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1. The Notions of First-Order Logic

We first introduce the main concepts and notions of first order logic. First-order
logic is intended to be the logic of “real mathematics.” Propositional logic, while
it models a form of mathematical reasoning, is not expressive enough to allow the
mathematical reasoning used in general mathematics. In particular, the basic ob-
jects in propositional logic are propositional variables and truth values assignments.
We would like our logic to be able to discuss more general mathematical objects or
“structures.” Also, in propositional logic we reason just with the binary connectives
 , Ñ, whereas in general, mathematics reasoning with quantifiers is an important
ingredient.

The overall plan, however, is still similar to that for propositional logic.
This is far from a complete survey, but rather a quick presentation of the central

points. We first review the basic set-up of first-order logic, with an eye towards
two cases of particular interest: set theory (which we have been doing all along)
and number theory (or arithmetic) which will be of importance for the Gödel in-
completeness theorem.

Definition 1.1. By a language of first-order logic we mean a collection L “

tRi, fi, ciuiPI of relation symbols Ri, function symbols fi, and constant symbols
ci. Usually we need only the countable case where I “ N.

Each relation symbol R or function symbol f in a first-order language has an
arity associated with it, with is a positive integer. The exact meaning of the arity
is made clear below, but it is intending to denote the arity of a relation or function
to which the symbol R or f corresponds.

Example 1. The language of set theory consists of a single binary relation symbol
P. So, L “ tPu.
Example 2. The language of number theory consists of binary function symbols
`, ¨, E (E is intended to denote the exponentiation function px, yq Ñ xy), a unary
function symbol S (intending to denote the successor function nÑ n`1), a binary
relation symbol ă, and a constant symbol 0. Thus, L “ tă,`, ¨, E, S,0u.

Note that the definition of a language is purely “syntactical,” that is, no mean-
ing is in anyway assigned to these symbols of the language (e.g., there is nothing
that says ` somehow really represents what we think of a addition on the natural
numbers).

For any first-order language L, we consider also certain logical symbols which
are always allowed in constructing formulas. These are variable symbols txiuiPI
(frequently we need only the countable case x0, x1, x2, . . . ), connectives Ñ,  , a
quantifier symbol @, parentheses p, q, and a symbol « for equality. We could (and
do) choose to officially only use just the quantifier @, defining D as  @ (a more
formal definition is given below).

We now define the formulas (or well-formed formulas, wffs) of the language L.
We first need to define the terms of the language. The terms of the language are the
syntactical objects which are intended to denote actual objects (how they actually
do this will be made clear below).
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Definition 1.2. For L a first-order language, the terms of the language are defined
recursively as follows:

(1) Variable symbols xi and constant symbols ci are terms.
(2) If f P L is an n-ary function symbol and t1, . . . , tn are terms, then fpt1 ¨ ¨ ¨ tnq

is a term.

To improve readability, we usually write the term as fpt1, . . . , tnq, that is we put
commas in the list of subterms, but they are not officially part of the language.

Definition 1.3. The formulas (or wffs) of the language L are defined recursively
as follows.

(1) IfR P L is an n-ary relation symbol and t1, . . . , tn are terms, thenRpt1 ¨ ¨ ¨ tnq
is a formula. Also, if t1, t2 are terms, then « pt1t2q is a formula. We often
write this in the more readable form t1 « t2.

(2) If φ, ψ are formulas then so are pφÑ ψq, p φq.
(3) If φ is a formula, then so is p@xφq, for any variable symbol x.

The formulas in case (1) are said to be the atomic formulas. Again, we ofter
insert commas and write the atomic formula as Rpt1, . . . , tnq.

As in propositional logic, we must prove a unique readability theorem for the
syntax.

Theorem 1.4. (unique readability)

(1) We have unique readability for terms. That is, for every term u exactly one
of the following three cases holds:
(a) u “ c for some constant symbol in L.
(b) u “ x for some variable symbol in L.
(c) u “ fpt1 ¨ ¨ ¨ tnq for some n-ary function symbol f in L, and terms

t1, . . . , tn.
In case (1c), the function symbol f and the subterms t1, . . . , tn are uniquely
determined.

(2) We have unique readability for wffs. That is, for every wff ϕ exactly one of
the following cases hold:
(a) ϕ “ p αq for some wff α.
(b) ϕ “ pαÑ βq for some wffs α, β.
(c) ϕ “ p@xαq for some variable x and wff α.

In case (2a) the wff α is uniquely determined, in case (2b) the wffs α, β
are uniquely determined, and in case (2c) the variable x and the wff α are
uniquely determined.

Proof. Let K be the function defined on finite strings of symbols from the language
L obtained by adding the values of K on the individual symbols, which are defined
by: Kpcq “ Kpxq “ 1, Kppq “ ´1, Kpqq “ 1, Kp q “ 0, KpÑq “ ´1, Kpfq “ 1´n
if f is an n-ary function symbol, KpRq “ 1 ´ n if R is an n-ary relation symbol,
Kp@q “ ´1.

We first prove unique readability for terms.

Claim 1. For every term t, Kptq “ 1. If t1 is a proper initial segment of t, then
Kpt1q ă 1.

Proof. The claim is proved by a straightforward induction on the terms. For the
case t “ fpt1 ¨ ¨ ¨ tnq, we have Kptq “ Kpfq`Kppq`Kpt1q`¨ ¨ ¨`Kptnq`Kpqq “ p1´
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nq`p´1q`n`1 “ 1. If t1 is a proper initial segment of t of the form t1 “ fpt1 ¨ ¨ ¨ tjt
1
j ,

then Kpt1q “ p1 ´ nq ` p´1q ` j ` Kpt1jq ă p1 ´ nq ` p´1q ` j ` 1 by induction.

Since j ď n´ 1, Kpt1q ă 0. If t “ fpt1 ¨ ¨ ¨ tn, then Kptq “ p1´ nq ` p´1q ` n “ 0.
The other cases are similar. �

Clearly the case t “ c, t “ x, t “ fpt1 ¨ ¨ ¨ tnq are mutually exclusive, and in the
first two cases the c and x are uniquely determined by t. Suppose t is a term and
t “ fpt1 ¨ ¨ ¨ tnq “ gpu1 ¨ ¨ ¨umq for some n-ary function symbol f , m-ary function
symbol g, and terms t1, . . . , tn, u1, . . . , um. Since t begins with the symbol f and
also the symbol g, we have f “ g. Thus, n “ m as well. So, t “ fpt1 ¨ ¨ ¨ tnq “
fpu1 ¨ ¨ ¨unq. Thus, t1 ¨ ¨ ¨ tn “ u1 ¨ ¨ ¨un. t1 is the least initial t1 segment of t for
which Kpt1q “ 1, and likewise for u1. Thus, t1 “ u1. So, t2 ¨ ¨ ¨ tn “ u2 ¨ ¨ ¨un.
Continuing in this manner we get that ti “ ui for all i “ 1, . . . , n.

Next we show unique readability for wffs.

Claim 2. For every wff ϕ, Kpϕq “ 1. If ϕ1 is a proper initial segment of ϕ, then
Kpϕ1q ă 1.

Proof. The claim is proved by a straightforward induction on the wffs. In the case
ϕ “ p@xαq, Kpϕq “ Kppq ` Kp@q ` Kpxq ` Kpαq ` Kpqq “ p´1q ` p´1q ` 1 `
Kpαq ` 1 “ Kpαq “ 1 by induction. The remaining cases are similar, and left as
an exercise. �

It is clear form the definition that no wff begins with a  or @ (they all must begin
with a left parenthesis). Form this it follows that the three cases in the definition
of wff are mutually exclusive. For example, suppose ϕ “ pα Ñ βq “ p@x γq. Then
αÑ β is equal to the string @x γ. This says that α begins with a @, a contradiction.
The other cases are similar. If pα Ñ βq “ pγ Ñ δq, then α Ñ β is equal to γ Ñ δ.
Then α is the least initial segment u of the first string for which Kpuq “ 1, and
likewise for γ. So, α “ γ, and it follows that β “ δ. The other cases are easier. �

Exercise 1. Complete the proof of Claim 2 for the cases ϕ “ p αq, ϕ “ pαÑ βq.

Exercise 2. Show that we can eliminate parentheses entirely in first-order logic
by using reverse Polish notation. Define terms exactly as before. For the wffs, take
as definitions: ϕ “  α, ϕ “Ñ αβ, and ϕ “ @xα. Use the same K function.

We use the usual abbreviations ^, _ as we did in propositional logic. Again,
they are not officially part of the language, but we will write pα ^ βq and pα _ βq
as if they were.

