnq be a formula. Then @x1 ¨ ¨ ¨ @xn´1 rϕpx1, . . . , xn´1,0q^@xn pϕpx1, . . . , xnq Ñ
ϕpx1, . . . , xn´1, xn ` 1qs Ñ @xn ϕpx1, . . . , xnqs. [hint: let

χpyq “ @x1 ¨ ¨ ¨ @xn´1 pϕp~x, yq _ Dz ă y pϕp~x, zq ^  ϕp~x, Spzqqqq.

Show @y χpyq by induction.]

We introduce a hierarchy of formulas and sets. We say a formula φpx1, . . . , xnq
is ∆0 if it is built up through the following:

(1) All atomic formulas are ∆0.
(2) If ψpx1, . . . , xn`1q P ∆0, then so is φ “ Dxn`1 ď xj ψpx1, . . . , xn, xjq (where

1 ď j ď n) and so is φ “ @xn`1 ď xj ψpx1, . . . , xn, xjq.

Thus, ∆0 formulas are the formulas which contain only bounded number quan-
tification. For n ě 1 we say φ P Σn if it is of the form φ “ Dx1 . . . Dxn ψ, where
ψ P Πn´1, and φ P Πn if it is of the form φ “ @x1 . . .@xn ψ where ψ P Σn´1 (we
interpret Σ0, Π0 as being ∆0). Note that the negation of a Σn (or Πn) formulas is
logically equivalent to a Πn (or Σn) formulas.

We say a set A Ď ω is Σ0
n (or Π0

n) if there is a Σn (resp. Πn) formula φ which
defines it, that is, for all n P ω, n P A Ø N |ù φpnq (we interpret N here as the
structure of integers in some metatheory, say a model of ZFC). We say A is ∆0

n if
it is both Σ0

n and Π0
n.

2. Recursive Functions

An important point in the proof of the incompleteness theorem is that recur-
sive functions are “representable” within the theory F. Intuitively, the recursive
function f : ωn Ñ ω are those which are machine computable. One approach to
making this concept precise is to formalize the notion of a “machine.” This can,
for example, via the concept of a Turing machine. This gives a simple model of a
computer/algorithm, and one can then define the collection of recursive functions
to be those computable by a Turing maching. Although this approach is intuitive
and rather straightforward, it is somewhat tedious to verify that all of the needed
functions are computable in this sense. For this reason we take a different approach
here, defining the collection of recursive functions in a direct axiomatic manner. Of
course, it can be shown that the two definitions (or any of the other standard
definitions) define precisely the same class of functions.

Definition 2.1. The collection of (total) recursive functions f : ωn Ñ ω (for some
n) is the smallest collection of functions satisfying the following:

(1) For any k P ω, the constant function fp~xq “ k is recursive. The projection
function fpx1, . . . , xnq “ xj is recursive, and the successor function fpnq “
n` 1 is recursive.

(2) The addition and multiplication functions fpn,mq “ n`m, fpn,mq “ n ¨m
are recursive.

(3) The class is closed under compostion, that is, if fpx1, . . . , xnq is recursive
and g1px1, . . . , xmq, . . . , gnpx1, . . . , xmq are recursive then so is hpx1, . . . , xmq “
fpg1p~xq, . . . gnp~xqq.
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(4) The class is closed under primitive recursion. That is, if gp~xq is recursive,
and hpy, z, ~xq is recursive, then so is f defined recursively by

fpn, ~xq “

#

gp~xq if n “ 0

hpfpn´ 1, ~xq, n´ 1, ~xq if n ą 0

(5) The class is closed under minimalization. That is, if gp~x, nq is recursive and
for all ~x there is an n such that gp~x, nq “ 0, then the function f defined by
fp~xq “ µn pgp~x, nq “ 0q is recursive. Here “µn” denotes “the least n.”

The subclass of functions defined by all but the last (minimalization) clause is called
the class of primitive recursive functions.

There is a slight redundancy in the above list according to the next exercise.

Exercise 5. Show that multiplication can be defined by a primitive recursion from
addition, and addition can be defined by a primitive recursion from the successor
function. Show also that exponentiation is primitive recursive. Thus, we don’t need
(2) in Definition 2.1.

Definition 2.2. We say a relation R Ď ωn is recursive iff its characteristic function
χR : ωn Ñ t0, 1u is recursive. A relation is said to be primitive recursive if its
characteristic function is.

Exercise 6. Show that for any m P N, χěm is primitive recursive, where χěm

is defined by χěmpnq “

#

1 if n ě m

0 otherwise
. Show also that χďm, χ“m are primitive

recursive, where these are defined in the obvious manner. In particular, the function

sgpnq “

#

1 if n ą 0

0 if n “ 0
is primitive recursive. [hint: show by induction on m that

χěm is primitive recursive. Use a primitive recursion to define χěm.]

Exercise 7. Show that the function a ´ b “

#

a´ b if a ě b

0 otherwise
is primitive re-

cursive. Show that sgpnq “

#

1 if n ą 0

0 if n “ 0
is recursive. [hint: first show that

fpnq “ n´ 1 is primitive recursive.]

Exercise 8. Show that the equality relation on ω is recursive. Show also the
relations ă and ą are primitive recursive.

The next lemma shows we can go back and forth between relations and functions.

Lemma 2.3. Let f : ωn Ñ ω be a (total) function. Then f is recursive iff its graph
Gf “ tp~a, bq : fp~aq “ bu is.

Proof. If f is recursive, then Gf is recursive since χGf
p~a, bq “ χ“pfp~aq, bq is recur-

sive using exercise 8. Conversely, if Gf is recursive, so χGf
is a recursive function,

then fp~aq “ µb p1 ´ χGf
p~a, bq “ 0q is recursive. �

Remark 2.4. Lemma 2.3 does not hold for primitive recursive functions. If a func-
tion is primitive recursive, then its graph Gf is also primitive recursive by the
same proof of Lemma 2.3. However, the converse does not hold; there are recursive



5

functions f with primitive recursive graphs such that f is not a primitive recursive
function.

