
Solutions To Review For Final

1.) a.) Row-reducing the matrix we have that A ∼


0 1 0 −7 0 4
0 0 1 2 0 −1
0 0 0 0 1 −1
0 0 0 0 0 0

. A

has 3 pivot positions, so rank(A) = 3. The dimension of the column space is equal
to the rank, so dim(col(A)) = 3. Since dim(null(A))+dim(col(A)) = 6 (the number
of columns of A), we have that dim(null(A)) = 3 as well.

b.) A basis for the column space can be obtained by taking the columns of
A corresponding to the pivot positions. So, a basis for the column space is B =

{


1
2
1
2

 ,


2
7
3
6

 ,


−1
−3
−1
−1

}. From the reduced row-echelon form of A we read off the

solution to the homogeneous system. The variables x1, x4, x6 are arbitrary, and the
general solution is given by


x1

7x4 − 4x6
−2x4 + x6

x4
x6
x6

 = x1


1
0
0
0
0
0

+ x4


0
7
−2
1
0
0

+ x6


0
−4
1
0
1
1

 .

So, a basis for the null space is B = {


1
0
0
0
0
0

 ,


0
7
−2
1
0
0

 ,


0
−4
1
0
1
1

}.

2.) a.) The vector

2
1
k

 is in null(A) iff A =

1 4 2
0 3 1
2 −1 1

 ·
2

1
k

 =

0
0
0

.

Multiplying these we get

6 + 2k
3 + k
3 + k

 =

0
0
0

. We see that k = −3 satisfies these

equations, and is the only value which does.

b.) The vector

2
1
k

 is in col(A) iff the augmented system

 1 4 2 2
0 3 1 1
2 −1 1 k

 is

consistent. Row-reducing, this becomes

 1 4 2 2
0 3 1 1
0 0 0 −1 + k

. This is consistent

iff k = 1. So, the vector is in the column space of A iff k = 1.



3.) a.) Putting the vectors as columns into a matrix and row-reducing gives A =
1 2 2
2 4 1
−1 −2 2
1 2 1

 ∼


1 2 0
0 0 1
0 0 0
0 0 0

. We take the vectors corresponding to the columns

with pivot entries. Thus, a basis for span{v1, v2, v3} is given by B = {v1, v3}.
b.) We append the columns corresponding to the vectors w1, w2, w3, w4 to the

matrix A and row-reduce. We have

A2 =


1 2 2 0 −1 1 1
2 4 1 3 1 1 −1
−1 −2 2 −4 −3 0 2
1 2 1 1 0 1 −3

 ∼


1 2 0 2 1 0 0
0 0 1 −1 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


Thus, {v1, v3, w3, w4} form a basis for R4.

4.) Pulling out the parameters we have that H is all vectors of the form

z

1
2
0

+ x

2
4
0

+ y

−1
−1
4

 .

So, the vectors

1
2
0

,

2
4
2

, and

−1
−1
4

 span the subspace H. However, they may

not be independent. We put then into the columns of a matrix amd row-reduce.

We have

1 2 −1
2 4 −1
0 0 4

 ∼
1 2 −1

0 0 1
0 0 0

. So, we see that the vectors

1
2
0

 and−1
−1
4

 are independent and span H, and so form a basis for H.

5.) a.) The vectors are independent iff every column of the corresponding matrix

has a pivot. So, we form the matrix A =

 1 1 −1
2 1 0
−1 2 −5

. Row-reducing (to echelon

form) we have A ∼

1 1 −1
0 1 −2
0 0 0

. We see that not every column has a pivot, so

the vectors are not independent. Note that A is square matrix, so we can also check
independence by computing the determinant. We see that det(A) = 0, which also
says the vectors are dependent. The vectors span iff every row has a pivot. This is
not the case here, so these vectors do not span R3. Note that for n vectors in Rn

(i.e., a square matrix), the vectors are independent iff they span Rn. To be a basis
they need to span and be independent. So these vectors are not a basis.



b.) Putting u, v and x as columns into a matrix we have the matrix

A =

 1 1 k
2 1 1
−1 2 k

 .