An occurrence of a variable x in a formula φ is said to be free if it is not within
the scope of a @x or Dx quantifier. More precisely:

Definition 1.5. We define by recursion of the formulas:

(1) Any occurrence of x in an atomic formulas is free.
(2) x occurs free in pφ ^ ψq where it occurs free in φ and where it occurs free

in ψ. x occurs free in p φq where it occurs free in φ.
(3) x occurs free in p@y φq where it occurs free in φ if y ‰ x. If y “ x, then x

does not occur free in p@y φq.

We say x occurs free in φ if it has a free occurrence in φ. We say a sentence is
a formulas with no free variables.
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We usually write φpx1, . . . , xkq to denote a formula φ whose free variables are
among x1, . . . , xk.

Intuitively, a formulas φpx1, . . . , xkq is intended to an assertion about the objects
represented by x1, . . . , xn. In particular, a sentence is intending to be a statement
whose truth can be ascertained without any knowledge of what certain variables
represent. We have not yet officially assigned any meaning to formulas yet, they
are currently purely syntactical.

Example 3. If L is the language of set theory, the only terms are the variables xi.
The only atomic formulas are xi « xj and xi P xj . The axioms of set theory, ZF or
ZFC, will all be sentences in this language. Since set theory will incorporate all of
traditional mathematics, all statements and theorems of traditional mathematics
can be expessed as sentences in this language.

Example 4. Suppose now L is the language of number theory. This language is
intended to make statements about the natural numbers N (which hasn’t been give
a rigorous axiomatization yet). The formula

φ “ p px « 0q ^  px « Sp0qq ^ @m @n px « m ¨ nÑ pm « Sp0q _ n « Sp0qqqq

is a formula with free variable x which attempts to assert that x is prime. The
sentence

ψ “ @m Dn Dk pn ą m^ φpnq ^ φpkq ^ k « SpSpnqqq

asserts the twin-prime conjecture.

Exercise 3. Write down formulas or sentences which do the following.

(1) A formula ϕpxq in the language of number theory which asserts that x is
the sum of three squares, and a sentence ψ which asserts that every natural
number is the sum of four squares.

(2) A formula ϕpxq in the language of set theory which asserts that every ele-
ment of an element of x is an element of x (this is called x being transitive).

(3) A formula ϕpxq in the language L “ t`, ¨u which, if we interpret ` and ¨
as the usual addition and multiplication in R, holds iff x ą 0.

In order to assign meaning to a formulas, we must have a “universe” of objects
in which to interpret the quantifiers, interpretations of the relation, function, and
constant symbols of the language, and if the formula has free variables we also have
to know how interpret the free variables. This is made precise in the following
definition of structure.

Definition 1.6. A structure for a first-order language L “ tRi, fi, ciuiPω is an
object of the form A “ pA;RAi , f

A
i , c

a
i q where A is a non-empty set, RAi is an n-ary

relation on A (where n is the arity of the relation symbol Riq, f
A
i : An Ñ A is an

n-ary function (again, n is the arity of fi), and cAi P A.

Thus, a structure provides a universe A as well an an interpretation of the sym-
bols of the language L. Structures may be thought of as fairly general mathematical
objects. For example, consider the language of group theory, which consists of a
single binary function symbol ¨. A structure for the language is a set A with a
binary operation pa, bq Ñ a ¨ b P A on A. A group, for example, would be such a
structure (but of course not all structures would be groups).

As another example, for L the language of number theory, the “usual” natural
numbers would be a structure N “ tN;`N, ¨N, EN,ăN, SN, 0Nu for the language,
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where `N denotes the usual addition on N, etc. Of course, there are many other
structures for this language. [note: what we mean by the “usual” natural numbers
is vague and undefined here. We can think of this as meaning the finite ordinals
of a model of ZFC set theory which we suppress mentioning and identify with the
metatheory].

A structure will be sufficient to decide the truth or falsity of a sentence, but
for a formula φpx1, . . . , xnq with free variable, we need also a map s : var Ñ A
interpreting the variables (or at least the free variables in φ). We wish to define
precisely the meaning of “ the structure A satisfies φ at the variable assignment s,”
which we will denote as A |ù φrss. The formal definition follows.

Definition 1.7. Let A be a structure for the first-order language L, φ a formula,
and s : Var Ñ |A|. We define A |ù φrss follows.

First we extend the interpretation function s to terms t.

(1) If x P var, then spxq is already defined. If c is a constant symbol, then
spcq “ cA.

(2) If u “ fpt1, . . . , tnq is a term, then spuq “ fApspt1q, . . . , sptnqq.

Next we define the notion A |ù φrss by recursion on φ as follows.

(1) If φ is the atomic formulaRpt1, . . . , tnq, then A |ù φrss iffRApspt1q, . . . , sptnqq.
If φ is the atomic formula t1 « t2, then A |ù φrss iff spt1q “ spt2q.

(2) A |ù pφÑ ψqrss iff A * φrss or A |ù ψrss. A |ù p φqrss iff it is not the case
that A |ù φrss.

(3) A |ù @xφrss iff for every a P A we have that A |ù φrspx|aqs, where
spx|aqpyq “ spyq if y ‰ x and spx|aqpxq “ a.

The above definition contains no surprises; it simply formalizes the usual notion
of satisfaction of a statement in a mathematical structure.

If Γ is a collection of formulas, we write A |ù Γrss to mean A |ù φrss for all φ P Γ.

Fact 1.8. Let L be a language of first-order logic, and A a structure for L. If
s1, s2 : Var Ñ |A| agree at all the free variables of ϕ, then A |ù ϕrs1s iff A |ù ϕrs2s

Proof. We first prove by induction on the terms that if s1, s2 agree at all the
variables in a term t, then s1ptq “ s2ptq. This is a straightforward induction.
The inductive step is a s follows. Suppose t “ fpt1, ¨ ¨ ¨ , tnq. All of the variables
in a ti occur also in t, so s1, s2 agree on all the variables of ti. By induction,
s1ptiq “ s2ptiq for all subterms ti. But then s1ptq “ fAps1pt1q, ¨ ¨ ¨ , s1ptnqq “
fAps2pt1q, ¨ ¨ ¨ , s2ptnqq “ s2ptq.

We now prove the fact by induction on the wff ϕ. Suppose first ϕ is atomic,
say ϕ “ Rpt1 ¨ ¨ ¨ tnq. By definition, all of the variables in any subterm ti occur free
in ϕ. So, s1, s2 argree on all the variables in ϕ. By the above result for terms,
s1ptiq “ s2ptiq for 1 ď i ď n. But then A |ù ϕrs1s iff RAps1pt1q, . . . , s1ptnqq iff
RAps2pt1q, . . . , s2ptnqq iff A |ù ϕrs2s.

We consider one of the boolean connective cases, say ϕ “ pαÑ βq. The variables
free in ϕ are the variables free in α together with the variables free in β. Thus, s1,
s2 agree on all the free variables of α and β. By induction, A |ù αrs1s iff A |ù αrs2s,
and likewise for β. So, A |ù ϕrs1s iff pA * αrs1s or A |ù βrs1sq iff pA * αrs2s or
A |ù βrs2sq iff A |ù ϕrs2s.

Consider finally the case ϕ “ @xψ. All the free variables of ψ occur free in ϕ,
except perhaps x (if it is free in ψ). Thus, s1 and s2 agree at the free variables
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of ψ except at x (if it is free in ψ). Now, A |ù ϕrs1s iff for all a P |A| we have
A |ù ψrs1px|aqs. Note that s1px|aq and s2px|aq agree at x, as well as the other free
variables of ψ. Thus, s1px|aq and s2px|aq agree at all the free variables of ϕ. By
induction, A |ù ψrs1px|aqs iff A |ù ψrs2px|aqs for all a P |A|. So, A |ù ϕrs1s iff for
all a P A A |ù ψrs1px|aqs iff for all a P A A |ù ψrs2px|aqs iff A |ù ϕrs2s. �

We now introduce the notion of logical implication.

Definition 1.9. Let Γ be a collection of formulas in a first-order language L, and
let φ be a formula. We write Γ |ù φ if for every structure A for L and every
s : var Ñ |A|, if A |ù Γrss, then A |ù φrss.

Thus, Γ |ù φ if every structure satisfying Γ also satisfies φ. Frequently we think
of Γ as being the axioms for some theory we are studying.

Example 5. For L the language of group theory (i.e., a single binary function
symbol, but for convenience we now add a constant symbol e to the language as
well), let Γ be the following set of sentences:
@x @y @z x ¨ py ¨ zq « px ¨ yq ¨ z
@x px ¨ e « xq
@x Dypx ¨ y « eq.

Thus, Γ is the usual set of axioms for groups. If φ is a sentence in the language of
group theory, then Γ |ù φ iff φ is true in all groups.

Exercise 4. Write down a set Γ of wffs in the empty language L such that A |ù Γ
iff |A| is infinite. We will see below that there is no Γ, in any language, such that
A |ù Γ iff |A| is finite.

