First Order Logic
November 17, 2016

1. THE NOTIONS OF FIRST-ORDER LOGIC

We first introduce the main concepts and notions of first order logic. First-order
logic is intended to be the logic of “real mathematics.” Propositional logic, while
it models a form of mathematical reasoning, is not expressive enough to allow the
mathematical reasoning used in general mathematics. In particular, the basic ob-
jects in propositional logic are propositional variables and truth values assignments.
We would like our logic to be able to discuss more general mathematical objects or
“structures.” Also, in propositional logic we reason just with the binary connectives
—, —, whereas in general, mathematics reasoning with quantifiers is an important
ingredient.

The overall plan, however, is still similar to that for propositional logic.

This is far from a complete survey, but rather a quick presentation of the central
points. We first review the basic set-up of first-order logic, with an eye towards
two cases of particular interest: set theory (which we have been doing all along)
and number theory (or arithmetic) which will be of importance for the Godel in-
completeness theorem.

Definition 1.1. By a language of first-order logic we mean a collection £ =
{Ri, fi, ci}iex of relation symbols R;, function symbols f;, and constant symbols
¢;. Usually we need only the countable case where Z = N.

Each relation symbol R or function symbol f in a first-order language has an
arity associated with it, with is a positive integer. The exact meaning of the arity
is made clear below, but it is intending to denote the arity of a relation or function
to which the symbol R or f corresponds.

Example 1. The language of set theory consists of a single binary relation symbol
€. So, L = {e}.

Example 2. The language of number theory consists of binary function symbols
+,-, E (E is intended to denote the exponentiation function (x,y) — x¥), a unary
function symbol S (intending to denote the successor function n — n+ 1), a binary
relation symbol <, and a constant symbol 0. Thus, £ = {<, +,-, E, S, 0}.

Note that the definition of a language is purely “syntactical,” that is, no mean-
ing is in anyway assigned to these symbols of the language (e.g., there is nothing
that says + somehow really represents what we think of a addition on the natural
numbers).

For any first-order language L, we consider also certain logical symbols which
are always allowed in constructing formulas. These are variable symbols {z;};ez
(frequently we need only the countable case g, 1, 22,...), connectives —, —, a
quantifier symbol V, parentheses (,), and a symbol ~ for equality. We could (and
do) choose to officially only use just the quantifier V, defining 3 as —=V— (a more
formal definition is given below).

We now define the formulas (or well-formed formulas, wiffs) of the language L.
We first need to define the terms of the language. The terms of the language are the
syntactical objects which are intended to denote actual objects (how they actually
do this will be made clear below).

Definition 1.2. For £ a first-order language, the terms of the language are defined
recursively as follows:

(1) Variable symbols z; and constant symbols ¢; are terms.
(2) If f € Lis an n-ary function symbol and t1, . .., t,, are terms, then f(t1 - - t,)
is a term.

To improve readability, we usually write the term as f(¢1,...,t,), that is we put
commas in the list of subterms, but they are not officially part of the language.

Definition 1.3. The formulas (or wils) of the language £ are defined recursively
as follows.

(1) If R € Lis an n-ary relation symbol and ¢4, . . ., t,, are terms, then R(t; - - - t,,)
is a formula. Also, if ¢1,ts are terms, then ~ (t1t2) is a formula. We often
write this in the more readable form ¢; ~ t5.

(2) If ¢,9 are formulas then so are (¢ —), (—¢).

(3) If ¢ is a formula, then so is (Vz ¢), for any variable symbol x.

The formulas in case (1) are said to be the atomic formulas. Again, we ofter
insert commas and write the atomic formula as R(ty,...,t,).

As in propositional logic, we must prove a unique readability theorem for the
syntax.

Theorem 1.4. (unique readability)

(1) We have unique readability for terms. That is, for every term u exactly one
of the following three cases holds:
(a) u = ¢ for some constant symbol in L.
(b) uw =z for some variable symbol in L.
(¢) u = f(tr---tn) for some n-ary function symbol f in L, and terms

ty oo tn.
In case (1c), the function symbol f and the subterms tq, ..., t, are uniquely
determined.

(2) We have unique readability for wffs. That is, for every wff ¢ exactly one of
the following cases hold:
(a) ¢ = (—a) for some wff .
(b) ¢ = (a — B) for some wffs «, S.
(¢) ¢ = (Vxa) for some variable x and wff a.
In case (2a) the wff « is uniquely determined, in case (2b) the wffs o, S
are uniquely determined, and in case (2c) the variable x and the wff o are
uniquely determined.

Proof. Let K be the function defined on finite strings of symbols from the language
L obtained by adding the values of K on the individual symbols, which are defined
by: K(c)=K(z)=1,K(()=-1,K() =1, K(—)=0,K(—)=-1,K(f)=1-n
if f is an n-ary function symbol, K(R) = 1 — n if R is an n-ary relation symbol,
K(V)=-1.

We first prove unique readability for terms.

Claim 1. For every term ¢, K(¢) = 1. If ¢ is a proper initial segment of ¢, then
K({t) <1.

Proof. The claim is proved by a straightforward induction on the terms. For the
caset = f(t1---tp), wehave K(t) = K(f)+K(()+ K1)+ -+ K(t,)+K() = (1—

n)+(=1)+n+1 = 1. If ' is a proper initial segment of ¢ of the form ¢’ = f(¢1 - -#;t},
then K(t') = (1 —n) + (=1) +j + K(t;) < (1 =n) + (=1) + j + 1 by induction.
Since j <n—1, K{#') <0. If t = f(t; - ty, then K(t) = (1 —n)+ (—1) +n = 0.

(|

The other cases are similar.

Clearly the case t = ¢, t = x, t = f(t1---t,) are mutually exclusive, and in the
first two cases the ¢ and x are uniquely determined by ¢. Suppose ¢ is a term and
t = f(t1-tn) = g(uy -+ uy) for some n-ary function symbol f, m-ary function
symbol g, and terms t1,...,t,, U1,...,Un. Since t begins with the symbol f and
also the symbol g, we have f = g. Thus, n = m as well. So, t = f(t1---t,) =
fluy---up). Thus, t;-- ¢, = uy---u,. t; is the least initial ¢ segment of ¢ for
which K(t') = 1, and likewise for u;. Thus, t; = wu;. So, ta- -t, = Uz Up.
Continuing in this manner we get that t; = u; foralli=1,... n.

Next we show unique readability for wifs.

Claim 2. For every wif ¢, K(p) = 1. If ¢/ is a proper initial segment of ¢, then
K(¢) < 1.

Proof. The claim is proved by a straightforward induction on the wifs. In the case
o = (Yza), K(p) = K(() + K(¥) + K() + K(a) + K() = (=1) + (=1) + 1+
K(a) +1 = K(a) = 1 by induction. The remaining cases are similar, and left as
an exercise. (]

It is clear form the definition that no wff begins with a — or V (they all must begin
with a left parenthesis). Form this it follows that the three cases in the definition
of wif are mutually exclusive. For example, suppose ¢ = (a« — () = (Vz). Then
a — [is equal to the string Yz . This says that o begins with a V¥, a contradiction.
The other cases are similar. If (¢« — §) = (y — §), then @ — f is equal to v — 4.
Then « is the least initial segment u of the first string for which K(u) = 1, and
likewise for . So, a = =, and it follows that 8 = §. The other cases are easier. [

Exercise 1. Complete the proof of Claim 2 for the cases ¢ = (—a), ¢ = (a — B).

Exercise 2. Show that we can eliminate parentheses entirely in first-order logic
by using reverse Polish notation. Define terms exactly as before. For the wifs, take
as definitions: ¢ = —a, ¢ =— af, and ¢ = Yza. Use the same K function.

We use the usual abbreviations A, v as we did in propositional logic. Again,
they are not officially part of the language, but we will write (o A 8) and (« v)
as if they were.

An occurrence of a variable z in a formula ¢ is said to be free if it is not within
the scope of a Vx or 3x quantifier. More precisely:

Definition 1.5. We define by recursion of the formulas:

(1) Any occurrence of in an atomic formulas is free.

