Math 2700

Review For Second Test.

1.) If $A=\left(\begin{array}{cc}2 & -1 \\ 3 & 3\end{array}\right), B=\left(\begin{array}{cc}1 & 3 \\ -1 & 2\end{array}\right)$, compute the following: $A^{2}, A B,(B A)^{T}$, $(A B)^{-1}$.
2.) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by: $T\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{1}+2 x_{2}+x_{3}, x_{1}-x_{3}, 2 x_{2}+x_{3}\right)$.
a.) Write the standard matrix A for the linear transformation T.
b.) Write the standard matrix for $T \circ T$ (the composition of T with itself).
3.) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the linear transformation defined by: $T\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{1}+x_{2}-x_{3}, 2 x_{1}-x_{3}, x_{2}+x_{3}, x_{1}+x_{2}+2 x_{3}\right)$.
a.) Determine if $T(\vec{x})=\overrightarrow{0}$ has a non-trivial solution.
b.) Determine if T is onto all of \mathbb{R}^{4}.
c.) Is the vector $\vec{x}=(1,1,1,-1)$ in the range of T ?
4.) Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation and $\left.T\left(\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}2 \\ -1\end{array}\right]$, and $T\left(\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
a.) Write $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
b.) Using (a), compute $T\left(e_{1}\right)$.
c.) Compute the standard matrix for the transformation T.
5.) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which rotates a vector 45° counterclockwise and then reflects about the x-axis. Find the standard matrix for T.
6.) For each of the following matrices, determine if they are invertible, and if so find the inverse.
а.) $\left(\begin{array}{cc}3 & 5 \\ -2 & 4\end{array}\right)$.
b.) $\left(\begin{array}{cc}-6 & 4 \\ 3 & -2\end{array}\right)$.
7.) For which value(s) of k is the matrix $A=\left(\begin{array}{ccc}3 & 1 & -1 \\ 1 & 2 & 1 \\ 2 & -1 & k\end{array}\right)$ invertible?
8.) Compute the inverse of the matrix $A=\left(\begin{array}{ccc}1 & -3 & 2 \\ -1 & 1 & 1 \\ 3 & -6 & 1\end{array}\right)$ by row-reduction.
9.) Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 8\end{array}\right)$.
a.) Find three elementary matrices E_{1}, E_{2}, E_{3} such that $E_{3} E_{2} E_{1} A=I$.
b.) Write A as a product of elementary matrices.
10.) Let $A=\left(\begin{array}{ccccc}1 & 2 & -3 & 2 & 0 \\ -1 & -1 & 2 & -1 & 0 \\ 2 & 3 & -5 & 2 & 0\end{array}\right)$.
a.) Find a basis for $\operatorname{Null}(A)$. What is the dimension of $\operatorname{Null}(A)$?
b.) Find a basis for $\operatorname{Col}(A)$. What is the dimension of $\operatorname{Col}(A)$?
11.) A 5×7 matrix A has 3 pivot positions.
a.) What is the dimension of $\operatorname{Null}(A)$?
b.) What is the dimension of $\operatorname{Col}(A)$?
12.) Find a basis for the span of the vectors $v_{1}=\left(\begin{array}{l}1 \\ 2 \\ 5\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right), v_{3}=\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$, $v_{4}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$.
13.) Show that for any square matrix A that $A A^{T}$ is symmetric.
14.) Let H be the subspace of \mathbb{R}^{4} consisting of all vectors of the form $\left(\begin{array}{c}a+b-c \\ a-b+3 c \\ 0 \\ a+c\end{array}\right)$.

Find a bais for H (hint: factor out the parameters to first find a set that spans H).