Example 6. Let L “ tău be the language with one binary relation symbol ă. Let
Γ be the following set of wffs:

(1) @x px ă xq (irreflexive)
(2) @x@y @z ppx ă y ^ y ă zq Ñ x ă zq (transitive)
(3) @x@y ppx ă yq _ py ă xq _ px « yqq (connected)

The wffs in Γ assert that ă is strict linear order. There are models of Γ which are
both finite and infinite, for example the set t0, 1, 2, . . . , nu with the usual ordering,
and N with the usual ordering. Consider Γ1 “ Γ Y t@x Dy px ă yqu. The extra wff
asserts there is no largest element. Any model of Γ1 must be infinite.

Exercise 5. Write down a set of wffs Γ in the language L “ tRu, where R is a
binary relation symbol, such that A |ù Γ iff A is a graph with no cycles. Do you
think it is possible to make Γ finite?

If ϕpx1, . . . , xnq is a formula with free variables among x1, . . . , xn, A is a struc-
ture, and a1, . . . , an P A “ |A|, we write A |ù ϕpa1, . . . , anq to abbreviate A |ù ϕrss
where s : Var Ñ A is such that spxiq “ ai for 1 ď i ď n.

Definition 1.10. If A is a structure, say a set B Ď Ak “ |A|k is definable (from
parameters) if there is a formula ϕpx1, . . . , xk, y1, . . . , y`q and a1, . . . , a` P A such
that pb1, . . . , bkq P B iff A |ù ϕpb1, . . . , bk, a1, . . . , a`q.

Example 7. Let N “ pω;`N, ¨Nq be the structure consisting on the natural num-
bers (denoted ω here) with the usual operations of addition and multiplication.
Then 0N, SN, ăN, EN are all definable (without parameters) in N. We can define
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0 by the formula ϕpxq “ @y px ` y « yq. We can define ă by ρpx, yq “ Dz pz ff
0 ^ x ` z « yq. We can define 1 by ψpxq “ @y px ¨ y « yq. It follows that we
can define any singleton set A “ tku, and in fact any finite or cofinite set. The
set of primes is definable. Note that the collection of definable sets is closed under
complements, finite unions, and finite intersections. The fact that E is definable
takes more work, and will be shown later. We will also show that every computable
function or relation is definable. Note that there are only countably many definable
functions and relations, while the collection of all functions/relations on ω has size
c “ 2ω.

Example 8. Let R “ pR;`R, ¨Rq be the set of reals with the usual operations
of addition and multiplication. t0u is clearly definable, being the unique additive
identity. The set P Ď R of positive real numbers is definable by ϕpxq “ Dy py ¨ y «
xq ^ x ff 0. It follows that the usual linear ordering ă on R is definable in R.

Exercise 6. Let Z “ pZ;`Z, ¨Zq be the integers with the usual operations of ad-
dition and multiplication. Show that ă and the set A “ N “ ta P Z : a ě 0u
are definable without parameters in A (hint: use Lagrange’s theorem in number
theory).

1.1. Homomorphisms. The algebraic notion of homomorphism can be given in
this general context.

Definition 1.11. Let A, B be two structures for a first-order language L “

tRi, fi, ciu. A homomorphism π from A to B is a map π : A Ñ B satisfying:
RApa1, . . . anq iff RBpπpa1q, . . . πpanqq, πpf

Apa1, . . . , anqq “ fBpπpa1q, . . . , πpanqq,
and πpcAq “ cB for all a1, . . . , an P A and all relation, function, and constant
symbols R, f, c in L. An isomorphism between A and B is a one-to-one, onto,
homomorphism. An automorphism of A is an isomorphism from A to itself.

We can use homomorphisms and automorphisms of structures to show certain
sets and functions are not definable in a given structure. The method uses the
following basic result.

Theorem 1.12. Let A, B be structures for a first order language L. Let ϕpx1, . . . , xnq
be a wff of L, with free variables among tx1, . . . , xnu. If π : A Ñ B is an iso-
morphism (i.e., a homomorphism which is one-to-one and onto), then for any
a1, . . . , an P |A| we have A |ù ϕpa1, . . . , anq iff B |ù ϕpπpa1q, . . . , πpanqq.

Proof. For any s : Var Ñ |A|, let πpsq : Var Ñ |B| be defined by πpsqpxq “ πpspxqq.
First prove by induction on the terms that for any s we have that πpsptqq “

pπpsqqptq. For variables this is true by definition of πpsq. For constant symbols,
πpspcqq “ πpcAq “ cB “ pπpsqqpcq. For the inductive step, say t “ fpt1, . . . , tnq.
Then

πpsptqq “ πpfApspt1q, . . . , sptnqq

“ fBpπpspt1qq, . . . , πpsptnqqq

“ fBppπpsqqpt1q, . . . , pπpsqqptnqq

“ pπpsqqptq.

Next we prove the theorem by induction on ϕ. Suppose first that ϕ is atomic. Say
ϕ “ Rpt1, . . . , tnq. Then A |ù ϕrss iffRApspt1q, . . . , sptnqq iffRBpπpspt1q, . . . , πpsptnqq
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(as π is a homomorphism) iff RBppπpsqqpt1q, . . . , pπpsqqptnqq (by the result for terms)
iff B |ù ϕrπpsqs. If ϕ “ t « u, then A |ù ϕrss iff Sptq “ spuq iff πpsptqq “ πpspuqq (as
π is one-to-one) iff pπpsqqptq “ pπpsqqpuq (by the result for terms) iff B |ù ϕrπpsqs.

The boolean cases follow immediately by induction.
Suppose ϕ “ @xψ. Then A |ù ϕrss iff for all a P |A| we have A |ù ψrspx|aqs.

By induction, for a given a this happens iff B |ù ψrπpspx|aqqs. Now, πpspx|aqq “
πpsqpx|πpaqq. Now, for all a P A B |ù ψrπpsqpx|πpaqqs iff for all b P B B |ù

ψrπpsqpx|bqs as π is onto. The last statement is the definition of B |ù ϕrπpsqs.
�

Consider the structure Nm “ pN; ¨q. Note that 0 and 1 “ Sp0q are definable
in this structure. Let P be the set of primes. Let π : P Ñ P be any bijection.
Let π1 be the extension of π to N defined multiplicitively, that is, π1ppa11 ¨ ¨ ¨ p

ak
k q “

π1pp1q
a1 ¨ ¨ ¨π1ppkq

ak . Easily π is an isomorphism from Nm to itself (where we define
π1p0q “ 0). Note that P is definable in Nm, so every automorphism of Am must
send P to P . Since a homomorphism must preserve multiplication, we see in fact
that every automorphism of Am is of the form π1 for some permutation π of P .

If now follows that ` is not definable in Nm, since, for example, 1 ` 1 “ 2,
but πp1q ` πp1q ‰ πp2q if πp2q “ 3, since πp1q “ 1. We also have that t2u is not
definable, since there is a π which sends 2 to 3. Likewise it follows that the ordering
ă is not definable in Am. Thus we have:

Theorem 1.13. Let Nm “ pN; ¨q. Then `N and ăN are not definable in Nm.

Remark 1.14. It is also true that ¨N is not definable in the structure Na “ pN;`Nq,
but this cannot be shown using homomorphisms, as the only automorphism of the
structure Na is the identity, as each tku is definable in Na.

Exercise 7. Let a1, . . . , ak be positive integers. Let A~a be the set of positive
integers n such that n “ pa11 ¨ ¨ ¨ p

ak
k for some distinct primes p1, . . . , pk (the pj are

not necessarily increasing). Show that A~a is definable in Am.

Exercise 8. Show that the only automorphism of the structure R “ pR;`R, ¨Rq
is the identity. [hint: If π is an automorphism of R, show that πpqq “ q for all
q P Q, and use this along with the fact that ă is definable in R.] The argument
given below, on the other hand, will show that there are many automorphisms of
the complex numbers C “ pC;`, ¨q.

From Example 8 we have that the usual linear ordering ă on R is definable over
R. We show that there is no definable linear order over C “ pC;`, ¨q, the complex
numbers with the usual operations of addition and multiplication. Let T Ď C be
a transcendence base for C over Q, that is, T is a maximal set of algebraically
independent elements (we use AC to get this). Let π : T Ñ T be a permutation
of T . Since C is algebraically closed, π extends to an automorphism π : C Ñ C
by a standard argument from field theory [build π “

Ť

αă2ω πα. At even stages α,
pick the least (in some wellorder of C) zα P C not in Căα “

Ť

βăα dompπβq and

let pα be its minimal polynomial over Căα. Let Cα “ Căαpzαq, and define παpzαq
to be some root of πppq over Dăα “

Ť

βăα πβpCβq. Each πα extends to a field

isomorphism πα : Cα Ñ Dα “ Dăαpπαpzqq. At odd stages, pick z P C ´ Dăα and
proceed similarly.]

