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Abstract. We verify a conjecture of Vershik by showing that Hall’s universal

countable locally finite group can be embedded as a dense subgroup in the

isometry group of the Urysohn space and in the automorphism group of the

random graph. In fact, we show the same for all automorphism groups of

known infinite ultraextensive spaces. These include, in addition, the isometry

group of the rational Urysohn space, the isometry group of the ultrametric

Urysohn spaces, and the automorphism group of the universal Kn-free graph

for all n ≥ 3. Furthermore, we show that finite group actions on finite metric

spaces or some finite relational structures form a Fräıssé class, where Hall’s

group appears as the acting group of the Fräıssé limit. We also embed con-

tinuum many non-isomorphic countable universal locally finite groups into the

isometry groups of various Urysohn spaces, and show that all dense countable

subgroups of these groups are mixed identity free (MIF). Finally, we give a

characterization of the isomorphism type of the isometry group of the Urysohn

∆-metric spaces in terms of the distance value set ∆.

1. Introduction

The concepts of ultraextensive metric spaces and ultraextensive relational struc-

tures were introduced in [6] and [7], respectively, to capture some common prop-

erties possessed by many Fräıssé limits. One of the main properties of an ultra-

extensive space is that its automorphism group contains a countable dense locally

finite subgroup. Known examples of ultraextensive spaces include the universal

Urysohn space U, the universal rational Urysohn space QU, the universal ultra-

metric Urysohn spaces, the random graph R, and the universal Kn-free graphs

Hn (also known as Henson graphs). That the automorphism groups (or isometry

groups) of these spaces contain a countable dense locally finite subgroup was proved

in Bhattacharjee–Macpherson [1], Pestov [21], Rosendal [23], and Siniora–Solecki

[29]. In this paper we consider a concept of universal ∆-metric spaces that unifies

the study of the Urysohn space U, the rational Urysohn space QU and the random

graph R. Given a distance value set ∆, the universal ∆-metric space U∆ is an

ultraextensive metric space.
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Vershik [32] conjectured that Iso(U), the isometry group of the Urysohn space,

contains Hall’s universal countable locally finite group H as a dense subgroup. He

made the same conjecture for the automorphism group of the countable random

graph. Our first main result of this paper is to confirm Vershik’s conjecture. In

fact, we establish this for all known examples of infinite ultraextensive spaces.

Theorem 1.1. The following groups contain Hall’s universal countable locally finite

group H as a dense subgroup:

(1) Iso(U), the isometry group of the Urysohn space;

(2) Iso(QU), the isometry group of the rational Urysohn space;

(3) Iso(U∆), the isometry group of the universal ∆-metric space, for any dis-

tance value set ∆;

(4) Isometry groups of ultrametric Urysohn spaces;

(5) Aut(R), the automorphism group of the random graph; and

(6) Aut(Hn), the automorphism group of the universal Kn-free graph, for any

n ≥ 3.

In fact, we show that H appears canonically as a dense subgroup in these auto-

morphism groups via the following theorems.

Theorem 1.2. Let K∆ be the class of all structures (X,G) such that X is a finite

∆-metric space, G is a finite group, and G acts on X by isometries. Then K∆ is a

Fräıssé class. Letting (X∆, H∆) be the Fräıssé limit of K∆, then X∆ is isometric

to U∆, H∆ is isomorphic to H, and H∆ is dense in Iso(X∆).

We note here that this result is related to some recent work of Doucha [5], see

the comments at the end of Section 3.

Theorem 1.3. Let L be a finite relational language. Let T be a finite set of finite L-

structures each of which is a Gaifman clique. Let K be the class of all pairs (M,G)

such that M is a finite T -free L-structure, G is a finite group, and G acts on X by

isomorphisms. Then K is a Fräıssé class. Letting (N∞, H∞) be the Fräıssé limit of

K, then N∞ is isomorphic to the universal T -free L-structure, H∞ is isomorphic

to H, and H∞ is dense in Aut(N∞).

In the proof of Theorem 1.2 we use a result of Rosendal [23] that characterizes

the RZ-property (after Ribes–Zalesskĭı) by an extension property for finite metric

spaces. Then, for Theorem 1.3 we need to use a concept of HL-property (after

Herwig–Lascar) and a characterization of the HL-property in the spirit of Rosendal’s

result, both developed in [7]. For both the RZ-property and the HL-property, we do

need to establish some new results about their closure under finite-index extensions.

Next we turn to the problem of constructing many non-isomorphic dense locally

finite subgroups of Iso(U∆), the isometry group of the Urysohn ∆-metric spaces.

We define a notion of omnigenous groups, which can be viewed as a natural gener-

alization of Hall’s group. We then show that there are many such groups, and that

they are all densely embeddable in Iso(U∆).
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Theorem 1.4. There are continuum many non-isomorphic countable omnigenous

groups each of which is universal for countable locally finite groups.

Theorem 1.5. Every countable omnigenous group is embeddable into Iso(U∆) as

a dense subgroup.

In an effort to characterize all countable dense subgroups of Iso(U∆), we consider

some notions from the point of view of model theory and combinatorial group

theory. In particular, we consider the property of being “mixed-identity free” (MIF)

recently studied by Hull–Osin [15] and prove that any countable dense subgroup of

Iso(U∆), when |∆| ≥ 2, must be MIF.

Theorem 1.6. For any countable distance value set ∆ with |∆| ≥ 2, Iso(U∆) as

well as any of its dense subgroups must be MIF.

This theorem is false when |∆| = 1. In that case Iso(U∆) is just the permutation

group S∞ and it is known that S∞ is not MIF since it contains the non MIF group

of finitely supported permutations as a dense subgroup (cf. Theorem 5.9 of Hull–

Osin [15]). Note that our result also provides an elementary proof of the fact that

the group of finitely supported permutations cannot arise as a dense subgroup of

Iso(U∆) as soon as |∆| ≥ 2 (cf. Theorem 8.1 of [8]).

Remark 1.7. The theorem also yields a continuum family of universal countable

locally finite groups that are not embeddable as dense subgroups of Iso(U∆), namely

groups of the form H⊕A, where A is a nontrivial abelian p-group. This can also be

seen using the fact that Iso(U∆) is always a topologically simple non abelian group

(see Thm. 7.3), and no such group can contain a dense subgroup which decomposes

as a nontrivial direct product.

Furthermore, we introduce a new notion for locally finite groups which we call

∞-MIF, and show that it is actually equivalent to being omnigenous.

It would be very interesting to be able to distinguish topological groups of the

form Iso(U∆) by looking at their list of countable dense subgroups. As a first step

towards this, it is natural to ask which Iso(U∆) can be densely embedded into

another Iso(UΛ). Indeed if so then Iso(UΛ) will contain at least as many countable

dense subgroups as Iso(U∆). Our next result shows that these dense embeddings

only occur in the obvious case, namely when Iso(U∆) and Iso(UΛ) are isomorphic,

and provides a natural characterization in terms of the distance sets ∆ and Λ for

this to happen. This uses the following notion: we call (d1, d2, d3) ∈ ∆3 a ∆-

triangle if there is a metric space (X, d) with X = {x, y, z} such that d1 = d(x, y),

d2 = d(y, z) and d3 = d(z, x).

Theorem 1.8. Let ∆ and Λ be countable distance value sets. Then the following

are equivalent:

(i) There is a homomorphism Iso(U∆)→ Iso(UΛ) with dense range;

(ii) Iso(U∆) and Iso(UΛ) are isomorphic as abstract groups;

(iii) Iso(U∆) and Iso(UΛ) are isomorphic as topological groups;
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(iv) There exists a bijection θ : ∆ → Λ such that for any triple (d1, d2, d3) ∈ ∆3,

(d1, d2, d3) is a ∆-triangle iff (θ(d1), θ(d2), θ(d3)) is a Λ-triangle.

The rest of the paper is organized as follows. In Section 2 we cover some pre-

liminaries and verify that U∆ is ultraextensive for any countable distance value set

∆. In Section 3 we prove Theorem 1.2. In Section 4 we develop results about the

HL-property of groups and prove Theorem 1.3. In Section 5 we study the notion of

omnigenous groups and prove Theorems 1.5 and 1.4. We apply these results also

to the isometry groups of ultrametric Urysohn spaces. In Section 6 we study the

notions of discerning types, discerning structures, MIF groups, and∞-MIF groups.

In Section 7 we prove that Iso(U∆), as well as pointwise stabilizers on U∆, are

topologically simple; this is used to establish Theorem 1.8. Finally, in Section 8 we

pose some open problems.

2. Ultraextensive Metric Spaces

2.1. Basics of Fräıssé theory. We briefly recall the basic concepts of Fräıssé

theory. Throughout this paper let L be a countable language.

Definition 2.1. Let M be a countable L-structure. A partial automorphism of M

is an isomorphism g : A → B, where A and B are finitely generated substructures

of M .

The structure M is said to be ultrahomogeneous if every partial automorphism

of M extends to an automorphism of M .

In the cases considered in this paper, finitely generated substructures are always

finite. For example, this happens when L is a relational language. Another case

we will consider is when L is the (finite) language of group theory, and M is a

countable locally finite group. We will assume this property tacitly in all of our

discussions.

Definition 2.2. Let M be a countable L-structure. The age of M , denoted

Age(M), is the class of all finite substructures of M (considered up to isomor-

phism).

The age of any countable L-structure contains only countably many members up

to isomorphism; also, any two members of the age embed in a third one (the joint

embedding property) and whenever A ∈ Age(M) and B is a substructure of A then

also B ∈ Age(M) (the hereditary property). Ages of ultrahomogeneous structures

are characterized by an additional condition.

Definition 2.3. Let K be a class of L-structures. We say that K has the amalga-

mation property if, for any A,B,C ∈ K and any embedding β : A→ B, γ : A→ C,

there exists D ∈ K and embeddings β′ : B → D and γ′ : C → D such that

β′ ◦ β(a) = γ′ ◦ γ(a) for all a ∈ A.

K has the strong amalgamation property if in the above definition we have in

addition β′(B) ∩ γ′(C) = β′ ◦ β(A).
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Theorem 2.4 (Fräıssé). The age of any ultrahomogeneous L-structure satisfies the

amalgamation property. Conversely, if K is a countable (up to isomorphism) class

of finite L-structures which has the joint embedding, hereditary and amalgamation

properties then there exists a unique (up to isomorphism), ultrahomogeneous count-

able L-structure M such that Age(M) = K.

A class K satisfying the assumptions of the theorem is called a Fräıssé class,

and the unique structure M above is called the Fräıssé limit of K. It is also

characterized by the statement that Age(M) = K, and for any A ⊆M , any B ∈ K
and any embedding ϕ : A → B there exists an embedding ψ : B → M such that

ψ(ϕ(a)) = a for all a ∈ A.

2.2. ∆-metric spaces.

Definition 2.5. A distance value set is a nonempty subset ∆ of the open interval

(0,+∞), such that

∀x, y ∈ ∆ min(x+ y, sup(∆)) ∈ ∆ .

A ∆-metric space is a metric space whose nonzero distances belong to ∆.

In particular, when ∆ is bounded the definition implies that sup(∆) ∈ ∆. The

definition above is a particular case of what Conant [3] calls a distance monoid,

and our constructions could work for some more general distance monoids. For

simplicity, we choose to work only in this more restricted case.

In general, for a metric space (M,d), the isometry group Iso(M,d) is endowed

with the pointwise convergence topology, i.e. gn → g iff d(gn(x), g(x)) → 0 for all

x ∈ M . When (M,d) is a separable complete metric space, Iso(M,d) becomes a

Polish group, and we often write Iso(M) instead of Iso(M,d).

In case (M,d) is countable, we use the following important convention. We will

use Iso(M) to denote the group Iso(M,d) but we will view it as a subset of the

permutation group Sym(M) on M . As such it will become a closed subgroup of

Sym(M), and Iso(M) will be endowed with the subspace topology of Sym(M),

which we will refer to as the permutation group topology. This again makes Iso(M)

a Polish group. A basis of neighborhoods of 1 for this topology is given by pointwise

stabilizers of finite tuples of elements of M .