Lemma 2.5. If R is a recursive relation and f is a recursive function, then R1pnq Ø
Rpfpnqq is also recursive. The same is true for primitive recursive.

Proof. χR1pnq “ χRpfpnqq is a composition of two recursive (or primitive recursive)
functions. �

The next lemma shows that definitions by cases preserve recursiveness or prim-
itive recursiveness.

Lemma 2.6. If R1, . . . , Rk are recursive (or primitive recursive) relations, and
f1, . . . , fk are recursive (or primitive recursive) functions, the the function

fpnq “

$

’

’

’

’

&

’

’

’

’

%

f1pnq if R1pnq

f2pnq if R2pnq
...

fkpnq if Rkpnq

is also recursive (primitive recursive).

Proof. χf pnq “ f1pnq ¨ χR1
pnq ` ¨ ¨ ¨ ` fkpnq ¨ χRk

pnq. �

Lemma 2.7. The class of recursive relations contains all relations defined by
atomic formulas, and is closed under finite unions, intersections, complements,
and bounded number quantification. The same is true for the primitive recursive
relations. In particular, the primitive recursive relations contain all of the ∆0

0 re-
lations.

Proof. If t “ tpx1, . . . , xnq is a term, then a straightforward induction, using
the fact that `, ¨, E are primitive recursive, shows that the correspoding func-
tion ftpa1, . . . , anq “ tNpa1, . . . , anq is primitive recursive (more precisely we should
write ftpa1, . . . , anq “ the unique m such that N |ù tpSa1p0q, . . . , Sanp0qq “ Smp0q).
If ϕ is atomic of the form ϕ “ pt « uq, then the relation defined by ϕ is of the form
Rφp~aq Ø pftp~aq “ fup~aqq is primitive recursive using exercise 8. The same is true
if ϕ “ pt ă uq as the relation ă is also primitive recursive.

If R1, R2 are primitive recursive, then so is R “ R1XR2 since χRp~aq “ χR1
p~aq ¨

χR2
p~aq. The same is easily also true for unions and complements.

Suppose now Rp~a, nq Ø Dm ď n Sp~a, n,mq where S is recursive (or primitive
recursive). Define R1p~a, n, kq Ø Dm ď k Sp~a, n,mq. Then χR1p~a, n, 0q “ χSp~a, n, 0q,
and for k ą 0 χR1p~a, n, kq “ sgpχR1p~a, n, k´1q`χSp~a, n, kqq, and so χR1 is recursive
(or primitive recursive) by closure under primitive recursion. Since χRp~a, nq “
χR1p~a, n, nq we also have that R is (primitive) recursive. �

The proof of the previous lemma actually shows a bit more.

Lemma 2.8. If Spn,mq is recursive and f : ω Ñ ω is recursive, then Rpnq Ø
Dm ď fpnq Spn,mq is recursive. Likewise, if S and f are primitive recursive, then
R is primitive recursive.

Proof. Define R1pn, kq Ø Dm ď fpkq Spn,mq. Then χR1pn, kq “ χR2pn, fpkqq,
where R2pn, kq Ø Dm ď k Spn,mq is recursive (or primitive recursive) from
lemma 2.7. Thus, R1 is (primitive) recursive and thus so is Rpnq Ø R1pn, nq. �
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The next lemma is the version of Lemma 2.8 for functions.

Lemma 2.9. Let Sp~a, n,mq be a recursive (or primitive recursive relation). Let g
be a (total) recursive function (or a primitive recursive function). Let f be defined
by

fp~a, nq “

#

µm ď gp~a, nqSp~a, n,mq if Dm ď gp~a, nqSp~a, n,mq

0 otherwise.

Then f is recursive (respectively, primitive recursive).

Proof. Consider the primitive recursive case, the recursive case being essentially
identical. Let f 1p~a, n, kq be defined by

f 1p~a, n, kq “

#

µm ď k Sp~a, n,mq if Dm ď k Sp~a, n,mq

k ` 1 otherwise.

Then f 1 is primitive recursive as it is defined by a primitive recursion on k: f 1p~a, n, 0q “
1 ´ χSp~a, n, 0q, and

f 1p~a, n, kq “ χ“pf
1p~a,n, k ´ 1q, kq ¨ rk χSp~a, n, kq ` p1 ´ χSp~a, n, kqqpk ` 1qs

` p1 ´ χ“pf
1p~a, n, k ´ 1q, kqqf 1p~a, n, k ´ 1q.

Finally, fp~a, nq “

#

f 1p~a, n, gp~a, nqq if f 1p~a, n, gp~a, nqq ď gp~a, nq

0 if f 1p~a, n, gp~a, nqq ą gp~a, nq
. So f is primi-

tive recursive.
�

We introduce some coding and decoding functions on the integers. Let pp0q “
2, pp1q “ 3, pp2q “ 5, . . . , and in general ppnq “ the next prime after ppn ´ 1q (we
refer to ppiq as the “ith prime”).

Definition 2.10. For pa0, . . . , akq P ω
ăω let xa0, . . . , aky “ pa0`1

0 pa1`1
1 ¨ ¨ ¨ pak`1

k .
Let Seq “ tx~ay : ~a P ωăωu be the set of all codes of finite sequences. For n “
xa0, . . . , aky P Seq, let lhpnq “ k ` 1 be the length of the sequence coded by n, and
for n R Seq, let lhpnq “ 0. Define the binary decoding function pn, iq Ñ pnqi by
pnqi “ ai if n “ xa0, . . . , aky codes a sequence of length ą i, and pnqi “ 0 otherwise.

Clearly the map p~aq Ñ x~ay is one-to-one on ωăω.

Lemma 2.11. The function p and the set Seq are primitive recursive. For any
fixed k P ω, the function pa0, . . . , akq Ñ xa0, . . . , aky is primitive recursive. The
function lh and the decoding function pn, iq Ñ pnqi are primitive recursive.

Proof. The recursive definition ppiq “ µn rn ą ppi´1q^n is prime s shows that the
prime function is recursive. More formally, p is defined by a primnitive recursion
by pp0q “ 2 and for i ą 0, ppiq “ gpppi´ 1qq, where gpkq “ µn pn ą k^n is primeq.

