Math 2700

Solutions To Review For Second Test.
1.) $A^{2}=A \cdot A=\left(\begin{array}{cc}1 & -5 \\ 15 & 6\end{array}\right) \cdot A \cdot B=\left(\begin{array}{cc}3 & 4 \\ 0 & 15\end{array}\right) \cdot(B A)^{T}$ can be computed as either $(B A)^{T}$ or as $A^{T} B^{T}$. Either way, the answer is $\left(\begin{array}{cc}11 & 4 \\ 8 & 7\end{array}\right) \cdot(A B)^{-1}$ can be computed as either $(A B)^{-1}$ or as $B^{-1} A^{-1}$. Either way the answer is $\left(\begin{array}{cc}\frac{1}{3} & -\frac{4}{15} \\ 0 & \frac{1}{15}\end{array}\right)$. Recall here the formula for the inverse of a 2×2 matrix: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.
2.) a.) The standard matrix A for T is the matrix such that $T(x)=A \cdot x$. We can just see by inspection that $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 2 & 1\end{array}\right)$. One can also compute A from the general formula $A=\left[T\left(e_{1}\right)\left|T\left(e_{2}\right)\right| \cdots \mid T\left(e_{n}\right)\right]$ for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
b.) Composition of transformations corresponds to multiplication of the corresponding matrices. So, the matrix corresponding to $T \circ T$ is $A \cdot A=A^{2}=$ $\left(\begin{array}{ccc}3 & 4 & 0 \\ 1 & 0 & 0 \\ 2 & 2 & -1\end{array}\right)$.
3.) a.) The standard matrix for T is given by $A=\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 2\end{array}\right) . T(x)=\overrightarrow{0}$ has a non-trivial solution iff $A \cdot x=\overrightarrow{0}$ has a non-trivial solution, that is, the homogeneous system $A \cdot x=\overrightarrow{0}$ has a non-trivial solution. This happens iff there is a column without a pivot (i.e., a free variable). Row-reducing A we see that

$$
A \sim\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 3
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right) .
$$

We that every column has a pivot, so there does not exist a non-trivial solution to $T(\vec{x})=\overrightarrow{0}$. We could also say that T is a one-to-one function.
b.) T is onto iff the equation $T(x)=\vec{b}$ is solvable for all choices of \vec{b}. In other words the system $A \cdot x=\vec{b}$ is consistent for all \vec{b}. This happens iff every row of A has a pivot. Even without row-reducing we can see this is impossible, since A is a 4×3 matrix.
c.) This is equivalent to asking if the system $A \cdot x=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right)$ is consistent. We form the augmented matrix $\left(\begin{array}{ccc|c}1 & 1 & -1 & 1 \\ 2 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & -1\end{array}\right)$. Row-reducing, this becomes $\left(\begin{array}{ccc|c}1 & 1 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & -3\end{array}\right)$. We see the system in inconsistent, so the given vector is not in the range of T.
4.) a.) To write $e_{1}=x_{1}\binom{1}{1}+x_{2}\binom{1}{-1}$ we solve the system $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right) \sim$ $\left(\begin{array}{ccc}1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{2}\end{array}\right)$, so $e_{1}=\frac{1}{2}\binom{1}{1}+\frac{1}{2}\binom{1}{-1}$.
b.) $T\left(e_{1}\right)=T\left(\frac{1}{2}\binom{1}{1}+\frac{1}{2}\binom{1}{-1}\right)=\frac{1}{2}\binom{2}{-1}+\frac{1}{2}\binom{1}{3}=\binom{\frac{3}{2}}{1}$.
c.) A similar computation shows $T\left(e_{2}\right)=T\left(\frac{1}{2}\binom{1}{1}-\frac{1}{2}\binom{1}{-1}\right)=\frac{1}{2}\binom{2}{-1}-$ $\frac{1}{2}\binom{1}{3}=\binom{\frac{1}{2}}{-2}$. So the standard matrix of T is given by $A=\left[T\left(e_{1}\right) \mid T\left(e_{2}\right)\right]=$ $\left(\begin{array}{cc}\frac{3}{2} & \frac{1}{2} \\ 1 & -2\end{array}\right)$.
5.) We have that $A=\left[T\left(e_{1}\right) \mid T\left(e_{2}\right)\right]$. From the given description of T we see that $T\left(e_{1}\right)=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}\end{array}\right]$ and $T\left(e_{2}\right)=\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}\end{array}\right]$. So, $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$.
6.) a.) The determinant of this matrix is $(3)(4)-(-2)(5)=22$. Since the determinant is non-zero, this matrix is invertible. The quickest way to find the inverse of a 2×2 matrix is to use the formula mentioned in problem (1). So, $A^{-1}=\frac{1}{22}\left(\begin{array}{cc}4 & -5 \\ 2 & 3\end{array}\right)$.
b.) Here the determinant is $(-6)(-2)-(3)(4)=0$, so the matrix is not invertible.
7.) The (square) matrix is invertible iff every column (or row) has a pivot. Row-reducing we have:

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
3 & 1 & -1 \\
2 & -1 & k
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -5 & -4 \\
0 & -5 & k-2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -5 & -4 \\
0 & 0 & k+2
\end{array}\right)
$$