(2) x occurs free in (¢ A 1) where it occurs free in ¢ and where it occurs free
in ¥. x occurs free in (—¢@) where it occurs free in ¢.

(3) z occurs free in (Vy ¢) where it occurs free in ¢ if y # x. If y = z, then z
does not occur free in (Vy ¢).

We say x occurs free in ¢ if it has a free occurrence in ¢. We say a sentence is
a formulas with no free variables.

We usually write ¢(z1,...,zr) to denote a formula ¢ whose free variables are
among Iy, ...,Tk.

Intuitively, a formulas ¢(z1,. .., x) is intended to an assertion about the objects
represented by x1,...,z,. In particular, a sentence is intending to be a statement
whose truth can be ascertained without any knowledge of what certain variables
represent. We have not yet officially assigned any meaning to formulas yet, they
are currently purely syntactical.

Example 3. If £ is the language of set theory, the only terms are the variables z;.
The only atomic formulas are z; ~ x; and x; € x;. The axioms of set theory, ZF or
ZFC, will all be sentences in this language. Since set theory will incorporate all of
traditional mathematics, all statements and theorems of traditional mathematics
can be expessed as sentences in this language.

Example 4. Suppose now L is the language of number theory. This language is
intended to make statements about the natural numbers N (which hasn’t been give
a rigorous axiomatization yet). The formula

p=(—(x=0)A—(x~S0)AYVYmYYn (x~m-n— (m=S0)vn=S0))))

is a formula with free variable x which attempts to assert that x is prime. The
sentence

Y =VYm3In Ik (n>m A d(n) A ¢(k) Ak~ S(S(n)))

asserts the twin-prime conjecture.

Exercise 3. Write down formulas or sentences which do the following.

(1) A formula ¢(z) in the language of number theory which asserts that z is
the sum of three squares, and a sentence v which asserts that every natural
number is the sum of four squares.

(2) A formula ¢(x) in the language of set theory which asserts that every ele-
ment of an element of x is an element of x (this is called z being transitive).

(3) A formula ¢(z) in the language £ = {+, -} which, if we interpret + and -
as the usual addition and multiplication in R, holds iff > 0.

In order to assign meaning to a formulas, we must have a “universe” of objects
in which to interpret the quantifiers, interpretations of the relation, function, and
constant symbols of the language, and if the formula has free variables we also have
to know how interpret the free variables. This is made precise in the following
definition of structure.

Definition 1.6. A structure for a first-order language £ = {R;, fi, ¢i}iew 18 an
object of the form 2 = (A; R4, f, c¢?) where A is a non-empty set, R is an n-ary
relation on A (where n is the arity of the relation symbol R;), f*: A" — A is an
n-ary function (again, n is the arity of f;), and ¢! € A.

Thus, a structure provides a universe A as well an an interpretation of the sym-
bols of the language £. Structures may be thought of as fairly general mathematical
objects. For example, consider the language of group theory, which consists of a
single binary function symbol -. A structure for the language is a set A with a
binary operation (a,b) — a-b€ A on A. A group, for example, would be such a
structure (but of course not all structures would be groups).

As another example, for £ the language of number theory, the “usual” natural
numbers would be a structure N = {N; +N N N N GN 0N} for the language,

5

where +~ denotes the usual addition on N, etc. Of course, there are many other
structures for this language. [note: what we mean by the “usual” natural numbers
is vague and undefined here. We can think of this as meaning the finite ordinals
of a model of ZFC set theory which we suppress mentioning and identify with the

metatheory].
A structure will be sufficient to decide the truth or falsity of a sentence, but
for a formula ¢(x1,...,x,) with free variable, we need also a map s: var — A

interpreting the variables (or at least the free variables in ¢). We wish to define
precisely the meaning of “ the structure 2 satisfies ¢ at the variable assignment s,”
which we will denote as 2 = ¢[s]. The formal definition follows.

Definition 1.7. Let 2 be a structure for the first-order language L, ¢ a formula,
and s: Var — |2|. We define 2 = ¢[s] follows.
First we extend the interpretation function s to terms t.

(1) If « € var, then s(z) is already defined. If ¢ is a constant symbol, then
s(e) = ™.

(2) Tfu= f(t1,...,t,) is a term, then s(u) = f2(s(t1),-..,s(tn)).

Next we define the notion 2 |= ¢[s] by recursion on ¢ as follows.

(1) If ¢ is the atomic formula R(ty, . . ., t,), then A = ¢[s] iff R*(s(t1), ..., s(tn))-
If ¢ is the atomic formula ¢; ~ to, then A |= ¢[s] iff s(t1) = s(t2).

(2) A= (¢ —)[s] iff A P[s] or A = Y[s]. A = (—¢)[s] iff it is not the case
that 2 = ¢[s].

(3) A = Vag[s] iff for every a € A we have that 2 | ¢[s(x|a)], where
s(zla)(y) = s(y) if y # x and s(z|a)(z) = a.

The above definition contains no surprises; it simply formalizes the usual notion
of satisfaction of a statement in a mathematical structure.
If T is a collection of formulas, we write 2 |= I'[s] to mean 2 |= ¢[s] for all ¢ € T.

Fact 1.8. Let £ be a language of first-order logic, and 2 a structure for L. If
s1,82: Var — || agree at all the free variables of ¢, then 2 |= ¢[s1] iff A = p[s2]

Proof. We first prove by induction on the terms that if s, so agree at all the
variables in a term ¢, then s1(t) = so(t). This is a straightforward induction.
The inductive step is a s follows. Suppose t = f(t1,---,t,). All of the variables
in a t; occur also in ¢, so si, sy agree on all the variables of ¢;. By induction,
s1(t;) = sa(t;) for all subterms ¢;. But then si(t) = f*(s1(t1), - ,51(tp)) =
fA(s2(t1), -+ s 52(tn)) = s2(1).

We now prove the fact by induction on the wif ¢. Suppose first ¢ is atomic,
say ¢ = R(t1---1,). By definition, all of the variables in any subterm ¢; occur free
in ¢. So, s1,S2 argree on all the variables in ¢. By the above result for terms,
s1(t;) = sao(t;) for 1 < i < n. But then A | [s;] iff R*(s1(t1),...,s1(tn)) iff
Rm(SQ(tl), sy SQ(tn)) if A |: (p[Sg].

We consider one of the boolean connective cases, say ¢ = (o« —). The variables
free in ¢ are the variables free in a together with the variables free in . Thus, s1,
s agree on all the free variables of & and . By induction, 2 = afs;] iff 2 = «a[ss],
and likewise for 5. So, A = ¢[s1] iff (A ¥ afs1] or A = B[s1]) iff (A ¥ «afsz2] or
o b Blsa]) iff A = ¢[so].

Consider finally the case ¢ = Va 1. All the free variables of ¥ occur free in ¢,
except perhaps x (if it is free in ¢). Thus, s; and so agree at the free variables

6

of ¥ except at x (if it is free in ¢). Now, A = ¢[s1] iff for all a € |2| we have
A = Y[s1(z]a)]. Note that sq(z|a) and s2(z|a) agree at x, as well as the other free
variables of . Thus, s1(x|a) and sy(x|a) agree at all the free variables of ¢. By
induction, 2 = ¢[s1(z|a)] iff A = ¥[sa(z|a)] for all a € |A|. So, A = ¢[s1] iff for
all a € A A = P[s1(x]a)] iff for all a € A A = P[s2(z]a)] iff A = ¢[s2]. O

We now introduce the notion of logical implication.

Definition 1.9. Let I' be a collection of formulas in a first-order language £, and
let ¢ be a formula. We write I' |= ¢ if for every structure 2 for £ and every
s: var — ||, if A |=T'[s], then A = ¢[s].

Thus, T' |= ¢ if every structure satisfying I" also satisfies ¢. Frequently we think
of I" as being the axioms for some theory we are studying.