To see p is primitive recursive, use the fact that, for example, there is a prime
between any n and 2n, so ppnq ď 2n. So we may write ppiq “ µn ď 2i rn ą
ppi ´ 1q ^ n is prime s, which shows the p function is primitive recursive using
Lemma 2.9. That is, p is defined by a primitive recursion by pp0q “ 2 and for i ą 0,
ppiq “ gpppi´ 1qq, where gpkq “ µn ď 2k pn ą k ^ n is primeq.

Note that n P Seq Ø @p ď n @q ď n rpp, q are prime ^ p ă q ^ q|nq Ñ p|ns.
Since the dividing relation is clearly primitive recursive, this shows Seq is also. For
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any fixed k, the function pa0, . . . , akq Ñ xa0, . . . , aky is clearly primitive recursive.
We have lhpnq “ µl ď n rpn R Seq^ l “ 0q_ pn P Seq^ ppl` 1q - nqs. Alternatively,
we can write out the last disjunct directly as pn P Seq^ spn, lqqs where

spn, lq ØDm ď nn rp@p ď n pp is prime q Ñ pp|nØ p|mqq ^ 2|m^ 4 - m
^ @p, q ď n @a ď n ppp, q are prime q ^  Drpp ă r ă q ^ r is prime qq Ñ

ppa|nØ qa`1|nq

^ Dp ď n ppl|n^ pl`1 - n^ @q ď npq is prime q ^ q ą pÑ q - mqs

Thus, spn, lq asserts that there is an m of the form m “ 213253 ¨ ¨ ¨ pl and p is the
largest prime dividing n.

Finally, for the decoding function we have:

pnqi “ µk ď n rpn R Seq^ k “ 0q _ pn P Seq^ i ě lhpnq ^ k “ 0q

_ pn P Seq^ i ă lhpnq ^ ppiqk`1 | n^ ppiqk`2 - nqs.

�

Exercise 9. Suppose g and h are primitive recursive and f is defined from then by
the following total recursion: fp~a, 0q “ gp~aq, fp~a, n`1q “ hpxfp~a, 0q, . . . , fp~a, nqy,~a, nq.
Show that f is primitive recursive. [hint: show that the function f 1p~a, nq “
xfp~a, 0q, . . . , fp~a, nqy is primitive recursive.

We now sketch a proof of the result that the class of recursive functions coincides
with the class of machine computable (total) functions. Since we have not given
a precise definition of “machine computable,” this sketch will necessarily be a bit
vague, but the reader with a particular definition of machine computability in mind
will have no trouble making the following argument precise. We will not use this
equivalence in what follows.

Theorem 2.12. the class of recursive function coincides with the class of machine
computable (total) functions.

Proof. It is straightforward to see that any recursive function is machine com-
putable, upon consideration of the various cases. For example, if fp~aq “ µn pgp~,nq “
0q where g is recursive (and @~a Dn pgp~a, nq “ 0q), then from an algorithm computing

g we can easily construct an algorithm computing fp~q: given input ~a we go into a
loop computing gp~a, nq for successive values of n until we find one where gp~a, nq “ 0,
and then we output that n. The other cases are likewise straightforward.

Suppose then that fpnq is machine computable. Given input n, the algorithm
will, starting in a certain initial state, move through a successive series series of
states (following the algorithm), finally ending in a “halting” state where the out-
put value is given. We can code the successive states of the machine during the
computation as a sequence of integers s “ xs0, s1, . . . , sky where s0 is the initial
state (which is determined in a simple way from the input value n), and each tran-
sition from si to si`1 is a valid step according to the algorithm. Finally we require
the last integer sk to be a halting state of the machine, which encodes in some
simple way the output value. Thus, we may write
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fpnq “ hpµs rs P Seq^ “s0 codes an initial state correspoding to input n”

^ @i ă lhpsq ´ 1 “psi, si`1q is a valid transition”

^ ”slhpsq codes a halting state sq

where h is a simple (primitive recursive) function which recovers the output value
from the final halting state. Note the essential use of the minimalization operator
here; we cannot replace this use by bounded quantification. On the other hand,
everything inside the square brackets is primitive recursive. This shows that every
recursive function can be defined with only one use of the minimalization operator.

�

Corollary 2.13. Every recursive relation is ∆0
1 (we will see the converse below).

Proof. The proof above shows that if R is recursive then it may be written in the
form Rpnq Ø Ds Spn, sq, where in fact S P ∆0

0 (all quantifiers in the definition of S
are bounded by n). �

Finally in this section we mention some of the properties of the pointclass definied
earlier. First, we have the following closure properties.

Theorem 2.14. For n ě 1 the Σ0
1 sets are closed under finite unions and intersec-

tions, existential number quantification, bounded universal number quantification
(i.e., @n ď m), and recursive substitution (i.e., if f is total recursive and R P Σ0

n,
then so is R1pnq Ø Rpfpnqq).

Similarly, the Π0
1 sets are closed under finite unions and intersections, universal

number quantification, existential number quantification, and recursive substitution.

Proof. We consider the case Σ0
n. Closure under existential number quantification is

obvious. Consider a bounded universal number quantification, say Bpnq Ø @m ď

n Apn,mq where A P Σ0
n. Thus, Bpnq Ø @m ď n Dk Cpn,m, kq, where C P Π0

n´1.
Using our coding functions we can then write Bpnq Ø Dl@m ď n Cpn,m, plqkq.
By induction this shows B is Σ0

n. The finite union and intersection cases are
easy. Closure under recursive substitution follows from the fact that a recursive
substitution into a ∆0

0 relation results in a recursive relation (from the closure
properties of recursive relations), and the fact that a recursive relation is ∆0

1. �

Theorem 2.15. A relation R Ď ω is recursive iff R P ∆0
1.