So, we see that A is invertible iff $k \neq-2$.
8.) We row-reduce A to I and see what these operations turn I into.

$$
\begin{aligned}
\left(\begin{array}{ccc|ccc}
1 & -3 & 2 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 1 & 0 \\
3 & -6 & 1 & 0 & 0 & 1
\end{array}\right) & \sim\left(\begin{array}{ccc|ccc}
1 & -3 & 2 & 1 & 0 & 0 \\
0 & -2 & 3 & 1 & 1 & 0 \\
0 & 3 & -5 & -3 & 0 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & 0 & -\frac{5}{2} & -\frac{1}{2} & -\frac{3}{2} & 0 \\
0 & 1 & -\frac{3}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & -\frac{1}{2} & -\frac{3}{2} & \frac{3}{2} & 1
\end{array}\right) \\
& \sim\left(\begin{array}{cccccc}
1 & 0 & -\frac{5}{2} & -\frac{1}{2} & -\frac{3}{2} & 0 \\
0 & 1 & -\frac{3}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1 & 3 & -3 & -2
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 7 & -9 & -5 \\
0 & 1 & 0 & 4 & -5 & -3 \\
0 & 0 & 1 & 3 & -3 & -2
\end{array}\right)
\end{aligned}
$$

So, $A^{-1}=\left(\begin{array}{ccc}7 & -9 & -5 \\ 4 & -5 & -3 \\ 3 & -3 & -2\end{array}\right)$.
9.) a.) Row-reducing A to I we have

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 8
\end{array}\right) \stackrel{\left(-3 R_{1}+R_{2}\right)}{\sim}\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right) \stackrel{\left(\frac{1}{2} R_{2}\right)}{\sim}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \stackrel{\left(-2 R_{2}+R_{1}\right)}{\sim}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

So, $E_{-2 R_{2}+R_{1}} E_{\frac{1}{2} R_{2}} E_{-3 R_{1}+R_{2}} A=I$.
b.) From part (a) we see that $A^{-1}=E_{-2 R_{2}+R_{1}} E_{\frac{1}{2} R_{2}} E_{-3 R_{1}+R_{2}}$, so

$$
A=\left(E_{-2 R_{2}+R_{1}} E_{\frac{1}{2} R_{2}} E_{-3 R_{1}+R_{2}}\right)^{-1}=E_{3 R_{1}+R_{2}} E_{2 R_{2}} E_{2 R_{2}+R_{1}}=\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) .
$$

4
10.) a.) The null-space is the set of solutions to the homogeneous system $A \cdot x=$ $\overrightarrow{0}$. We solve the homogebeous system by row-reduction:

$$
\begin{aligned}
\left(\begin{array}{ccccc}
1 & 2 & -3 & 2 & 0 \\
-1 & -1 & 2 & -1 & 0 \\
2 & 3 & -5 & 2 & 0
\end{array}\right) & \sim\left(\begin{array}{ccccc}
1 & 2 & -3 & 2 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & -1 & 1 & -2 & 0
\end{array}\right) \\
& \sim\left(\begin{array}{ccccc}
1 & 2 & -3 & 2 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 0
\end{array}\right) \\
& \sim\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

So, the general solution to the homogeneous is given by

$$
\left(\begin{array}{c}
x_{3} \\
x_{3} \\
x_{3} \\
0 \\
x_{5}
\end{array}\right)=x_{3}\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

So, a basis for the null-space of A is the set $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$. so, the null-space has dimension 2 .
b.) We see that columns 1,2 , and 4 have pivot positions. So, going back to the original matrix, we see that $\left\{\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)\right\}$ forms a basis for the column space of A. So, the dimension of the column space is 3 .
11.) a.) If there are 3 pivot positions, then there are three pivot columns, so there are 4 columns without pivots. This is number of free variables, which in turn is the dimension of the null-space. So, the null-space of A has dimension 4.
b.) There are 3 columns with pivots, so the dimension of the column space is 3 .
12.) The span of the given vectors is the same as the column space of the matrix A obtained by putting the given vectors as columns of the matrix A. Row-reducing the given matrix A we have

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 1 & -1 & 2 \\
5 & 3 & -1 & -1
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We see that columns 1, 2, and 4 have pivots, so the a basis for the column space is the set of vectors $\left\{\left(\begin{array}{l}1 \\ 2 \\ 5\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)\right\}$.
13.) Computing the transpose of the given matrix we have $\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=$ $A A^{T}$. So, $A A^{T}$ is symmetric.
14.) The elements of the subspace can be written in the form

$$
a\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)+b\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)+c\left(\begin{array}{c}
-1 \\
3 \\
0 \\
1
\end{array}\right) .
$$

So, the vectors $\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 3 \\ 0 \\ 1\end{array}\right)$ span the subspace H. To be a basis, we need vectors which span the span and are also independent. To check for independence, we put these vectors into the columns of a matrix and row-reduce. We have:

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & -1 & 3 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We see that not every column has a pivot, so the vectors are not independent. We see, however, that columns 1 and 2 have pivots, so we can take the corresponding columns of A. So, the vectors $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right)\right\}$ form a basis for H. So, the dimension of H is 2 .