Now, if ă were a definable over C linear ordering of C, then we would have
t1 ă t2 iff π1pt1q ă π1pt2q for any t1, t2 P T and permutation π : T Ñ T . But we
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can take π to switch t1 and t2, so this is a contradiction. We summarize this in the
next theorem.

Theorem 1.15. Let R “ pR;`, ¨q, and C “ pC;`, ¨q be the usual structures for the
real and complex numbers. Then the usual linear ordering of R is definable in R,
but there is no linear ordering of C definable in C.

The next theorem also illustrates the use of homomorphisms.

Theorem 1.16. Multiplication on the reals, ¨R, is not definable in the structure
Ra “ pR;`q. Addition on the reals, `R, is not definable in the structure Rm “

pR; ¨q. A similar statement holds for the complex numbers.

Proof. We consider the case of the reals, the complex case being similar. Let B Ď R
be a basis for R over Q (a Hamel basis, we use AC to get this). Recall this means
B is a maximal set of linearly independent elements over Q. Let π : B Ñ B be a
bijection. Then π extends to an automorphism π1 : Ra Ñ Ra. Namely, if x P R,
then there is a unique representation x “ q1z1 ` ¨ ¨ ¨ ` qnzn, where zi P B. Set
πpxq “ q1πpz1q ` ¨ ¨ ¨ ` qnπpznq. This is easily welldefined and an automorphism of
Ra. Suppose ¨R were definable over Ra. Let t1, t2 P B be algebraically independent
elements (which easily exist as B has size 2ω). Let t1 ¨ t2 “ q1z1 ` ¨ ¨ ¨ qnzn with
zi P B. At least one of the zi is not in tt1, t2u as otherwise t1, t2 satisfy a quadratic
polynomial over Q. Say zi R tt1, t2u. Let π be a permutation of B which switches
zi with wi, where wi R tt1, t2, z1, . . . , znu, and fixes all other elements of B (in
particular fixes t1 and t2). Then π1pt1t2q ‰ t1t2, but π1pt1q “ t1, π1pt2q “ t2, a
contradiction.

Suppose next that `R were definable over Rm “ pR; ¨q. Let B Ď R` be a
maximal set of multiplicitively independent elements, that is, such that zq11 ¨ ¨ ¨ z

qn
n ‰

1 for any z1, . . . , zn P B and q1, . . . , qn P Q. Let π : B Ñ B be a bijection. First
extend π to R` by setting π1pzq11 ¨ ¨ ¨ z

qn
n q “ πpz1q

q1 ¨ ¨ ¨πpznq
qn , which is easily well-

defined and preserves multiplication on R`. Extend π to all of R by πp0q “ 0
and π1p´xq “ ´π1pxq for x P R`. π1 is still a bijection and a homomorphism
from Rm to itself. Let t1, t2 P B be algebraically independent elements. Write
t1 ` t2 “ zq11 ¨ ¨ ¨ z

qn
n where z1, . . . , zn P B. We cannot have that all of the zi are

in tt1, t2u. For if so, then pt1 ` t2q
b “ ta11 t

a2
2 for some integers a1, a2, b with b ‰ 0.

This contradicts the algebraic independence of t1, t2. Write t1 ` t2 “ zq11 ¨ ¨ ¨ z
qn
n ,

and we may assume zi R tt1, t2u. Let π switch zi with wi R tt1, t2, z1, . . . , znu as
before. Then π1pt1q “ t1, π1pt2q “ t2, but π1pt1 ` t2q ‰ t1 ` t2, a contradiction. �

Exercise 9. Let Rz “ pR;`R, ¨R,ZRq be the structure of the reals with the usual
operations of addition and multiplication, and a unary relation ZR which gives the
integers, that is, ZRpaq iff a P Z. Show that tπu is definable in Rz.

Remark 1.17. From Tarski’s theorem on elimination of quantifiers in the theory of
real closed fields, it follows that tπu is not definable in R “ pR;`, ¨q.

1.2. Prenex normal form. We say two wffs (in a language L) of first-order logic,
ϕ and ψ, are logically equivalent if tϕu |ù ψ and tψu |ù ϕ. Thus, for any structure
A of L and any s : Var Ñ |A| we have A |ù ϕrss iff A |ù ψrss.

For the purposes of the following discussion, we allow the exists quantifier D in
the language (officially it is still an abbreviation for  @ , but we will now use it as
a symbol in the language). Likewise, we use ^ and _ as symbols in the language,
though they too are still oficially abbreviations.
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Definition 1.18. A formula ϕ is quantifier free if it has no occurrence of a quan-
tifier. A quantifier-free formula ϕ is in disjunctive normal form if it is of the form
ϕ “ pϕ1_ ¨ ¨ ¨_ϕnq, where each ϕi is of the form ϕi “ pψi,1^ ¨ ¨ ¨^ψi,mi

q and each
ψi,j is either an atomic formula, or the negation of an atomic formula.

Fact 1.19. Every quantifier-free wff ϕ is logically equivalent to a wff ϕ1 in disjunctive
normal form.

Proof. We prove by induction on the wff ϕ that if ϕ is quantifier-free then both ϕ
and  ϕ are logically equivalent to wffs in disjunctive normal form.

If ϕ is atomic, then we may take ϕ1 “ ϕ. Also, if the induction hypothesis hold
for ϕ, then it holds for  φ as   ϕ is logically equivalent to ϕ.

It suffices to show that if ϕ and ψ satisfy the inductive hypothesis, then so does
ϕ _ ψ. If ϕ1, ψ1 are disjunctive normal forms for ϕ and ψ, then ϕ1 _ ψ1 is already
in disjunctive normal form and is logically equivalent to ϕ_ ψ.

It remains to show that  pϕ_ψq can be put into disjunctive normal form. Now
 pϕ_ ψq is logically equivalent to p ϕ^ ψq, and by induction,  ϕ and  ψ are
logically equivalent to formulas in disjunctive normal form. Say  ϕ is equivalent
to pα1 _ ¨ ¨ ¨ _αnq and  ψ is equivalent to pβ1 _ ¨ ¨ ¨ _ βkq, where the αi and βi are
conjuncts of atomic formulas and their negations. Then by the usual distributive
properties of ^ and _ we have

pα1 _ ¨ ¨ ¨ _ αnq ^ pβ1 _ ¨ ¨ ¨ _ βkq ”
ł

i,j

pαi ^ βjq.

where here ” means logical equivalence. Each αi ^ βj is a conjunction of atomic
formulas and their negations, and so  pϕ_ ψq is logically equivalent to a fromula
in disjunctive normal form.

�

Definition 1.20. A wff ϕ is in prenex normal form if it is of the form ϕ “

Q1x1 ¨ ¨ ¨Qnxn ψ, where each Qi is either D or @, and ψ is a quantifier-free for-
mula in disjunctive normal form.

For ϕ P Wff, let ϕxz be the result of replacing all the free occurrences of x in ϕ
by z.

We need the following technical fact.

Fact 1.21. For any wff ϕ, variables x, z with z not occurring in ϕ, and structure A
and s : Var Ñ |A| we have that A |ù ϕxz rss iff A |ù ϕrspx|spzqqs.

Proof. Let s1 “ spx|spzqq. First, by a straightforward induction on the terms t
we show that sptxz q “ s1ptq. Suppose first that t is a variable. If t “ x, then the
left-hand side is spzq since txz “ z. The right-hand side is pspx|spzqqpxq “ spzq.
If t “ y ‰ x, then the left-hand side is spyq and the right-hand side is also spyq
since pspx|spzqqpyq “ spyq. If t “ c, a constant symbol, then the left-hand side is
spcq “ cA since cxz “ c, and the right-hand side is also cA. If t “ fpt1, . . . , tnq,
then the left-hand side is fApsppt1q

x
z q, . . . , spptnq

x
z qq, which by induction is equal to

fAps1pt1q, . . . , s
1ptnqq. By definition, this is equal to s1ptq.

We now show the fact by induction on ϕ. First suppose ϕ is atomic, say
ϕ “ Rpt1, . . . , tnq. Then A |ù ϕxz rss iff RApsppt1q

x
z q, . . . , spptnq

x
z qq since all oc-

currences of x in ϕ are free. By the above result for terms, this is equivalent to
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RAps1pt1q, . . . , s
1ptnqq, where again s1 “ spx|spzqq. By definition, this is equivalent

to saying A |ù ϕrs1s.
The boolean case is immediate. So, suppose ϕ “ @wψ, where w P Var. First

suppose that w ‰ x. Then ϕxz “ @wψxz . So, A |ù ϕxz rss iff for all a P A we
have A |ù ψxz rspw|aqs. Note that w ‰ z by assumption. By induction, A |ù

ψxz rspw|aqs iff A |ù ψrpspw|aqqpx|s̄pzqqs, where s̄ “ spw|aq. This is the same as
A |ù ψrpspw|aqqpx|spzqqs. Since w ‰ x, this is the same as A |ù ψrpspx|spzqqpw|aqqs
Saying this holds for all a P |A| is the same as saying A |ù @wψrspx|spzqqs, that
is A |ù ϕrspx|spzqqs. Suppose next that ϕ “ @xψ. Then ϕxz “ ϕ. Also, s and
spx|spzqq agree on all the free variables of ϕ. So, A |ù ϕxz rss iff A |ù ϕrss iff
A |ù ϕrspx|spzqs. �

Lemma 1.22. If ϕ “ Qxψ (where Q “ @ or D), and z is a variable which does not
appear in ψ, then ϕ is logically equivalent to ϕ1 “ Qz ψxz , where ψxz is the result of
replacing all the free occurrences of x in ψ by z.

