Math 2700

Review For First Test.

1.) $A=\left[\begin{array}{cccc}1 & -2 & 2 & -1 \\ 1 & -2 & 2 & 0 \\ 1 & -2 & 3 & 2 \\ 2 & -4 & 5 & 1\end{array}\right] \sim\left[\begin{array}{cccc}1 & -2 & 2 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3\end{array}\right] \sim\left[\begin{array}{cccc}1 & -2 & 2 & -1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{cccc}1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.

For the first step we did the operations $-R_{1}+R_{2},-R_{1}+R_{3}$, and $-2 R_{1}+R_{3}$. For the second step we $\operatorname{did} R_{2} \leftrightarrow R_{3}$ and $-R_{2}+R_{4}$. For the last step we did $-3 R_{3}+R_{2}, R_{3}+R_{1}$ and $-2 R_{2}+R_{1}$.
2.) a.) As a matrix equation this is: $\left(\begin{array}{ccc}1 & 3 & 1 \\ -1 & 0 & 2 \\ -1 & 1 & 2\end{array}\right) \cdot\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)$.
b.) Forming the augmented matrix and row-reducing we have:

$$
\left(\begin{array}{cccc}
1 & 3 & 1 & 2 \\
-1 & 0 & 2 & 1 \\
-1 & 1 & 2 & 4
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 3 & 1 & 2 \\
0 & 3 & 3 & 3 \\
0 & 4 & 3 & 6
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 3 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & -1 & 2
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & 0 & -5 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -2
\end{array}\right) .
$$

So the unique solution is $x=-5, y=3, z=-2$.
3.) This matrix is already in reduced row-echelon form. x_{2} and x_{5} are arbitrary.

The general solution is given by: $\left(\begin{array}{c}x_{2}+2 x_{5}+1 \\ x_{2} \\ -3 x_{5}+2 \\ -2 x_{5}+3 \\ x_{5} \\ 4\end{array}\right)=x_{2}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)+x_{5}\left(\begin{array}{c}2 \\ 0 \\ -3 \\ -2 \\ 1 \\ 0\end{array}\right)+\left(\begin{array}{l}1 \\ 0 \\ 2 \\ 3 \\ 0 \\ 4\end{array}\right)$.
4.) a.) The vector $\left(\begin{array}{l}1 \\ 2 \\ h\end{array}\right)$ is in the span of $\left\{v_{1}, v_{2}, v_{3}\right\}$ iff the system $c_{1} v_{1}+c_{2} v_{2}+$ $c_{3} v_{3}=\left(\begin{array}{l}1 \\ 2 \\ h\end{array}\right)$ is consistent. We form the corresponding augmented matrix and row-reduce:

$$
\left(\begin{array}{cccc}
2 & -1 & 3 & 1 \\
-1 & 1 & -2 & 2 \\
1 & 1 & 0 & h
\end{array}\right) \sim\left(\begin{array}{cccc}
-1 & 1 & -2 & 2 \\
0 & 1 & -1 & 5 \\
0 & 2 & -2 & h+2
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & -1 & 2 & -2 \\
0 & 1 & -1 & 5 \\
0 & 0 & 0 & h-8
\end{array}\right)
$$