Proof. We have already shown that any recursive relation is ∆0
1. Suppose now that

R P ∆0
1. Say Rpnq Ø Dm P pn,mq, and  Rpnq Ø Dm Qpn,mq where R,Q are

recursive (since both R and its complement are Σ0
1 by definition of R being ∆0

1).
Let fpnq “ µm rP pn,mq _ Qpn,mqs, so f is recursive. Then Rpnq Ø P pn, fpnqq,
so R is recursive. �

3. Representability in Arithmetic

An important point in the proof of the imcompleteness theorem is that all re-
cursive functions and relations are “representable” in arithmetic, and even in the
finite subsystem F defined in §1. We define this notion here and prove the repre-
sentability of the recursive functions and relations. The proof of the incompleteness
theorem itself is given in the next section.
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Definition 3.1. We say a relation R Ď ω is representable in F if there is a formula
φpxq (in the language of number theory) such that for all n P ω, if Rpnq then
F $ φpSnp0qq, and if  Rpnq then F $  φpSnp0qq.

We say a (total) function f : ω Ñ ω is representable iff its graph Gf is. That is,
there is a formula φpx, yq such that if fpnq “ m then F $ φpSnp0q, Smp0qq, and if
fpnq ‰ m then F $  φpSnp0q, Smp0qq.

Exercise 10. Show that every representable relation or function is recursive.

An important technical point is that representability of functions coincides with
a seemingly stronger concept which we now define.

Definition 3.2. A (total) function f : ω Ñ ω is strongly representable if there
is a formula φpx, yq such that for all n, F $ φpSnp0q, Sfpnqp0qq and also F $

r@z pφpSnp0q, zq Ñ z « Sfpnqp0qqs.

Clearly strong representability implies representability. We show that the con-
verse holds, but first a simple technical lemma.

Lemma 3.3. For any n P ω, F $ @z pz ď Snp0q Ñ z « 0_ z « Sp0q _ ¨ ¨ ¨ _ z «
Snp0qq.

Proof. By induction on n. The result holds for n “ 0 since F $ pz ď 0 Ñ z « 0q
as F $  pz ă 0q. Asssume the result holds for n and assume z ď Sn`1p0q. If
z ă Sn`1p0q “ SpSnp0qq, then F proves that z ď Snp0q, in which case by induction
F proves z « 0_ ¨ ¨ ¨ _ z « Snp0q. Thus, F $ z « 0_ ¨ ¨ ¨ _ z « Sn`1p0q. �

Lemma 3.4. If f is representable, then it is strongly representable.

Proof. Suppose φpx, yq represents f : ω Ñ ω. Define ψpx, yq “ rφpx, yq ^ @w ă

y  φpx,wqs. We claim that ψ strongly represents f . Fix n P ω, and let m “

fpnq. By asumption, F $ φpSnp0q, Smp0qq. We must show that F $ @w ă

Smp0q  φpSnp0q, wq. Work within F, and assume w ă Smp0q. From lemma 3.3 we
can deduce pw « 0_w « Sp0q_ ¨ ¨ ¨_w « Sm´1p0qq. Since φ represents f we have
that F $  φpSnp0q,0q, . . . , F $  φpSnp0q, Sm´1p0qq. From these two statements
it follows that F $ @w ă Smp0q  φpSnp0q, wq. Thus, F $ ψpSnp0q, Smp0qq.

Working within F, assume now ψpSnp0q, zq, so @w ă z  φpSnp0q, wq. Since
F $ φpSnp0q, Smp0qq, we may deduce that z ď Smp0q (we use that fact that
F $ pz ă Smp0q _ z « Snp0q _ z ą Smp0qq). So we may deduce z « 0_ ¨ ¨ ¨ _ z «
Smp0q. Since F $  φpSnp0q,0q, . . . , F $  φpSnp0q, Sm´1p0qq, we may deduce
z « Smp0q. �

The next theorem is the result we need on representability.

Theorem 3.5. Every recursive relation and function is representable in F.

Lemma 3.6. Let t be a closed term, that is, a term containing no free variables.
Then there is an n P ω such that F $ t « Snp0q.

Proof. By induction on the term t. If t “ 0 this is trivial. If t “ Spuq this is also
trivial as F $ u « Snp0q for some n by induction, and SpSnp0qq “ Sn`1p0q. If
t “ u`v, then by induction it suffices to show that F $ Snp0q`Smp0q « Sn`mp0q.
This, in turn, is proved by induction on m with the inductive step given by F $
Snp0q ` SpSm´1p0qq « SpSnp0q ` Sm´1p0qq « SpSn`m´1p0qq “ Sn`mp0q. The
result for terms of the form t “ u ¨ v follows similarly from F $ Snp0q ¨ Smp0q «
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Sn¨mp0q which is proved by induction, using the result for addition. The result for
exponentiation is similar. �

Lemma 3.7. If φ is quantifier free then the relation R defined by φ is representable
in F.

Proof. It suffices to prove this for atomic formulas. For this it suffices to show
that if t, u are closed terms then either F $ t ă u or F $  pt ă uq, and likewise
F $ pt « uq or F $  pt « uq. We consider first the the « case. By the lemma there
are n,m P ω such that F $ t « Snp0q and F $ u « Smp0q. It suffices to show that
if n “ m then F $ Snp0q « Smp0q and if n ‰ m then fa $  pSnp0q « Smp0qq.
The first is trivial. For the second, we prove by induction on mintn,mu that if
n ‰ m then F $  pSnp0q « Smp0qq. If mintn,mu “ 0, this follows from the first
successor axiom. Otherwise, by induction F $  pSn´1p0q « Sm´1p0qq. The second
successor axiom then gives that F $  pSnp0q « Smp0qq.