To apply Fräıssé theory, we will assume throughout this paper that ∆ is a count-

able distance value set.

Now any ∆-metric space (M,d) may be viewed as a first-order structure, in a

countable relational language with a binary relational symbol Rs for each element

s of ∆, by declaring that

M |= Rs(x, y) iff d(x, y) = s.

Since there should be no risk of confusion, we will be using the distance function

instead of those binary relational symbols.

Lemma 2.6. For any distance value set ∆, the class of finite ∆-metric spaces has

the strong amalgamation property.
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Proof. Assume that A,B,C are finite ∆-metric spaces and A is a subspace of both

B and C. Let D denote the union of B and C, where both copies of A are identified

and the values of the metric on B and C are imposed (and coincide on A). We

need to define d(b, c) for b ∈ B \A and c ∈ C \A. If A is empty, then we let m be

the maximum value taken by d on either B or C, and set d(b, c) = m for any b and

c. If A is nonempty, then we set

d(b, c) = min{min{d(b, a) + d(a, c) : a ∈ A}, sup(∆)}.

Then D is a ∆-metric space. �

Thus if ∆ is a countable distance value set, then the class of finite ∆-metric

spaces is a Fräıssé class. We denote by U∆ the Fräıssé limit of this class, which is

itself a countable ∆-metric space. We emphasize that G∆ = Iso(U∆) is endowed

with the permutation group topology.

We will need the following characterization of U∆. The property in the proposi-

tion is called the Urysohn property.

Proposition 2.7. Let ∆ be any countable distance value set. The space U∆ is

the unique countable ∆-metric space X, up to isometry, that satisfies the following

property:

Given any finite subset A of X and function f : A→ ∆ satisfying

|f(a)− f(b)| ≤ d(a, b) ≤ f(a) + f(b),∀a, b ∈ A,

there is an x ∈ X such that d(x, a) = f(a) for all a ∈ A.

Functions f : A → ∆ as above are called Katĕtov functions over A. We now

mention some well-known examples of spaces having the Urysohn property.

Example 2.8. (1) ∆ is a singleton. For instance let ∆ = {1}. Then U{1} is

a countable space with the discrete metric δ, where δ(x, y) = 1 iff x 6= y,

and G{1} is isomorphic to Sym(N) (also denoted S∞). Here U{1} can also

be viewed as the complete graph KN, while Aut(KN) = Sym(N).

(2) ∆ = {1, 2}. In this case U{1,2} is essentially the random graph R. In fact,

if we define in R the metric d by d(x, y) = 1 iff there is an edge between x

and y, then (R, d) is isometric with U{1,2}. In this case G{1,2} is isomorphic

to Aut(R).

(3) ∆ = Q+. Then UQ+ is the universal rational Urysohn space QU, and

GQ+ = Iso(QU).

2.3. S-extensions. We recall the notion of S-extension from [6].

Let (X, dX) and (Y, dY ) be metric spaces. When there is no danger of confusion,

we simply write X for (X, dX) and Y for (Y, dY ). We say that Y is an extension of

X if (X, dX) is a subspace of (Y, dY ). Interchangeably, we use the same terminology

when Y contains an isometric copy of X, i.e. when there is an (obvious) isometric

embedding from X into Y .

A partial isometry of X is an isometry between two finite subspaces of X. The

set of all partial isometries of X is denoted as P(X). P(X) is a groupoid with the
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composition (p, q) 7→ p ◦ q, where p ◦ q is only defined when rng(q) = dom(p), and

the inverse p 7→ p−1.

If Y is an extension of X, then every partial isometry of X is also a partial

isometry of Y . In symbols, we have P(X) ⊆ P(Y ) if X ⊆ Y .

If p, q ∈ P(X), we say that q extends p, and write p ⊆ q, if

{(x, p(x)) : x ∈ dom(p)} ⊆ {(x, q(x)) : x ∈ dom(q)}.

We let 1X denote the identity isometry on X, i.e., 1X(x) = x for all x ∈ X. Let

PX denote the set of all p ∈ P(X) such that p 6⊆ 1X . We refer to elements of PX
as nonidentity partial isometries of X. Note that if p ∈ PX then p−1 ∈ PX .

Definition 2.9. Let X be a metric space and P ⊆ PX such that P = P−1. An

S-extension of X with respect to P is a pair (Y, φ), where Y ⊇ X is an extension

of X, and φ : P → Iso(Y ) is such that φ(p) extends p for all p ∈ P . We also require

that φ(p−1) = φ(p)−1 for all p ∈ P . When P = PX we call (Y, φ) an S-extension

of X.

The following strong notion of coherence was introduced by Solecki (cf. [23] and

[29]). We use a terminology different from Solecki’s since we will have to deal with

a weaker notion of coherence in the next subsection.

Definition 2.10 (Solecki). Let X be a metric space. An S-extension (Y, φ) of X

is strongly coherent if for every triple (p, q, r) of partial isometries of X such that

p ◦ q = r, we have φ(p) ◦ φ(q) = φ(r).

Theorem 2.11 (Solecki [28] [23] [29]). Let ∆ be any distance value set and X be

a finite ∆-metric space. Then, X has a finite, strongly coherent S-extension (Y, φ)

where Y is a ∆-metric space.

The observation that finite, strongly coherent S-extensions can be constructed

as ∆-metric spaces was explicit in Solecki’s unpublished notes [28] but follows im-

plicitly from all proofs of existence of finite, strongly coherent S-extensions, e.g. in

Siniora–Solecki [29] or Hubička–Konečný–Nešetřil [14].

The following lemma highlights the importance of strongly coherent S-extensions.

Lemma 2.12. Let X be a metric space and (Y, φ) be a strongly coherent S-

extension of X. For every D ⊆ X, the map p 7→ φ(p) gives a group embedding

from Iso(D) into Iso(Y ).

2.4. Ultraextensive ∆-metric spaces. We recall more notions from [6].

For any metric space X and P ⊆ PX such that P = P−1, we let F(P ) denote

the free group generated by P , where for any p ∈ P , the inverse of p in F(P ) is

p−1. If (Y, φ) is an S-extension of X with respect to P , then φ can be naturally

extended to a homomorphism from F(P ) to Iso(Y ). We still use φ to denote this

group homomorphism, i.e., for any p1, . . . , pn ∈ P ,

φ(p1 · · · pn) = φ(p1) ◦ · · · ◦ φ(pn).
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Definition 2.13. Let X be a metric space and P ⊆ PX such that P = P−1. An

S-extension (Y, φ) of X with respect to P is minimal if for any y ∈ Y there is

g ∈ F(P ) and x ∈ X such that y = φ(g)(x).

Definition 2.14. Let X1 ⊆ X2 be metric spaces and (Yi, φi) be an S-extension of

Xi for i = 1, 2. We say that (Y1, φ1) and (Y2, φ2) are coherent if

(i) Y2 extends Y1,

(ii) φ2(p) extends φ1(p) for all p ∈ PX1
⊆ PX2

, and

(iii) letting Ki = φi(PXi
) ⊆ Iso(Yi) for i = 1, 2, and letting κ : K1 → K2 be the

map κ(φ1(p)) = φ2(p) for all p ∈ PX1
, then κ extends uniquely to a group

embedding from 〈K1〉 into 〈K2〉.

This notion of coherence is weaker than Solecki’s strong coherence, as witnessed

by the following lemma.

Lemma 2.15. Let X1 ⊆ X2 be metric spaces, (Y1, φ1) be an S-extension of X1,

and (Y2, ψ) be a strongly coherent S-extension of X2 ∪ Y1. Let φ2 : PX2 → Iso(Y2)

be defined as

φ2(p) =

{
ψ(φ1(p)), if p ∈ PX1

,

ψ(p), if p ∈ PX2
\ PX1

.

Then (Y1, φ1) and (Y2, φ2) are coherent.

Proof. From the definition of φ2 it is clear that for any p ∈ PX1
,

p ⊆ φ1(p) ⊆ ψ(φ1(p)) = φ2(p).

By Lemma 2.12, ψ gives a group embedding from Iso(Y1) to Iso(Y2). On the

other hand, ψ coincides with the map φ1(p) 7→ φ2(p) for all p ∈ PX1 . Thus this

map extends uniquely to a group embedding from 〈PX1
〉 ≤ Iso(X1) into 〈PX2

〉 ≤
Iso(Y2). �

Definition 2.16. A metric space U is ultraextensive if

(i) U is ultrahomogeneous, i.e., there is a φ such that (U, φ) is an S-extension

of U ;

(ii) Every finite X ⊆ U has a finite S-extension (Y, φ) where Y ⊆ U ;

(iii) If X1 ⊆ X2 ⊆ U are finite and (Y1, φ1) is a finite minimal S-extension of

X1 with Y1 ⊆ U , then there is a finite minimal S-extension (Y2, φ2) of X2

such that Y2 ⊆ U and (Y1, φ1) and (Y2, φ2) are coherent.

One of the main properties of an ultraextensive metric space U is that Iso(U)

always contains a countable dense locally finite subgroup when U is separable (The-

orem 1.4 of [6]). Moreover, the weaker notion of coherence is sufficient for construct-

ing ultraextensive metric spaces.

Theorem 2.17. Let ∆ be a countable distance value set. Then U∆ is ultraextensive.

In particular, G∆ contains a countable dense locally finite subgroup.

Proof. Recall that Age(U∆) is the class of all finite ∆-metric spaces. Since U∆ is

ultrahomogeneous, Solecki’s Theorem 2.11 gives (ii) of Definition 2.16. Similarly,

(iii) of Definition 2.16 follows from Solecki’s Theorem 2.11 and Lemma 2.15. �
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We remark that Theorem 2.17 can be proved without using Solecki’s construction

of strongly coherent S-extensions. For instance, condition (ii) of Definition 2.16 for

∆-metric spaces follows implicitly from all proofs of the existence of S-extensions,

including Solecki’s original proof in [27]. Condition (iii) of Definition 2.16 for ∆-

metric spaces follows implicitly from the proof of Theorem 4.5 of [6].

3. Hall’s Group and Vershik’s Conjecture

3.1. Hall’s universal countable locally finite group. Recall that a locally

finite group is a group in which every finitely generated subgroup is finite. The

following theorem is due to P. Hall [10].

Theorem 3.1 (Hall [10]). There exists a countable locally finite group H that is

determined up to isomorphism by the following properties:

(A) any finite group can be embedded in H, and

(B) any two isomorphic finite subgroups of H are conjugate by an element of

H.

We call a countable locally finite group G a universal countable locally finite

group if every countable locally finite group is isomorphic to a subgroup of G. It

follows easily from the characterizing properties of H that H is a universal countable

locally finite group. Thus H is called Hall’s universal countable locally finite group.

For simplicity, we refer to it as Hall’s group.

Hall [10] also established the following strengthening of condition (B) above.

Proposition 3.2 (Hall [10]). For every triple (G1, G2,Ψ), where G1, G2 are finite

subgroups of H and Ψ : G1 → G2 is a group isomorphism, there exists h ∈ H such

that for every g ∈ G1 we have Ψ(g) = hgh−1.

In particular, we see that H is ultrahomogeneous and universal for finite groups:

as such, it the Fräıssé limit of the class of finite groups. Thus it can also be

characterized as follows.

Proposition 3.3. Let H be a countable locally finite group with the following

property:

(E) for every triple (G1, G2,Ψ1), where G1 ≤ G2 are finite groups and Ψ1 :

G1 → H is a group embedding, there exists a group embedding Ψ2 : G2 →
H such that Ψ2 � G1 = Ψ1.

Then H is isomorphic to H.

Hall [10] also proved that the commutator group of H is H, and therefore H has

a trivial abelianization. Consider the collection of all groups of the form H ⊕ A,

where A is an abelian p-group. The abelianization of H ⊕ A is isomorphic to A.