Proof. It is enough to do the case Q “ @. We have A |ù ϕrss iff for every a P |A|
we have that A |ù ψrspx|aqs. Likewise A |ù ϕ1rss iff for every a P |A| we have that
A |ù ψxz rspz|aqs. From Fact 1.21 we have that A |ù ψxz rspz|aqs iff A |ù ψrs1px|s1pzqqs,
where s1 “ spz|aq. Now, z does not appear in ψ, so A |ù ψrs1px|s1pzqqs iff A |ù

ψrspx|s1pzqs. Since s1pzq “ a, this happens iff A |ù ψrspx|aqs. �

Remark 1.23. The formula ϕ1 of Lemma 1.22 is called an alphabetic variant of ϕ.

Theorem 1.24. Every wff ϕ in a first-order language is logically equivalent to a
wff in prenex normal form.

Proof. We show by induction on ϕ that ϕ and  ϕ are logically equivalent to wffs
in prenex normal form. For atomic formulas this is immediate. The case ϕ “  ψ
is also immediate as   ψ is equivalent to ψ. The case ϕ “ @xψ is also immediate.
It is enough then to consider the case ϕ “ pα_ βq.

Say α “ Q1x1 ¨ ¨ ¨Qnxn pρq, and β “ R1y1 ¨ ¨ ¨Rmym pσq, where ρ, σ are in
disjunctive normal form. We show by induction on maxtn,mu that pα _ βq is
equivalent to a wff in prenix normal form. Let α1 “ Q2x2 ¨ ¨ ¨Qnxn pρq, and
β1 “ R2y2 ¨ ¨ ¨Rmym pσq. Then by Lemma 1.22 Q1x1 α

1_R1y1 β
1 is logically equiv-

alent to Q1z1 pα
1qx1
z1 _R1w1 pβ

1qy1w1
where z1, w1 are distinct variables which do not

appear in ϕ. Now we claim that

Q1z1 pα
1qx1
z1 _R1w1 pβ

1qy1w1
” Q1z1R1w1 ppα

1qx1
z1 _ pβ

1qy1w1
q

which suffices, as by induction ppα1qx1
z1 _ pβ

1qy1w1
q is equivalent to a wff in prenix

normal form.
To see this, it is enough to observe the following: if z does not occur in a formula

ψ, then pQz ϕq _ ψ is logically equivalent to Qz pϕ_ ψq. Fix A and s : Var Ñ |A|.
We consider the case Q “ @, the case Q “ D being similar.

Suppose first that A |ù p@z ϕq _ ψrss. If A |ù ψrss then for all a P |A| we
have A |ù ψrspz|aqs as z does not appear in ψ. So, for all a P A we have A |ù

pϕ _ ψqrspz|aqs and thus A |ù @z pϕ _ ψq. If A |ù @z ϕrss, then for all a P |A| we
have A |ù ϕrspz|aqs, and thus A |ù pϕ_ ψqrspz|aqs. So, A |ù @z pϕ_ ψqrss.

Suppose next that A |ù @z pϕ _ ψqrss. If A |ù ψrss then A |ù p@z ϕq _ ψrss,
and we are done. So, assume A * ψrss. Let a P |A|. Then A |ù pϕ _ ψqrspz|aqs.
Since A * ψrss, we also have A * ψrspz|aqs since z does not appear in ψ. So,
A |ù ϕrspz|aqs. Since a P |A| was arbitrary, we have A |ù @z ϕrss.
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Finally,  ϕ ”  α ^  β ” pQ11x1 ¨ ¨ ¨Q
1
nxn ρq ^ pR

1
1y1 ¨ ¨ ¨R

1
mym σq, where

Q1, R1 are the dual quantifiers to Q, R. The argument now proceeds just as the
above, using the fact that  σ,  ρ are equivalent to quantifier-free wffs in disjunctive
normal form. �

Example 9. Let ϕ “ @xψpxq where ψpxq “ Dy px ff yq. Let ϕ1 “ @y ψxy “
@y Dy py ff yq. Then ϕ is not logically equivalent to ϕ1, so it is important in
Lemma 1.22 that the variable z not occur in ψ.

Exercise 10. Let ϕ “ @yDy Rpy, yq. Is ϕ logically equivalent to @y Rpy, yq or to
Dy Rpy, yq?

Exercise 11. Find a sentence ϕ in the language of number theory such that N |ù ϕ
and such that every structure that satisfies ϕ is infinite.

1.3. Formal Proofs. We have introduced the notion of logical satisfaction, |ù
above. This is one of two of the basic notions of implication from first-order logic.
The other is the notion of provability, or deducibility. We write Γ $ φ for this
notion. This notion can be defined in several, ultimately equivalent, ways. The
exact definition is not so important for us here, only that this notion satisfies
several reasonable properties. However, for the sake of completeness we give one
formal definition of $. We assume below that the only connectives are  and Ñ.

Definition 1.25. Let ϕ be a wff in a first-order language L, let x P Var, and t a
term in the language L. We say t is substitutable for x in ϕ if wherever x occurs
free in ϕ, x is not within the scope of a quantifier over a variable that appears in t.
More formally, the notion is defined by induction as follows:

(1) If ϕ is atomic, then t is substitutable for x in ϕ.
(2) If ϕ “  α, then t is substitutable for x in ϕ iff t is substitutable for x in α.
(3) If ϕ “ pαÑ βq, then t is substitutable for x in ϕ iff t is substitutable for x

in α and t is substitutable for x in β.
(4) Suppose ϕ “ @z ψ. If z ‰ x, then t is substitutable for x in ϕ iff t is

substitutable for x in ϕ and z does not occur in t. If z “ x, then t is
substutable for x in ϕ.

Definition 1.26. The logical axioms (for a given first-order language L) are the
universal closures of the following formulas (here α, β, γ are arbitrary formulas of
L):

(1) αÑ pβ Ñ αq.
(2) pαÑ pβ Ñ γqq Ñ ppαÑ βq Ñ pαÑ γqq
(3) p αÑ  βq Ñ pp αÑ βq Ñ αq
(4) @x α Ñ αxt whenever t is substitutable for x in φ Here αxt is the result of

replacing x where it occurs free by t.
(5) @x pαÑ βq Ñ p@x αÑ @x βq
(6) αÑ @x α, where x is not free in α.
(7) xi « xi
(8) pxi « xjq Ñ pα Ñ α1q, where α is atomic and α1 is the result of replacing

some of the occurrences of xi by xj .

Remark 1.27. The first three categories are just the logical axioms of propositional
logic. Note that we always have that @xϕ $ ϕ, as x is always substitutable for x
in any formula. Substitutability is necessary in (4) as the next example shows.
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Example 10. Let ϕ “ @xα “ @x pDy px ff yqq. Let t “ y. Then αxt “ Dy py ff yq.
Clearly ϕ “ @xα does not logically imply αxt .

Definition 1.28. Γ $ φ iff there is a sequence of formulas (a deduction of ϕ from
Γ) φ0, φ1, . . . , φn “ φ such that for all i either φi is a logical axiom or an element
of Γ, or the formulas ψ, ψ Ñ φi occur before φi for some ψ (we say φi is deduced
by modus ponens).

The central result in first-order logic is the Gödel completeness theorem:

Theorem 1.29. For any first-order language L, set of formulas Γ, and formula φ,
we have Γ |ù φ iff Γ $ φ.

As we said, the exact details of the definition of the provability relation are not
so important. All we really require is that we be able to prove the completeness

theorem and that the notion “~φ is a deduction of ψ from Γ” is recursive for recursive
Γ (we discuss the notion of recursive below).

We first prove some metatheorems which give information about the $ relations,
and which correspond to intuitive proof rules in mathematics. The first two, the
deduction and contradiction metatheorems are just as in propositional logic.

Lemma 1.30 (Deduction metatheorem). If ΓY tϕu $ ψ, then Γ $ pϕÑ ψq.

Proof. The proof is just as for propositional logic. We prove the result by induction
on the minimal length of a deduction of ψ from ΓYtϕu. First assume ψ P ΓYtϕu.
If ψ P Γ, then clearly Γ $ ψ and also ψ Ñ pϕÑ ψq is a logical axiom, so by modus
ponens Γ $ pϕÑ ψq. If ψ “ ϕ, then Γ $ pψ Ñ ψq exactly as in propositional logic.