Example 5. For £ the language of group theory (i.e., a single binary function
symbol, but for convenience we now add a constant symbol e to the language as
well), let T be the following set of sentences:

VeVyVzax - (y-2)~(x-y) 2

Ve (z-e~)

Ve Jy(z -y =~ e).
Thus, I' is the usual set of axioms for groups. If ¢ is a sentence in the language of
group theory, then I' |= ¢ iff ¢ is true in all groups.

Exercise 4. Write down a set I' of wifs in the empty language £ such that 2 =T
iff |2 is infinite. We will see below that there is no T', in any language, such that
A =T iff |2 is finite.

Example 6. Let £ = {<} be the language with one binary relation symbol <. Let
I" be the following set of wifs:

(1) Ve—(z <z) (irreflexive)

(2) VaVyVz((z <y Ary<z) —ax<z) (transitive)

(3) VaVy((zx <y) v (y<z) v (x ~y)) (connected)
The wifs in I" assert that < is strict linear order. There are models of I' which are
both finite and infinite, for example the set {0,1,2,...,n} with the usual ordering,
and N with the usual ordering. Consider I' =T' U {Vz 3y (z < y)}. The extra wif
asserts there is no largest element. Any model of I” must be infinite.

Exercise 5. Write down a set of wifs I" in the language £ = {R}, where R is a
binary relation symbol, such that 2 |= T iff 2 is a graph with no cycles. Do you
think it is possible to make I' finite?

If (x1,...,x,) is a formula with free variables among 1, ..., z,, 2 is a struc-
ture, and ay,...,a, € A = ||, we write 2 = p(a1,...,a,) to abbreviate 2 = p[s]
where s: Var — A is such that s(z;) = a; for 1 <1i < n.

Definition 1.10. If 2 is a structure, say a set B € A* = |A|* is definable (from
parameters) if there is a formula ¢(z1,..., 2k, y1,...,y¢) and aq,...,as € A such
that (b1,...,bx) € Biff A= o(by,... bk, a1,...,a0).

Example 7. Let 9 = (w; +",-Y) be the structure consisting on the natural num-
bers (denoted w here) with the usual operations of addition and multiplication.
Then 0%, S, <™ E™ are all definable (without parameters) in N. We can define

7

0 by the formula ¢(z) = Vy (z + y ~ y). We can define < by p(z,y) = 3z (2 #
0Ax+2z~y) We can define 1 by ¥(z) = Vy(z -y ~ y). It follows that we
can define any singleton set A = {k}, and in fact any finite or cofinite set. The
set of primes is definable. Note that the collection of definable sets is closed under
complements, finite unions, and finite intersections. The fact that F is definable
takes more work, and will be shown later. We will also show that every computable
function or relation is definable. Note that there are only countably many definable
functions and relations, while the collection of all functions/relations on w has size
c=2%.

Example 8. Let % = (R;+,.F) be the set of reals with the usual operations
of addition and multiplication. {0} is clearly definable, being the unique additive
identity. The set P < R of positive real numbers is definable by ¢(x) = 3y (y - y ~
x) Az # 0. It follows that the usual linear ordering < on R is definable in fR.

Exercise 6. Let 3 = (Z; +%,Z) be the integers with the usual operations of ad-
dition and multiplication. Show that < and the set A = N = {a € Z: a > 0}
are definable without parameters in 2 (hint: use Lagrange’s theorem in number
theory).

1.1. Homomorphisms. The algebraic notion of homomorphism can be given in
this general context.

Definition 1.11. Let A, 8 be two structures for a first-order language £ =
{R;, fiyci}. A homomorphism 7 from 2 to B is a map m: A — B satisfying:
R¥*ay,...a,) iff R®(w(a1),...m(an)), 7(f*(a1,...,a,)) = f2(w(ar),...,n(a,)),
and m(c®) = ¢® for all ay,...,a, € A and all relation, function, and constant
symbols R, f,c in L. An isomorphism between 2(and B is a one-to-one, onto,
homomorphism. An automorphism of 2 is an isomorphism from 2 to itself.

We can use homomorphisms and automorphisms of structures to show certain
sets and functions are not definable in a given structure. The method uses the
following basic result.

Theorem 1.12. Let 2, B be structures for a first order language L. Let (1, ..., %)
be a wff of L, with free variables among {x1,...,zn}. If m1: A — B is an iso-
morphism (i.e., a homomorphism which is one-to-one and onto), then for any
a1, ..., an € A we have A = p(ay, ..., an) iff B = p(r(ar),...,m(ay)).

Proof. For any s: Var — |2, let m(s): Var — |B] be defined by 7(s)(x) = 7(s(x)).

First prove by induction on the terms that for any s we have that w(s(t)) =
(m(s))(t). For variables this is true by definition of mw(s). For constant symbols,
7(s(c)) = 7(c¥) = ¢® = (7(s))(c). For the inductive step, say t = f(t1,...,t,).
Then

Next we prove the theorem by induction on . Suppose first that ¢ is atomic. Say
© = R(t1,...,t,). Then 2 |= o[s]iff R¥(s(t1),...,s(t,)) iff R® (7 (s(t1),...,m(s(tn))

8

(as 7 is a homomorphism) iff R® ((7(s))(t1), ..., (7(s))(t,)) (by the result for terms)
ift B = o[n(s)]. If ¢ =t ~ u, then A |= ¢[s] iff S(t) = s(u) iff 7(s(t)) = 7(s(u)) (as
7 is one-to-one) iff (7(s))(¢) = (7(s))(u) (by the result for terms) iff B = p[n(s)].

The boolean cases follow immediately by induction.

Suppose ¢ = Vxip. Then A = p[s] iff for all a € || we have A = ¢[s(z]a)].
By induction, for a given a this happens iff B = ¢[n(s(z|a))]. Now, (s (la)) =
7(s)(z|m(a)). Now, for all a € A B | ¢[n(s)(z|r(a))] iff for all b € B B |=
Y[mw(s)(x]b)] as 7 is onto. The last statement is the definition of B = ¢[w(s)].

(]

Consider the structure M, = (N;-). Note that 0 and 1 = S(0) are definable
in this structure. Let P be the set of primes. Let m: P — P be any bijection.
Let 7’ be the extension of 7 to N defined multiplicitively, that is, #’(p{* - - - pp*) =
7' (p1)® -7’ (pr)**. Easily 7 is an isomorphism from 91, to itself (where we define
7/(0) = 0). Note that P is definable in ,,, so every automorphism of 2, must
send P to P. Since a homomorphism must preserve multiplication, we see in fact
that every automorphism of 2L, is of the form 7’ for some permutation 7 of P.

If now follows that + is not definable in ,,, since, for example, 1 + 1 = 2,
but (1) + w(1) # 7(2) if 7(2) = 3, since (1) = 1. We also have that {2} is not
definable, since there is a m which sends 2 to 3. Likewise it follows that the ordering
< is not definable in 2,,,. Thus we have:

Theorem 1.13. Let N, = (N;-). Then +y and <y are not definable in N, .

Remark 1.14. Tt is also true that -y is not definable in the structure 9, = (N; +x),
but this cannot be shown using homomorphisms, as the only automorphism of the
structure M, is the identity, as each {k} is definable in ,.

Exercise 7. Let ay,...,a; be positive integers. Let Az be the set of positive
integers n such that n = p{* ---pi* for some distinct primes pi,...,py (the p; are
not necessarily increasing). Show that Az is definable in 2,

Exercise 8. Show that the only automorphism of the structure R = (R; +g, 'r)
is the identity. [hint: If 7 is an automorphism of R, show that 7(¢q) = ¢ for all
q € Q, and use this along with the fact that < is definable in R.] The argument
given below, on the other hand, will show that there are many automorphisms of
the complex numbers € = (C; +, -).

