Math 2700
 Review For First Test.

1.) Compute the reduced row-echelon form of the matrix $A=\left[\begin{array}{cccc}1 & -2 & 2 & -1 \\ 1 & -2 & 2 & 0 \\ 1 & -2 & 3 & 2 \\ 2 & -4 & 5 & 1\end{array}\right]$
2.) Write the following set of equations as a matrix equation.

$$
\begin{aligned}
x+3 y+z & =2 \\
-x+2 z & =1 \\
-x+y+2 z & =4
\end{aligned}
$$

b.) Solve this set of equations.
3.) Suppose the augmented matrix of a system of equations is given by:

$$
A=\left[\begin{array}{ccccccc}
1 & -1 & 0 & 0 & -2 & 0 & 1 \\
0 & 0 & 1 & 0 & 3 & 0 & 2 \\
0 & 0 & 0 & 1 & 2 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

Write down the general solution to the system, expressing your answer in parametric form.
4.) For which values of h is the vector $\left[\begin{array}{l}1 \\ 2 \\ h\end{array}\right]$ in the span of the vectors $v_{1}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$, $v_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$, and $v_{3}=\left[\begin{array}{c}3 \\ -2 \\ 0\end{array}\right]$?
b.) Determine the span of the vectors v_{1}, v_{2}, v_{3}.
5.) Determine if the vectors $v_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{c}-1 \\ 3 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{c}-3 \\ 4 \\ 3\end{array}\right], v_{4}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$, span \mathbb{R}^{3}.
b.) Are the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ independent?
c.) Are the vectors v_{1}, v_{2}, v_{4} independent?
6.) a.) Are the vectors $v_{1}=\left(\begin{array}{c}-2 \\ 1 \\ 1 \\ -2\end{array}\right), v_{2}=\left(\begin{array}{c}2 \\ -1 \\ -1 \\ 2\end{array}\right), v_{3}=\left(\begin{array}{c}-3 \\ 2 \\ 2 \\ -3\end{array}\right), v_{4}=\left(\begin{array}{l}5 \\ 3 \\ 4 \\ 2\end{array}\right)$ independent?
b.) Do these vectors span \mathbb{R}^{4} ?
7.) a.) For which value(s) of k are the vectors $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ k \\ 3\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$ independent?
b.) For which values(s) of k do these vectors span \mathbb{R}^{3} ?
8.) Determine the equation of the plane in \mathbb{R}^{3} which is the span of the vectors $u=\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)$ and $v=\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$.
9.) Let $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 3 & -6\end{array}\right]$
a.) Determine the set of vectors $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ such that $A \cdot \vec{x}=\overrightarrow{0}$.
b.) Determine the set of vectors \vec{b} such that the matrix equation $A \cdot x=\vec{b}$ has a solution.
10.) If A is an $m \times n$ matrix whose columns span \mathbb{R}^{m}, how many pivot entries does A have?

What can you say about the relative sizes of m and n ?
11.) Find a 3×3 matrix A such that $A \cdot \vec{x}=\overrightarrow{0}$ precisely when $x_{1}+x_{2}+x_{3}=0$.
12.) If $A=\left(\begin{array}{ccc}4 & -2 & 3 \\ -1 & 5 & 2\end{array}\right), u=\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right), v=\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right)$, compute the following.
a.) $A \cdot u$.
b.) $A \cdot(3 u-2 v)$.
c.) For which vectors $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3}$ do we have $A \cdot x=\overrightarrow{0}$? Describe this set geometrically.
13.) If $A=\left(\begin{array}{cccc}1 & -1 & 1 & 1 \\ 2 & -1 & 4 & 3 \\ 1 & 0 & 3 & 1\end{array}\right)$, find the general solution to the equation $A \cdot \vec{x}=\overrightarrow{0}$.
14.) a.) Give the equation of the line in \mathbb{R}^{3} through the points $(2,-1,4)$ and $(3,1,6)$, expressing your answer in parametric form.
b.) does this line intersect the line through the points $(1,2,-1)$ and $(-1,3,2)$?

