## Review For Third Test

Test covers sections: $3.1,3.2,3.3,5.1,5.2$
1.) Compute the determinant of the matrix $A=\left(\begin{array}{cccc}2 & 7 & -1 & 9 \\ 1 & 2 & -1 & 3 \\ 2 & -2 & 0 & 2 \\ -2 & -4 & -2 & -6\end{array}\right)$ using only elementary row operations. Show clearly your steps.
2.) a.) Compute the cofactor matrix corresponding to the matrix $A=\left(\begin{array}{ccc}1 & 2 & -2 \\ 2 & -1 & 3 \\ -1 & 1 & 4\end{array}\right)$.
b.) Compute $A^{-1}$ using the adjoint/adgugate formula for the inverse.
3.) For which values of $k$ is the matrix $A=\left(\begin{array}{ccc}-5 & -1 & k \\ 3 & k & 3 \\ 1 & 1 & 2\end{array}\right)$ invertible?
4.) a.) Compute the area of the triangle in $\mathbb{R}^{2}$ with vertices at (1,2), (2,5), and $(3,10)$.
b.) The linear transformation $T\binom{x}{y}=\binom{x+y}{2 x-y}$ maps the triangle of part (a) onto another triangle. What is the area of the new triangle?
5.) Compute the area of the quadrilateral with vertices at $(1,1),(2,5),(6,6)$, and $(7,4)$.
6.) a.) Compute the volume of the parallelpiped which has one vertex at $(1,2,-1)$ and three adjacent vertices at $(2,3,5),(4,7,2)$, and $(3,4,9)$.
b.) Compute the volume of the tetrahedron with vertices at $(1,-1,2),(2,1,3)$, $(3,4,6)$, and $(5,1,3)$.
7.) Let $A=\left(\begin{array}{cc}2 & -1 \\ 3 & 6\end{array}\right)$.
a.) Compute the characteristic polynomial for the matrix $A$.
b.) Determine the eigenvalues of the matrix $A$, and for each of these eigenvalues find a corresponding eigenvector.
8.) The matrix $A=\left(\begin{array}{ccc}6 & -1 & 2 \\ -1 & 6 & -2 \\ 2 & -2 & 9\end{array}\right)$ has $\lambda=5$ as an eigenvalue. Determine a basis for the corresponding eigenspace, and say what its dimension is.
9.) Find the value(s) of $k$ so that the vector $\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)$ is an eigenvector of the matrix $A=\left(\begin{array}{ccc}2 & 1 & -1 \\ -1 & 1 & 4 \\ 3 & -3 & k\end{array}\right)$. Say what the corresponding eigenvalue is.
10. Determine the eigenvalues and bases for the corresponding eigenspaces for the $\operatorname{matrix} A=\left(\begin{array}{llll}2 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
11.) Compute the determinant of the matrix $\left(\begin{array}{ccccc}3 & 1 & 2 & 1 & -1 \\ 2 & -1 & 1 & 0 & 4 \\ -2 & 1 & 3 & 0 & 1 \\ 3 & 1 & 1 & 1 & -1 \\ -1 & 2 & 1 & 0 & 6\end{array}\right)$ using any combination of row-reduction or cofactor expansion. Show clearly your steps.
12.) The matrix $A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$ has determinant $\operatorname{det}(A)=3$. Compute the determinant of the following matrices.
a.) $\left(\begin{array}{ccc}d & e & f \\ a+2 g & b+2 h & c+2 i \\ a & b & c\end{array}\right)$.
b.) $\left(\begin{array}{ccc}2 a-3 d & 2 b-3 e & 2 c-3 f \\ a+g & b+h & c+i \\ -g+a & -h+b & -i+c\end{array}\right)$.
13.) If $A$ is a square matrix and $A^{2}=I$, what are the possible eigenvalues for $A$ ?