If ψ is deduced by modus ponens from α and α Ñ ψ, then by induiction Γ $
pϕÑ αq and Γ $ pϕÑ pαÑ ψqq. But using group (2) of the logical axioms we have
ϕÑ pαÑ ψq $ ppϕÑ αq Ñ pϕÑ ψqq, and so by modus ponens, Γ $ pϕÑ ψq.

Finally, assume ψ is a logical axiom. then Γ $ ψ and H $ ψ Ñ pϕÑ ψq and so
Γ $ pϕÑ ψq.

�

Lemma 1.31 (Contradiction metatheorem). If ΓY t ϕu $ α, α, then Γ $ ϕ.

Proof. Assume Γ Y t ϕu $ α, α. From the deduction metatheorem we have
Γ $ p ϕÑ αq and Γ $ p ϕÑ  αq. From Λp3q we have Γ $ ϕ. �

As with propositional logic, Λp1q ´ ´p3q suffice to show that ϕ $   ϕ and
  ϕ $ ϕ. Thus we have:

Corollary 1.32. If ΓY ϕ is inconsistent, then Γ $  ϕ.

Lemma 1.33 (Generalization metatheorem). If Γ $ ϕ and x is not free in Γ, then
Γ $ @xϕ.

Proof. By induction on the minimal length of a deduction of ϕ from Γ. If ϕ P Γ,
then x is not free in ϕ by assumption. By Λp6q we have H $ pϕ Ñ @xϕq, and it
follows that Γ $ @xϕ.

If ϕ P Λ, then @xϕ is also in Λ, and Λ is closed under universal quantification
by definition.

If ϕ is obtained by modus ponens from β, β Ñ ϕ, then by induction we have
Γ $ @xβ and Γ $ @x pβ Ñ ϕq. By Λp5q we have Γ $ @xβ Ñ @xϕ. By modus
ponens, Γ $ @xϕ. �
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The requirement that x not be free in Γ can by circumvented as the next corollary
shows.

Corollary 1.34. If Γ $ ϕxz where z is not free in Γ, and z does not occur in ϕ,
then Γ $ @xϕ.

Proof. Since Γ $ ϕxz and z is not free in Γ, by the generalization metatheorem we
have Γ $ @z ϕxz . But @z ϕxz $ pϕ

x
z q
z
x since x is always substitutable for z in ϕxz , by

exercise 12. An easy induction shows that pϕxz q
z
x “ ϕ. So, @z ϕxz $ ϕ. Since x is

not free in @z ϕxz , the generalization metatheorem gives that @z ϕxz $ @xϕ, and so
Γ $ @xϕ. �

Exercise 12. Show that x is substitutable for z in ϕxz for any formula ϕ and
variables x, z, with z not in ϕ. Show also that pϕxz q

z
x “ ϕ.

The proof of the completeness theorem will involve introducing some new con-
stant symbols into the language. We need the following metatheorem to be able to
eliminate them and get back to deductions in the original language.

Lemma 1.35 (Generalization on constants). If Γ $ ϕ and c is a constant symbol
not in Γ, then there is a variable y not in ϕ such that Γ $ @y ϕcy, and furthermore
there is a deduction of @y ϕcy from Γ in which c does not appear.

Proof. Let α1, . . . , αn “ ϕ be a deduction of ϕ from Γ. Let y be a variable not in
any of the αi. We show by induction on m that pα0q

c
y, . . . , pαmq

c
y is a deduction of

pαmq
c
y from Γ.

If αm P Γ, then c does not appear in αm, so pαmq
c
y “ αm, and so pαmq

c
y P Γ.

If αm is deduced by modus ponens from αi and αj “ αi Ñ αm, then pαjq
c
y “

pαiq
c
y Ñ pαmq

c
y, and pαmq

c
y is deduced by modus ponens from pαiq

c
y and pαjq

c
y.

Suppose finally that αm P Λ. We claim that pαmq
c
y is also in Λ.

Claim 3. If α P Λ and y is a variable not in α, then αcy P Λ.

Proof. For α in Λ groups (1), (2), (3), (5), or (7) this is clear.
Suppose α P Λp4q, say α “ @xβ Ñ βxt where t is substitutable for x in β. Then

αcy “ @xβ
c
y Ñ pβxt q

c
y. Now, for any β P Wff, t substitutable for x in β, and y not in

β, pβxt q
c
y “ pβ

c
yq
x
tcy

(this can be formally proved by a straightforward induction on

β). So, αcy “ @xβ
c
y Ñ pβcyq

x
tcy

. Finally, x occurs free in βcy exactly where x occurs

free in β. Also, tcy is substitutable for x in βcy as tcy has the same variables as t
except perhaps the extra variable y, but y does not appear in β, so does not appear
as a quantified variable in βcy. Thus, αcy P Λp4q.

Suppose next that α P Λp6q, say α “ pβ Ñ @xβq, where x is not free in β. Then
αcy “ pβ

c
y Ñ @xβcyq. Since x is not free in β, we also have that x is not free in βcy

(since y ‰ x as y does not occur in α). Thus αcy P Λp6q.
Finally, suppose α P Λp8q. Say α “ pxi « xj Ñ pβ Ñ β1qq, where β1 is obtained

from β (an atomic formula) by replacing some of the occurrences of xi by xj . Then
αcy is the formula xi « xj Ñ pβcy Ñ pβ1qcyq. Since y ‰ xi, xj , pβ

1qcy is obtained from
βcy by replacing the same occurrence of xi by xj as for β. So, αcy P Λp8q. �

This also completes the proof of Lemma 1.35.
�
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Finally, before starting the proof of the completeness theorem, we show that
suitable alphabetic variants which are provably equivalent to the original formula
always exist.

Lemma 1.36. Let ϕ P Wff, x P Var, and t be a term. There is a formula ϕ1 with
the same free variables as ϕ such that t is substitutable for x in ϕ1, and ϕ $ ϕ1,
ϕ1 $ ϕ.

Proof. By induction on ϕ. If ϕ is atomic, we can let ϕ1 “ ϕ. The boolean cases are
easy. Suppose ϕ “ @wψ for some variable w. If w “ x then we may take ϕ1 “ ϕ,
as x is not free in ϕ in this case. So, assume w ‰ x. Consider ϕ̄ “ @z ψwz where z is
a variable not appearing in ϕ or t. We claim that ϕ $% ϕ̄. To see that ϕ $ ϕ̄, by
the generalization metatheorem it is enough to see that ϕ $ ψwz as z is not free in
ϕ. Since z is substitutable for w in ψ (as does not appear in ϕ) from Λp4q we have
that ϕ $ ψwz . To see that ϕ̄ $ ϕ, by the generalization metatheorem it is enough
to show that ϕ̄ $ ψ, since w is not free in ϕ̄. Since z does not appear in ψ, all the
occurrrences of z in ψwz are free and furthermore w is substitutable for z in ψwz . So
by Λp4q, ϕ̄ $ pψwz q

z
m “ ψ.

Finally, by induction let ϕ1 “ @z pψwz q
1, where pψwz q

1 $% ψwx and t is substitutable
for x in pψwz q

1. Since t is substitutable for x in pψwz q
1 and z does not occur in t, t

is substitutable for x in @z pψwz q
1 “ ϕ1. From the generalization metatheorem we

immediately have that @z ψwz $% @z pψ
w
z q
1.

�

1.4. Proof of the completeness theorem. Let L be a language of first-order
logic. Let Γ Ď WffL and suppose Γ |ù ϕ. We show Γ $ ϕ. If Γ & ϕ, then by
the contradiction metatheorem, ΓY t ϕu is consistent. If we can show that every
consistent set of wffs is satisfied by some A and s : Var Ñ |A|, then there is a A
and s which satisfies Γ Y t ϕu. This is impossible, however, as A |ù Γ, and thus
A |ù ϕrss.

So, it suffices to show the following.

Theorem 1.37. If Γ is a consistent set of wffs in a first-order language L, then
there is a structure A for L and a s : Var Ñ |A| which satisfies Γ.

Proof. Let L1 be the language L together with countably many new constant sym-
bols ci which do not occur in L.

Let ϕ0, ϕ1, . . . enumerate all the existential formulas of L1, that is, all formulas
of the form ϕi “ Dyi ψi for some variable yi and formula ψi. For each ϕi choose
one of the new constant symbols cϕi

not in ϕi and not in ϕj nor equal to cϕj
for

any j ă i. So, for each existential formula ϕ “ Dy ψ we have the constant symbol
cϕ defined. Let Γ1 be Γ together with all formulas of the form Dy ψ Ñ ψpcϕq for
each existential formula ϕ “ Dy ψ. Here ψpcϕq abbreviates ψycϕ . The new formulas

σi “ Dyi ψi Ñ ψipcϕiq are called the Henkin formulas, and the cϕ the Henkin
witnesses. So,

Γ1 “ ΓY tDyiψi Ñ ψipcϕi
quiPω.