From Example 8 we have that the usual linear ordering < on R is definable over
M. We show that there is no definable linear order over € = (C; +, -), the complex
numbers with the usual operations of addition and multiplication. Let T' < C be
a transcendence base for C over Q, that is, T is a maximal set of algebraically
independent elements (we use AC to get this). Let m: T — T be a permutation
of T. Since C is algebraically closed, m extends to an automorphism 7: C — C
by a standard argument from field theory [build 7 = |, _5. Ta. At even stages a,
pick the least (in some wellorder of C) z, € C not in C<o = Jz_,, dom(ms) and
let p,, be its minimal polynomial over C.,. Let C, = C.4(z4), and define 7, (24)
to be some root of 7m(p) over Doy = (Jg_,ms(Cp). Each m, extends to a field
isomorphism 7,: Cq — Dy = Doy (7a(2)). At odd stages, pick z € C — D, and
proceed similarly.]

Now, if < were a definable over € linear ordering of C, then we would have
t1 < to iff ©'(t1) < 7'(t2) for any t1,t2 € T and permutation 7: T — T. But we

can take 7 to switch ¢; and to, so this is a contradiction. We summarize this in the
next theorem.

Theorem 1.15. Let R = (R; +,:), and € = (C; +,) be the usual structures for the
real and complex numbers. Then the usual linear ordering of R is definable in R,
but there is no linear ordering of C definable in €.

The next theorem also illustrates the use of homomorphisms.

Theorem 1.16. Multiplication on the reals, ‘g, is not definable in the structure
R, = (R;+). Addition on the reals, +r, is not definable in the structure R, =
(R;-). A similar statement holds for the complex numbers.

Proof. We consider the case of the reals, the complex case being similar. Let B < R
be a basis for R over Q (a Hamel basis, we use AC to get this). Recall this means
B is a maximal set of linearly independent elements over Q. Let 7: B — B be a
bijection. Then 7 extends to an automorphism «’: R, — R,. Namely, if z € R,
then there is a unique representation z = ¢y2z7 + -+ + ¢nzn, where z; € B. Set
7w(x) = qim(z1) + - - - + gn7(2,). This is easily welldefined and an automorphism of
R,. Suppose g were definable over R,. Let t1,t5 € B be algebraically independent
elements (which easily exist as B has size 2¥). Let t1 - to = q121 + -+ - gn2n With
z; € B. At least one of the z; is not in {t1,t2} as otherwise t1, to satisfy a quadratic
polynomial over Q. Say z; ¢ {t1,12}. Let m be a permutation of B which switches
z; with w;, where w; ¢ {ti,t2,21,...,2n}, and fixes all other elements of B (in
particular fixes t; and t3). Then 7'(t1t2) # tite, but @'(t1) = t1, ©'(t2) = t2, a
contradiction.

Suppose next that +g were definable over R,, = (R;:). Let B € R* be a
maximal set of multiplicitively independent elements, that is, such that z{* - - - 2~ 3
1 for any z1,...,2, € B and ¢1,...,q, € Q. Let m: B — B be a bijection. First
extend 7 to R by setting 7/ (27" -+ 2") = m(21)? - - - w(2,,) %", which is easily well-
defined and preserves multiplication on R*. Extend 7 to all of R by w(0) = 0

and 7'(—x) = —7'(z) for x € RT. 7’ is still a bijection and a homomorphism
from R,, to itself. Let ¢1,t2 € B be algebraically independent elements. Write
ty 4+ to = 2{* -+ 28" where 21,...,2, € B. We cannot have that all of the z; are

in {t,t2}. For if so, then (; + t2)® = t{*t5> for some integers a;,as,b with b # 0.
This contradicts the algebraic independence of t1,t5. Write t1 + to = zfl s zdn
and we may assume z; ¢ {t1,l2}. Let 7 switch z; with w; ¢ {t1,t2,21,...,2,} as
before. Then 7/(t1) = t1, 7' (t2) = ta, but 7' (¢; + t2) # t1 + ta, a contradiction. O

Exercise 9. Let R, = (R; +r, ‘r, Zr) be the structure of the reals with the usual
operations of addition and multiplication, and a unary relation Zg which gives the
integers, that is, Zg(a) iff a € Z. Show that {r} is definable in R,.

Remark 1.17. From Tarski’s theorem on elimination of quantifiers in the theory of
real closed fields, it follows that {n} is not definable in R = (R; +, -).

1.2. Prenex normal form. We say two wifs (in a language £) of first-order logic,
¢ and), are logically equivalent if {¢} = 1 and {¢} = ¢. Thus, for any structure
2 of £ and any s: Var — |2| we have 2 = ¢[s] iff 2 = ¢[s].

For the purposes of the following discussion, we allow the exists quantifier 3 in
the language (officially it is still an abbreviation for —V—, but we will now use it as
a symbol in the language). Likewise, we use A and v as symbols in the language,
though they too are still oficially abbreviations.

10

Definition 1.18. A formula ¢ is quantifier free if it has no occurrence of a quan-
tifier. A quantifier-free formula ¢ is in disjunctive normal form if it is of the form
© = (p1 V-V p,), where each @; is of the form ¢; = (1;1 A -+ A i m,) and each
1;,; is either an atomic formula, or the negation of an atomic formula.

Fact 1.19. Every quantifier-free wif ¢ is logically equivalent to a wif ¢’ in disjunctive
normal form.

Proof. We prove by induction on the wff ¢ that if ¢ is quantifier-free then both ¢
and —¢ are logically equivalent to wifs in disjunctive normal form.

If is atomic, then we may take ¢’ = . Also, if the induction hypothesis hold
for ¢, then it holds for —¢ as ——p is logically equivalent to .

It suffices to show that if ¢ and v satisfy the inductive hypothesis, then so does
o v . If ¢ 9 are disjunctive normal forms for ¢ and 1, then ¢’ v 1)’ is already
in disjunctive normal form and is logically equivalent to ¢ v .

It remains to show that —(¢ v %) can be put into disjunctive normal form. Now
=(p v 1) is logically equivalent to (—¢p A —), and by induction, —¢ and — are
logically equivalent to formulas in disjunctive normal form. Say —¢ is equivalent
to (aq v -+ v ay) and —1 is equivalent to (81 v -+ v B), where the «; and §; are
conjuncts of atomic formulas and their negations. Then by the usual distributive
properties of A and v we have

(a1 v vay) A (B v~~vﬁk)z\/(ai A Bj).
4,J
where here = means logical equivalence. Each o; A 3; is a conjunction of atomic
formulas and their negations, and so —(¢ v ®¥) is logically equivalent to a fromula

in disjunctive normal form.
O

Definition 1.20. A wff ¢ is in prenexr normal form if it is of the form ¢ =
Q171 Qpxy ¥, where each @Q; is either 3 or V, and v is a quantifier-free for-
mula in disjunctive normal form.

For ¢ € WH, let 7 be the result of replacing all the free occurrences of z in ¢
by z.
We need the following technical fact.

Fact 1.21. For any wif ¢, variables x, z with z not occurring in ¢, and structure 2
and s: Var — |2| we have that 2 = oZ[s] iff A = ¢[s(z|s(2))].

Proof. Let s’ = s(x|s(z)). First, by a straightforward induction on the terms ¢
we show that s(t7) = s'(t). Suppose first that ¢ is a variable. If ¢t = x, then the
left-hand side is s(z) since t* = z. The right-hand side is (s(z]s(2))(z) = s(2).
If t = y # x, then the left-hand side is s(y) and the right-hand side is also s(y)
since (s(z|s(2))(y) = s(y). If t = ¢, a constant symbol, then the left-hand side is
s(c) = ¢® since ¢¥ = ¢, and the right-hand side is also c¢*. If t = f(t1,...,tn),
then the left-hand side is f®(s((t1)?),. .., s((t,)%)), which by induction is equal to
f2(s'(t1),...,5'(ty)). By definition, this is equal to s(t).

We now show the fact by induction on . First suppose ¢ is atomic, say
¢ = R(t1,...,t,). Then A | ¢%[s] iff R*(s((t1)%),...,s((t,)%)) since all oc-
currences of = in ¢ are free. By the above result for terms, this is equivalent to

11

R*(s'(t1),...,5'(tn)), where again s’ = s(x|s(z)). By definition, this is equivalent
to saying 2 = ¢[s'].