Row-reducing we have A ∼

1 1 k
0 1 −1 + 2k
0 0 3− 4k

. So, the vectors span R3 iff (i.e.,

every row has a pivot) k 6= 3
4 .

6.) a.) For A =

 2 1 −3
0 1 4
−2 1 −2

 we have, expanding along the third column,

det(A) = (−3) det

(
0 1
−2 1

)
− (4) det

(
2 1
−2 1

)
+(−2) det

(
2 1
0 1

)
= −6−16−4 =

−26.

b.) The cofactor matrix of A is given by C =

−6 −8 2
−1 −10 −4
7 −8 2

. So,

A−1 =
1

det(A)
CT = − 1

26

−6 −1 7
−8 −10 −8
2 −4 2

 =
1

26

 6 1 −7
8 10 8
−2 4 −2

 .

7.) From the adjugate formula for the inverse we have A−1
(3,2) = 1

det(A)C(2,3),

where C is the cofactor matrix for A. We have C(2,3) = (−1) det

0 1 2
4 1 3
2 −2 1

 =

(−1)[(−1)(4− 6) + (2)(−8− 2)] = 18. So, A−1
(3,2) = − 18

40 = − 9
20 .



8.) We have:

det


2 −1 3 6
4 −1 5 10
1 3 −2 −3
8 −4 6 12

 = det


2 −1 3 6
0 1 −1 −2
0 7

2 − 7
2 −6

0 0 −6 −12

 (−2R1 +R2,−
1

2
R1 +R3,−4R1 +R4)

= (2) det

1 −1 −2
7
2 − 7

2 −6
0 −6 −12

 (cofactor along first column)

= (−12) det

1 −1 −2
7
2 − 7

2 −6
0 1 2

 (linearity along third row)

= (−12) det

1 −1 −2
0 0 1
0 1 2

 (−7

2
R1 +R2)

= (12) det

1 −1 −2
0 1 2
0 0 1

 (R2 ↔ R3)

= 12.

9.) a.) If we break the quadrilateral into two triangles by drawing a line from

p to r, then the area of 4pqr = 1
2 |det

(
1 6
10 9

)
| = 26. The area of 4rps =

1
2 |det

(
−6 −2
−8 −11

)
| = 25. So, the total area of the quadrilateral is 26 + 25 = 51.

b.) The volume of the tetrahedron is 1
6 the volume of the parallelpiped. Using

p as the reference point, the volume is 1
6 |det

1 3 −1
0 −2 1
1 1 5

 | = 1
6 | − 10| = 5

3 .

10.) The area of the annulus between the two circles is given by A = π(22−12) = 3π.

The standard matrix corresponding to T is A =

(
1 2
−1 1

)
. The transformation T

changes area by a factor of |det(A)| = |3| = 3. So, the transformed region has area
(3)(3π) = 9π.

11.) λ is an eigenvalue of A iff det(A − λI) = 0. For λ = 3 we have A − λI =2 −1 3
1 2 5
2 −6 −4)

. We have A − eI ∼

1 2 5
0 −5 −7
0 −10 −14

 ∼
1 2 5

0 1 7
5

0 0 0

. Since

we have non-trivial solutions to the homogeneous (i.e., not every column has a



pivot) we see that 3 is an eigenvalue for the matrix. Continuing to reduced row-

echelon form we have A− 3I ∼

1 0 11
5

0 1 7
5

0 0 0

. The general solution is

− 11
5 x3
− 7

5x3
x3

 =

x3

− 11
5
− 7

5
1

. So, we may take

−11
−7
5

 as an eigenvector. Notice the eigenspace here

has dimension 1.