Claim 4. Γ1 is consistent.

Proof. If not, let n be least such that Γn “ Γ Y tσ0, . . . , σnu is inconsistent.
Note that Γ is still consistent with respect to the language L1. This follows from
Lemma 1.35. Namely, if Γ $L1 pα^ αq, where α P WffL1 , then by Lemma 1.35 we
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may replace the new constant symbols in α by variables to get an α1 P WffL and
such that Γ $ pα1 ^ α1q by a proof in L, a contradiction.

So, Γn´1 is consistent (Γ´1 “ Γ), and Γn´1 Y tσnu is inconsistent. Let σn “
Dy ψ Ñ ψpcϕq, where ϕn “ Dy ψ. So, cϕ does not appear in ϕ nor in σ0, . . . , σn´1.
By the contradiction metatheorem, Γn´1 $  σn. Now, for any wffs α and β we
easily have  α $ pα Ñ βq (using the deduction metatheorem), and so  pα Ñ
βq $ α by the contradiction metatheorem. Thus, Γn´1 $ Dy ψ. Also,  pα Ñ
βq $  β by the contradiction metatheorem as β $ pα Ñ βq by a logical axiom.
So, Γn´1 $  ψpcϕq. Since cϕ does not appear in Γn´1, from Lemma 1.35 we have
that Γn´1 $ @z pψ

y
cϕq

cϕ
z for some variable z (which we may assume which does not

occur in ϕ), and furthermore cϕ does not occur in this deduction. Since cϕ does not
occur in ψ, pψycϕq

cϕ
z “ ψyz . So, Γn´1 $ @z  ψ

y
z . Since z did not occur in ψ, z occurs

free in ψyz exactly where y appeared free in ψ, and y is substitutable for z in ψyz .
So, by Λp4q we have @z  ψyz Ñ  pψyz q

z
y. But, pψyz q

z
y “ ψ, so @z  ψyz $  ψ. Since y

is not free in @z  ψyz , by the generaliztion metatheorem we have @z  ψyz $ @y  ψ.
Thus, Γn´1 $ @y  ψ. Since Γ $ Dy ψ “  @y ψ, we see that Γn´1 is inconsistent,
a contradiction. �

We next enlarge Γ1 to Γ2 which a maximal consistent set of wffs in the language
L1. This is done exactly as for propositional logic. If the language L is countable
(and so L1 is also countable) we enumerate the wffs of L1 as α0, α1, . . . , set Γ´1 “ Γ,
and then inductively define Γn “ Γn´1Ytαnu if this set is consistent, and otherwise
Γn “ Γn´1. Then Γ2 “

Ť

m Γn is a maximal consistent set. If the language L (and
so L1) is uncountable, then we use AC to wellorder the wffs and use the same
argument, taking unions at limit stages.

As in the proof for propositional logic, the maximality of Γ2, along with the
contradiction metatheorem, gives that for every wff α in L1, either α P Γ2 or
 α P Γ2 (and both cannot hold). Also, if Γ2 $ α, then α P Γ2.

Finally, from Γ2 we build a structure A and map s : Var Ñ |A|. Let T be the set
of terms in the language L1. We define a relation ” on T by t ” u iff pt « uq P Γ2.

Claim 5. ” is an equivalence relation on T .

Proof. We have H $ @x px « xq by Λp7q, and so by Λp4q we have H $ t « t for
any term t. So t ” t that is, ” is reflexive.

We have H $ @x@y px « y Ñ y « xq by an application of Λp8q [Consider
the atomic formula x « x, so px « yq Ñ ppx « xq Ñ py « xqq P Λ. Since
H $ x « x, it easily follows that H $ px « yq Ñ py « xq.] From Λp4q it follows
that H $ pt « uÑ u « tq. So, if t ” u, that is pt « uq P Γ2, then Γ2 $ u « t, and
so pu « tq P Γ2, and so u ” t. So, t ” u implies u ” t, so ” is symmetric.

Suppose t ” u and u ” v, so pt « uq and pu « vq are in Γ2. It suffices to show
that H $ @x@y @z px « yq Ñ ppy « zq Ñ px « zqq since by Λp4q (choosing x, y, z
to be variables not in t, u, v) it follows that H $ pt « uq Ñ ppu « vq Ñ pt « vqq,
and so Γ2 $ pt « vq. This however follows easily from Λp8q by considering the
atomic formula y « z, and replacing the occurrence of y by x as in Λp8q, which
gives H $ py « xq Ñ ppy « zq Ñ px « zqq. Since H $ px « y Ñ y « xq by the
above, we have that H $ px « yq Ñ ppy « zq Ñ px « zqq. �

We let rts denote the equivalence class of t under the relation ”, for t a term in
L1.
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We let |A| “ trts : t P T u. We let spxq “ rxs for x P VarL1 “ VarL. for c a
constant symbol of L1, we let cA “ rcs. It remains to define the interpretations RA,
fA of the relation and function symbols.

We define RAprt1s, . . . , rtnsq iff Rpt1, . . . , tnq P Γ2, and similarly for functions
symbols we define fAprt1s, . . . , rtnsq “ rfpt1, . . . , tnqs, however, we need to show
these definitions are welldefined. Suppose t1 ” u1, . . . , tn ” un andRAprt1s, . . . , rtnsq,
that is, Rpt1, . . . , tnq P Γ2. From the generalization metatheorem, the deduction
metatheorem, and Λp8q, we have that

H $ @y1 @z1 ¨ ¨ ¨ @yn @zn ppy1 « z1q Ñ ¨ ¨ ¨ pyn « znq Ñ

pRpy1, . . . , ynq Ñ Rpz1, . . . , znqq ¨ ¨ ¨ q.

We may choose the variables yi, zi so that they do not appear in the ti or ui. From
Λp4q we get that

H $ ppt1 « u1q Ñ ¨ ¨ ¨ ptn « unq Ñ pRpt1, . . . , tnq Ñ Rpu1, . . . , unqq ¨ ¨ ¨ q.

Since Γ2 $ ti « ui, we have that Γ2 $ Rpu1, . . . , unq. So, Rpu1, . . . , unq P Γ2. The
argument for functions is similar.

At this point we have a well-defined structure A “ p|A|;RA
i , f

A
i , c

A
i q and s : VarL1 Ñ

|A|.

Claim 6. For every wff ϕ of L1, we have A |ù ϕrss iff ϕ P Γ2.

Proof. By induction on ϕ. If ϕ is atomic of the form ϕ “ Rpt1, . . . , tnq, then
A |ù ϕrss iff RAprt1s, . . . , rtnsq which by definition of RA holds iff Rpt1, . . . , tnq P Γ2.
If ϕ “ pt « uq, then A |ù ϕrss iff sptq “ spuq. By definition of s, this means rts “ rus,
that is, t ” u. By definition of ”, this happens iff pt « uq P Γ2.

The boolean case is just as in propositional logic. For example, say ϕ “ pαÑ βq.
Then A |ù ϕrss iff A . αrss or A |ù βrss. By induction this is equivalent to saying
α R Γ2 or β P Γ2. By maximality of Γ2 this holds iff  α P Γ2 or β P Γ2. As Γ2 is
closed under deduction, this is equivalent to pαÑ βq P Γ2.

Suppose that ϕ “ @xψ. First assume that ϕ P Γ2, and we show that A |ù ϕrss.
Let rts P |A|, we must show that A |ù ψrspx|rtsqs. Let ψ1, by Lemma 1.36, be an
alphabetic variant of ψ, that is, ψ1 is provably equivalent to ψ and t is substitutable
for x in ψ1. Then A |ù ψrspx|rtsqs iff A |ù ψ1pspx|rtsq iff A |ù pψ1qxt rss. The last
equivalence is by the following fact, which is an extension of Fact 1.21.

Fact 1.38. Let ϕ P Wff, x P Var, and t a term which is substitutable for x in ϕ.
Then A |ù ϕxt rss iff A |ù ϕrspx|sptqs.

Proof. The proof is essentially identical to that of Fact 1.21. �

By induction, A |ù pψ1qxt rss iff pψ1qxt P Γ2. As ϕ “ @xψ P Γ2, we have @xψ1 P Γ2,
as ϕ “ @xψ $ @xψ1 (from the generalization metatheorem, using the fact that
ψ $ ψ1). Since t is substitutable for x in ψ1, by Λp4q we have that @xψ1 $ pψ1qxt ,
and so pψ1qxt P Γ2. Thus, A |ù @xψ.

