Solutions To Review For Final

1.) a.) Row-reducing the matrix we have that $A \sim\left(\begin{array}{cccccc}0 & 1 & 0 & -7 & 0 & 4 \\ 0 & 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$. A has 3 pivot positions, so $\operatorname{rank}(A)=3$. The dimension of the column space is equal to the rank, so $\operatorname{dim}(\operatorname{col}(A))=3$. Since $\operatorname{dim}(\operatorname{null}(A))+\operatorname{dim}(\operatorname{col}(A))=6$ (the number of columns of A), we have that $\operatorname{dim}(\operatorname{null}(A))=3$ as well.
b.) A basis for the column space can be obtained by taking the columns of A corresponding to the pivot positions. So, a basis for the column space is $\mathcal{B}=$ $\left\{\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 7 \\ 3 \\ 6\end{array}\right),\left(\begin{array}{l}-1 \\ -3 \\ -1 \\ -1\end{array}\right)\right\}$. From the reduced row-echelon form of A we read off the solution to the homogeneous system. The variables x_{1}, x_{4}, x_{6} are arbitrary, and the general solution is given by

$$
\left(\begin{array}{c}
x_{1} \\
7 x_{4}-4 x_{6} \\
-2 x_{4}+x_{6} \\
x_{4} \\
x_{6} \\
x_{6}
\end{array}\right)=x_{1}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
0 \\
7 \\
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{6}\left(\begin{array}{c}
0 \\
-4 \\
1 \\
0 \\
1 \\
1
\end{array}\right)
$$

So, a basis for the null space is $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 7 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ -4 \\ 1 \\ 0 \\ 1 \\ 1\end{array}\right)\right\}$.
2.) a.) The vector $\left(\begin{array}{l}2 \\ 1 \\ k\end{array}\right)$ is in $\operatorname{null}(A)$ iff $A=\left(\begin{array}{ccc}1 & 4 & 2 \\ 0 & 3 & 1 \\ 2 & -1 & 1\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ k\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. Multiplying these we get $\left(\begin{array}{c}6+2 k \\ 3+k \\ 3+k\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. We see that $k=-3$ satisfies these equations, and is the only value which does.
b.) The vector $\left(\begin{array}{l}2 \\ 1 \\ k\end{array}\right)$ is in $\operatorname{col}(A)$ iff the augmented system $\left(\begin{array}{ccc|c}1 & 4 & 2 & 2 \\ 0 & 3 & 1 & 1 \\ 2 & -1 & 1 & k\end{array}\right)$ is consistent. Row-reducing, this becomes $\left(\begin{array}{ccc|c}1 & 4 & 2 & 2 \\ 0 & 3 & 1 & 1 \\ 0 & 0 & 0 & -1+k\end{array}\right)$. This is consistent iff $k=1$. So, the vector is in the column space of A iff $k=1$.
3.) a.) Putting the vectors as columns into a matrix and row-reducing gives $A=$ $\left(\begin{array}{ccc}1 & 2 & 2 \\ 2 & 4 & 1 \\ -1 & -2 & 2 \\ 1 & 2 & 1\end{array}\right) \sim\left(\begin{array}{ccc}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. We take the vectors corresponding to the columns with pivot entries. Thus, a basis for $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$ is given by $\mathcal{B}=\left\{v_{1}, v_{3}\right\}$.
b.) We append the columns corresponding to the vectors $w_{1}, w_{2}, w_{3}, w_{4}$ to the matrix A and row-reduce. We have

$$
A_{2}=\left(\begin{array}{ccccccc}
1 & 2 & 2 & 0 & -1 & 1 & 1 \\
2 & 4 & 1 & 3 & 1 & 1 & -1 \\
-1 & -2 & 2 & -4 & -3 & 0 & 2 \\
1 & 2 & 1 & 1 & 0 & 1 & -3
\end{array}\right) \sim\left(\begin{array}{ccccccc}
1 & 2 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Thus, $\left\{v_{1}, v_{3}, w_{3}, w_{4}\right\}$ form a basis for \mathbb{R}^{4}.
4.) Pulling out the parameters we have that H is all vectors of the form

$$
z\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+x\left(\begin{array}{l}
2 \\
4 \\
0
\end{array}\right)+y\left(\begin{array}{c}
-1 \\
-1 \\
4
\end{array}\right)
$$

