Solutions To Review For Final

010 -7 0 4
. . 001 2 0 -1
1.) a.) Row-reducing the matrix we have that A ~ 000 0 1 -1l A

000 0 0 O
has 3 pivot positions, so rank(A) = 3. The dimension of the column space is equal
to the rank, so dim(col(A4)) = 3. Since dim(null(A))+dim(col(A)) = 6 (the number
of columns of A), we have that dim(null(4)) = 3 as well.
b.) A basis for the column space can be obtained by taking the columns of

A corresponding to the pivot positions. So, a basis for the column space is B =
1 2 -1

{ ? , ; , :? }. From the reduced row-echelon form of A we read off the
2 6 -1

solution to the homogeneous system. The variables 1, x4, g are arbitrary, and the
general solution is given by

I 1 0 0
Txy — dxg 0 7 —4
Te 0 0 1
T 0 0 1
1 0 0
0 7 —4
. . 0 -2 1
So, a basis for the null space is B = { ol 1110 }
0 0 1
0 0 1
2 1 4 2 2 0
2.) a.) The vector | 1] is in null(4) if A = (0 3 1 1] =10
k 2 -1 1 k 0
6+ 2k 0
Multiplying these we get | 3+k | = | 0 |. We see that k = —3 satisfies these
3+k 0
equations, and is the only value which does.
2 1 4 2|2
b.) The vector | 1 | isin col(A) iff the augmented system [ 0 3 1|1 | is
k 2 -1 11k
1 4 2 2
consistent. Row-reducing, this becomes | 0 3 1 1 . This is consistent
0 0 0f|-1+k

iff k = 1. So, the vector is in the column space of A iff k = 1.



3.) a.) Putting the vectors as columns into a matrix and row-reducing gives A =
1 2 2 1 2 0

2 4 1 0 0 1 .
1 —2 2|1~lo o ol We take the vectors corresponding to the columns
1 2 1 0 0 0

with pivot entries. Thus, a basis for span{vy, v, vs} is given by B = {v1,v3}.
b.) We append the columns corresponding to the vectors wy, we, w3, wy to the
matrix A and row-reduce. We have

1 2 2 0 -1 1 1 1 2 0 2 1 00
Ay — 2 4 1 3 1 -1 (001 -1 =100
-1 -2 2 -4 -3 0 2 0 00 O 0 1 0
1 2 1 1 0 1 -3 0 00 O 0 01

Thus, {v1,vs,ws,ws} form a basis for R%.

4.) Pulling out the parameters we have that H is all vectors of the form

1 2 -1
z|2|+x 4] +y| -1
0 0 4
1 2 -1
So, the vectors | 2|, [ 4], and | —1 | span the subspace H. However, they may
0 2 4
not be independent. We put then into the columns of a matrix amd row-reduce.
1 2 -1 1 2 -1 1
We have |2 4 —1] ~ [0 O 1 |. So, we see that the vectors | 2 | and
0 0 4 0 0 O 0

-1
—1 | are independent and span H, and so form a basis for H.
4

5.) a.) The vectors are independent iff every column of the corresponding matrix

1 1 -1
has a pivot. So, we form the matrix A= | 2 1 0 |. Row-reducing (to echelon
-1 2 =5
1 1 -1
form) we have A ~ |0 1 —2]. We see that not every column has a pivot, so
0 0 O

the vectors are not independent. Note that A is square matrix, so we can also check
independence by computing the determinant. We see that det(A) = 0, which also
says the vectors are dependent. The vectors span iff every row has a pivot. This is
not the case here, so these vectors do not span R3. Note that for n vectors in R®
(i.e., a square matrix), the vectors are independent iff they span R™. To be a basis
they need to span and be independent. So these vectors are not a basis.



b.) Putting u,v and x as columns into a matrix we have the matrix

1 1 k
A=2 1 1
-1 2 &k
1 1 k
Row-reducing we have A ~ [0 1 —1+2k|. So, the vectors span R? iff (i.e.,
0 0 3—4k
every row has a pivot) k # 3.
2 1 -3
6.) a) For A= 10 1 4 | we have, expanding along the third column,
-2 1 =2
0 1 2 1 2 1
det(A) = (—3) det (_2 1) —(4) det (_2 1) +(—2) det (0 1) =-—6—-16—4 =
—26.
-6 -8 2
b.) The cofactor matrix of A is given by C = | —1 —10 —4]. So,
7T -8 2
-6 -1 7 6 1 -7
1 1 1
-1 T
= = -8 —10 -8| = 8 10 8
det(A) 26\ o9 _4 9 26\ _9 4 _o
7.) From the adjugate formula for the inverse we have AEQ) = mC(g,g,),
0o 1 2
where C is the cofactor matrix for A. We have C(y3) = (=1)det |4 1 3| =
2 =2 1

(—D[(=1)(4— 6) + (2)(—8 — 2)] = 18. So, AL =18 - _ 29

(3,2) — 40 — " 20"



8.) We have:

2 -1 3 6 2 -1 3 6
4 -1 5 10 o 1 -1 =2 1
det 1 3 9 _3 = det, 0 % 7% 6 (—2R1 +R2,—§R1+R3,—4R1 +R4)
8 —4 6 12 0 0 -6 -—12
1 -1 -2
=(2)det [Z —I —6 | (cofactor along first column)
0 -6 -—12
1 -1 -2
=(—12)det [ 2 —I —6 | (linearity along third row)
0o 1 2
1 -1 =2 7
= (—12) det |0 O 1 (—§R1 + RQ)
0 1 2
1 -1 =2
=(12)det [0 1 2 | (R2 < R3)
0 O 1
=12.