This implies that H ⊕ A ∼= H ⊕ A′ iff A ∼= A′. Thus there are continuum many

non-isomorphic countable locally finite groups which are universal for all countable

locally finite groups.
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3.2. A proof of Vershik’s conjecture. Vershik’s conjecture [32] states that the

isometry group of the universal Urysohn space and the automorphism group of the

countable random graph each contain a dense subgroup that is isomorphic to H.

We will show that Hall’s group H actually arises in some sense as a canonical dense

subgroup of Iso(U∆).

We will be using the following lemma due to Rosendal (Lemma 16 of [24]).

Lemma 3.4 (Rosendal [24] ). Let ∆ be a countable distance value set. Let Γ be

a group, Λ ≤ Γ a subgroup. Assume that X ⊆ Y are ∆-metric spaces, and that

Λ y Y , Γ y X are compatible isometric actions. Then there exists a ∆-metric

space Z containing Y , and an isometric action Γ y Z compatible with the Λ-action

on Y .

Moreover, if Γ and Y are both finite then one can find a finite Z as above.

Proof. The proof goes exactly like that of Lemma 16 of [24]. We only note that the

space Z defined in the proof in [24] is a ∆-metric space. �

Definition 3.5. A countable group Γ has the RZ-property (standing for Ribes–

Zalesskĭı) if any finite product Γ1 · · ·Γn of finitely generated subgroups of Γ is closed

in the profinite topology.

It was proved by Ribes–Zalesskĭı [22] that countable free groups have the RZ-

property. Moreover, they essentially showed in [22] that, if Λ ≤ Γ has finite index

then Λ has the RZ-property iff Γ has the RZ-property. This gives the following fact

we will need in our proof.

Proposition 3.6. Let Γ1,Γ2 be two finite groups, and Λ be a common subgroup

of Γ1,Γ2. Then Γ1 ∗Λ Γ2, the amalgamated free product of Γ1 and Γ2 over Λ, has

the RZ-property.

Proof. It is known that the amalgamated free product of finite groups is virtually

free, i.e., it contains a free group as a subgroup of finite index (cf., e.g., Serre [25],

Corollary to Proposition 11 on p. 120). By the above results of Ribes–Zalesskĭı

[22], virtually free groups have the RZ-property. �

Although not needed in our proof here, we note that Coulbois [4] showed that the

RZ-property is preserved under taking free products. The RZ-property will play

an important role in our proof because of the following theorem, due to Rosendal.

Theorem 3.7 (Rosendal [23]). Let ∆ be a countable distance value set. Let Γ be

a countable group with the RZ-property. Assume that π : Γ y X is an isometric

action of Γ on a ∆-metric space X. Then, for any finite A ⊆ X and F ⊆ Γ there

exists a finite ∆-metric space Y containing A, and an isometric action π′ : Γ y Y

such that for all γ ∈ F and all a ∈ A one has π′(γ)a = π(γ)a.

Actually, Rosendal’s theorem is an equivalence (the RZ-property is equivalent

to the so-called finite approximability of actions on metric spaces; cf. [23]) but we

only need the implication mentioned above.

Definition 3.8. Let K∆ be the class of all structures (X,G) such that
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• X is a finite ∆-metric space.

• G is a finite group.

• G acts isometrically on X.

Note that we accept the case where X is empty, considering that any group acts

isometrically on the empty set. Also, G is allowed to be equal to {1}.
Here (X,G) is identified with the following structure: X t G is the underlying

set, a unary relation R0 identifies X, binary relations Rd for d ∈ ∆ describe the

metric on X and unary functions fg for g ∈ G describe the action of G on X and the

action of G on G by left multiplication. Consequently, for (X1, G1), (X2, G2) ∈ K∆,

(X1, G1) is a substructure of (X2, G2) iff there is a group isomorphism φ : G1 → G2

and an isometric embedding π : X1 → X2 such that φ(g)(π(x)) = π(g(x)) for every

g ∈ G1 and x ∈ X1.

Theorem 3.9. K∆ is a Fräıssé class.

Proof. The hereditary property is obvious. The joint embedding property is also

easily witnessed by the product action. We only need to prove the amalgamation

property. Assume that X is a subspace contained in two finite ∆-metric spaces

Y1, Y2, and that Λ is a subgroup of two finite groups Γ1,Γ2. Assume further that

Γ1 y Y1, Γ2 y Y2 isometrically, in such a way that X is Λ-invariant for both

actions, and the two Λ-actions coincide on X. Let Γ = Γ1 ∗Λ Γ2.

We first define a ∆-metric space Z0 amalgamating Y1 and Y2 over X, in such

a way that Z0 = Y1 ∪ Y2, Y1 ∩ Y2 = X and the action of Λ on Y induced by the

actions of Γ1,Γ2 on Y1, Y2 is by isometries. To ensure Z0 is a ∆-metric space, we

only need to define, for y1 ∈ Y1 \X and y2 ∈ Y2 \X,

dZ0
(y1, y2) = min

{
inf
x∈X
{dY1

(y1, x) + dY2
(x, y2)}, sup(∆)

}
.

Then we define by induction an increasing sequence {Zn}n≥1 of ∆-metric spaces,

as well as Γ1 actions on each Z2n−1 and Γ2 actions on each Z2n, so that all actions

are compatible with each other and with the original actions of Γ1 on Y1 and Γ2 on

Y2. To define Z1, apply Lemma 3.4 to the Γ1 action on Y1 and the Λ action on Z0.

To define Z2, apply Lemma 3.4 to the Γ2 action on Y2 and the induced Λ action

on Z1. In general, obtain Z2n+1 by applying Lemma 3.4 to the Γ1 action on Z2n−1

and the induced Λ action on Z2n, and obtain Z2n+2 by applying Lemma 3.4 to the

Γ2 action on Z2n and the induced Λ action on Z2n+1. Let Z∞ =
⋃
n≥0 Zn. Then

our construction gives an action of Γ on Z∞.

Now, using the fact that Γ has the RZ-property from Proposition 3.6, we apply

Rosendal’s theorem 3.7 to the action of Γ on Z∞, with A = Z0 and F = Γ1 ∪ Γ2,

to find a finite ∆-metric space Y containing Z0, and an isometric action Γ on Y

that extends the original actions of Γ1,Γ2 on Y1, Y2 respectively. Then, let G be

the subgroup of Iso(Y ) generated by F = Γ1 ∪ Γ2. The actions of elements of F

extends to an action of G on Y , which gives an amalgam (Y,G) ∈ K∆ of (Y1,Γ1)

and (Y2,Γ2) over (X,Λ). �
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Denote the Fräıssé limit of K∆ by (X∆, H∆), where X∆ is a ∆-metric space and

H∆ is a locally finite group acting isometrically on X∆. Note that for a finite subset

A ⊆ H∆, we have (∅, 〈A〉) ∈ K∆ = Age(X∆, H∆) and therefore 〈A〉 is finite. The

following lemmas will give us the main result of this section.

Lemma 3.10. X∆ is isometric to U∆.

Proof. We verify the Urysohn property from Proposition 2.7 for X∆. Let A be a

finite subset of X∆, and f : A → ∆ satisfying |f(a) − f(b)| ≤ d(a, b) ≤ f(a) +

f(b) for all a, b ∈ A. Then, viewing A ∪ {f} as a metric space, (A, {1}) ∈ K∆

is a substructure embedded in (A ∪ {f}, {1}) ∈ K∆. By the universality and

ultrahomogeneity of a Fräıssé limit we may find x ∈ X∆ such that d(x, a) = f(a)

for all a ∈ A. �

Lemma 3.11. H∆ acts faithfully on X∆, i.e., if g ∈ H∆ \{1} there is x ∈ X∆ such

that g · x 6= x.

Proof. To see that H∆ acts faithfully, let g ∈ H∆ \ {1} and let Λ be the finite

subgroup of H∆ generated by g. Let c ∈ ∆ and let X = (Λ, d) be a ∆-metric space

with d(a, b) = c for any distinct a, b ∈ Λ. Then the left multiplication of Λ is a

faithful action of Λ on X by isometries. Thus (X,Λ) ∈ K∆. By the universality of

X∆, X can be realized as a subset of X∆. By the ultrahomogeneity of (X∆, H∆),

the action of Λ on X∆ extends the Λ action on X. Since the action of Λ on X is

faithful, it follows that the action of Λ on X∆ is faithful. �

Lemma 3.12. H∆ is isomorphic to H.

Proof. We verify the property (E) from Proposition 3.3 for H∆. Let Λ be a finite

subgroup of H∆, and i : Λ → Γ be a group embedding of Λ into a finite group Γ.

Then i induces an embedding from the structure (∅,Λ) ∈ K∆ into (∅,Γ) ∈ K∆. By

the universality and ultrahomogeneity of (X∆, H∆) we see that there is a group

embedding j : Γ→ H∆ such that j ◦ i(g) = g for all g ∈ Λ. �

Lemma 3.13. H∆ is dense in Iso(X∆).

Proof. Let g ∈ Iso(X∆), and let A be a finite subset of X∆. We need to find an

element of H∆ coinciding with g on A. Let Γ be the subgroup of Iso(X∆) generated

by g. Then Γ acts on X∆ by isometries. We claim that there is a finite subset B

of X∆ containing A and an isometry h of B which coincides with g on A. Indeed,

if Γ is finite, then we can let B = Γ · A and h = g. If Γ is infinite, then it is a free

group (isomorphic to Z), and it has the RZ-property. We can then apply Rosendal’s

theorem 3.7 to find a finite B containing A and an isometry h of B which coincides

with g on A.

Letting H denote the finite group generated by h, we see that (B,H) ∈ K∆. We

may realize the embedding from (B, {1}) into (B,H) inside (X∆, H∆), which gives

us a finite subgroup of H∆ isomorphic to H and acting like H on B. In particular

there exists an element of H∆ coinciding with g on A. �

We have thus proved the following result.
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Theorem 3.14. Let ∆ be any countable distance value set. Then Iso(U∆) contains

a dense subgroup that is isomorphic to H.

Theorem 3.14 immediately gives (2), (3), (5) of Theorem 1.1.

Corollary 3.15. Iso(QU), Aut(R), and S∞ all contain H as a dense subgroup.

The other part of Vershik’s conjecture, Theorem 1.1 (1), is a corollary of Theo-

rem 1.1 (2) from a standard argument.

Theorem 3.16. Iso(U) contains H as a dense subgroup.

Proof. Since QU is a countable dense subset of U, the map h 7→ h sending h ∈
Iso(QU) to its completion h ∈ Iso(U) is a well-defined group embedding. Since

Iso(QU) has the permutation group topology and Iso(U) has the pointwise conver-

gence topology, this map is continuous. If H is a dense subgroup of Iso(QU) then

H = {h : h ∈ H} is a dense subgroup of Iso(U) isomorphic to H. �

To conclude this section, we note that the idea of considering finite metric spaces,

with finite groups acting on them, as forming a Fräıssé class has already been

considered in Doucha’s paper [5] (though his formalism is different from ours).

In particular, Theorem 0.2 in [5] is closely related to the results in this section,

though the proof is different. One may think of Theorem 0.2 of [5] as a precursor

to Theorem 3.9. We also note that our approach gives an answer to Question 3.7

from [5]: it follows from our results that the group H appearing in [5] is equal to

Iso(U).

4. Automorphism Groups of Relational Structures

In this section we show some analogous results to the main results of the preced-

ing section for ultraextensive relational structures. As a corollary, we will obtain

Theorem 1.1 (6). We first recall the concept of the HL-property defined in [7] and

develop some results necessary for our proof.

4.1. The HL-property of a group.

Definition 4.1 (Herwig–Lascar [11]). Let G be a group and let H1, . . . ,Hn ≤ G.

A left system of equations on H1, . . . ,Hn is a finite set of equations with variables

x1, . . . , xm and constants g1, . . . , gl, where each equation is of the form

xiHj = gkHj or xiHj = xrgkHj

for 1 ≤ i, r ≤ m, 1 ≤ k ≤ l and 1 ≤ j ≤ n.