So, the vectors $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 2\end{array}\right)$, and $\left(\begin{array}{c}-1 \\ -1 \\ 4\end{array}\right)$ span the subspace H. However, they may not be independent. We put then into the columns of a matrix amd row-reduce. We have $\left(\begin{array}{ccc}1 & 2 & -1 \\ 2 & 4 & -1 \\ 0 & 0 & 4\end{array}\right) \sim\left(\begin{array}{ccc}1 & 2 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. So, we see that the vectors $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ -1 \\ 4\end{array}\right)$ are independent and span H, and so form a basis for H.
5.) a.) The vectors are independent iff every column of the corresponding matrix has a pivot. So, we form the matrix $A=\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & 1 & 0 \\ -1 & 2 & -5\end{array}\right)$. Row-reducing (to echelon form) we have $A \sim\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right)$. We see that not every column has a pivot, so the vectors are not independent. Note that A is square matrix, so we can also check independence by computing the determinant. We see that $\operatorname{det}(A)=0$, which also says the vectors are dependent. The vectors span iff every row has a pivot. This is not the case here, so these vectors do not span \mathbb{R}^{3}. Note that for n vectors in \mathbb{R}^{n} (i.e., a square matrix), the vectors are independent iff they span \mathbb{R}^{n}. To be a basis they need to span and be independent. So these vectors are not a basis.
b.) Putting u, v and x as columns into a matrix we have the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & k \\
2 & 1 & 1 \\
-1 & 2 & k
\end{array}\right)
$$

Row-reducing we have $A \sim\left(\begin{array}{ccc}1 & 1 & k \\ 0 & 1 & -1+2 k \\ 0 & 0 & 3-4 k\end{array}\right)$. So, the vectors span \mathbb{R}^{3} iff (i.e., every row has a pivot) $k \neq \frac{3}{4}$.
6.) a.) For $A=\left(\begin{array}{ccc}2 & 1 & -3 \\ 0 & 1 & 4 \\ -2 & 1 & -2\end{array}\right)$ we have, expanding along the third column, $\operatorname{det}(A)=(-3) \operatorname{det}\left(\begin{array}{cc}0 & 1 \\ -2 & 1\end{array}\right)-(4) \operatorname{det}\left(\begin{array}{cc}2 & 1 \\ -2 & 1\end{array}\right)+(-2) \operatorname{det}\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)=-6-16-4=$ -26 .
b.) The cofactor matrix of A is given by $C=\left(\begin{array}{ccc}-6 & -8 & 2 \\ -1 & -10 & -4 \\ 7 & -8 & 2\end{array}\right)$. So,

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} C^{T}=-\frac{1}{26}\left(\begin{array}{ccc}
-6 & -1 & 7 \\
-8 & -10 & -8 \\
2 & -4 & 2
\end{array}\right)=\frac{1}{26}\left(\begin{array}{ccc}
6 & 1 & -7 \\
8 & 10 & 8 \\
-2 & 4 & -2
\end{array}\right) .
$$

7.) From the adjugate formula for the inverse we have $A_{(3,2)}^{-1}=\frac{1}{\operatorname{det}(A)} C_{(2,3)}$, where C is the cofactor matrix for A. We have $C_{(2,3)}=(-1) \operatorname{det}\left(\begin{array}{ccc}0 & 1 & 2 \\ 4 & 1 & 3 \\ 2 & -2 & 1\end{array}\right)=$ $(-1)[(-1)(4-6)+(2)(-8-2)]=18$. So, $A_{(3,2)}^{-1}=-\frac{18}{40}=-\frac{9}{20}$.
8.) We have:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cccc}
2 & -1 & 3 & 6 \\
4 & -1 & 5 & 10 \\
1 & 3 & -2 & -3 \\
8 & -4 & 6 & 12
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cccc}
2 & -1 & 3 & 6 \\
0 & 1 & -1 & -2 \\
0 & \frac{7}{2} & -\frac{7}{2} & -6 \\
0 & 0 & -6 & -12
\end{array}\right)\left(-2 R_{1}+R_{2},-\frac{1}{2} R_{1}+R_{3},-4 R_{1}+R_{4}\right) \\
& =(2) \operatorname{det}\left(\begin{array}{ccc}
1 & -1 & -2 \\
\frac{7}{2} & -\frac{7}{2} & -6 \\
0 & -6 & -12
\end{array}\right) \text { (cofactor along first column) } \\
& =(-12) \operatorname{det}\left(\begin{array}{ccc}
1 & -1 & -2 \\
\frac{7}{2} & -\frac{7}{2} & -6 \\
0 & 1 & 2
\end{array}\right) \text { (linearity along third row) } \\
& =(-12) \operatorname{det}\left(\begin{array}{ccc}
1 & -1 & -2 \\
0 & 0 & 1 \\
0 & 1 & 2
\end{array}\right)\left(-\frac{7}{2} R_{1}+R_{2}\right) \\
& =(12) \operatorname{det}\left(\begin{array}{ccc}
1 & -1 & -2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)\left(R_{2} \leftrightarrow R_{3}\right) \\
& =12 .
\end{aligned}
$$