The boolean case is immediate. So, suppose ¢ = Vw1, where w € Var. First
suppose that w # x. Then ¢? = Yw¢Z. So, A = ¢Z[s] iff for all a € A we
have A | 9Z¥[s(w|a)]. Note that w # z by assumption. By induction, 2 =
Y¥[s(w|a)] iff A | YP[(s(w|a))(x|5(2))], where § = s(w|a). This is the same as
A = Y[(s(w]a))(z|s(z))]- Since w # z, this is the same as A = ¢P[(s(z|s(z))(w]a))]
Saying this holds for all a € |2l is the same as saying 2 |= Yw 9[s(z|s(z))], that
is A = ¢[s(x|s(z))]. Suppose next that ¢ = Vzt. Then ¢? = . Also, s and
s(z|s(z)) agree on all the free variables of ¢. So, A | ¢Z[s] iff A = ¢[s] iff
& - gls(als(z)]. 0

Lemma 1.22. If p = Qu v (where Q =V or3), and z is a variable which does not
appear in Y, then ¢ is logically equivalent to @' = Qz Y%, where V7 is the result of
replacing all the free occurrences of x in ¥ by z.

Proof. Tt is enough to do the case @ = V. We have 2 |= ¢[s] iff for every a € |2|
we have that 2 |= ¢[s(z]a)]. Likewise 2 |= ¢'[s] iff for every a € || we have that
A = %[s(z]a)]. From Fact 1.21 we have that A = ¢Z¥[s(z]a)] if A = [s'(z|s'(2))],
where s' = s(z]|a). Now, z does not appear in ¢, so 2 | ¥[s'(z|s'(2))] iff A =
P[s(x|s'(z)]. Since s'(z) = a, this happens iff A = ¢[s(z]a)]. O

Remark 1.23. The formula ¢’ of Lemma 1.22 is called an alphabetic variant of .

Theorem 1.24. Every wff ¢ in a first-order language is logically equivalent to a
wff in prenex normal form.

Proof. We show by induction on ¢ that ¢ and —¢ are logically equivalent to wiffs
in prenex normal form. For atomic formulas this is immediate. The case ¢ = —
is also immediate as ——1) is equivalent to ¥. The case ¢ = Va1 is also immediate.
It is enough then to consider the case ¢ = (a v 3).

Say o = Q121 Qnyn (p), and B = Ryyi - Rmym (o), where p, o are in
disjunctive normal form. We show by induction on max{n,m} that (a v) is
equivalent to a wif in prenix normal form. Let o/ = Qoxo- - Qnz, (p), and
B = Rays -+ RmYm (o). Then by Lemma 1.22 Q121 o' v Ry 8 is logically equiv-
alent to Q121 (/)2 v Rywy (B')Y where 21, w; are distinct variables which do not
appear in . Now we claim that

Q21 ()2} v Rywy (B3, = Quar Rywn ((0)2) v (B)3)
which suffices, as by induction ((a/)7! v (8")Y%) is equivalent to a wif in prenix
normal form.

To see this, it is enough to observe the following: if z does not occur in a formula
1, then (Qz ¢) v 1 is logically equivalent to Qz (¢ v). Fix 2 and s: Var — |2].
We consider the case Q =V, the case Q = 3 being similar.

Suppose first that 2 = (Vzp) v ¢[s]. If A = ¢[s] then for all a € |A| we
have 20 = 9[s(z]a)] as z does not appear in . So, for all a € A we have A |=
(p v ¥)[s(z|a)] and thus A = Vz (o v). If A = Vz[s], then for all a € |A| we
have 2 |= ¢[s(z|a)], and thus 2 = (p v ¥)[s(z]a)]. So, A= Vz (o v ¥)[s].

Suppose next that A = Vz (¢ v ¥)[s]. If A k= ¢[s] then A = (Vz¢) v [s],
and we are done. So, assume A B ¢[s]. Let a € ||. Then A = (¢ v ¥)[s(z]a)].
Since 2 F v[s], we also have 2 ¥ ¢[s(z]a)] since z does not appear in ¥. So,
A = p[s(z|a)]. Since a € |2| was arbitrary, we have 2 = Vz ¢[s].

12

Finally, —p = —a A = = (Qiz1--- QLxn —p) A (Riy1 -+ R, Ym —0), where
Q', R’ are the dual quantifiers to @, R. The argument now proceeds just as the
above, using the fact that —o, —p are equivalent to quantifier-free wifs in disjunctive
normal form. O

Example 9. Let ¢ = Vr¢(z) where ¢(z) = Jy(z % y). Let ' = Vyyy =
Vy3dy(y # y). Then ¢ is not logically equivalent to ', so it is important in
Lemma 1.22 that the variable z not occur in .

Exercise 10. Let ¢ = Yydy R(y,y). Is ¢ logically equivalent to Vy R(y,y) or to
Iy R(y,y)?

Exercise 11. Find a sentence ¢ in the language of number theory such that 91 = ¢
and such that every structure that satisfies ¢ is infinite.

1.3. Formal Proofs. We have introduced the notion of logical satisfaction, =
above. This is one of two of the basic notions of implication from first-order logic.
The other is the notion of provability, or deducibility. We write I' — ¢ for this
notion. This notion can be defined in several, ultimately equivalent, ways. The
exact definition is not so important for us here, only that this notion satisfies
several reasonable properties. However, for the sake of completeness we give one
formal definition of . We assume below that the only connectives are — and —.

Definition 1.25. Let ¢ be a wif in a first-order language £, let x € Var, and ¢ a
term in the language £. We say t is substitutable for x in ¢ if wherever = occurs
free in ¢, = is not within the scope of a quantifier over a variable that appears in ¢.
More formally, the notion is defined by induction as follows:
(1) If o is atomic, then ¢ is substitutable for x in ¢.
(2) If ¢ = —a, then t is substitutable for x in ¢ iff ¢ is substitutable for x in a.
(3) If ¢ = (a — B), then ¢ is substitutable for = in ¢ iff ¢ is substitutable for =
in « and t is substitutable for z in 8.
(4) Suppose ¢ = Vzp. If z # x, then t is substitutable for x in ¢ iff ¢ is
substitutable for z in ¢ and z does not occur in t. If z = z, then t is
substutable for x in .

Definition 1.26. The logical azioms (for a given first-order language L) are the
universal closures of the following formulas (here «, 8, v are arbitrary formulas of

L):

(ma = =) = ((ma = f) = a)

Vx a — of whenever t is substitutable for x in ¢ Here of is the result of
replacing x where it occurs free by t.

) Vz (@ — B8) > (Vo a — Yz)

) a — VYa a, where z is not free in a.

)

)

) .
; (a—=(B—=7)— (a—B) = (a—>7))
)

T = Ty
(x; ~ ¢j) = (v > o), where « is atomic and ¢’ is the result of replacing
some of the occurrences of x; by x;.

Remark 1.27. The first three categories are just the logical axioms of propositional
logic. Note that we always have that Yz ¢ - ¢, as x is always substitutable for z
in any formula. Substitutability is necessary in (4) as the next example shows.

13

Example 10. Let ¢ =Vra =Vz(Jy(z # y)). Let t =y. Then of = Jy (y # y).
Clearly ¢ = Vo « does not logically imply of .

Definition 1.28. T' |- ¢ iff there is a sequence of formulas (a deduction of ¢ from
T) ¢o,b1,...,0n = ¢ such that for all i either ¢; is a logical axiom or an element
of T, or the formulas 1, ¥ — ¢; occur before ¢; for some ¥ (we say ¢; is deduced
by modus ponens).

The central result in first-order logic is the Godel completeness theorem:

Theorem 1.29. For any first-order language L, set of formulas I, and formula ¢,
we have I' = ¢ iff T+ ¢.

As we said, the exact details of the definition of the provability relation are not
so important. All we really require is that we be able to prove the completeness
theorem and that the notion “gi_; is a deduction of v from I'” is recursive for recursive
I’ (we discuss the notion of recursive below).

We first prove some metatheorems which give information about the | relations,
and which correspond to intuitive proof rules in mathematics. The first two, the
deduction and contradiction metatheorems are just as in propositional logic.