Definition 4.2. Let G be a group. We say that G has the HL-property (standing

for Herwig–Lascar) if for every finitely generated H1, . . . ,Hn ≤ G and left system

Σ of equations on H1, . . . ,Hn, if Σ does not have a solution, then there exist

normal subgroups of finite index N1, . . . , NnEG such that, letting Σ( ~N) be the left

system of equations obtained from Σ by replacing all occurrences of H1, . . . ,Hn by

N1H1, . . . , NnHn respectively, Σ( ~N) does not have a solution either.
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Herwig–Lascar [11] proved that the HL-property implies the RZ-property for

groups. They also essentially showed in [11] that finitely generated free groups

have the HL-property. As a strengthening of Coulbois’s result on the preservation

of the RZ-property under taking free products [4], it was shown in [7] that the

HL-property is also preserved under taking free products.

Lemma 4.3. Let G be a group and H ≤ G be a subgroup of finite index. Then G

has the HL-property iff H has the HL-property.

Proof. Recall the fact that if H ≤ G is a subgroup of finite index, then G has a

normal subgroup N of finite index such that N ≤ H. Thus to prove the lemma,

we may assume without loss of generality that H is normal in G.

First assume G has the HL-property. Let Σ be a left system on finitely generated

H1, . . . ,Hn ≤ H. We claim that if Σ has a solution in G then it also has a solution

in H. Let V0 be the set of all variables x such that x appears in an equation in

Σ of the form xHj = gHj . Since the constants in Σ are in H, any solution for

an x ∈ V0 must be in H. Now let V1 be the set of all variables which appear in

an equation in Σ of the form xiHj = xrgHj , where at least one of xi and xr is

in V0. We see that any solution for an x ∈ V1 must also be in H. Repeat this

construction and define V2, V3, etc. Since Σ is finite, we obtain a maximal set of

variables V = V0∪V1∪V2∪ . . . so that any solution for an x ∈ V must be in H. Let

Σ′ ⊆ Σ be the subsystem of all equations that contain (only) variables in V . Then

the subsystem Σ \ Σ′ contains only equations of the form xiHj = xrgHj where

both xi, xr 6∈ V . Now if Σ has a solution in G, say x1 = γ1, . . . , xm = γm, then

γi1 , . . . , γik are in H where V = {xi1 , . . . , xik} and all the other variables are from

the same coset of H. Let gH be this coset. Then xij = γij for j = 1, 2, . . . , k and

xi = g−1γi for i /∈ {i1, i2, . . . , ik} is a solution of Σ that consists of only elements in

H. We have thus shown the claim. Now assume Σ does not have a solution in H,

then by the claim it does not have a solution in G. Since G has the HL-property,

there are N1, . . . , Nn EG of finite index such that Σ( ~N) on N1H1, . . . , NnHn does

not have a solution in G. Let Kj = Nj ∩ H for 1 ≤ j ≤ n. Then Kj E H is of

finite index, and Σ( ~K) on K1H1, . . . ,KnHn does not have a solution in H, since

any solution of Σ( ~K) is also a solution of Σ( ~N).

For the converse, assume H has the HL-property and H E G is of finite index.

Let Σ be a left system on finitely generated H1, . . . ,Hn ≤ G. Let Lj = Hj ∩ H
for 1 ≤ j ≤ n. Then for each j, Lj ≤ H is finitely generated and has finite index

in Hj . For each j, let hj,1Lj , . . . , hj,Sj
Lj enumerate all the left cosets of Lj in Hj .

Then each equation of the form xHj = ygHj (here y could be 1 or a variable) is

equivalent to xLj = yghj,sLj for some 1 ≤ s ≤ Sj . Now consider the collection S
of all left systems Σ′ where each Σ′ is obtained from Σ by replacing each equation

in Σ of the form xHj = ygHj by an equation of the form xLj = yghj,sLj for some

1 ≤ s ≤ Sj . There are only finitely many left systems in S, and Σ has a solution

in G iff a Σ′ ∈ S has a solution in G. To verify the HL-property for G, suppose

Σ does not have a solution in G. Then none of Σ′ ∈ S has a solution. Assuming

that the HL-property holds for L1, . . . , Ln for G, then for each Σ′ ∈ S, there exist
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normal subgroups NΣ′

1 , . . . , NΣ′

n EG of finite index such that Σ′( ~NΣ′) does not have

a solution. Let Nj =
⋂

Σ′∈S N
Σ′

j . Then Nj EG is still of finite index, and for each

Σ′ ∈ S, Σ′( ~N) still does not have a solution, since a solution for Σ′( ~N) would be

a solution for Σ′( ~NΣ′). This implies that Σ( ~N) does not have a solution, since a

solution for it would be a solution of Σ′( ~N) for some Σ′ ∈ S. To finish the proof,

it suffices to check that the HL-property holds for L1, . . . , Ln for G.

The above argument shows that it suffices to prove the HL-property forH1, . . . ,Hn

in G when H1, . . . ,Hn ≤ H EG, which we demonstrate below. Let Hg1, . . . ,HgT
be the right cosets of H in G. Then G = Hg1 ∪ · · · ∪HgT . First, suppose Σ has a

solution x1 = γ1, . . . , xm = γm in G. Then there are 1 ≤ t1, . . . , tm ≤ T such that

γi ∈ Hgti for all 1 ≤ i ≤ m. If xlHj = gHj is an equation in Σ, then the solution

xl = γl ∈ Hgtl witnesses that

ylgtlHjg
−1
tl

= gg−1
tl
gtlHjg

−1
tl

has a solution yl = λl = γlg
−1
tl
∈ H. If we let H l

j = gtlHjg
−1
tl

, then H l
j ≤ H

since H is normal, and the above equation becomes ylH
l
j = (gg−1

tl
)H l

j . Similarly,

if xlHj = xkgHj is an equation in Σ, then the solution xl = γl, xk = γk witnesses

that

ylH
l
j = yk(gtkgg

−1
tl

)H l
j

has a solution yl = λl = γlg
−1
tl
, yk = λk = γkg

−1
tk

in H. Now for each ~t = (t1, . . . , tm)

where 1 ≤ t1, . . . , tm ≤ T , we obtain a left system Σ~t from Σ by replacing each

equation in Σ by an equation of the above form. Note that all the constants

appeared in Σ~t are elements of H. Let S be the collection of all such Σ~t. By our

construction, Σ has a solution in G iff a Σ~t ∈ S has a solution in H. To verify the

HL-property for H1, . . . ,Hn in G, suppose Σ does not have a solution in G. Then

none of Σ~t ∈ S has a solution in H. By the HL-property of H, for each Σ~t ∈ S,

there exist normal subgroups N
Σ~t
1 , . . . , N

Σ~t
n ≤ H of finite index such that Σ~t(

~NΣt)

does not have a solution in H. Let Nj =
⋂

Σ~t∈S
N

Σ~t
j . Then Nj EH is still of finite

index, and for each Σ~t ∈ S, Σ~t(
~N) still does not have a solution in H. Now each

Nj is of finite index in G since H is of finite index in G. Let Mj E G be of finite

index such that Mj ≤ Nj . It follows from our construction of S that Σ( ~M) does

not have a solution in G, since any solution of Σ( ~M) would give rise to a solution

for some Σ~t(
~N) where Σ~t ∈ S. �

Similar to Proposition 3.6 we obtain the following proposition from the above

lemma and the Herwig–Lascar theorem on the HL-property of finitely generated

free groups.

Proposition 4.4. Let Γ1,Γ2 be two finite groups, and Λ be a common subgroup

of Γ1,Γ2. Then Γ1 ∗Λ Γ2 has the HL-property.

4.2. The Fräıssé class of actions by automorphisms. Let L be a finite rela-

tional language. If C and D are L-structures, a homomorphism from C to D is a

map π : C → D such that for every n-ary relation R ∈ L and every a1, . . . , an ∈ C,

RC(a1, . . . , an)⇒ RD(π(a1), . . . , π(an)).
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If T is a set of L-structures and D is an L-structure, then D is T -free if there is no

C ∈ T and homomorphism π : C → D.

An L-structure C is called a Gaifman clique if for every a, b ∈ C there is a relation

symbol R ∈ L with arity m ≥ 2 and c1, . . . , cm ∈ C with a, b ∈ {c1, . . . , cm} and

RC(c1, . . . , cm). It is clear that if C is a Gaifman clique and D is a homomorphic

image of C (i.e., there is a surjective homomorphism π : C → D), then D is also a

Gaifman clique. Moreover, if C is a finite Gaifman clique, then it has only finitely

many homomorphic images, up to isomorphism.

Definition 4.5. Let T be a finite set of finite L-structures each of which is a

Gaifman clique. Let K be the class of all pairs (M,G) such that

• M is a finite T -free L-structure,

• G is a finite group, and

• G acts on X by isomorphisms.

Suppose T is a finite set of finite L-structures each of which is a Gaifman clique.

Let T̃ be the set of all homomorphic images of structures in T . Then T̃ is also a

finite set of L-structures each of which is a Gaifman clique. The class of all finite T -

free L-structures coincides with the class of all finite L-structures that do not allow

an isomorphic embedding from any T̃ ∈ T̃ , and by Lemma 4.5 of Siniora–Solecki

[29], this is a Fräıssé class closed under taking free amalgams.

The following characterization of the HL-property was proved in [7] as an analog

of Rosendal’s theorem 3.7.

Theorem 4.6. Let G be a group. Then the following are equivalent:

(i) G has the HL-property;

(ii) Let L be a finite relational language with unary relation symbols S1, . . . , Sn ∈
L. Let T be a finite set of finite L-structures. Let D be a T -free L-structure

such that {SD1 , . . . , SDn } is a partition of the domain of D. Let C be a finite

substructure of D. Let F be a finite subset of G. Suppose that π : G y D

is a faithful action by isomorphisms and that π is transitive on each SDi for

i = 1, . . . , n. Then there exists a finite T -free L-structure D′ extending C,

and an action π′ : G y D′ by isomorphisms such that for all γ ∈ F and

a ∈ C one has π′(γ)a = π(γ)a.

(iii) Clause (ii) with the additional assumption that every structure T ∈ T is a

Gaifman clique.

In the following we also prove an analog of Rosendal’s lemma 3.4.

Lemma 4.7. Let L be a finite relational language. Let Γ be a group, Λ ≤ Γ a

subgroup. Assume that M ⊆ N are L-structures, and that Λ y N , Γ y M are

compatible actions by isomorphisms. Then there exists an L-structure P extending

N , and an action Γ y P by isomorphisms that is compatible with the Λ-action on

N .

Moreover, if Γ and N are both finite then one can find a finite P as above.

Proof. Define an equivalence relation ∼ on N × Γ by (a1, g1) ∼ (a2, g2) iff

(g−1
2 g1 ∈ Λ and g−1

2 g1 · a1 = a2) or (a1, a2 ∈M and g1 · a1 = g2 · a2).
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To see that ∼ is an equivalence relation, we only need to note that if a1, a2 ∈ M ,

g1 · a1 = g2 · a2, g−1
3 g2 ∈ Λ, and g−1

3 g2 · a2 = a3, then a3 ∈M and g2 · a2 = g3 · a3,

and thus (a1, g1) ∼ (a3, g3).

Let P = N×Γ/ ∼. Let [a, g] denote the equivalence class [(a, g)]∼. For R ∈ L an

n-ary relation symbol, define RP ([a1, g1], . . . , [an, gn]) iff there are b1, . . . , bn ∈ N
and g ∈ Γ such that [a1, g1] = [b1, g], . . . , [an, gn] = [bn, g], and RN (b1, . . . , bn).

To see that this is well-defined, suppose [a1, g1] = [b1, g] = [c1, h], . . . , [an, gn] =

[bn, g] = [cn, h]. We need to show that RN (b1, . . . , bn) iff RN (c1, . . . , cn). In all

cases we have h−1g · b1 = c1, . . . , h
−1g · bn = cn. Since both Γ y M and Λ y N

are by isomorphisms, we have RN (b1, . . . , bn) iff RN (c1, . . . , cn).