9.) a.) If we break the quadrilateral into two triangles by drawing a line from p to r, then the area of $\triangle p q r=\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{cc}1 & 6 \\ 10 & 9\end{array}\right)\right|=26$. The area of $\triangle r p s=$ $\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{cc}-6 & -2 \\ -8 & -11\end{array}\right)\right|=25$. So, the total area of the quadrilateral is $26+25=51$.
b.) The volume of the tetrahedron is $\frac{1}{6}$ the volume of the parallelpiped. Using p as the reference point, the volume is $\frac{1}{6}\left|\operatorname{det}\left(\begin{array}{ccc}1 & 3 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 5\end{array}\right)\right|=\frac{1}{6}|-10|=\frac{5}{3}$.
10.) The area of the annulus between the two circles is given by $A=\pi\left(2^{2}-1^{2}\right)=3 \pi$. The standard matrix corresponding to T is $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)$. The transformation T changes area by a factor of $|\operatorname{det}(A)|=|3|=3$. So, the transformed region has area $(3)(3 \pi)=9 \pi$.
11.) λ is an eigenvalue of A iff $\operatorname{det}(A-\lambda I)=0$. For $\lambda=3$ we have $A-\lambda I=$ $\left(\begin{array}{ccc}2 & -1 & 3 \\ 1 & 2 & 5 \\ 2 & -6 & -4)\end{array}\right)$. We have $A-e I \sim\left(\begin{array}{ccc}1 & 2 & 5 \\ 0 & -5 & -7 \\ 0 & -10 & -14\end{array}\right) \sim\left(\begin{array}{ccc}1 & 2 & 5 \\ 0 & 1 & \frac{7}{5} \\ 0 & 0 & 0\end{array}\right)$. Since we have non-trivial solutions to the homogeneous (i.e., not every column has a
pivot) we see that 3 is an eigenvalue for the matrix. Continuing to reduced rowechelon form we have $A-3 I \sim\left(\begin{array}{ccc}1 & 0 & \frac{11}{5} \\ 0 & 1 & \frac{7}{5} \\ 0 & 0 & 0\end{array}\right)$. The general solution is $\left(\begin{array}{c}-\frac{11}{5} x_{3} \\ -\frac{7}{5} x_{3} \\ x_{3}\end{array}\right)=$ $x_{3}\left(\begin{array}{c}-\frac{11}{5} \\ -\frac{7}{5} \\ 1\end{array}\right)$. So, we may take $\left(\begin{array}{c}-11 \\ -7 \\ 5\end{array}\right)$ as an eigenvector. Notice the eigenspace here has dimension 1 .
12.) To be an eigenvector we must have $\left(\begin{array}{ccc}-3 & 1 & -1 \\ 3 & 2 & 1 \\ 5 & -4 & 1\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ k\end{array}\right)=\left(\begin{array}{c}-1-k \\ 7+k \\ -3+k\end{array}\right)$ is equal to $\lambda\left(\begin{array}{l}1 \\ 2 \\ k\end{array}\right)$ for some (eigenvalue) λ. We must have $7+k=2(-1-k)$ and so $k=-3$. Plugging in $k=-3$ we have $\left(\begin{array}{ccc}-3 & 1 & -1 \\ 3 & 2 & 1 \\ 5 & -4 & 1\end{array}\right)\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)=\left(\begin{array}{c}2 \\ 4 \\ -6\end{array}\right)$. We see that for $k=-3$ the vector is an eigenvector (with eigenvalue 2).
13.) The eigenvalues are $\lambda=-1$ and $\lambda=2$. The eigenspace for $\lambda=2$ must have dimension 1. The eigenspace for $\lambda=-1$ may have dimension 1 or 2 (we must row-reduce to determine).

