Math 2700 Review For Second Test.

1.) If
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$, compute the following: A^2 , AB , $(BA)^T$, $(AB)^{-1}$.

- 2.) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by: $T(x_1, x_2, x_3) = (x_1 + 2x_2 + x_3, x_1 x_3, 2x_2 + x_3).$
 - a.) Write the standard matrix A for the linear transformation T.
 - b.) Write the standard matrix for $T \circ T$ (the composition of T with itself).
- 3.) Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation defined by: $T(x_1, x_2, x_3) = (x_1 + x_2 x_3, 2x_1 x_3, x_2 + x_3, x_1 + x_2 + 2x_3).$
 - a.) Determine if $T(\vec{x}) = \vec{0}$ has a non-trivial solution.
 - b.) Determine if T is onto all of \mathbb{R}^4 .
 - c.) Is the vector $\vec{x} = (1, 1, 1, -1)$ in the range of T?

4.) Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $T(\begin{bmatrix} 1\\1 \end{bmatrix}) = \begin{bmatrix} 2\\-1 \end{bmatrix}$, and $T(\begin{bmatrix} 1\\-1 \end{bmatrix}) = \begin{bmatrix} 1\\3 \end{bmatrix}$. a.) Write $e_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\-1 \end{bmatrix}$. b.) Using (a), compute $T(e_1)$.

c.) Compute the standard matrix for the transformation ${\cal T}.$

5.) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which rotates a vector 45° counterclockwise and then reflects about the *x*-axis. Find the standard matrix for T.

6.) For each of the following matrices, determine if they are invertible, and if so find the inverse.

a.) $\begin{pmatrix} 3 & 5 \\ -2 & 4 \end{pmatrix}$. b.) $\begin{pmatrix} -6 & 4 \\ 3 & -2 \end{pmatrix}$. 7.) For which value(s) of k is the matrix $A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 2 & 1 \\ 2 & -1 & k \end{pmatrix}$ invertible?

8.) Compute the inverse of the matrix $A = \begin{pmatrix} 1 & -3 & 2 \\ -1 & 1 & 1 \\ 3 & -6 & 1 \end{pmatrix}$ by row-reduction.

9.) Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$.

a.) Find three elementary matrices E_1 , E_2 , E_3 such that $E_3E_2E_1A = I$.

b.) Write A as a product of elementary matrices.

10.) Let
$$A = \begin{pmatrix} 1 & 2 & -3 & 2 & 0 \\ -1 & -1 & 2 & -1 & 0 \\ 2 & 3 & -5 & 2 & 0 \end{pmatrix}$$
.

a.) Find a basis for Null(A). What is the dimension of Null(A)?

b.) Find a basis for $\operatorname{Col}(A)$. What is the dimension of $\operatorname{Col}(A)$?

11.) A 5×7 matrix A has 3 pivot positions.

- a.) What is the dimension of Null(A)?
- b.) What is the dimension of $\operatorname{Col}(A)$?

12.) Find a basis for the span of the vectors $v_1 = \begin{pmatrix} 1\\2\\5 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1\\1\\3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1\\-1\\-1 \end{pmatrix}$, $v_4 = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$.

13.) Show that for any square matrix A that AA^{T} is symmetric.

14.) Let H be the subspace of \mathbb{R}^4 consisting of all vectors of the form $\begin{pmatrix} a+b-c\\a-b+3c\\0\\a+c \end{pmatrix}$. Find a bais for H (hint: factor out the parameters to first find a set that spans H).