Now it is easy to see that a 7→ [a, 1] is an isomorphic embedding of N into P .

Define Γ y P by letting g · [a, h] = [a, gh]. If g ∈ Λ and a ∈ N , g · [a, 1] = [a, g] =

[g · a, 1]. Thus this action is compatible with Λ y N .

It is also obvious that if N and Γ are finite then P is finite. �

Now the proofs of Theorem 3.9 and the lemmas following it can be repeated to

establish the following theorem.

Theorem 4.8. K is a Fräıssé class. Furthermore, if (N∞, H∞) is the Fräıssé limit

of K, then H∞ ∼= H, H∞ acts faithfully on N∞, and H∞ is dense in Aut(N∞).

Corollary 4.9. For all n ≥ 3, the automorphism group of the Henson graph Hn

contains H as a dense subgroup.

5. Many Dense Locally Finite Subgroups

5.1. Omnigenous locally finite groups. We define a concept of omnigenous

groups and show that all countable omnigenous locally finite groups are embeddable

as a dense subgroup of Iso(U∆). We will need the following extension lemma.

Lemma 5.1. Let ∆ be any countable distance value set. Let X be a finite ∆-metric

space. Let Λ ≤ Γ be finite groups and π : Λ→ Iso(X) be an isomorphic embedding.

Then there is a finite ∆-metric space Y extending X and an isomorphic embedding

π′ : Γ→ Iso(Y ) such that for any γ ∈ Λ and x ∈ X, π′(γ)(x) = π(γ)(x).

Proof. Define a pseudometric δ on X × Γ by

δ((x1, g1), (x2, g2)) =

{
dX(π(g−1

2 g1)(x1), x2), if g−1
2 g1 ∈ Λ,

diam(X), otherwise.

Define (x1, g1) ∼ (x2, g2) iff δ((x1, g1), (x2, g2)) = 0. Then ∼ is an equivalence rela-

tion onX×Γ. Let Y = X×Γ/ ∼. Then δ gives rise to a metric dY ([x1, g1], [x2, g2]) =

δ((x1, g1), (x2, g2)). Y is obviously a finite ∆-metric space.

It is easy to see that the map x 7→ [x, 1] is an isometric embedding from X into Y .

For any γ ∈ Γ, x ∈ X and g ∈ Γ, let π′(γ)([x, g]) = [x, γg]. Then π′ : Γ → Iso(Y )

is an isomorphic embedding. We check that for any γ ∈ Λ and x ∈ X,

π′(γ)(x) = π′(γ)([x, 1]) = [x, γ] = [π(γ)(x), 1] = π(γ)(x).

�
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Definition 5.2. Let G be a group. We say that G is omnigenous if for every finite

subgroup G1 ≤ G, finite groups Γ1 ≤ Γ2 and group isomorphism Ψ1 : G1
∼= Γ1,

there is a finite subgroup G2 ≤ G with G1 ≤ G2 and an onto homomorphism

Ψ2 : G2 → Γ2 such that Ψ2 � G1 = Ψ1.

If we strengthen the requirement on Ψ2 to be an isomorphism, then this becomes

the property (E) from Proposition 3.3. Thus H is omnigenous.

Theorem 5.3. Let H be a countable omnigenous locally finite group. Then for any

countable distance value set ∆, Iso(U∆) contains H as a dense subgroup.

Proof. Let q0, q1, . . . be an enumeration of all partial isometries of U∆. Fix also an

enumeration of all elements of H. We will define by induction infinite sequences of

following objects:

• finite subsets Dn of U∆, for n ≥ 1;

• elements h1, . . . , h2n ∈ H, and Hn = 〈h1, . . . , h2n〉 ≤ H, for n ≥ 1;

• group embeddings πn : Hn → Iso(Dn), for n ≥ 1,

such that

(i) for each n ≥ 0, qn ⊆ πn+1(h2n+2); in particular dom(qn)∪ rng(qn) ⊆ Dn+1;

(ii) for each n ≥ 1, Dn ⊆ Dn+1;

(iii) for each n ≥ 1, g ∈ Hn, and x ∈ Dn, πn+1(g)(x) = πn(g)(x);

(iv) for each n ≥ 0, h2n+1 is the least element of H \ {h1, . . . , h2n} in the fixed

enumeration of elements of H.

Granting such sequences, it follows from (i) that
⋃∞
n=1Dn = U∆. From (ii) and

(iii), it follows that for any g ∈ Hn, we have

πn(g) ⊆ πn+1(g) ⊆ · · · ⊆ πn+m(g) ⊆ · · ·

and the limit limm→∞ πn+m(g) exists and is a full isometry of U∆ extending πn(g).

Let Γn = πn(Hn) and let in : Γn → Γn+1 be the isomorphic embedding with

in(πn(g)) = πn+1(g) for all g ∈ Hn. We have a direct system

Γ1
i1−→ Γ2

i2−→ · · ·

giving a direct limit Γ that is a dense locally finite subgroup of Iso(U∆). We may

regard the group embeddings as inclusions, and the direct limit of the system as

an increasing union Γ =
⋃∞
n=1 Γn. Moreover, we have

⋃∞
n=1Hn

∼= Γ. By (iv),⋃∞
n=1Hn = H, and thus H ∼= Γ.

Assume that Dn, h1, . . . , h2n, and πn have been defined. We proceed to define

Dn+1, h2n+1, h2n+2, and πn+1 : Hn+1 = 〈Hn, h2n+1, h2n+2〉 → Iso(Dn+1).

First, let h2n+1 be the least element of H \{h1, . . . , h2n} in the fixed enumeration

of elements of H. We define a ∆-metric space X extending Dn, and an isomorphic

embedding σn : 〈Hn, h2n+1〉 → Iso(X) such that for all g ∈ Hn and x ∈ Dn,

we have σn(g)(x) = πn(g)(x). If n = 0, let a be the order of h1 and c ∈ ∆ be

arbitrary, and define X to be a set with a many elements with dX(x, y) = c iff

x 6= y ∈ X. Define σ1 : 〈h1〉 → Iso(X) by letting σ1(h1) be a cyclic permutation

on X. If n ≥ 1, we check if πn : Hn → Iso(Dn) can be extended to an isomorphic

embedding σn : 〈Hn, h2n+1〉 → Iso(Dn). If so, then we let X = Dn and σn be such



AUTOMORPHISM GROUPS OF ULTRAEXTENSIVE SPACES 19

an extension. Assume that πn cannot be extended to an isomorphic embedding

from 〈Hn, h2n+1〉 to Iso(Dn). We apply Lemma 5.1 to obtain a finite ∆-metric

space X extending Dn and an isomorphic embedding σn : 〈Hn, h2n+1〉 → Iso(X)

such that for any g ∈ Hn and x ∈ Dn, σn(g)(x) = πn(g)(x).

Using the universality and ultrahomogeneity of U∆, we may assume the above

X are defined as a subset of U∆. Next we further extend X to define Dn+1. Apply

Theorem 2.11 to obtain a strongly coherent S-extension (Y, φ) of X ∪ dom(qn) ∪
rng(qn). Now φ(qn) is an element of Iso(Y ) extending qn. By Lemma 2.12 φ gives

rise to an isomorphic embedding from Iso(X) to Iso(Y ), which we still denote by

φ : Iso(X)→ Iso(Y ).

Let G1 = 〈Hn, h2n+1〉 ≤ H. Let Ψ1 = φ ◦ σn be the isomorphic embedding

from G1 into Iso(Y ). Let Λ1 = Ψ1(G1) and Λ2 = 〈Λ1, φ(qn)〉 ≤ Iso(Y ). Since H is

omnigenous, there is a finite G2 ≤ H and an onto homomorphism Ψ2 : G2 → Λ2

such that Ψ2 � Hn = Ψ1 = φ ◦ σn. Let h2n+2 ∈ Ψ−1
2 ({φ(qn)}). Thus Ψ2(h2n+2) =

φ(qn). By redefining, we can assume G2 = 〈G1, h2n+2〉.
Let b = diam(Y ) and let G2 be given the discrete metric with constant value b.

Then G2 becomes a ∆-metric space. We define a finite ∆-metric space Z = Y ∪G2

to be the disjoint union of Y and G2, with dZ(y, g) = b for all y ∈ Y and g ∈ G2.

Appealing again to the universality and ultrahomogeneity of U∆, we may assume

that all of these extensions took place inside U∆. We let Dn+1 = Z ⊆ U∆.

We have Hn+1 = 〈Hn, h2n+1, h2n+2〉 = 〈G1, h2n+2〉 = G2. Define πn+1 :

Hn+1 → Iso(Dn+1) = Iso(Z) by letting πn+1(g) � Y = Ψ2(g) and πn+1(g)(h) = gh

for all h ∈ G2. Then for any g ∈ Hn and x ∈ Dn, πn+1(g)(x) = Ψ1(g)(x) =

σn(g)(x) = πn(g)(x). To complete the proof, we need to verify that πn+1 thus

defined is a group isomorphism. For this, we show that for all

g1, . . . , gk ∈ {h1, . . . , h2n, h2n+1, h2n+2} and ε1, . . . , εk ∈ {+1,−1},

we have

gε11 · · · g
εk
k = 1 ⇐⇒ πn+1(g1)ε1 · · ·πn+1(gk)εk = 1.

First, suppose gε11 · · · g
εk
k = 1. Observe that, as an element of Iso(Z), the action of

πn+1(g1)ε1 · · ·πn+1(gk)εk on the Y part of Z is given by Ψ2(g1)ε1 · · ·Ψ2(gk)εk . Since

Ψ2 is a homomorphism, we have Ψ2(g1)ε1 · · ·Ψ2(gk)εk = 1. On the other hand, on

the G2 part of Z, the action of πn+1(g1)ε1 · · ·πn+1(gk)εk is the same as the left

multiplication by gε11 · · · g
εk
k = 1. Since both these actions are identity, we have

πn+1(g1)ε1 · · ·πn+1(gk)εk = 1. Conversely, if πn+1(g1)ε1 · · ·πn+1(gk)εk = 1, then its

action on the G2 part is the left multiplication by gε11 · · · g
εk
k ; thus gε11 · · · g

εk
k = 1. �

5.2. A family of omnigenous locally finite groups. In this subsection we con-

struct an uncountable family of pairwise non-isomorphic, omnigenous, universal

countable locally finite groups.

Let P be a set of prime numbers. If P 6= ∅, enumerate its elements as p0 < p1 <

p2 < . . . . Note that for each n ≥ 0, there are infinitely many elements of order

pn in H. Fix a subset S = {s0, s1, s2, . . . } ⊆ H where each sn is of order pn, such

that H \ S still generates a universal countable locally finite group. This is easy to
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arrange since H ⊕ H is embedded as a subgroup of H and we may choose S as a

subset of the first copy of H.

Let X be the disjoint union of H with a copy of Zpn = Z/pnZ for each n ≥ 0.

For clarity, we will denote the copy of H as a subset of X as Y , and for each n ≥ 0,

the copy of Zpn as a subset of X as Zn. Thus X = Y ∪
⋃
n≥0 Zn.

For T ⊆ H, we say that T is of type P if T = {t0, t1, t2, . . . } where each tn is of

order pn ∈ P . For any T ⊆ H of type P , we define a map λT : H → Sym(X) as

follows. For all g ∈ H, λT (g) acts on Y = H as the left multiplication by g. If g 6∈ T ,

then λT (g) acts on each Zn as identity. If g ∈ T and the order of g is pn, then

λT (g) acts on Zn = Zpn as +1, and acts on other Zm, m 6= n, as identity. Let GT
be the subgroup of Sym(X) generated by the set λT (H). Note that for any subset

A ⊆ H \ T , λT gives an isomorphism between 〈A〉 ≤ H and 〈λT (A)〉 ≤ Sym(X).