For $\lambda=-1$ we have $A-\lambda I=\left(\begin{array}{ccc}9 & -3 & -3 \\ -9 & 3 & 3 \\ 27 & -9 & -9\end{array}\right) \sim\left(\begin{array}{ccc}1 & -\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. The general solution is $\left(\begin{array}{c}\frac{1}{3} x_{2}+\frac{1}{3} x_{3} \\ x_{2} \\ x_{3}\end{array}\right)=x_{2}\left(\begin{array}{c}\frac{1}{3} \\ 1 \\ 0\end{array}\right)+x_{3}\left(\begin{array}{c}\frac{1}{3} \\ 0 \\ 1\end{array}\right)$. So, the eigenspace for $\lambda=-1$ has dimendion 2. We may take as a basis $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)\right\}$. At this point we know the matrix can be diagonalized, as eaqch eigenspace has the maximum possible dimension.

$$
\text { For } \lambda=2 \text { we have } A-2 I=\left(\begin{array}{ccc}
6 & -3 & -3 \\
-9 & 0 & 3 \\
27 & -9 & -12
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & -\frac{9}{2} & -\frac{3}{2} \\
0 & -9 & -3
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -\frac{1}{3} \\
0 & 1 & \frac{1}{3} \\
0 & 0 & 0
\end{array}\right) \text {. }
$$

The general solution is $\left(\begin{array}{c}\frac{1}{3} x_{3} \\ -\frac{1}{3} x_{3} \\ x_{3}\end{array}\right)=x_{3}\left(\begin{array}{c}\frac{1}{3} \\ -\frac{1}{3} \\ 1\end{array}\right)$. We can take as a basis for the eigenspace $\mathcal{B}=\left\{\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)\right\}$.
14.) The characteristic polynomial of A is $p(\lambda)=(5-\lambda)(-4-\lambda)-(-18)=$ $\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)$. So, the eigenvalues are $\lambda=-1$ and $\lambda=2$. Since each has multiplicity 1 , the matrix can be diagonalized. We find bases for the eigenspaces.

For $\lambda=2$ we have $A-\lambda I=\left(\begin{array}{cc}3 & -6 \\ 3 & -6\end{array}\right) \sim\left(\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right)$. The general solution is $\binom{2 x_{2}}{x_{2}}=x_{2}\binom{2}{1}$. So, a basis for this eigenspace is the single vector $\binom{2}{1}$.

A similar computation shows that for $\lambda=-1$ a basis consists of the single vector $\binom{1}{1}$.

Let $P=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. So, $P^{-1}=\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)$. Then $P^{-1} A P=D=\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)$.
15.) a.) The matrix is upper-triangular with eigenvalues $\lambda=2,2,3$. The eigenspace for $\lambda=3$ must be 1-dimensional, so we only need check the eigenspace for $\lambda=2$. We have

$$
A-2 I=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

This matrix has 2 pivots, so the eigenspace has dimension 1 . Therefore the matrix A is not diagonalizable.
b.) This matrix is also upper-triangular with characteristic polynomial $p(\lambda)=$ $-(\lambda-2)^{2}(\lambda-1)$. The eigenvalues are $\lambda=2$ (with multiplicity 2) and $\lambda=1$ (with multiplicity 1). We only need check $\lambda=2$. We have $A-2 I=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & -2 \\ 0 & 0 & -1\end{array}\right) \sim$ $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. We have two rows of zeros, so two columns without pivots, so the dimension of the eigenspace for $\lambda=2$ is 2 . So, the matrix can be diagonalized.

A basis for the $\lambda=2$ eigenspace is $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$. A basis for $\lambda=1$ eigenspace is $\mathcal{B}=\left\{\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)\right\}$. So, the matrix $P=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$ will diagonalize A.
That is $P^{-1} A P=D=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$.