which is now in echelon form. The system is consistent iff $h=8$.
b.) The span is the set of vectors $\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right) \in \mathbb{R}^{3}$ such that the system $\left(\begin{array}{cccc}2 & -1 & 3 & b_{1} \\ -1 & 1 & -2 & b_{2} \\ 1 & 1 & 0 & b_{3}\end{array}\right)$ is consistent. Row-reducing this becomes $\left(\begin{array}{cccc}1 & -1 & 2 & -b_{2} \\ 0 & 1 & -1 & b_{1}+2 b_{2} \\ 0 & 0 & 0 & -2 b_{1}-3 b_{2}+b_{3}\end{array}\right)$. So, the vector is in the span iff $-2 b_{1}-3 b_{2}+b_{3}=0$ (this defines a plane through the origin).
5.) a.) They span \mathbb{R}^{3} iff for all $\vec{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right) \in \mathbb{R}^{3}$ the system $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+$ $c_{4} v_{4}=\vec{b}$ is consistent. This will happen iff every row in the echelon form of the matrix $\left(\begin{array}{cccc}1 & -1 & -3 & 2 \\ 2 & 3 & 4 & 1 \\ -1 & 1 & 3 & 1\end{array}\right)$ has a pivot entry. Row-reducing this becomes $\left(\begin{array}{cccc}1 & -1 & -3 & 2 \\ 0 & 5 & 10 & -3 \\ 0 & 0 & 0 & 3\end{array}\right)$ which is in echelon form, and we see that every row has a pivot entry. Thus, $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ span \mathbb{R}^{3}.
b.) The vectors are independent iff the system $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=\overrightarrow{0}$ has only the trivial solution. That is, iff every column in the echelon form has a pivot entry. Even without row-reducing we know this is impossible since the matrix is a 3×4 (i.e., more columns than rows).
c.) If we omit the third column from the above matrix, the previous computation shows that the new matrix is row-equivalent to $\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 5 & -3 \\ 0 & 0 & 3\end{array}\right)$. Since every column now has a pivot entry, the vectors $\left\{v_{1}, v_{2}, v_{4}\right\}$ are independent.
6.) a.) We form the matrix A by insering the given vectors as colunmns of the matrix. This gives the matrix $A=\left(\begin{array}{cccc}-2 & 2 & -3 & 5 \\ 1 & -1 & 2 & 3 \\ 1 & -1 & 2 & 4 \\ -2 & 2 & -3 & 2\end{array}\right)$. Reducing to echelon form we have: $A \sim\left(\begin{array}{cccc}1 & -1 & 2 & 3 \\ -2 & 2 & -3 & 5 \\ 1 & -1 & 2 & 4 \\ -2 & 2 & -3 & 2\end{array}\right) \sim\left(\begin{array}{cccc}1 & -1 & 2 & 3 \\ 0 & 0 & 1 & 11 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 8\end{array}\right) \sim\left(\begin{array}{cccc}1 & -1 & 2 & 3 \\ 0 & 0 & 1 & 11 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$.
We see that there is not a pivot in every column, so the given vectora are not independent.
b.) There is also not a pivot in every row, so the vectors do not span \mathbb{R}^{4}.
7.) a.) We form the matrix whose columns are the given vectors, and then rowreduce. $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 2 & k & -1 \\ 1 & 3 & 3\end{array}\right) \sim\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & k & -3 \\ 0 & 3 & 2\end{array}\right) \sim\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & k & -3\end{array}\right) \sim\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & \frac{2}{3} \\ 0 & k & -3\end{array}\right) \sim$ $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & -3-\frac{2}{3} k\end{array}\right)$. The vectors are independent iff every column of A has a pivot. This happens iff $k \neq-\frac{9}{2}$.
b.) The vectors span \mathbb{R}^{3} iff every row of A has a pivot. Since this is a square matrix, it is the same answer as for (a).
8.) a.) We determine which vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3}$ are the span of the given two vectors by determining when the system $c_{1} v_{1}+c_{2} v_{2}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is consistent. This gives the augmented matrix $\left(\begin{array}{ccc}1 & -2 & x \\ 2 & 1 & y \\ -3 & 1 & z\end{array}\right)$. Row reducing we get $\left(\begin{array}{ccc}1 & -2 & x \\ 2 & 1 & y \\ -3 & 1 & z\end{array}\right) \sim$ $\left(\begin{array}{ccc}1 & -2 & x \\ 0 & 5 & -2 x+y \\ 0 & -5 & 3 x+z\end{array}\right) \sim\left(\begin{array}{ccc}1 & -2 & x \\ 0 & 5 & -2 x+y \\ 0 & 0 & x+y+z\end{array}\right)$. The system is consistent iff $x+y+$ $z=0$. So, the span of the two vectors is the plane in \mathbb{R}^{3} with equation $x+y+z=0$.