Lemma 1.30 (Deduction metatheorem). If I" U {¢} - ¢, then T - (¢ —).

Proof. The proof is just as for propositional logic. We prove the result by induction
on the minimal length of a deduction of ¢ from I" U {¢}. First assume ¢ € I' U {}.
If ¢ € T, then clearly T - 9 and also ¥ — (¢ — 1) is a logical axiom, so by modus
ponens I' - (¢ — ¢). If ¢ = ¢, then T' - (¢p — 1)) exactly as in propositional logic.
If 7 is deduced by modus ponens from « and o — 1, then by induiction I"
(¢p > a)and ' - (¢ — (o — *)). But using group (2) of the logical axioms we have
- (a—>vY) - (¢ — a) = (¢ — 1)), and so by modus ponens, T' - (¢ —).
Finally, assume ¢ is a logical axiom. then I' - ¢ and &J ¢ — (¢ — v) and so
L' (¢ —).
O

Lemma 1.31 (Contradiction metatheorem). If I' U {—¢} - o, —a, then T - .

Proof. Assume T' U {—¢} + a,—a. From the deduction metatheorem we have
' (—¢p - a)and I' - (—p — —a). From A(3) we have T - ¢. O

As with propositional logic, A(1) — —(3) suffice to show that ¢ - ——¢ and
——¢ - . Thus we have:

Corollary 1.32. IfI" U ¢ is inconsistent, then I' - —p.

Lemma 1.33 (Generalization metatheorem). IfI' - ¢ and x is not free in I', then
I'EVzo.

Proof. By induction on the minimal length of a deduction of ¢ from I'. If p € T,
then is not free in ¢ by assumption. By A(6) we have &J - (¢ — Va @), and it
follows that I' - Vx ¢.

If o € A, then Vx ¢ is also in A, and A is closed under universal quantification
by definition.

If ¢ is obtained by modus ponens from 3, 8 — ¢, then by induction we have
PHVaepand T + V(8 — ¢). By A(5) we have I' - Va 8 — Vzp. By modus
ponens, I' - Vx . (]

14

The requirement that x not be free in I" can by circumvented as the next corollary
shows.

Corollary 1.34. IfT' - 7 where z is not free in I', and z does not occur in @,
then I' = Vx .

Proof. Since I' - ¢? and z is not free in I', by the generalization metatheorem we
have I' - Vz ¢?. But Vz ¢? - (¢%)Z since x is always substitutable for z in ¢%, by
exercise 12. An easy induction shows that (¢%)Z = . So, Vz¢? - ¢. Since z is
not free in Vz 7, the generalization metatheorem gives that Vz ¢? - Va ¢, and so
' Vxe. O

Exercise 12. Show that x is substitutable for z in ¢? for any formula ¢ and
variables z, z, with z not in ¢. Show also that (p?)Z = .

The proof of the completeness theorem will involve introducing some new con-
stant symbols into the language. We need the following metatheorem to be able to
eliminate them and get back to deductions in the original language.

Lemma 1.35 (Generalization on constants). If I' = ¢ and ¢ is a constant symbol
not in I', then there is a variable y not in ¢ such that I' = Vy ¢y, and furthermore
there is a deduction of Yy py, from I' in which ¢ does not appear.

Proof. Let a1, ...,a, = ¢ be a deduction of ¢ from I'. Let y be a variable not in
any of the a;. We show by induction on m that (ao)g, ..., (am)j is a deduction of
(am)y from T
If o,,, € T, then ¢ does not appear in «,,, SO (am)g = Qy, and so (am)‘; el
(&

If ay, is deduced by modus ponens from «; and a; = a; — @, then (aj)j =
(ai)y = (am)y, and (ay,)j is deduced by modus ponens from ()5, and (a;);.

Suppose finally that «,, € A. We claim that (Oém>§, is also in A.

Claim 3. If a € A and y is a variable not in «, then aj € A.

Proof. For a in A groups (1), (2), (3), (5), or (7) this is clear.
Suppose a € A(4), say o = Vz 8 — ¥ where t is substitutable for z in 8. Then
ay, =V By — (B7)y- Now, for any 3 € WHf, ¢ substitutable for = in 3, and y not in

B, (BF)y = (5;)% (this can be formally proved by a straightforward induction on

B). So, ay = Vxﬂ?j — (ﬁg)fg Finally, z occurs free in 8 exactly where x occurs
free in 8. Also, tj is substitutable for = in 3 as tj has the same variables as ¢
except perhaps the extra variable y, but y does not appear in 3, so does not appear
as a quantified variable in 8. Thus, af € A(4).

Suppose next that a € A(6), say a = (8 — Vz 3), where z is not free in 8. Then
ay = (B, — Vx 37). Since x is not free in 3, we also have that x is not free in 3

since y # x as y does not occur in). Thus ag, € A(6).

Finally, suppose « € A(8). Say a = (z; ~ ; — (8 — ')), where /3’ is obtained
from $ (an atomic formula) by replacing some of the occurrences of x; by x;. Then
aj is the formula x; ~ z; — (B — (8')y). Since y # z;, x5, (8'); is obtained from
B, by replacing the same occurrence of z; by x; as for 8. So, aj € A(8). ([l

This also completes the proof of Lemma 1.35.

15

Finally, before starting the proof of the completeness theorem, we show that
suitable alphabetic variants which are provably equivalent to the original formula
always exist.

Lemma 1.36. Let ¢ € Wff, x € Var, and t be a term. There is a formula ¢ with
the same free variables as ¢ such that t is substitutable for x in @', and ¢ + ¢,
¢ o
Proof. By induction on ¢. If ¢ is atomic, we can let ¢’ = . The boolean cases are
easy. Suppose ¢ = Vw1 for some variable w. If w = x then we may take ¢’ = ¢,
as z is not free in ¢ in this case. So, assume w # x. Consider ¢ = Vz 1y where z is
a variable not appearing in ¢ or t. We claim that ¢ =< ¢. To see that ¢ - ¢, by
the generalization metatheorem it is enough to see that ¢ - ¢ as z is not free in
. Since z is substitutable for w in ¢ (as does not appear in ¢) from A(4) we have
that ¢ - 9¥¥. To see that ¢ - ¢, by the generalization metatheorem it is enough
to show that @ - 1, since w is not free in @. Since z does not appear in v, all the
occurrrences of z in ¥} are free and furthermore w is substitutable for z in . So
by A(4), @ - (V)% = ¢

Finally, by induction let ¢’ = Vz (¢%)’, where (¢¥) = ¢ and t is substitutable
for z in (¢¥)’. Since t is substitutable for = in (%) and z does not occur in ¢, ¢
is substitutable for z in Yz (¢v)" = ¢’. From the generalization metatheorem we
immediately have that Vz¢¥ —- Vz (¢¥)'.

O

1.4. Proof of the completeness theorem. Let £ be a language of first-order
logic. Let I' € Wff, and suppose I' = ¢. We show I' - ¢. If T I/ ¢, then by
the contradiction metatheorem, I' U {—¢p} is consistent. If we can show that every
consistent set of wifs is satisfied by some 2 and s: Var — ||, then there is a 2
and s which satisfies I' U {—p}. This is impossible, however, as 2 = I, and thus
A= pls].

So, it suffices to show the following.

Theorem 1.37. If T is a consistent set of wffs in a first-order language L, then
there is a structure A for L and a s: Var — || which satisfies T.

Proof. Let L' be the language £ together with countably many new constant sym-
bols ¢; which do not occur in L.

Let g, 1, ... enumerate all the existential formulas of £’ that is, all formulas
of the form ¢; = Jy; 1; for some variable y; and formula ;. For each ¢; choose
one of the new constant symbols c,, not in ¢; and not in ¢; nor equal to c,; for
any j < 4. So, for each existential formula ¢ = Jy 1 we have the constant symbol
¢, defined. Let I be I' together with all formulas of the form Iy — (c,) for
each existential formula ¢ = 3y 1. Here ¢(c,) abbreviates z/;gw. The new formulas
o; = i — i(cy,,) are called the Henkin formulas, and the c, the Henkin
witnesses. So,

I =T v {Fyithi — i(cy,) biew-
Claim 4. I" is consistent.
Proof. If not, let n be least such that '), = T u {0g,...,0,} is inconsistent.