We now consider the ă case. Again by the lemma there are n,m P ω such
that F $ t « Snp0q and F $ Smp0q. It suffices to know that if n ă m then
F $ Snp0q ă Smp0q and otherwise F $  pSnp0q ă Smp0qq. First we show by
induction on m ą n that F $ Snp0q ă Smp0q. For m “ n ` 1, F $ Snp0q ă
Sn`1p0q “ SpSnp0qq follows from the axiom of F @x @y px ă Spyq Ø x ď yq which
implies @x px ă Spxqq. Assuming the result is true for m, F $ pSnp0q ă Smp0qq,
the same axiom then shows that F $ pSnp0q ă SpSmp0qq “ Sm`1p0qq. Assume now
that n ě m. Working in F, asssume towards a contradiction that Snp0q ă Smp0q.
From lemma 3.3 we have F $ Snp0q « 0_ ¨ ¨ ¨ _ Snp0q « Sm´1p0q. However, from
the equality case we know that F $  pSnp0q « 0q, . . . ,F $  pSnp0q « Sm´1p0qq.
This is a contradiction.

Note that in all cases we have shown that the same formula φ represents the
relation R defined by φ in N. �

Lemma 3.8. If φ P ∆0 then the relation R defined by φ is representable in F. In
fact, the same formula φ represents R.

Proof. It suffices to show that if Rpx, yq is representable by φpx, yq, then Spnq Ø
Dm ď n Rpn,mq is representable. Let ψpxq “ Dy py ď x ^ φpx, yqq. Let n P ω,
and first suppose Spnq. Thus there is an m ď n such that Rpn,mq. Thus, F $

φpSnp0q, Smp0qq. From lemma 3.7, F $ Snp0q ď Smp0q. Hence, F $ Dy py ď
Snp0q ^ φpSnp0q, yq, that is, F $ ψpSnp0qq.

Assume now that n P ω and  Spnq, hence for all m ď n we have  Rpn,mq.
From lemma 3.3, F $ @y py ď Snp0q Ñ y « 0 _ ¨ ¨ ¨ _ y « Snp0qq. Since φ
represents R we also have F $  φpSnp0q,0q, . . . ,F $  φpSnp0q, Snp0qq. These
two statements logically imply @y py ď Snp0q Ñ  pφpSnp0q, yq. Thus, F $  Dy ď
Snp0q pφpSnp0q, yqq, that is, F $  ψpSnp0qq and we are done. �

Corollary 3.9. For any k P ω, the k-ary coding function pa0, . . . , ak´1q Ñ xa0, . . . , ak´1y

is representable. Also for any j ă k, there is a reprentable decoding function
nÑ pnqj such that for any n of the form n “ xa0, . . . , ak´1y, pnqj “ aj.

Remark 3.10. The full coding and decoding functions of definition 2.10 are also
representable as we will see, but this weaker result suffices for what we need below.

Proof. For fixed k, the graph of the k-ary coding function is defined by a quantifier
free formula: y “ xx0, . . . , xk´1y Ø y « p2Ex0q ¨ ¨ ¨ ppk´1Exk1q. We define the
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decoding function xÑ pxqj to be the function represented by the ∆0 formula

φpx, yq “rDw0 ď x ¨ ¨ ¨ Dwk´1 ď x py « p2Ew0q ¨ ¨ ¨ ppj´1Ewj´1q ¨ ¨ ¨ ppjEpy ` 1qq

¨ ¨ ¨ ppk´1Ewk´1qq

_  Dw0 ď x ¨ ¨ ¨ Dwk´1 ď x py « p2Ew0q ¨ ¨ ¨ ppk´1Ewk1qq ^ y « 0s

�

The next theorem is the result we need on the representability of recursive func-
tions.

Theorem 3.11. Every total recursive function is representable in F.

To prove this theorem, we must consider the cases in the recursive definition of
recursive function. For the ground case, we need to know that the base functions
fpnq “ n` 1, fpn,mq “ n`m, fpn,mq “ n ¨m, fpa1, . . . , akq “ aj , and constant
functions are representable. In all cases this follows from lemma 3.7. For example,
consider fpn,mq “ n`m. The graph is represented by the formula φpx, y, zq “ px`
y « zq. Likewise, the graph of fpnq “ n` 1 is represented by φpx, yq “ py « Spxqq.
The constant function fpxq “ a is represented by the formula φpx, yq “ py « Sap0qq.
The projection function fpa1, . . . , anq “ aj is represented by φpx1, . . . , xn, yq “ py «
xjq.

The next lemma handles the composition case.

Lemma 3.12. If f, g : ω Ñ ω are representable functions then so is h “ g ˝ f .

Proof. Let φpx, yq represent f and ψpx, yq represent g. By lemma 3.4, we may
assume that φ strongly represents f . Let σpx, yq “ rDz φpx, zq^ψpz, yqs. Let n P ω
and m “ hpnq. Let k “ fpnq, so m “ gpkq. By assumption F $ φpSnp0q, Skp0qq
and F $ ψpSkp0q, Smp0qq. These two statements logically imply Dz rφpSnp0q, zq ^
ψpz, Smp0qs, and so F $ σpSnp0q, Smp0qq.

Suppose next that r ‰ hpnq “ m, and we must show that F $  σpSnp0q, Srp0qq,
that is, F $ @z pφpSnp0q, zq Ñ  ψpz, Srp0qqq. By strong representability, F $

@z pφpSnp0q, zq Ñ z « Skp0qq. By representability of ψ we have F $  ψpSkp0q, Srp0qq.
These statement logically imply @z pφpSnp0q, zq Ñ  ψpz, Skp0qqq. Thus, F $

 σpSnp0q, Srp0qq. �

The next lemma handles the minimalization case.

Lemma 3.13. Suppose g : ω2 Ñ ω is recursive and @n Dm gpn,mq “ 0. Then
fpnq “ µm gpn,mq “ 0 is representable in F.

Proof. Let φpx, y, zq represent g. Let ψpx, yq “ rφpx, y,0q ^ @w ă y  φpx,w,0qs.
Let n P ω and let m “ fpnq, so gpn,mq “ 0 and for all k ă m we have gpn, kq ‰ 0.
Since φ represents g we have F $ φpSnp0q, Smp0q,0q. From lemma 3.3, F $

@w pw ă Smp0q Ñ w « 0_ ¨ ¨ ¨ _w « Sm´1p0qq. Since φ represents g we also have
F $  φpSnp0q,0,0q, . . . ,F $  φpSnp0q, Sm´1p0q,0q. These statement logically
imply @w pw ă Smp0q Ñ  φpSnp0q, w,0qq. Hence, F $ ψpSnp0q, Smp0qq.