9.) a.) This gives a homogeneous system with coefficient matrix $A=\left(\begin{array}{cccc}2 & 1 & 2 & b_{1} \\ 3 & 2 & 1 & b_{2} \\ 2 & 3 & -6 & b_{3}\end{array}\right)$. Row-reducing we get $A \sim\left(\begin{array}{ccc}1 & \frac{1}{2} & 1 \\ 0 & 1 & -4 \\ 0 & 0 & 0\end{array}\right) \sim\left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 0\end{array}\right)$. The general solution is given by $\left(\begin{array}{c}-3 x_{3} \\ 4 x_{2} \\ x_{3}\end{array}\right)=x_{3}\left(\begin{array}{c}-3 \\ 4 \\ 1\end{array}\right)$.
b.) We form the augmented matrix corresponding the matrix equation A. $\vec{x}=\vec{b}$. This gives $\left(\begin{array}{cccc}2 & 1 & 2 & b_{1} \\ 3 & 2 & 1 & b_{2} \\ 2 & 3 & -6 & b_{3}\end{array}\right)$. Row-reducing we get $\left(\begin{array}{cccc}2 & 1 & 2 & b_{1} \\ 3 & 2 & 1 & b_{2} \\ 2 & 3 & -6 & b_{3}\end{array}\right) \sim$ $\left(\begin{array}{cccc}1 & \frac{1}{2} & 1 & \frac{1}{2} b_{1} \\ 3 & 2 & 1 & b_{2} \\ 2 & 3 & -6 & b_{3}\end{array}\right) \sim\left(\begin{array}{cccc}1 & \frac{1}{2} & 1 & \frac{1}{2} b_{1} \\ 0 & \frac{1}{2} & -2 & -\frac{3}{2} b_{1}+b_{2} \\ 0 & 2 & -8 & -b_{1}+b_{3}\end{array}\right) \sim\left(\begin{array}{cccc}1 & \frac{1}{2} & 1 & \frac{1}{2} b_{1} \\ 0 & 1 & -4 & -3 b_{1}+2 b_{2} \\ 0 & 2 & -8 & -b_{1}+b_{3}\end{array}\right) \sim$
$\left(\begin{array}{cccc}1 & \frac{1}{2} & 1 & \frac{1}{2} b_{1} \\ 0 & 1 & -4 & -3 b_{1}+2 b_{2} \\ 0 & 0 & 0 & 5 b_{1}-4 b_{2}+b_{3}\end{array}\right)$. So, the system is consistent iff $5 b_{1}-4 b_{2}+b_{3}=0$.
10.) For the columns to span \mathbb{R}^{m}, every row must have a pivot entry, so there must by m pivot entries. This means we must have $n \geq m$.
11.) We want the matrix equation $A \cdot \vec{x}=\overrightarrow{0}$ to be equivalent to the system $x_{1}+x_{2}+x_{3}=0$. One way to do this is to take that equation and add two trivial equations $0=0$. The matrix would be $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
12.) a.) $A \cdot u=\binom{-8}{10}$.
b.) $a \cdot(3 u-2 v)=A \cdot\left(\begin{array}{lll}-1 & 15 & -4\end{array}\right)=\binom{-46}{68}$.
c.) This is the set of solutions to the homogeneous system. Row-reducing we get $A=\left(\begin{array}{ccc}4 & -2 & 3 \\ -1 & 5 & 2\end{array}\right) \sim\left(\begin{array}{ccc}1 & -5 & -2 \\ 0 & 18 & 11\end{array}\right) \sim\left(\begin{array}{ccc}1 & -5 & -2 \\ 0 & 1 & \frac{11}{18}\end{array}\right) \sim\left(\begin{array}{ccc}1 & 0 & \frac{19}{18} \\ 0 & 1 & \frac{11}{18}\end{array}\right)$. The general solution in parametric form is $\left(\begin{array}{c}-\frac{19}{19} x_{3} \\ -\frac{11}{18} x_{3} \\ x_{3}\end{array}\right)=x_{3}\left(\begin{array}{c}-\frac{19}{18} \\ -\frac{11}{18} \\ 1\end{array}\right)$. Since x_{3} is arbitrary, we could also write this as $x_{3}\left(\begin{array}{c}-19 \\ -11 \\ 18\end{array}\right)$. This is a line through the origin in \mathbb{R}^{3}.
13.) This is a homgeneous system, so it must be consistent. We solve by rowreduction: $A=\left(\begin{array}{cccc}1 & -1 & 1 & 1 \\ 2 & -1 & 4 & 3 \\ 1 & 0 & 3 & 1\end{array}\right) \sim\left(\begin{array}{cccc}1 & -1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 0\end{array}\right) \sim\left(\begin{array}{cccc}1 & -1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -1\end{array}\right) \sim$ $\left(\begin{array}{cccc}1 & -1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \sim\left(\begin{array}{cccc}1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$. We see that x_{3} is a free variable. The general solution is given by

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-3 x_{3} \\
-2 x_{3} \\
x_{3} \\
0
\end{array}\right)=x_{3}\left(\begin{array}{c}
-3 \\
-2 \\
1 \\
0
\end{array}\right)
$$

14.) a.) If we call the points $p=(2,-1,4)$ and $q=(3,1,6)$, then the line through the points is given by $p+t(q-p)$. This gives $\left(\begin{array}{c}2+t \\ -1+2 t \\ 4+2 t\end{array}\right)$. Writing this in parametric form we have $\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)+t\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$.
b.) Doing the same for the second pair of points gives the line $\left(\begin{array}{c}1+2 u \\ 2+u \\ -1+3 u\end{array}\right)$. To see if these lines intersect, we see if we can solve the system

$$
\begin{aligned}
2+t & =1+2 u \\
-1+2 t & =2+u \\
4+2 t & =-1+3 u
\end{aligned}
$$

The augmented matrix for this system is given by $\left(\begin{array}{ccc}1 & -2 & -1 \\ 2 & -1 & 3 \\ 2 & -3 & -5\end{array}\right)$. Row-reducing, this becomes $\left(\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 14\end{array}\right)$. So, this system is inconsistent, which means the two lines do not intersect.