For each t ∈ T , λT (t) has the same order as t.

Also note that for any B ⊆ H, the map λT (b) 7→ b induces a homomorphism

from 〈λT (B)〉 onto 〈B〉. To see this, we need to show that for all g1, . . . , gl ∈ B and

ε1, . . . , εl ∈ {+1,−1}, if λT (g1)ε1 · · ·λT (gl)
εl = 1, then gε11 · · · g

εl
l = 1. However,

this is obvious by observing the action of λT (g1)ε1 · · ·λT (gl)
εl on Y = H.

We will construct a omnigenous, universal countable locally finite group HP as

a direct limit of a direct system

H0
e1−→ H1

e2−→ H2
e3−→ · · · · · ·

where ek : Hk−1 → Hk is an isomorphic embedding for all k ≥ 1. In fact, each Hk

will be of the form GTk
for some Tk ⊆ H of type P .

We define the Hk, ek by induction on k. For k = 0, let T0 = S and H0 = GT0 .

Since H \ S generates a universal countable locally finite group, H0 is universal for

all countable locally finite groups. Since H0 will be embedded as a subgroup of

HP , HP is thus universal as well. In the rest of our construction we focus on the

omnigenous property of HP .

In general, suppose Hk = GTk
has been defined. Let ik+1 : Hk → H be an

isomorphic embedding. Let Tk+1 = ik+1(λTk
(Tk)). Then Tk+1 is of type P . Let

Hk+1 = GTk+1
. Define a map f : λTk

(H)→ Hk+1 by f(γ) = λTk+1
(ik+1(γ)) for all

γ ∈ λTk
(H). We claim that f extends uniquely to an isomorphic embedding from

Hk into Hk+1. For this, we show that for all

γ1, . . . , γl ∈ λTk
(H) and ε1, . . . , εl ∈ {+1,−1},

we have

γε11 · · · γ
εl
l = 1 ⇐⇒ f(γ1)ε1 · · · f(γl)

εl = 1.

Suppose γi = λTk
(gi) for gi ∈ H for all 1 ≤ i ≤ l. First, assume γε11 · · · γ

εl
l = 1.

Then, by observing the action of this element on the Y part, we get that gε11 · · · g
εl
l =

1. By observing the action of this element on the Zn parts, we conclude that, if

t ∈ Tk of order pn appears as gi for 1 ≤ i ≤ l, then Nt =
∑
gi=t

εi is a multiple of pn.

It follows that ik+1(γ1)ε1 · · · ik+1(γk)εk = 1, and consequently f(γ1)ε1 · · · f(γk)εk

acts on the Y part as identity. Moreover, for any t ∈ Tk of order pn, letting
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t′ = f(λTk
(t)) ∈ Tk+1, then

Nt′ =
∑

f(γi)=t′

εi =
∑
gi=t

εi

is a multiple of pn. Thus f(γ1)ε1 · · · f(γl)
εl acts on the Zn parts also as iden-

tity. Therefore f(γ1)ε1 · · · f(γl)
εl = 1. Conversely, suppose f(γ1)ε1 · · · f(γl)

εl =

1. Then by observing the action of this element on the Y part, we get that

ik+1(γ1)ε1 · · · ik+1(γl)
εl = 1. Thus γε11 · · · γ

εl
l = 1. We have thus established the

claim. From the claim, let ek+1 : Hk → Hk+1 be the unique isomorphic embedding

extending f .

This finishes our definition of the direct system. As usual, we view all ek as

inclusions, and HP as an increasing union of Hk.

We verify that HP is omnigenous. For this, let G1 ≤ HP be a finite subgroup.

Let k be sufficiently large that G1 ≤ Hk. Let Γ1 ≤ Γ2 be finite and Ψ1 : G1
∼= Γ1.

Now consider ik+1(G1) ≤ H and note that ik+1 ◦Ψ−1
1 is an isomorphic embedding

from Γ1 into H with image ik+1(G1). By property (E) from Proposition 3.3 for H,

there is an isomorphic embedding j : Γ2 → H extending ik+1 ◦ Ψ−1
1 . Let G2 be

the group generated by λTk+1
(j(Γ2)). As noted before, there is a homomorphism

ψ from G2 onto j(Γ2) such that ψ �G1 is an isomorphism. Let Ψ2 : G2 → Γ2 be

j−1 ◦ψ. It is straightforward to check that Ψ2 � ek+1(G1) = Ψ1 ◦ e−1
k+1. This shows

that HP is omnigenous.

The next lemma characterizes the isomorphism type of HP in terms of the set

P .

Lemma 5.4. P is exactly the set of all primes p such that there are order-p elements

α, β ∈ HP that are not conjugate in HP .

Proof. First let pn ∈ P . Let a ∈ H be an element of order pn such that a 6= sn ∈
S = T0. We claim that α = λS(a) ∈ H0 and β = λS(sn) ∈ H0 are not conjugate

in HP . Toward a contradiction, assume α, β are conjugate in HP . Then there is

k ≥ 0 such that they are conjugate in Hk. By the construction of Hk, we have

α = λTk
(g) for some g ∈ H \ Tk and β = λTk

(h) for some h ∈ Tk of order pn. Let

g1, . . . , gl ∈ H and ε1, . . . , εl ∈ {+1,−1} such that

λTk
(g1)ε1 · · ·λTk

(gl)
εlλTk

(g)λTk
(gl)
−εl · · ·λTk

(g1)−ε1 = λTk
(h).

The action of the element on the left hand side on Zn is identity, while the action

of λTk
(h) on Zn is +1, a contradiction.

On the other hand, suppose α, β ∈ HP both have order p 6∈ P . Then there is

k ≥ 0 such that α = λTk
(g) and β = λTk

(h) for g, h ∈ H \ Tk. By Proposition 3.2

g, h are conjugate in H, i.e., there is g1 ∈ H such that g1gg
−1
1 = h. Then we

claim λTk
(g1)λTk

(g)λTk
(g1)−1 = λTk

(h). This is because, the action of the element

on the left hand side on Y is by left multiplication of g1gg
−1
1 , while the action of

λTk
(h) on Y is by left multiplication of h, which are the same; on the other hand,

the action of the element on the left hand side on all Zn is identity regardless of

whether g1 ∈ Tk, which is the same as the action of λTk
(h) on Zn. Thus the claim

holds true, and α and β are conjugate in Hk. �
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By Lemma 5.4, if P 6= P ′ are distinct sets of primes, then HP and HP ′ are not

isomorphic. Since all HP are omnigenous, by Theorem 5.3 we can embed HP into

Iso(U∆) as a dense subgroup. We have thus proved the following theorem.

Theorem 5.5. There are continuum many pairwise nonisomorphic countable uni-

versal locally finite groups each of which can be embedded into Iso(U∆) as a dense

subgroup.

When P = ∅, it is easy to see that HP has the property (E) from Proposition 3.3,

and hence is isomorphic to H. Thus we obtain another proof of Theorem 3.14.

5.3. Ultrametric spaces. In this subsection we deal with ultrametric Urysohn

spaces and their isometry groups. We first recall some basic facts about ultrametric

Urysohn spaces (cf., e.g., [9] and [19]).

Recall that an ultrametric d on a space X is a metric such that

d(x, y) ≤ max{d(x, z), d(y, z)}

for all x, y, z ∈ X. In any separable ultrametric space, the ultrametric can take

only countably many values. Consequently, there is no separable ultrametric space

that is universal for all separable ultrametric spaces.

Given any countable set R of positive real numbers, an R-ultrametric space is

an ultrametric space in which the ultrametric takes positive values only in R. The

class of all finite R-ultrametric spaces is a Fräıssé class, and we let KuR denote its

Fräıssé limit. KuR is a universal countable, ultrahomogeneous R-ultrametric space,

and we call it the universal countable R-ultrametric Urysohn space. We endow

Iso(KuR) with the permutation group topology.

Consider the completion of KuR under the pointwise convergence topology, which

we denote as UuR and call the R-ultrametric Urysohn space. UuR is a Polish R-

ultrametric space which is universal for all Polish R-ultrametric spaces and is itself

ultrahomogeneous. We endow Iso(UuR) with the pointwise convergence topology.

By the standard argument in the proof of Theorem 3.16, any dense subgroup

of Iso(KuR) gives rise to an isomorphic dense subgroup of Iso(UuR). We prove the

following theorem.

Theorem 5.6. For any non-empty countable set R of positive real numbers, the

following hold:

(i) Iso(KuR) and Iso(UuR) contain H as a dense subgroup.

(ii) Every countable omnigenous locally finite group can be embedded into Iso(KuR)

or Iso(UuR) as a dense subgroup.

(iii) There are continuum many non-isomorphic universal countable locally finite

groups that can be embedded into each of Iso(KuR) and Iso(UuR) as a dense

subgroup.

Our plan is to repeat the proof in the preceding subsections for Iso(KuR). We

first need a lemma for R-ultrametric spaces that is analogous to Lemma 5.1. It

turns out that the proof is verbatim the same as that of Lemma 5.1, only noting
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that the pseudometric defined there is indeed a pseudo-ultrametric. We state the

lemma below without proof.

Lemma 5.7. Let R be any nonempty countable set of positive numbers. Let X be

a finite R-ultrametric space. Let λ ≤ Γ be finite groups and π : Λ→ Iso(X) be an

isomorphic embedding. Then there is a finite R-ultrametric space Y extending X

and an isomorphic embedding π′ : Γ→ Iso(Y ) such that for any γ ∈ Λ and x ∈ X,

π′(γ)(x) = π(γ)(x).

The next thing we need is a result analogous to Solecki’s Theorem 2.11 for R-

ultrametric spaces. This is an easy consequence of the techniques used to prove the

metric case (cf., e.g. [29]), but we give a self-contained proof here.

Lemma 5.8. Let R be any nonempty countable set of positive real numbers. Let

X be a finite R-ultrametric space. Then X has a strongly coherent S-extension

(Y, φ) where Y is a finite R-ultrametric space.

Proof. Let D(X) = {dX(x, y) : x 6= y ∈ X}. We prove this by induction on

|D(X)|.
First consider the case |D(X)| = 1. In this case Iso(X) = Sym(X). Fix a linear

order < on X. Given any partial isometry (permutation) p of X, define φ(p) to be

the extension of p by the (unique) <-order-preserving bijection between X \dom(p)

and X \ rng(p). Then (X,φ) is easily seen to be a strongly coherent S-extension of

X.

Suppose |D(X)| > 1 and let r be the least element of D(X). For each x ∈ X let

Br(x) = {y ∈ X : dX(x, y) ≤ r} = {x} ∪ {y ∈ X : dX(x, y) = r}.

Define X1 = {Br(x) : x ∈ X} and d1 on X1 by

d1(Br(x1), Br(x2)) =

{
dX(x1, x2), if dX(x1, x2) > r,

0, otherwise.

Then |D(X1)| = |D(X)|−1. By the inductive hypothesis applied to R = D(X)\{r},
X1 has a finite R-ultrametric strongly coherent S-extension (Y1, φ1), where D(Y1) ⊆
R.

Let N = max{|Br(x)| : x ∈ X} and fix an x0 ∈ X such that |Br(x0)| = N .

Fix a linear order <x on each Br(x); however, make <x depend only on Br(x) but

not on x. Let X2 = Br(x0) and d2 = dX on X2 ⊆ X. For each of Br(x), let

ex : Br(x)→ X2 be the order-preserving embedding so that ex(Br(x)) is an initial

segment in X2. Every Br(x) is identified as a subset of X2 via ex. We will view

ex as an inclusion. For each partial isometry p of Br(x) (viewed also as a partial

isometry of X2), let φx(p) be the extension of p by the order-preserving bijection

between X2 \ dom(p) and X2 \ rng(p).