Assume now that r ‰ m “ fpnq and we must show that F $  ψpSnp0q, Srp0qq.
If gpn, rq ‰ 0, then F $  φpSnp0q, Srp0q,0q which logically implies ψpSnp0q, Srp0qq.
So assume gpn, rq “ 0, in which case we must have r ą m. Since m ă r, from
lemma 3.7 we have F $ Smp0q ă Srp0q. Also, F $ φpSnp0q, Smp0q,0q, and
these statements logically imply Dw ă Srp0q φpSnp0q, w,0q. This logically implies
 ψpSnp0q, Srp0qq, and so F $  ψpSnp0q, Srp0qq. �
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The next lemma handles the primitive recursion case, and completes the proof
of theorem 3.11.

Lemma 3.14. Suppose gp~aq and hpx, n,~aq are representable. Then the function f
defined by the primitive recursion fp0,~aq “ gp~aq, fpn ` 1,~aq “ hpfpn,~aq, n,~aq is
also representable.

Proof. Let φp~z, yq and ψpx, y, ~z, wq represents g, h. We use the same trick as in the
proof of lemma 2.11, this time verifying m “ fpn,~aq by searching for an integer
of the form w “ 2x0,fp0,~aqy ¨ 3x1,fp1,~aqy ¨ ¨ ¨ pn

xn,fpn,~aqy as a witness. More precisely,
define

χpx, ~z, wq “@p, q ď w tpp, q are prime ^ pp ă qq ^  Drpp ă r ă q ^ r is prime q

^ q | wq Ñ pp | wq ^ @t1, u1, v1, t2, u2, v2 ď w ppv1 « xt1, u1y

^ v2 « xt2, u2yq ^ pEv1 | w ^ pEpSpv1qq - w ^ qEv2 | w^
qEpSpv2qq - w Ñ t2 « Spt1q ^ ψpu1, t1, ~z, u2qqu^

Dt ď w Du ď w tφp~z, tq ^ u “ x0, ty ^ 2Eu | w ^ 2EpSpuqq - uu^
Dp, u, y ď w pp is prime ^ u « xx, yy ^ pEu | w ^ pEpSpuqq - wq

Here, of course, we substitute the appropriate ∆0 formula for “p is prime” and
“v « xt, uy,” etc. Note that χ P ∆0.

Let then

σpx, ~z, yq “ Dw rχpx, ~z, wq ^ @w1 ă wp χpx, ~z, w1qq

^ Dp, u ď w pp is prime ^ u « xx, yy ^ pEu | w ^ pEpSpuqq - wqs

We claim that σ represents f . Suppose that fpn,~aq “ m. Let w “ 2x0,fp0,~aqy ¨
3x1,fp1,~aqy ¨ ¨ ¨ pn

xn,fpn,~aqy. Clearly χpn,~a, wq holds in N, and w is the least integer
such that χpn,~a, wq holds. Since χ P ∆0, from lemma 3.8 we have that

F $ χpSnp0q, S~ap0q, Swp0qq ^ @w1 ă Swp0q  χpSnp0q, S~ap0q, w1q.

The last conjunct in the definition of σ holds for x “ n, y “ m, and since this
conjunct is ∆0, F proves the corresponding formula at Snp0q, Smp0q. Hence F $
σpSnp0q, S~ap0q, Smp0qq.

Suppose next that r ‰ m “ fpn,~aq. We must show that F $  σpSnp0q, S~ap0q, Srp0qq.
Let τpx, ~z, y, wq be the subformula of σ in square brackets. It is enough to show
that F together with τpSnp0q, S~ap0q, Srp0q, wq is inconsistent [for then we would
have F $  τpSnp0q, S~ap0q, Srp0q, wq and hence F $ @w  τpSnp0q, S~ap0q, Srp0q, wq
which is logicaly equivalent to  σpSnp0q, S~ap0q, Srp0qq]. Let w0 “ 2x0,fp0,~aqy ¨
3x1,fp1,~aqy ¨ ¨ ¨ pn

xn,fpn,~aqy. Thus, F $ χpSnp0q, S~ap0q, Sw0p0qq. Now τpSnp0q, S~ap0q, Srp0q, wq
logically implies χpSnp0q, S~ap0q, wq as well as @w1 ă w  χpSnp0q, S~ap0q, w1q. From
the order axioms, F $ pw ă Sw0p0q _ w « Sw0p0q _ w ą Sw0p0qq. The lat-
ter case is clearly a contradiction. From lemma 3.3 and lemma 3.8 F $ @w ă

Sw0p0q  χpSnp0q, S~ap0q, wq which shows that the assumption w ă Sw0p0q also
leads to a contradiction. Thus we may deduce (from F and τpSnp0q, S~ap0q, Srp0q, wq)
that w « Sw0p0q. Thus we may deduce τpSnp0q, S~ap0q, Srp0q, Sw0p0qq, which is a
contradiction since F $  τpSnp0q, S~ap0q, Srp0q, Sw0p0qq from lemma 3.8.

�
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4. Incompleteness

In this section we prove several versions of the Gödel incompleteness theorem.
First we define a coding of the formulas of number theory into the integers. Fix a
bijection π between the finitely many symbols of the language (including the logical
symbols) excluding the (infinitely many) variable symbols and the set t0, 1, . . . , n0´

1u. Extend π to the variables by πpxkq “ n0`k. Then π is a bijection between the
logical symbols and the integers, and the relation Rpa, bq Ø πpxaq “ b is clearly
recursive.

Definition 4.1. If φ “ s0s1, . . . , sk is a string of symbols in the language of number
theory, then the Gödel code of φ is defined by #pφq “ xπps0q, . . . , πpskqy P ω.

We will use in the folowing arguments the fact that certain relations and (total)
functions on the integers are recursive. In fact, all of the relations and functions
we need are primitive recursive. These facts can be easily checked from the closure
properties of recursive functions of § 2; we leave the details to the reader.