9.) a.) If we break the quadrilateral into two triangles by drawing a line from

L 6)| = 26. The area of Arps =

_ 1
p to r, then the area of Apgr = 5|det <10 9

%| det (_6 _121> | = 25. So, the total area of the quadrilateral is 26 4+ 25 = 51.

8
b.) The volume of the tetrahedron is % the volume of the parallelpiped. Using
1 3 -1
p as the reference point, the volume is ¢|det [0 —2 1 ||=24]—10]= 2.
1 1

10.) The area of the annulus between the two circles is given by A = 7(22—12) = 3.

The standard matrix corresponding to T is A = _11 ? . The transformation T
changes area by a factor of |det(A)| = |3] = 3. So, the transformed region has area

(3)(37) = 9.

11.) X is an eigenvalue of A iff det(A — A\I) = 0. For A = 3 we have A — A\ =

2 -1 3 1 2 5 1 25
1 2 5 |. Wehave A—el ~ |0 -5 7] ~ |0 1 I|. Since
2 —6 —4) 0 —10 —14 00 0

we have non-trivial solutions to the homogeneous (i.e., not every column has a



pivot) we see that 3 is an eigenvalue for the matrix. Continuing to reduced row-

1 0 i — il
echelon form we have A—3I ~ |0 1 g . The general solution is | —zz3 | =
0 0 O T3
—L?l —11
3 | —% |. So, we may take | —7 | as an eigenvector. Notice the eigenspace here
1 5
has dimension 1.
-3 1 -1 1 -1-k
12.) To be an eigenvector we must have [ 3 2 1 2l =\ 7+k | is
5 —4 1 k -3+k
1
equal to A | 2 | for some (eigenvalue) A\. We must have 7+ k = 2(—1 — k) and so
k
-3 1 -1 1 2
k = —3. Plugging in k = —3 we have | 3 2 1 2 1 =14 |. Wesee
5 —4 1 -3 —6
that for £ = —3 the vector is an eigenvector (with eigenvalue 2).

13.) The eigenvalues are A = —1 and A = 2. The eigenspace for A = 2 must have
dimension 1. The eigenspace for A = —1 may have dimension 1 or 2 (we must
row-reduce to determine).

9 -3 -3 1 —% —%
For A\= —1wehave A—A[ = -9 3 3 1~10 O 0 |. The general
27 -9 -9 0 0 0
et (N[
solution is Ta =z | 1] 423 0]. So, the eigenspace for A = —1 has
I3 0 1
1 1
dimendion 2. We may take as a basis B={[3],|0]}. At this point we know
0 3

the matrix can be diagonalized, as eaqch eigenspace has the maximum possible
dimension.

6 -3 -3 1 —é —é 10 -4
For A\=2wehave A—2I = | -9 0 3 ~10 -5 —5]~(0 1 %
27 -9 —12 0 -9 3 0 0 O
1. 1
33 3
The general solution is —%l‘g = 3 —% . We can take as a basis for the
I3 1

1
eigenspace B={[| -1 | }.
3



14.) The characteristic polynomial of A is p(A) = (5 — A\)(—4 — \) — (—18) =
A2 —X—2=(A=2)(A+1). So, the eigenvalues are A\ = —1 and A\ = 2. Since
each has multiplicity 1, the matrix can be diagonalized. We find bases for the
eigenspaces.

For A = 2 we have A — A\ = <§ :g) ~ <(1) _02> The general solution is

2
X9 1
A similar computation shows that for A = —1 a basis consists of the single vector
1

LetP=(2 1>.So,P_1:<1 1).ThenP—1AP:D:<2 0).

2 2 . . . .
( xQ) =T9 <1> So, a basis for this eigenspace is the single vector

11 -1 2 0 -1

15.) a.) The matrix is upper-triangular with eigenvalues A = 2,2, 3. The eigenspace
for A = 3 must be 1-dimensional, so we only need check the eigenspace for A = 2.

We have
1

0 1 0 1
0 0 -1|~10 O
0 0 1 0 0 0

This matrix has 2 pivots, so the eigenspace has dimension 1. Therefore the matrix
A is not diagonalizable.

0
A—-2]= 1

b.) This matrix is also upper-triangular with characteristic polynomial p(\) =
—(A=2)2(A —1). The eigenvalues are A = 2 (with multiplicity 2) and A = 1 (with

0 0 1
multiplicity 1). We only need check A = 2. We have A —2I = [0 0 —-2| ~
0 0 -1

0 0 1

0 0 0]. We have two rows of zeros, so two columns without pivots, so the
0 0 0

dimension of the eigenspace for A = 2 is 2. So, the matrix can be diagonalized.

1 0
A basis for the A = 2 eigenspace is B = {|0|,[1]}. A basis for A =1
0 0
—1 1 0 —1
eigenspace is B={| 2 |}. So, the matrix P= [0 1 2 | will diagonalize A.
1 0 0 1

That is P~1AP =D =

S O N
O N O
—_ o O