Let Y = Y1 ×X2 and define dY ((u1, u2), (v1, v2)) = max{d1(u1, v1), d2(u2, v2)}.
Every x ∈ X is identified with (Br(x), ex(x)) ∈ Y . If p is a partial isometry of

X, then p induces a partial isometry of X1, which we denote by p1. For every

x ∈ dom(p) ⊆ X, p induces a partial isometry between Br(x) and Br(p(x)), which
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is identified as a partial isometry of X2 via ex and ep(x), which we denote by px.

Note that px depends on Br(x) but not on x. Define φ(p) ∈ Iso(Y ) by

φ(p)(u, v) =

{
(φ1(p1)(u), φx(px)(u, v)), if x ∈ dom(p) and dY (x, (u, v)) ≤ r,
(φ1(p1)(u), v), if there is no such x.

Then it is straightforward to check that (Y, φ) is a strongly coherent S-extension of

X. �

The rest of the proof in the preceding section works verbatim. In particular, we

obtain the space X using Lemma 5.7 and Y using Lemma 5.8, and then the space

Z constructed is an ultrametric space.

6. Properties of Dense Locally Finite Subgroups

In this section we study some properties of all dense locally finite subgroups of

Iso(U∆) from the point of view of model theory and combinatorial group theory.

6.1. Discerning types and discerning structures. We first define some con-

cepts and fix some notation. Throughout this section we let L be a countable

relational language (with equality). Given an L-structure M and A ⊆ M , we de-

note by LA the language L expanded by a constant symbol for each element of

A.

Definition 6.1. Fix an L-structure M and A ⊆ M . A 1-type over A is a set p of

LA-formulas, with (at most) one free variable x, for which there exists m ∈M such

that

p = {ϕ(x) : M |= ϕ(m)}.

Such m is called a realization of p in M . We say that p is nontrivial if p has a

realization not belonging to A. We denote by S1(A) the set of all 1-types over A.

Our terminology differs slightly from the usual definition in that these types are

usually referred to as types realized in M . In our context there will always be an

underlying structure M , and any 1-type over A is realized in M . Note that a 1-type

over A is nontrivial iff all realizations of p do not belong to A, because if a ∈ A and

b ∈M \A, then they cannot have the same 1-type over A (one satisfies x = a and

the other one does not).

Definition 6.2. Let M be a countable L-structure. Given A ⊆M and p a 1-type

over A, we denote by [p] the set of all realizations of p in M , i.e., [p] = {m ∈ M :

∀ϕ ∈ p M |= ϕ(m)}.
We say that p is algebraic over A if [p] is finite.

As an example, consider the structure U∆, where ∆ is a countable distance value

set. As illustrated in Subsection 2.2, U∆ can be viewed as a relational structure

in a language L with a binary relation symbol for each value of ∆. If A ⊂ U∆ is

finite, the 1-type over A of x ∈ U∆ is entirely determined by the distance function
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a 7→ d(a, x) (by ultrahomogeneity). Thus we may identify 1-types over A with

Katětov maps over A, i.e. maps f : A→ ∆ ∪ {0} such that

∀a, b ∈ A |f(a)− f(b)| ≤ d(a, b) ≤ f(a) + f(b).

We denote by E(A) the set of all Katětov maps over A. Note that if f ∈ E(A) is

such that f(a) = 0 for some a, then f = d(a, ·). Below we will sometimes identify

A with the subset of E(A) made up of trivial 1-types.

Definition 6.3. Let M be a countable L-structure, A a finite substructure and p

a nontrivial 1-type over A. We say that p is discerning if for every non-identity

g ∈ Aut(M) there exists x ∈ [p] such that g(x) 6= x.

Note that, if A is finite and p is both discerning and algebraic over A, then

{g ∈ Aut(M) : ∀x ∈ [p] g(x) = x} = {1}, hence Aut(M) is discrete. Equivalently,

if Aut(M) is non-discrete, A is finite and p ∈ S1(A) is discerning, then p cannot be

algebraic, thus has infinitely many realizations.

Definition 6.4. Let M be a countable L-structure. We say that M is discerning

if for any finite A ⊆M , every nontrivial 1-type over A is discerning.

Note that a countable infinite set, viewed as a first-order structure with only

the equality symbol in its language, is not discerning, because of the existence of

elements of Aut(M) with finite support.

Definition 6.5. Let M be a countable ultrahomogeneous L-structure. We say that

M has rich types if it satisfies the following conditions:

• For any finite A ⊆ M , and any g ∈ Aut(M) \ {1}, there exists x 6∈ A such

that g(x) 6= x;

• For any finite A ⊆ M , any x 6= y ∈ M with x 6∈ A, and any nontrivial

p ∈ S1(A), there exist z ∈ M which is a realization of p and an L-formula

ϕ such that M |= ϕ(x, z) and M |= ¬ϕ(y, z).

Observe that the first condition above forbids the existence of nontrivial elements

of Aut(M) with finite support.

Proposition 6.6. Let M be a countable ultrahomogeneous L-structure. If M has

rich types, then M is discerning.

Proof. Let A ⊆ M be finite, p a nontrivial type over A, and g ∈ Aut(M) \ {1}.
By assumption, g cannot fix every element in the complement of A. So we pick

x ∈ M \ A such that g(x) 6= x. Apply the fact that M has rich types to p, x,

and y = g(x). We thus obtain a realization z of p and an L-formula ϕ such that

M |= ϕ(x, z) and M |= ¬ϕ(y, z). Since g ∈ Aut(M), we have M |= ϕ(y, g(z)), and

thus g(z) 6= z. This z witnesses that p is discerning. �

The random graph R has rich types. In particular, for ∆ = {1, 2}, U∆ has rich

types. In the above we already saw that U{1} does not have rich types because it is

not discerning. In general, U∆ can also fail to have rich types for the reason that it

does not satisfy the second condition of the definition: it is possible that the type
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of z over A forces that (x, z) and (y, z) satisfy the same L-formulas. Nevertheless,

this happens for fairly few types, so that one can still prove the following.

Proposition 6.7. Let ∆ be a countable distance value set with |∆| ≥ 2. Then U∆

is discerning.

Proof. We first note that when |∆| ≥ 2, U∆ does satisfy the first condition of the

definition of rich types. In fact, let A ⊆ U∆ be finite and g ∈ Iso(U∆) \ {1}. If

g fixes all elements of A, then there is x ∈ U∆ \ A with g(x) 6= x, since g is not

identity. Otherwise, let a ∈ A be such that g(a) 6= a. If g(a) 6∈ A, we can let

x = g(a), and then g(x) 6= x since d(a, x) = d(g(a), g(x)) = d(x, g(x)). Suppose

g(a) ∈ A and let r = d(a, g(a)). Since |∆| ≥ 2, there is an s ∈ ∆ \ {r}. Suppose

first s < r. Then let k be the positive integer with ks < r ≤ (k + 1)s. Define a

Katĕtov map f over A by letting

f(c) = min{d(a, c) + ks, d(g(a), c) + r, sup(∆)} for all c ∈ A.

In particular f(a) = ks 6= r = f(g(a)). Let x ∈ U∆ be such that f(c) = d(x, c)

for all c ∈ A. Then x 6∈ A since d(x, c) = f(c) > 0 for every c ∈ A. Then

d(g(x), g(a)) = d(x, a) = f(a) = ks 6= r = f(g(a)) = d(x, g(a)). Thus g(x) 6= x.

Assume next r < s. Let k be the positive integer with kr < s ≤ (k + 1)r. Define a

Katĕtov map f over A by letting

f(c) = min{d(a, c) + kr, d(g(a), c) + s, sup(∆)} for all c ∈ A.

Then by a similar argument we can find x 6∈ A with g(x) 6= x.

To prove U∆ is discerning, fix a finite set A ⊆ U∆ and nontrivial f ∈ E(A).

Then f(c) > 0 for all c ∈ A. If A = ∅ the statement is obvious. So we assume

A 6= ∅. Fix a non-identity g ∈ Iso(U∆) and x 6∈ A ∪ g−1(A) ∪ g−2(A) such that

x 6= g(x). Then x, g(x) 6∈ A ∪ g−1(A).

Let B = A ∪ g−1(A) ∪ {x, g(x)}. Let R = max{f(c), d(a, b) : c ∈ A, a 6= b ∈ B}
and r = min{f(c), d(a, b) : c ∈ A, a 6= b ∈ B} > 0.

First assume R > r. Find t ∈ ∆ such that 1
2R ≤ max{r,R − r} ≤ t < R.

If r ≥ 1
2R we can just let t = r. Otherwise, let k be the positive integer with

kr < R ≤ (k + 1)r and let t = kr. Define a Katĕtov map F over B by letting

F (b) =

{
t, if b = g(x),

R, otherwise.

Let y ∈ U∆ be such that d(y, b) = F (b) for all b ∈ B. Since d(y, x) = R and

d(y, g(x)) = t, we get that g(y) 6= y. Moreover, for any c ∈ A, since d(y, g−1(c)) =

R, we have d(g(y), c) = R. Finally, define a Katĕtov map f̂ over A ∪ {y, g(y)}
that is an extension of f by letting f̂(y) = R and f̂(g(y)) = t. Let z ∈ U∆ be a

realization of f̂ . Then z is a realization of f , and d(z, y) = R 6= t = d(z, g(y)).

Thus g(z) 6= z. �

6.2. Mixed identities and MIF properties. In this subsection we consider

mixed identities in a group and show that all dense subgroups of Iso(U∆) do not

satisfy any nontrivial mixed identities, i.e., they are MIF (mixed identity free). For
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locally finite groups, we also define the more general notion of ∞-MIF and show

that it coincides with omnigenity.

We refer the reader to Hull–Osin [15] (particularly Section 5 there) for an account

of the study of mixed identities in group theory and for many existing results about

the notion of MIF groups. The argument used to prove Theorem 6.10 below is an

adaptation to our context of arguments of Theorem 5.9 of [15] about highly transitive

groups (dense subgroups of the permutation group S∞ of an infinite countable set).

Definition 6.8. Let G be a group. Let Fn be the free group generated by variables

x1, . . . , xn. A nontrivial mixed identity in G is a word w(x1, . . . , xn) ∈ G ∗ Fn \G
such that w(g1, . . . , gn) = 1 for all g1, . . . , gn ∈ G. If there is no nontrivial mixed

identity in G, we say that G is mixed identity free (MIF ).

As noted in [15] (Remark 5.1), a group G is MIF iff there is no nontrivial mixed

identity w(x) ∈ G ∗ 〈x〉 \ G, as there is an isomorphism from G ∗ Fn into G ∗ 〈x〉
that sends x1, . . . , xn to xgx, . . . , xngxn for a g ∈ G \ {1}. In the sequel we only

consider mixed identities with one free variable x. Such identities are of the form

g1x
m1g2x

m2 · · · gkxmk for g1, . . . , gk ∈ G, g2, . . . , gk ∈ G \ {1}, and m1, . . . ,mk ∈
Z \ {0}. We denote such identities by w(x; g1, . . . , gk).

Proposition 6.9. Let G be a topological group. If G is MIF then any dense

subgroup of G is MIF.

Proof. Let Γ be a dense subgroup of G, and assume that Γ satisfies a nontrivial

mixed identify w(γ; γ1, . . . , γk) = 1 for some fixed γ1, . . . , γk ∈ Γ and all γ ∈ Γ.

Since {g ∈ G : w(g; γ1, . . . , γk) = 1} is closed, and contains Γ, we conclude that we

have w(g; γ1, . . . , γk) = 1 for all g ∈ G. �

Theorem 6.10. Let L be a countable relational language and M be a countable ul-

trahomogeneous L-structure. Suppose M is discerning and Aut(M) is non-discrete.

Then for every w(x) ∈ Aut(M) ∗ 〈x〉 \Aut(M) the set {g ∈ G : w(g) 6= 1} is dense.

In particular, Aut(M) is MIF, and so is any dense subgroup of Aut(M).

Proof. Let g1, ..., gk ∈ Aut(M) with g2, ..., gk 6= 1, and m1, ...,mk ∈ Z \ {0}.
We have to prove that the set consisting of all elements g ∈ Aut(M) such that

g1g
m1 · · · gkgmk 6= 1 is dense. We will use the following lemmas.