The next result is the key technical lemma for the incompleteness results. It says,
in effect, that we may construct self-referential formulas. The formulas attempt to
refer to themselves by referring to the Gödel codes of themselves.

Lemma 4.2. Let θpxq be a formula in the language of number theory with one free
variable x. Then there is a sentence σ (in the language of number theory) such that
F $ pσ Ø θpS#σp0qqq.

Proof. Let f : ω Ñ ω be the primitive recursive function defined as follows. If n is
the code of a formula ψ with one free variable, then fpnq is the code of the sentence
ψpS#ψp0qq. Otherwise, let fpnq “ 0. Let ρpx, yq strongly represent f in F. Let τ
be the formula

τ “ Dx1 pρpx0, x1q ^ θpx1qq.

Note that τ has one free variable, x0. Let n “ #τ . Let σ “ τpS#τ p0qq. Let m “

fpnq, which is the code for τpS#τ p0qq “ σ. We show that σ works. Working within
F, first assume σ. Thus, Dx1 pρpS

#τ p0q, x1q ^ θpx1qq. By strong representability,
F $ @x1 pρpS

#τ p0q, x1q Ñ x1 « Smp0qq. These two sentences logically imply
θpSmp0qq, that is, θpS#σp0qq.

Assume next θpS#σp0qq, that is, θpSmp0qq. Since F $ ρpSnp0q, Smp0qq by rep-
resentability, we may deduce Dx1 pρpS

np0q, x1q ^ θpx1qq. Thus, we may deduce
τpSnp0qq, that is, σ. �

We now state the first version of the incompleteness theorem. We call a set of
sentences T recursive if t#φ : φ P T u is recursive. The reader will note that the
sentence σ constructed in the following proof is a formalization of the statement
“this sentence is not provable.”

Theorem 4.3. Let T be a consistent, recursive set of sentences in the language of
number theory which contains F. Then T is incomplete, that is, there is a sentence
σ such that T & σ and T &  σ.

Proof. Towards a contradiction assume that T is complete. Let R “ t#φ : T $ φu.
We claim that R is recursive. This is because we may check if n P R by enumerating
all possible deductions from T and checking at each step if it is a deduction from
T of either φ (the formula with code n) or a deduction of  φ. We output a 1 if
for the least such deduction we encounter it is a deduction of φ. Checking if an
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integer codes a valid deduction from T is recursive, using the assumption that T is
recursive. This algorithm will always terminate by our completeness assumption.
The answer will be correct as T is consistent.

Let θ represent  R in F . Let σ be the sentence of lemma 4.2 applied to θ. Thus,
F, and hence T proves the statement

σ Ø θpS#σp0qq.

Let n “ #σ. If Rpnq, then F $  θpSnp0qq, and so T $  σ. Thus,  Rpnq,
a contradiction. If  Rpnq, then F $ θpSnp0qq, and so T $ σ. Hence Rpnq, a
contradiction. �

Theorem 4.3 was proved by contradiction, and thus does not actually produce
a concrete sentence σ which is independent of T . With a little extra argument we
can do this. First we give the argument due to Gödel which shows this under a
slightly stronger hypothesis.

Definition 4.4. We say T is ω-consistent if there is no formula φpxq such that for
all n P ω, T $  φpSnp0qq but T $ Dx φpxq.

Of course, an ω-consistent theory is consistent, but the converse is not true. An
ω-inconsistent theory is one that has no standard model.

For T a recursive set of sentences in the language of number theory, let RT
be the relation defined by RT pa, bq iff b is the code of a deduction from T of the
formula with code a. RT is clearly recursive. Let θpx, yq strongly represent R
in F. Let τpxq “  Dy θpx, yq, and let σ1 “ σ1pT q be the sentence such that
F $ σ1pT q Ø τpS#σ1pT qp0qq from lemma 4.2.

Theorem 4.5. Let T be an ω-consistent, recursive set of sentences in the language
of number theory which contains F. Then T & σ1 and T &  σ1.

Proof. The proof is similar to theorem 4.3. Assume first that T $ σ1. Let n “ #σ1.
Let m code a deduction of σ1 from T . Thus, T $ θpSnp0q, Smp0qq (in the notation
above). This logically implies  τpSnp0qq, and thus T $  σ1. This contradicts the
assumption that T is consistent (note: this case only used the consistency of T ).

Assume next that T $  σ1. Thus, T $  τpSnp0qq, and so T $ Dy θpSnp0q, yq.
Since T & σ1 from the previous paragraph, we know that for all m P ω that
 RT pn,mq, and hence T $  θpSnp0q, Smp0qq. This contradicts the ω-consistency
of T . �

The extra hypothesis of ω-consistency, though minor, is slightly annoying. An
improvement of theorem 4.5, due to Rosser, shows that it is actually unnecessary.
Let RT pa, bq and θpx, yq be as above. Let g : ω Ñ ω be a recursive function such
that if a is the code of φ, then gpaq is the code of  φ. Let ρpx, yq strongly represent
g. Let τpxq be the formula

τ “ @y pθpx, yq Ñ Dz ă y Dw pρpx,wq ^ θpw, zqqq

Let σ2 “ σ2pT q be the sentence from lemma 4.2 for this τ .

Theorem 4.6. Let T be a consistent, recursive set of sentences in the language of
number theory which contains F. Then T & σ2 and T &  σ2.