Note that T' is still consistent with respect to the language £’. This follows from
Lemma 1.35. Namely, if I' -2 (o A —a), where a € Wi/, then by Lemma 1.35 we

16

may replace the new constant symbols in « by variables to get an o/ € Wif; and
such that I' - (o/ A —a’) by a proof in L, a contradiction.

So, T';,—1 is consistent (I'_; = T'), and T',,_1 U {0, } is inconsistent. Let o, =
Jy 1 — P(cy), where ¢, = Jy1p. So, ¢, does not appear in ¢ nor in oo, ...,0n_1.
By the contradiction metatheorem, I',_; — —o,. Now, for any wffs a and 8 we
easily have —a + (o — () (using the deduction metatheorem), and so —(a —
B) = «a by the contradiction metatheorem. Thus, I',,_; + Jy¢. Also, =(a —
B) - —8 by the contradiction metatheorem as 5 + (o« —) by a logical axiom.
So, I'n—1 = —%(c,). Since ¢, does not appear in I',,_1, from Lemma 1.35 we have
that I',,_1 - Vz ﬂ(¢g¢)§¢ for some variable z (which we may assume which does not
occur in), and furthermore ¢, does not occur in this deduction. Since ¢, does not
occur in 9, (gg})?” =Y. So, I',_1 + Yz —¢¥. Since z did not occur in 9, z occurs
free in ¥¥ exactly where y appeared free in 1, and y is substitutable for z in ¥Y.
So, by A(4) we have Yz =¥ — —=(¢¥)7. But, (v¥); = 1, so ¥z =¥ = —1. Since y
is not free in Yz —¢¥, by the generaliztion metatheorem we have Vz —¢¥ |- Yy —.
Thus, I'y,—1 + Vy —. Since I' - Jy¢p = —Vy —p, we see that I';,_1 is inconsistent,
a contradiction. O

We next enlarge I' to I which a maximal consistent set of wifs in the language
L'. This is done exactly as for propositional logic. If the language £ is countable
(and so L’ is also countable) we enumerate the wifs of £’ as ag, a1,...,set Ty =T,
and then inductively define T',, = T';,_1 U{«,, } if this set is consistent, and otherwise
I'y =Ty_1. Then I = | J,, I';, is a maximal consistent set. If the language £ (and
so L') is uncountable, then we use AC to wellorder the wifs and use the same
argument, taking unions at limit stages.

As in the proof for propositional logic, the maximality of I, along with the
contradiction metatheorem, gives that for every wif a in £, either o € T or
—a €I (and both cannot hold). Also, if I «, then « € T

Finally, from I we build a structure 2 and map s: Var — |2(|. Let T be the set
of terms in the language £'. We define a relation = on T by t = v iff (¢t ~ u) € T”.

Claim 5. = is an equivalence relation on 7.

Proof. We have J — YV (x ~ z) by A(7), and so by A(4) we have & ¢ ~ ¢t for
any term t. So t =t that is, = is reflexive.

We have & + VaVy(z ~ y — y ~ z) by an application of A(8) [Consider
the atomic formula ~ z, so (x ~ y) — ((x ~) —» (y ~ x)) € A. Since
T+ x ~ x, it easily follows that & - (z ~ y) — (y = x).] From A(4) it follows
that &+ (t ~ u —> u ~t). So, if t = u, that is (t ~ u) € I'”, then I - u ~ ¢, and
so (u~t)eI”, and so u =t. So, t = u implies u = ¢, so = is symmetric.

Suppose t = u and u = v, so (t ~ u) and (u ~ v) are in I'”. It suffices to show
that & - VaVyVz (z =~ y) — ((y = 2) > (x ~ 2)) since by A(4) (choosing z,y, 2
to be variables not in ¢, u,v) it follows that & + (t ~ u) > ((u = v) = (t = v)),
and so I (¢t ~ v). This however follows easily from A(8) by considering the
atomic formula y ~ z, and replacing the occurrence of y by x as in A(8), which
gives J + (y~2) > (y~z2) = (z = 2)). Since J + (x ~ y —> y ~ x) by the
above, we have that @+ (x ~ y) —> ((y = 2) — (v = 2)). d

We let [t] denote the equivalence class of ¢ under the relation =, for ¢ a term in

L.

17

We let || = {[t]: t € T}. We let s(x) = [z] for x € Vary, = Varg. for ¢ a
constant symbol of £, we let ¢* = [¢]. It remains to define the interpretations R¥,
2 of the relation and function symbols.

We define R®([t1],...,[tn]) iff R(t1,...,t,) € T”, and similarly for functions
symbols we define f2([t1],...,[tn]) = [f(t1,...,t,)], however, we need to show
these definitions are welldefined. Suppose t; = uy,...,t, = u, and R*([t1], ..., [tn]),
that is, R(t1,...,t,) € I'”. From the generalization metatheorem, the deduction
metatheorem, and A(8), we have that

D=y Va1 - Yy Van (11 ~ 21) = o (Yn = 20) —
(R(y1y--yyn) = R(21,. - y20)) -+).
We may choose the variables y;, z; so that they do not appear in the ¢; or u;. From
A(4) we get that
Tt ~uy) > (tn 2 up) = (R(t1, ... tn) = Rug, ..., upn))).

Since I + t; ~ u;, we have that T + R(uq,...,un). So, R(ui,...,u,) € T”. The
argument for functions is similar.

At this point we have a well-defined structure 2 = (||; R?
2.

Claim 6. For every wif ¢ of L', we have % |= ¢[s] iff p € T”.

c?)and s: Varg —

Z J ’L

Proof. By induction on ¢. If ¢ is atomic of the form ¢ = R(ty,...,t,), then
2 = ¢[s] iff R*([t1],- ., [tn]) which by definition of R holds iff R(t1,...,t,) € T”.
If o = (t = u), then A |= ¢[s] iff s(¢t) = s(u). By definition of s, this means [t] [u],
that is, t = u. By definition of =, this happens iff (¢t ~ u) € T"”.

The boolean case is just as in propositional logic. For example, say ¢ = (o —).
Then A = ¢[s] iff A £ afs] or A = B[s]. By induction this is equivalent to saying
a ¢ I or B eI”. By maximality of I'” this holds iff —a € I or S e I'”. As I is
closed under deduction, this is equivalent to (a« —) e I'”.

Suppose that ¢ = V1. First assume that ¢ € I, and we show that 2 |= ¢[s].
Let [t] € ||, we must show that 2 = ¢[s(x|[t])]. Let ¢, by Lemma 1.36, be an
alphabetic variant of ¢, that is, 9/ is provably equivalent to 1 and ¢ is substitutable
for in ¢'. Then A = Y[s(z|[t])] iff A = ¢ (s(x|[t]) iff A = (¥')F[s]. The last

equivalence is by the following fact, which is an extension of Fact 1.21.

Fact 1.38. Let ¢ € W, x € Var, and ¢ a term which is substitutable for = in ¢.
Then 2 |= ¢f[s] iff A = ¢[s(z]s(t)].
Proof. The proof is essentially identical to that of Fact 1.21. (I

By induction, 2 = (¢/)f[s] iff (¢')F € T”. As ¢ = Va1 € T, we have Vz)’ € T,
as ¢ = Vo + Vo' (from the generalization metatheorem, using the fact that
¥ 4’). Since t is substitutable for in ¢, by A(4) we have that Vz ¢/ — (¢)F,
and so ()7 € I'”. Thus, A = V.

Suppose A = YV i[s]. We must show that Vz ¢ € T”. If not, then by maximality
of I we have that —Vz ¢ € T, so 3z —1p € T”. But Iz —1) — —¢)% is one of the
Henkin formulas of I, So, I - —Z. Here c is one of the new constant symbols of
L' which in particular does not appear in 9. Since 2 = Vz ¢[s], A = ¥[s(z|[c])].
since ¢ is substitutable for = in 1, we have 2 |= ¥*[s]. By induction, ¥ € T”, a
contradiction.