12.) To be an eigenvector we must have

−3 1 −1
3 2 1
5 −4 1

1
2
k

 =

−1− k
7 + k
−3 + k

 is

equal to λ

1
2
k

 for some (eigenvalue) λ. We must have 7 + k = 2(−1− k) and so

k = −3. Plugging in k = −3 we have

−3 1 −1
3 2 1
5 −4 1

 1
2
−3

 =

 2
4
−6

. We see

that for k = −3 the vector is an eigenvector (with eigenvalue 2).

13.) The eigenvalues are λ = −1 and λ = 2. The eigenspace for λ = 2 must have
dimension 1. The eigenspace for λ = −1 may have dimension 1 or 2 (we must
row-reduce to determine).

For λ = −1 we have A−λI =

 9 −3 −3
−9 3 3
27 −9 −9

 ∼
1 − 1

3 − 1
3

0 0 0
0 0 0

. The general

solution is

 1
3x2 + 1

3x3
x2
x3

 = x2

 1
3
1
0

+x3

 1
3
0
1

. So, the eigenspace for λ = −1 has

dimendion 2. We may take as a basis B = {

1
3
0

 ,

1
0
3

}. At this point we know

the matrix can be diagonalized, as eaqch eigenspace has the maximum possible
dimension.

For λ = 2 we haveA−2I =

 6 −3 −3
−9 0 3
27 −9 −12

 ∼
1 − 1

2 − 1
2

0 − 9
2 − 3

2
0 −9 −3

 ∼
1 0 − 1

3
0 1 1

3
0 0 0

.

The general solution is

 1
3x3
− 1

3x3
x3

 = x3

 1
3
− 1

3
1

. We can take as a basis for the

eigenspace B = {

 1
−1
3

}.



14.) The characteristic polynomial of A is p(λ) = (5 − λ)(−4 − λ) − (−18) =
λ2 − λ − 2 = (λ − 2)(λ + 1). So, the eigenvalues are λ = −1 and λ = 2. Since
each has multiplicity 1, the matrix can be diagonalized. We find bases for the
eigenspaces.

For λ = 2 we have A − λI =

(
3 −6
3 −6

)
∼
(

1 −2
0 0

)
. The general solution is(

2x2
x2

)
= x2

(
2
1

)
. So, a basis for this eigenspace is the single vector

(
2
1

)
.

A similar computation shows that for λ = −1 a basis consists of the single vector(
1
1

)
.

Let P =

(
2 1
1 1

)
. So, P−1 =

(
1 −1
−1 2

)
. Then P−1AP = D =

(
2 0
0 −1

)
.

15.) a.) The matrix is upper-triangular with eigenvalues λ = 2, 2, 3. The eigenspace
for λ = 3 must be 1-dimensional, so we only need check the eigenspace for λ = 2.
We have

A− 2I =

0 1 1
0 0 −1
0 0 1

 ∼
0 1 0

0 0 1
0 0 0


This matrix has 2 pivots, so the eigenspace has dimension 1. Therefore the matrix
A is not diagonalizable.

b.) This matrix is also upper-triangular with characteristic polynomial p(λ) =
−(λ− 2)2(λ− 1). The eigenvalues are λ = 2 (with multiplicity 2) and λ = 1 (with

multiplicity 1). We only need check λ = 2. We have A − 2I =

0 0 1
0 0 −2
0 0 −1

 ∼0 0 1
0 0 0
0 0 0

. We have two rows of zeros, so two columns without pivots, so the

dimension of the eigenspace for λ = 2 is 2. So, the matrix can be diagonalized.

A basis for the λ = 2 eigenspace is B = {

1
0
0

 ,

0
1
0

}. A basis for λ = 1

eigenspace is B = {

−1
2
1

}. So, the matrix P =

1 0 −1
0 1 2
0 0 1

 will diagonalize A.

That is P−1AP = D =

2 0 0
0 2 0
0 0 1

.


