Math 2700 **Review For First Test.**

1.) Compute the reduced row-echelon form of the matrix $A = \begin{bmatrix} 1 & -2 & 2 & -1 \\ 1 & -2 & 2 & 0 \\ 1 & -2 & 3 & 2 \\ 2 & -4 & 5 & 1 \end{bmatrix}$

2.) Write the following set of equations as a matrix equation.

$$x + 3y + z = 2$$

$$-x + 2z = 1$$

$$-x + y + 2z = 4$$

- b.) Solve this set of equations.
- 3.) Suppose the augmented matrix of a system of equations is given by:

A =	[1	-1	0	0	-2	0	1]
	0	0	1	0	3	0	2
	0	0	0	1	2	0	3
	0	0	0	0	0	1	4

Write down the general solution to the system, expressing your answer in parametric form.

4.) For which values of *h* is the vector $\begin{bmatrix} 1\\2\\h \end{bmatrix}$ in the span of the vectors $v_1 = \begin{bmatrix} 2\\-1\\1 \end{bmatrix}$, $v_2 = \begin{bmatrix} -1\\1\\1 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 3\\-2\\0 \end{bmatrix}$? b.) Determine the span of the vectors v_1, v_2, v_3 .

5.) Determine if the vectors
$$v_1 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -1\\ 3\\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} -3\\ 4\\ 3 \end{bmatrix}$, $v_4 = \begin{bmatrix} 2\\ 1\\ 1 \end{bmatrix}$, span \mathbb{R}^3 .

b.) Are the vectors v_1, v_2, v_3, v_4 independent?

c.) Are the vectors v_1, v_2, v_4 independent?

6.) a.) Are the vectors
$$v_1 = \begin{pmatrix} -2\\1\\1\\-2 \end{pmatrix}, v_2 = \begin{pmatrix} 2\\-1\\-1\\2 \end{pmatrix}, v_3 = \begin{pmatrix} -3\\2\\2\\-3 \end{pmatrix}, v_4 = \begin{pmatrix} 5\\3\\4\\2 \end{pmatrix}$$

independent?

b.) Do these vectors span \mathbb{R}^4 ?

- 7.) a.) For which value(s) of k are the vectors $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\k\\3 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\3 \end{pmatrix}$ independent? b.) For which values(s) of k do these vectors span \mathbb{R}^3
- 8.) Determine the equation of the plane in \mathbb{R}^3 which is the span of the vectors $u = \begin{pmatrix} 1\\2\\-3 \end{pmatrix}$ and $v = \begin{pmatrix} -2\\1\\1 \end{pmatrix}$.
- 9.) Let $A = \begin{bmatrix} 2 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 3 & -6 \end{bmatrix}$ a.) Determine the set of vectors $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ such that $A \cdot \vec{x} = \vec{0}$.

b.) Determine the set of vectors \vec{b} such that the matrix equation $A \cdot x = \vec{b}$ has a solution.

10.) If A is an $m \times n$ matrix whose columns span \mathbb{R}^m , how many pivot entries does A have?

What can you say about the relative sizes of m and n?

11.) Find a 3×3 matrix A such that $A \cdot \vec{x} = \vec{0}$ precisely when $x_1 + x_2 + x_3 = 0$.

12.) If
$$A = \begin{pmatrix} 4 & -2 & 3 \\ -1 & 5 & 2 \end{pmatrix}$$
, $u = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$, $v = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}$, compute the following.
a.) $A \cdot u$.
b.) $A \cdot (3u - 2v)$.

c.) For which vectors $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$ do we have $A \cdot x = \vec{0}$? Describe this set geometrically.

13.) If
$$A = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 2 & -1 & 4 & 3 \\ 1 & 0 & 3 & 1 \end{pmatrix}$$
, find the general solution to the equation $A \cdot \vec{x} = \vec{0}$.

14.) a.) Give the equation of the line in \mathbb{R}^3 through the points (2, -1, 4) and (3, 1, 6), expressing your answer in parametric form.

b.) does this line intersect the line through the points (1, 2, -1) and (-1, 3, 2)?