Proof. Let n “ #σ2. Assume first T $ σ2. Let m code a deduction of σ2 from T .
So, T $ θpSnp0q, Smp0qq. Also, T $ @y pθpSnp0q, yq Ñ Dz ă y Dw pρpSnp0q, wq ^
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θpw, zqqq. These statements logically imply Dz ă Smp0q Dw pρpSnp0q, wq^θpw, zqq.
We violate the consistency of T by showing T $ @z ă Smp0q @w pρpSnp0q, wq Ñ
 θpw, zqq. From lemma 3.3 it is enough to fix k ă m and show that T $

@w pρpSnp0q, wq Ñ  θpw, Skp0qqq. By strong representability of ρ, it is enough

to show that T $  θpSn
1

p0q, Skp0qq, where n1 is the code for  σ2. Since T is con-
sistent and T $ σ2 by assumption, T &  σ2, and so  Rpn1, kq. By representability,

T $  θpSn
1

p0q, Skp0qq and we are done.
Assume next that T $  σ2. Let again n1 “ # σ2, and let now m code a

deduction from T of  σ2. So, T $ θpSn
1

p0q, Smp0qq. Since T $  σ2 we also
have T $ Dy pθpSnp0q, yq ^ @z ă y @w pρpSnp0q, wq Ñ  θpw, zqqq. To violate
the consistency of T it is enough to show that T $ @y  pθpSnp0q, yq ^ @z ă
y @w pρpSnp0q, wq Ñ  θpw, zqqq, and for this it is enough to show that T 1 “ TYtαu
is inconsistent, where αpyq “ pθpSnp0q, yq ^ @z ă y @w pρpSnp0q, wq Ñ  θpw, zqqq.
Since T $ @w pρpSnp0q, wq Ñ θpw, Smp0qqq, it follows that T 1 $ y ď Smp0q (we use
here the order axiom of F which gives y ď Smp0q or y ą Smp0q). From lemma 3.3
it is enough to show that each k ď Smp0q that T 2 “ T Y tpθpSnp0q, Skp0qq ^ @z ă
Skp0q @w pρpSnp0q, wq Ñ  θpw, zqqqu is inconsistent. This is clearly the case,
however, since for all such k we have T $  θpSnp0q, Skp0qq since by consistency
Rpn, kq holds (recall we are assuming T $  σ2). �

Note that the sentences σ1, σ2 of the Gödel theorems are Π1 sentences in the
language of number theory. Thus, incompleteness arises for sentences having only
one unbounded number quantifier.

The incompleteness theorems as we stated them apply to theories in the language
of number theory, however it ie not difficult to see that they consequently apply
to to theories in which we can “interpret” the theory F. To make this precise, let
L denote the language of number theory, and L1 a first-order language (e.g., the
language of set theory). Suppose we have formulas αN, α`, α¨, αE , αă, αS , α0 of
L1. αN is intending to define a “copy” of N, and the other formulas, α` for example,
are intending to define the corresponding function, relation, or constant symbol on
this copy. Let T 1 be a theory (set of sentences) in L1, for example T 1 might be the
axioms of ZFC. Suppose T 1 proves that Dx αNpxq (i.e., the copy of N is non-empty)
and also for each of the axioms ψ of F, T 1 $ ψ1 where ψ1 is the interpretation of
ψ into L1 using the α formula in a natural way. For example, an atomic formula
of the form x` py ¨ zq « w is replaced by Dz1Dz2 pαNpz1q ^ αNpz2q ^ α¨py, z, z1q ^
α`px, z1, z2q^z2 « wq. In this way, each formula ψ of number theory is replaced by
a formula ψ1 of L1 such that if F $ ψ then T 1 $ ψ1. Of course, T 1 may prove more
about its copy of N than does F, for example, if L1 is the language of set theory
and αN ““x P ω,” (and the other α are defined in the usual way these functions
etc. are defined in set theory), then ZFC proves much more about N than F does,
in particular ZFC proves that all of the Peano axioms hold in N.

At any rate, if T 1 proves all of the ψ1 for ψ P F, then all of the proofs of
the incompleteness results given above for L may be carried over immediately for
theories extending T 1. Since F is finite, it follows that there is a finite T 1 which
suffices to prove all of the ψ1.

For example, let ZFC1 denote the finite subset of ZFC which suffices to prove all
of the ψ1 for ψ P F. We then have:
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Theorem 4.7. Let T be a recursive, consistent theory in the language of set theory
which extends the finite fragment ZFC1. Then T is imcomplete. Moreover, there is
a Π1 sentence σ2 “ σ2pT q such that T & σ2 and T &  σ2.

Proof. DefineRpa, bq and θpx, yq as in theorem 4.6. Let θ1px, yq be the interpretation
of θ into the language of set theory. Thus, if Rp, bq then F $ θpSap0q, Sbp0qq and
so T $ θ1a,b and likewise for  Rpa, bq, where θ1a,b denotes the interpretation of

θpSap0q, Sbp0qq. The proof is now essentially identical to theorem 4.6 using θ1 in
place of θ. �

Lastly, we discuss the second Gödel incompleteness theorem. We now consider
theories T which may in the language of number theory, or set theory, etc., for
which we have an interpretation of N as above. Let Rpbq iff b codes a deduction
from T of a logical contradiction, say Dx px ff xq. Let θpxq represent R in F, and let
CONT be the sentence  Dx θ. If T is in set theory, say, then we let CONT be the
interpretation of this sentence into the language of set theory. The second version
of the incompleteness theorem say that if T is recursive, consistent, and sufficiently
strong (but we need more that T contains F now), then T & CONT . It is enough
to have T contain PA (even a smaller fragment of it, say Π1-induction), but we
state the result now for theories extending ZFC.

Theorem 4.8. Let T be a recursive, consistent theory in the language of set theory
extending ZFC. Then T & CONT .

Proof. Let σ1 be the sentence from the first version of the Gödel incompleteness
theorem, so T & σ1 (recall this direction only used the consistency of T ). The proof
of this (theorem 4.5) was presented in the metatheory. That is, in the metatheory
we showed that if T is consistent, then T & σ1. Closer examination of the proof
reveals that the only properties of the integers used in the proof are theorems of
PA. Certainly, however, they are all theorems of ZFC. Thus, this argument in the
metatheory, when formalized, becomes the statement that ZFC $ pCONT Ñ φq,
where φ is the formalization of the statement “there does not exist a proof of σ1
from T .” However, this formalization is just the statement τpS#σ1p0qq (using the
notation of theorem 4.5), and this is T provably equivalent to σ1 (more precisely,
the interpretations of these statements into the language of set theory). Thus,
ZFC $ pCONT Ñ σ1q. It follows that ZFC & CONT from theorem 4.5. �


