
Solutions To Review For Third Test

1.) Using elementary row-operations we have:

detA = det


2 7 −1 9
1 2 −1 3
2 −2 0 2
−2 −4 −2 −6

 = −det


1 2 −1 3
2 7 −1 9
2 −2 0 2
−2 −4 −2 −6



= det


1 2 −1 3
0 3 1 3
0 −6 2 −4
0 0 −4 0

 = det


1 2 −1 3
0 3 1 3
0 0 4 2
0 0 −4 0



= det


1 2 −1 3
0 3 1 3
0 0 4 2
0 0 0 2


= −24

2.) a.) The cofactor matrix is C =

 −7 −11 1
−10 2 3

4 −7 −5

.

b.) Taking the transpost of C gives the adjoint (or adjugate), which is

 −7 −10 4
−11 2 −7

1 −3 −5

.

If we take the dot product of the first row of the adjgate and the first column of A,
we get −7− 20− 4 = −31, which is the determinant.

The adjugate inverse formula is A−1 = 1
detAC

T = − 1
31

 −7 −10 4
−11 2 −7

1 −3 −5

 =

1
31

 7 10 −4
11 −2 7
−1 3 5

.

3.) Taking the determinant we have det(A) = (−5)(2k−3)−(−1)(6−3)+k(3−k) =
−k2 − 7k + 18 = −(k2 + 7k − 18) = −(k − 2)(k + 9). So, the matrix is invertble
when the determiant is non-zero, which happens when k is not equal to 2 or −9.

4.) a.) The area of the triangle is one-half the area of the parallelogram. So, we

have the area of the triangle is 1
2

∣∣∣∣det

(
1 2
3 8

)∣∣∣∣ = 1
2 (8− 6) = 1.

b.) The standard matrix A for the linear transformation T is A =

(
1 1
2 −1

)
.

We have |det(A)| = | − 3| = 3. The area of the new triangle is |det(A)| times the
area of the old triangle. So, the area of the new triangle is (3)(1) = 3.



5.) The quadrilateral can be divided into two triangles by a line from (2, 5) to (7, 4).

The area of the triangle with vertices (1, 1), (2, 5), (7, 4) is 1
2

∣∣∣∣det

(
1 6
4 3

)∣∣∣∣ = 21
2 . The

area of the triangle with vertices (2, 5), (6, 6), (7, 4) is given by 1
2

∣∣∣∣det

(
4 5
1 −1

)∣∣∣∣ =

9
2 . So, the area of the quadrilateral is 21

2 + 9
2 = 15.

6.) a.) The vectors from the vertex (1, 2,−1) to the adjacent vertices are ~u =

1
1
6

,

~v =

3
5
3

, ~w =

 2
2
10

. So, the volume is given by |det(~u|~v|~w)| =

∣∣∣∣∣∣
1 3 2

1 5 2
6 3 10

∣∣∣∣∣∣ =

| − 4| = 4.
b.) The volume of the tetrahedron is 1

6 the volume of the corresponding tetra-

hedron. So, the volume is 1
6

∣∣∣∣∣∣det

1 2 4
2 5 2
1 4 1

∣∣∣∣∣∣ = 1
6 |9| =

3
2 .

7.) a.) The characteristic polynomial is given by p(λ) = det(A−λI) = det

(
2− λ −1

3 6− λ

)
=

(2− λ)(6− λ) + 3 = λ2 − 8λ+ 15 = (λ− 5)(λ− 3).
b.) The eigenvalues are the roots of the characteristic polynomial, so the eigen-

values are λ = 3 and λ = 5.

For λ = 3 we have A − λI = A = 3I =

(
−1 −1
3 3

)
∼
(

1 1
0 0

)
. The solution is

given by x2

(
−1
1

)
, so

(
−1
1

)
is an eigenvector (in fact, it is a basis for the eigenspace

for this eigenvalue).