O

18

This completes the proof of Theorem 1.37.
O

1.5. Applications of the completeness theorem. As with propositional logic,
the completeness theorem immediately implies the compactness theorem, which
we state next. The compactness theorem can also be proved directly (without
mentioning the completeness theorem or) using ultraproducts.

Theorem 1.39 (Compactness theorem). Let L be a language of first-order logic,
and T < Wff,. ThenT is satisfiable (i.e., there is an L-structure A and a s: Var —
|21 with A = ¢[s] for all ¢ € T) iff every finite To S T is satisfiable.

Proof. Supose every finite Ty € T is satisfiable. If T is not satisfiable, then I' = «
for any wif o, so I" = @ A —a for some (any) wif a. By the completeness theorrem,
I' = a A —a for some «, that is, I' is inconsistent. Since proofs are finite, we have
'y - a A —a for some finite Ty € T'. But then I’y = @ A —a, a contradiction as Ty
is satisfiable. 0

Exercise 13. Let £ be a first-order language, and I' € Wff,. Show that if I' has
finite models of arbitrarily large size, then I' has an infinite model. [hint: add to T’
a collection of wifs {1, } e, which together force |2(| to be infinite.]

Exercise 14. Let £ = {-} be the language of group theory. Let I'y be the (finite)
set of axioms for a group. Show that there does not exists a set I' 2 I'g such that
a group G satisfies " iff G is finite. In particular, there is no single formula (in the
language of group theory) which can “say” that G is a finite group. [hint: use the
previous exercise.

We saw before that there is a set of wifs ' (in the empty language) such that a
structure 2 satisfies I' iff |2 is infinite. From Exercise 13 if follows that there is no
set of wifs T" in the empty language such that 2 =T iff || is finite.

We next use the compactness theorem to construct non-isomorphic models of
the theory of the natural numbers. This will produce a non-standard model of
arithmetic.

Definition 1.40. Let £ be a first-order languaqge, and 2 an L-structure. We let
Th(2), the theory of 2, denote the set of sentences ¢ in £ such that A = ¢.

Theorem 1.41. Let L be the language of number theory. Let Th(N) be the theory
of M for the language L. Then there is a countable model of Th(N) which is not
isomorphic to M.

Proof. Let L = L U {c} where ¢ is a new constant symbol in the languagge. Let
I" = T U {¢n}new where , = (¢ > S"71(0)). Any finite subset Ty of I" is
satisfiable, by letting s(c) to some element of N larger than all the numbers k such
that s*~1(0) is mentioned in T'). By the compactness theorem, I' is satisfiable, say
by 2. Then ¢ > s%(0) for all k, and thus 2’ is not isomorphic to 9 as there is no
such element in 9N (note that any isomorphism must fix all the S¥(0)). We may take
A’ to be countable by taking an elementary substructure of 20 which is countable
and contains ¢ . Alternatively, we may note that the proof of the completeness
theorem produces a countable 2, as £’ is countable. ([l

Remark 1.42. We should regard Theorem 1.45 more formally as a theorem of some
background metatheory in which the standard 91 is defined, and in which the various

19

notions, such as countable models, can be defined. For example, we could take the
metatheory to be ZFC, which defines N as the set of finite ordinals, and permits
the proof of Theorem 1.45 to be formalized.

Remark 1.43. Theorem 1.45 also holds, by the same proof, if we just assume that
the language £ contains the language £y of number theory, and we interpret the
conclusion as saying that 9 is not isomorphic to Mz, where 9. = denotes the
restriction of 9 to the language Ly of number theory.

Definition 1.44. We say two structures 2, B for a first-order langiage L are
elementary equivalent, written 2L = 9B, if for any sentence ¢ of £ we have that

A= iff B = p.

As an immediate consequence of Theorem 1.45, it follows that we cannot “ax-
iomatize” the natural numbers in the sense of having a set of formulas I' in the
language of number theory (or any larger language) such that 91 is the unique
countable structure up to isomorphism which satisfies I'.

We refer to the structures 91 for Th(91) which are not isomorphic to N as
non-standard models of arithmetic. We refer to 91 as the “standard model” (see
Remark 1.42). It follows immediately from the definition of a non-standard model
that if 9V is a non-standard model of arithmetic, then 9t = M, where N is the
standard model.

The next theorem describes the basic structure of a non-standard model of arith-
metic. Let 9V be a non-standard model of arithmetic. By a “Z-chain” in 91 we
mean a subset {a;};ez of |9V] such that for all ¢ € Z, there is no element x € [9V|
with a; < z < a;41 (here <=<" denotes the ordering of V).

Theorem 1.45. Let 9V be a non-standard model of arithmetic. Then 2 has an
mitial segment isomorphic to the standard model M. The elements of U not in this
intial segment (the “infinite” elements of ') form a dense set of Z-chains (that

is, between any two Z-chains there is a third Z-chain) with no smallest or largest
Z-chain.

Proof. We use repeatedly the fact that 97 = 91. First, 0" is the least element
of M, that is, M = V& (0 < z). So, N satisfies the same sentence, so 0% is
the least element of 9. Similarly S(0)” is the least element of 9 greater than
0%. That is, M | V2 (0 < 2 — (x ~ S(0) v S(0) < x)). Since N’ satisfies
the same formula, we see that S(0)% is the least element of M’ greater than 0%
in 9V. Continuing in this manner we see that the map = : N — N’ given by
7(S¥(0)?) = S§%(0)™ is an order-preserving bijection between N = [9] and an
initial segment of N’ = |97|. Now, m must also be a homomorphism from 9 to
M. For example, N |= (S¥(0) + S(0) ~ S*+£(0)), so N’ satisifes this sentence. So
(SF(0)™ + (SLO0)? = (SF£(0)), that is, 7(S¥(0)) + 7(SE(0)) = 7(SF+4(0)).

Let I(N’) be the elements of N’ not in the range of . These are the “infinite”
elements of N’. Since 7 is an isomorphism between 9 and ran(w), we may identitfy
ran(m) with 90, and just write N’ = N U I, where N is an initial segment of N’. That
is, k<cforall ke Nand ce I.

It remains to show that I consists of a dense set of Z-chains. First note that
if c;d e Ithenc+del, and if ¢,d # 0 then ¢c-d € I. M = VaVy(x > 0 A
y>0—-> (z+y >axarz-y = a)), soMN satisfies the same sentence. Since
c,d >0, c+d>c> S¥0) for any k, so ¢ +d € I. Likewise ¢-d € I. Since

20

MNEVWe(zr>0—->3Tyly+50) =z AVou—(y <w < x)), N satisfies the same
sentence, so ¢ has an immediate predecessor in 9. We denote this predecessor by
c— S(0). Also, M | Va ((z + S(0) > S*¥*1(0)) — = > S*(0)), and thus, since
¢ > S¥*1(0) for all k, we have that ¢ — S(0) > S*(0) for all k, so ¢ — S(0) € I.
Continuing, we see that the Z-chain {c + S*(0)}xez € I.

We show that there is a Z-chain between ¢ and d. Asssume ¢ < d and ¢, d are
in distinct Z-chains. M E=Vedy(y+y ~x vy +y ~ z+ 5(0)), so this sentence
also holds in 9V. So, let y € N’ be such that y +y =c+dory+y =c+d+ 1.
For example, say y +y = ¢ + d + 1. The equation y > ¢ + S¥(0) is equivalent to
y+y>c+ec+S*0). But,y+y=c+d+1>c+c+S5%*(0) as d > c+ S%(0).
We use here the fact that statements hold in 91 iff they hold in V.

A similar argument shows that there is a y such that y+y=cory+y =c+1,
and the Z-chain of y is less than the Z-chain of ¢. Likewise, the Z-chain of d + d is
greater than the Z-chain of d. O

Remark 1.46. Any two countable dense linear orderings without endpoints are
order-isomnorphic (isomorphic ti Q), so the order-type of I, for 9V a countable
non-standard model, is uniquely determined, as Q copies of Z.