Suppose A |ù @xψrss. We must show that @xψ P Γ2. If not, then by maximality
of Γ2 we have that  @xψ P Γ2, so Dx ψ P Γ2. But Dx ψ Ñ  ψxc is one of the
Henkin formulas of Γ1. So, Γ2 $  ψxc . Here c is one of the new constant symbols of
L1 which in particular does not appear in ψ. Since A |ù @xψrss, A |ù ψrspx|rcsqs.
since c is substitutable for x in ψ, we have A |ù ψxc rss. By induction, ψxc P Γ2, a
contradiction.

�
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This completes the proof of Theorem 1.37.
�

1.5. Applications of the completeness theorem. As with propositional logic,
the completeness theorem immediately implies the compactness theorem, which
we state next. The compactness theorem can also be proved directly (without
mentioning the completeness theorem or $) using ultraproducts.

Theorem 1.39 (Compactness theorem). Let L be a language of first-order logic,
and Γ Ď WffL. Then Γ is satisfiable (i.e., there is an L-structure A and a s : Var Ñ
|A| with A |ù ϕrss for all ϕ P Γ) iff every finite Γ0 Ď Γ is satisfiable.

Proof. Supose every finite Γ0 Ď Γ is satisfiable. If Γ is not satisfiable, then Γ |ù α
for any wff α, so Γ |ù α^ α for some (any) wff α. By the completeness theorrem,
Γ $ α ^ α for some α, that is, Γ is inconsistent. Since proofs are finite, we have
Γ0 $ α^ α for some finite Γ0 Ď Γ. But then Γ0 |ù α^ α, a contradiction as Γ0

is satisfiable. �

Exercise 13. Let L be a first-order language, and Γ Ď WffL. Show that if Γ has
finite models of arbitrarily large size, then Γ has an infinite model. [hint: add to Γ
a collection of wffs tψnunPω which together force |A| to be infinite.]

Exercise 14. Let L “ t¨u be the language of group theory. Let Γ0 be the (finite)
set of axioms for a group. Show that there does not exists a set Γ Ě Γ0 such that
a group G satisfies Γ iff G is finite. In particular, there is no single formula (in the
language of group theory) which can “say” that G is a finite group. [hint: use the
previous exercise.]

We saw before that there is a set of wffs Γ (in the empty language) such that a
structure A satisfies Γ iff |A| is infinite. From Exercise 13 if follows that there is no
set of wffs Γ in the empty language such that A |ù Γ iff |A| is finite.

We next use the compactness theorem to construct non-isomorphic models of
the theory of the natural numbers. This will produce a non-standard model of
arithmetic.

Definition 1.40. Let L be a first-order languaqge, and A an L-structure. We let
ThpAq, the theory of A, denote the set of sentences ϕ in L such that A |ù ϕ.

Theorem 1.41. Let L be the language of number theory. Let ThpNq be the theory
of N for the language L. Then there is a countable model of ThpNq which is not
isomorphic to N.

Proof. Let L1 “ L Y tcu where c is a new constant symbol in the languagge. Let
Γ1 “ Γ Y tϕnunPω where ϕn “ pc ą Sn´1p0qq. Any finite subset Γ10 of Γ1 is
satisfiable, by letting spcq to some element of N larger than all the numbers k such
that sk´1p0q is mentioned in Γ10. By the compactness theorem, Γ1 is satisfiable, say

by A1. Then cA
1

ą skp0q for all k, and thus A1 is not isomorphic to N as there is no
such element in N (note that any isomorphism must fix all the Skp0q). We may take
A1 to be countable by taking an elementary substructure of A which is countable
and contains cA

1

. Alternatively, we may note that the proof of the completeness
theorem produces a countable A1, as L1 is countable. �

Remark 1.42. We should regard Theorem 1.45 more formally as a theorem of some
background metatheory in which the standard N is defined, and in which the various
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notions, such as countable models, can be defined. For example, we could take the
metatheory to be ZFC, which defines N as the set of finite ordinals, and permits
the proof of Theorem 1.45 to be formalized.

Remark 1.43. Theorem 1.45 also holds, by the same proof, if we just assume that
the language L contains the language LN of number theory, and we interpret the
conclusion as saying that N is not isomorphic to N1LN

, where N1LN
denotes the

restriction of N1 to the language LN of number theory.

Definition 1.44. We say two structures A, B for a first-order langiage L are
elementary equivalent, written A ” B, if for any sentence ϕ of L we have that
A |ù ϕ iff B |ù ϕ.

As an immediate consequence of Theorem 1.45, it follows that we cannot “ax-
iomatize” the natural numbers in the sense of having a set of formulas Γ in the
language of number theory (or any larger language) such that N is the unique
countable structure up to isomorphism which satisfies Γ.

We refer to the structures N1 for ThpNq which are not isomorphic to N as
non-standard models of arithmetic. We refer to N as the “standard model” (see
Remark 1.42). It follows immediately from the definition of a non-standard model
that if N1 is a non-standard model of arithmetic, then N1 ” N, where N is the
standard model.

The next theorem describes the basic structure of a non-standard model of arith-
metic. Let N1 be a non-standard model of arithmetic. By a “Z-chain” in N1 we
mean a subset taiuiPZ of |N1| such that for all i P Z, there is no element x P |N1|

with ai ă x ă ai`1 (here ă“ăN1

denotes the ordering of N1).

Theorem 1.45. Let N1 be a non-standard model of arithmetic. Then N1 has an
initial segment isomorphic to the standard model N. The elements of N1 not in this
intial segment (the “infinite” elements of N1) form a dense set of Z-chains (that
is, between any two Z-chains there is a third Z-chain) with no smallest or largest
Z-chain.

Proof. We use repeatedly the fact that N1 ” N. First, 0N is the least element
of N, that is, N |ù @x p0 ă xq. So, N1 satisfies the same sentence, so 0N

1

is
the least element of N1. Similarly Sp0qN is the least element of N greater than
0N. That is, N |ù @x p0 ă x Ñ px « Sp0q _ Sp0q ă xqq. Since N1 satisfies

the same formula, we see that Sp0qN
1

is the least element of N1 greater than 0N
1

in N1. Continuing in this manner we see that the map π : N Ñ N1 given by
πpSkp0qNq “ Skp0qN

1

is an order-preserving bijection between N “ |N| and an
initial segment of N1 “ |N1|. Now, π must also be a homomorphism from N to
N1. For example, N |ù pSkp0q ` S`p0q « Sk``p0qq, so N1 satisifes this sentence. So

pSkp0qqN
1

` pS`p0qqN
1

“ pSk``p0qqN
1

, that is, πpSkp0qq ` πpS`p0qq “ πpSk``p0qq.
Let IpN1q be the elements of N1 not in the range of π. These are the “infinite”

elements of N1. Since π is an isomorphism between N and ranpπq, we may identitfy
ranpπq with N, and just write N1 “ NYI, where N is an initial segment of N1. That
is, k ă c for all k P N and c P I.

It remains to show that I consists of a dense set of Z-chains. First note that
if c, d P I then c ` d P I, and if c, d ‰ 0 then c ¨ d P I. N |ù @x@y px ą 0 ^
y ą 0 Ñ px ` y ą x ^ x ¨ y ě xqq, so N1 satisfies the same sentence. Since
c, d ą 0, c ` d ą c ą Skp0q for any k, so c ` d P I. Likewise c ¨ d P I. Since
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N |ù p@x px ą 0 Ñ Dy py ` Sp0q « x ^ @w py ă w ă xqq, N1 satisfies the same
sentence, so c has an immediate predecessor in N1. We denote this predecessor by
c ´ Sp0q. Also, N |ù @x ppx ` Sp0q ą Sk`1p0qq Ñ x ą Skp0qq, and thus, since
c ą Sk`1p0q for all k, we have that c ´ Sp0q ą Skp0q for all k, so c ´ Sp0q P I.
Continuing, we see that the Z-chain tc˘ Skp0qukPZ Ď I.

We show that there is a Z-chain between c and d. Asssume c ă d and c, d are
in distinct Z-chains. N |ù @x Dy py ` y « x _ y ` y « x ` Sp0qq, so this sentence
also holds in N1. So, let y P N1 be such that y ` y “ c ` d or y ` y “ c ` d ` 1.
For example, say y ` y “ c ` d ` 1. The equation y ą c ` Skp0q is equivalent to
y ` y ą c` c` S2kp0q. But, y ` y “ c` d` 1 ą c` c` S2kp0q as d ą c` S2kp0q.
We use here the fact that statements hold in N iff they hold in N1.

A similar argument shows that there is a y such that y` y “ c or y` y “ c` 1,
and the Z-chain of y is less than the Z-chain of c. Likewise, the Z-chain of d` d is
greater than the Z-chain of d. �

Remark 1.46. Any two countable dense linear orderings without endpoints are
order-isomnorphic (isomorphic ti Q), so the order-type of I, for N1 a countable
non-standard model, is uniquely determined, as Q copies of Z.