For λ = 5 we have A − λI = A − 5I =

(
−3 −1
3 1

)
∼
(

1 1
3

0 0

)
. An eigenvector

is

(
− 1

3
1

)
. Since a multiple of an eigenvector is also an eigenvector, we can also use(

1
−3

)
.

8.) A − λI = A − 5I =

 1 −1 2
−1 1 −2
2 −2 4

. Row reducing we have A − 5I ∼1 −1 2
0 0 0
0 0 0

 which has solution x2

1
1
0

+x3

−2
0
1

. So, a basis for the eigenspace

is B = {

1
1
0

 ,

−2
0
1

}. The dimension of the eigenspace is 2.



9.) We have

 2 1 −1
−1 1 4
3 −3 k

3
1
1

 =

 6
2

6 + k

. The value of k that makes the

vector an eigenvector is when 6 + k = (2)(1) = 2, or k = −4. The corresponding
eigenvalue is λ = 2.

10.) The characteristic polynomial is clearly (2 − λ)2(1 − λ)2 = (λ − 1)2(λ − 2)2.
The eigenvalues are λ = 1 and λ = 2.

For λ = 1 we have A − λI = A − I =


1 1 1 0
0 1 0 1
0 0 0 0
0 0 0 0

 ∼


1 0 1 −1
0 1 0 1
0 0 0 0
0 0 0 0

.

The solution is x3


−1
0
1
0

 + x4


1
−1
0
1

, so a basis for the eigenspace for λ = 1 is

B = {


−1
0
1
0

 ,


1
−1
0
1

}.

For λ = 2 we have A − λI = A − 2I =


0 1 1 0
0 0 0 1
0 0 −1 0
0 0 0 −1

 ∼


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

.

The solution is given by x1


1
0
0
0

. A basis for the eigenspace is B = {


1
0
0
0

}.
11.) Here is one way. First use the row-operation −R1 + R4 to get det(A) =

det


3 1 2 1 −1
2 −1 1 0 4
−2 1 3 0 1
0 0 −1 0 0
−1 2 1 0 6

. Then use cofactor expansion along the 4th column

to get det(A) = (−1)det


2 −1 1 4
−2 1 3 1
0 0 −1 0
−1 2 1 6

. Then use cofactor expansion along

the 3rd row to get det(A) = (−1)(−1)det

 2 −1 4
−2 1 1
−1 2 6

. Using the row-operation

R1 + R2 we then have det(A) = (−1)(−1)det

 2 −1 4
0 0 5
−1 2 6

. Cofactor expansion



along the second row then gives det(A) = (−1)(−1)(−5)det

(
2 −1
−1 2

)
= (−5)(4−

1) = −15.

12.) a.) You can either use row-operations or linearity of the determinant in each

row (or column). Using linearity we get det(M) = det

d e f
a b c
a b c

+det

 d e f
2g 2h 2i
a b c

.

The first determinant is 0, so we get det(M) = 2det

d e f
g h i
a b c

. Two row-

interchanges give det(M) = (2)(−1)(−1)det

a b c
d e f
g h i

 = (2)(3) = 6.

b.) This time we will use row operations. Using R2 + R3 we get det(M) =

det

2a− 3d 2b− 3e 2c− 3f
a+ g b+ h c+ i

2a 2b 2c

 = 2det

2a− 3d 2b− 3e 2c− 3f
a+ g b+ h c+ i
a b c

. Using

−R3 + R2 and −2R3 + R1 we have det(M) = 2det

−3d −3e −3f
g h i
a b c

 Using

linearity in the first row we have det(M) = (−6)det

d e f
g h i
a b c

. Using two row-

interchanges this gives det(M) = (−6)(−1)(−1)(3) = −18.

13.) Suppose λ is an eigenvalue, so Ax = λx for some eigenvector x. Then A2x =

A(Ax) = A(λx) = λ(Ax) = λ(λx) = λ2x. But A2 = I, so x = λ2x, so (1−λ2)x = ~0.

Since x 6= ~0, we have λ2 = 1, so λ = ±1.