Lemma 6.11. Let A,B be finite subsets of M and t be a nontrivial 1-type over

A. Then there is b 6∈ B which is a realization of t.

Proof. Since Aut(M) is non-discrete, A is finite, and t ∈ S1(A) is discerning, t has

infinitely many realizations. Since B is finite, there is a realization of t outside of

B. �

Lemma 6.12. Let p be any partial automorphism of M and let a 6∈ dom(p). Then

there is a partial automorphism q extending p such that q(a) 6∈ dom(q).

Proof. Since M is ultrahomogeneous, p can be extended to a ψ ∈ Aut(M). Let t

be the 1-type of ψ(a) over rng(p). Since a 6∈ dom(p), ψ(a) 6∈ rng(p), and therefore
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t is nontrivial. By Lemma 6.11, t has a realization b 6∈ dom(p) ∪ {a}. Since b ∈ [t],

the map p∪{(a, b)} is a partial automorphism. Let q = p∪{(a, b)}, then q extends

p. Moreover, q(a) = b 6∈ dom(p) ∪ {a} = dom(q). �

Lemma 6.13. Let g ∈ Aut(M), p be a partial automorphism of M , and let a 6∈
dom(p). Then there is a partial automorphism q extending p such that q(a), gq(a) 6∈
dom(q) and gq(a) 6= q(a).

Proof. Again, since M is ultrahomogeneous, p can be extended to a ψ ∈ Aut(M).

Let t be the 1-type of ψ(a) over rng(p). Since a 6∈ dom(p), ψ(a) 6∈ rng(p), and

therefore t is nontrivial. By Lemma 6.11, t has a realization b 6∈ dom(p) ∪ {a} ∪
g−1(dom(p))∪{g−1(a)}. Let s be the 1-type of b over dom(p)∪{a}∪g−1(dom(p))∪
{g−1(a)}. Then s is nontrivial, hence is discerning. Let c be a realization of s with

g(c) 6= c. Then g(c) 6∈ dom(p) ∪ {a}, because otherwise c ∈ g−1(dom(p) ∪ {a})
and would satisfy the negation of some formula in s. Now t ⊆ s, so we have that

c is a realization of t. As before, it follows that the map p ∪ {(a, c)} is a partial

automorphism. Let q = p ∪ {(a, c)}, then q extends p. Moreover, q(a) = c, gq(a) =

g(c) 6∈ dom(p) ∪ {a} = dom(q). �

Let p be any partial automorphism of M and fix a 6∈ dom(p) ∪ rng(p). By

applying Lemma 6.12 repeatedly, to either p if mk > 0 or p−1 if mk < 0, we obtain

a partial automorphism q extending p or p−1 accordingly, such that

a, q(a), q2(a), . . . , q|mk|−1(a)

are pairwise distinct. Then, by applying Lemma 6.13 once to gk, q and q|mk|−1(a),

we obtain a partial automorphism r extending q, such that

a, r(a), r2(a), . . . , r|mk|−1(a), r|mk|(a), gkr
|mk|(a)

are pairwise distinct. Let pk = r if mk > 0 and pk = r−1 if mk < 0. Then we get a

partial automorphism pk extending p such that a, gkp
mk

k (a) are distinct.

Repeating the argument k − 1 more times, we successively obtain partial auto-

morphisms

p ⊆ pk ⊆ pk−1 ⊆ · · · ⊆ p1

such that

a, gkp
mk

k (a), gk−1p
mk−1

k−1 gkp
mk

k−1(a), . . . , g1p
k1
1 · · · gkp

mk
1 (a)

are all pairwise distinct. In the very last step of the construction, we apply

Lemma 6.13 as above if g1 6= 1 and apply Lemma 6.12 if g1 = 1. In particular, we

obtain that for any g ∈ Aut(M) extending p1, we have that g1g
m1 · · · gkgmk(a) 6= a.

Since p was arbitrary, we conclude that the set of g such that g1g
m1 · · · gkgmk 6= 1

is dense. �

The following corollary follows immediately from Proposition 6.7, Proposition 6.9,

and Theorem 6.10.

Corollary 6.14. For any countable distance value set ∆ of cardinality ≥ 2, Iso(U∆)

is MIF. Moreover, any dense subgroup of Iso(U∆) is MIF.
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Example 6.15. (1) H is MIF.

(2) Let Alt(N) be the group of all finitely supported even permutations on N.

Hull–Osin showed that Alt(N) is not MIF (Theorem 5.9 of [15]). Since

Alt(N) is dense in S∞, S∞ is not MIF.

(3) Let P be a set of primes and T ⊆ H be a subset of type P . The group GT
constructed in Subsection 5.2 is MIF. To see this, assume γ1x

m1 · · · γkxmk is

a mixed identity in GT . By observing its action on Y = H, there are g1 ∈ H
and g2 . . . , gk ∈ H \ {1} such that for any g ∈ H, g1g

m1 · · · gkgmk = 1. This

contradicts the fact that H is MIF.

(4) In Subsection 3.1 we noted that the family of groups H ⊕ A, where A is

an abelian p-group, consists of continuum many non-isomorphic countable

universal locally finite groups. It is easy to see that H ⊕ A, when A is

nontrivial, is not MIF: a nontrivial mixed identity in H ⊕ A is w(x) =

xgx−1g−1, where g ∈ A\{1}. Thus none of the groups H⊕A are embeddable

as a dense subgroup of Iso(QU) when A is nontrivial.

We mention another corollary of our results.

Corollary 6.16. The group Iso(U) is MIF. Consequently, any dense subgroup of

Iso(U) is MIF.

Proof. Consider a nontrivial word w(g; g1, . . . , gk) with g1, . . . , gk ∈ Iso(U). Us-

ing Lemma 5.1 of [2], we obtain a distance value set ∆ and a dense subspace X

of U which is isometric to U∆ and such that gi(X) = X for all i ∈ {1, . . . , k}.
Since Iso(U∆) is MIF, we can find g ∈ Iso(X) such that w(g; g1|X , . . . , gk|X) 6= 1.

Extending g to an isometry of U, we have w(g; g1, . . . , gk) 6= 1. �

In the rest of this subsection we consider some notions stronger than MIF.

For notational simplicity we will write a word w(x1, . . . , xn) ∈ G ∗ Fn \ G as

w(x1, . . . , xn; g1, . . . , gk) if the constants occurring in the normal form of w(x1, . . . , xn)

are among g1, . . . , gk.

Definition 6.17. Let G be a group and k ≥ 1 be an integer. We say that G is k-

MIF if for any w1(x1, . . . , xn), . . . , wk(x1, . . . , xn) ∈ G∗Fn\G there are h1, . . . , hn ∈
G such that w1(h1, . . . , hn), . . . , wk(h1, . . . , hn) 6= 1.

If G is a locally finite group, we say that G is ∞-MIF if for any g1, . . . , gk ∈ G
and any infinite sequence w1(x1, . . . , xn; g1, . . . , gk), w2(x1, . . . , xn; g1, . . . , gk), . . . of

elements of G ∗Fn \G, whenever there is a finite group Γ which is an overgroup of

〈g1, . . . , gk〉 in which there are γ1, . . . , γn ∈ Γ such that wi(γ1, . . . , γn; g1, . . . , gk) 6= 1

for all i ≥ 1, there are h1, . . . , hn ∈ G such that wi(h1, . . . , hn; g1, . . . , gk) 6= 1 for

all i ≥ 1.

By the remark following Definition 6.8, for each integer k ≥ 1, the definition of

k-MIF is equivalent to the version where we consider words with only one variable.

Proposition 6.18. Let G be any group. Then the following hold:

(i) G is MIF iff G is k-MIF for some k ≥ 1 iff G is k-MIF for all k ≥ 1.

(ii) If G is a locally finite group and G is ∞-MIF, then G is MIF.
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(iii) If G is a locally finite group, then G is ∞-MIF iff G is omnigenous.

Proof. MIF is exactly 1-MIF, and it is clear that k-MIF implies 1-MIF. The fact

that 1-MIF implies k-MIF is a direct consequence of Proposition 5.3 of [15]. We give

a full proof here for the convenience of the reader. We first show that 1-MIF implies

2-MIF. Let w1(x1, . . . , xn), w2(x1, . . . , xn) ∈ G ∗Fn \G. Let w(x1, . . . , xn, x) ∈ G ∗
Fn ∗〈x〉 be the word [w1, x

−1w2x] = w−1
1 x−1w−1

2 xw1x
−1w2x. Then w is nontrivial.

Since G is 1-MIF, there are h1, . . . , hn, h ∈ G such that w(h1, . . . , hn, h) 6= 1. It

follows that w1(h1, . . . , hn), w2(h1, . . . , hn) 6= 1. Thus G is 2-MIF. In general, let

k ≥ 2 and w1, . . . , wk ∈ G∗Fn\G. Then similarly define a nontrivial w ∈ G∗Fn∗〈x〉
as

w = [w1, x
−1w2x, x

−2w3x
2, · · · , x−k+1wkx

k−1]

where the commutator is inductively defined by

[u1, u2] = u−1
1 u−1

2 u1u2 and [u1, . . . , um] = [[u1, . . . , um−1], um].

Reasoning as before, we find h1, ..., hn, h ∈ G satisfying w(h1, ..., hn, h) 6= 1, which

implies that all the elements w1(h1, ..., hn),..., wk(h1, ..., hn) are non trivial. This

finishes the proof that 1-MIF implies k-MIF for every k ≥ 2, so (i) is established.

To prove (ii), let G be an ∞-MIF locally finite group. In view of (i), we only

need to show that G is MIF. Let w(x; g1, ..., gk) be a nontrivial word in G ∗ 〈x〉.
Since 〈g1, ..., gk〉 is finite and 〈x〉 ∼= Z is residually finite, the group 〈g1, ..., gk〉 ∗ 〈x〉
is residually finite. We can thus find a finite group Γ and a homomorphism ρ :

〈g1, ..., gk〉∗ 〈x〉 → Γ such that ρ(w) 6= 1 and ρ(g) 6= 1 for every g ∈ 〈g1, ..., gk〉\{1}.
Since ρ � 〈g1, . . . , gn〉 is an isomorphism, we can then view Γ as an overgroup of

〈g1, ..., gk〉, in which w(ρ(x); g1, . . . , gk) 6= 1. Applying the ∞-MIF property, we

find h ∈ G such that w(h; g1, ..., gk) 6= 1 as required.

To prove (iii), suppose G is a locally finite group. First, assume G is omnigenous.

Let g1, . . . , gk ∈ G and w1, w2, · · · ∈ G∗Fn \G be given. Let Γ be a finite overgroup

of 〈g1, . . . , gk〉 and γ1, . . . , γn ∈ Γ be such that wi(γ1, . . . , γn; g1, . . . , gk) 6= 1 for all

i ≥ 1. Since G is omnigenous, there are h1, . . . , hn ∈ G such that the map given by

gj 7→ gj for j = 1, . . . , k and hl 7→ γl for l = 1, . . . , n generates a homomorphism

from 〈h1, . . . , hn, g1, . . . , gk〉 onto 〈γ1, . . . , γn, g1, . . . , gk〉 ≤ Γ. Thus, for any i ≥ 1,

wi(h1, . . . , hn; g1, . . . , gk) 6= 1, since otherwise by applying the homomorphism we

would get wi(γ1, . . . , γn; g1, . . . , gk) = 1.

Conversely, assume G is ∞-MIF. Suppose G1 = {1} ∪ {g1, . . . , gk} is a fi-

nite subgroup of G and Γ is a finite overgroup of G1 with additional generators

γ1, . . . , γn 6∈ G1, i.e., Γ = 〈g1, . . . , gk, γ1, . . . , γn〉. Let w1, w2, . . . enumerate all

words w ∈ G1 ∗Fn \G1 such that w(γ1, . . . , γn; g1, . . . , gk) 6= 1. Since G is ∞-MIF,

there are h1, . . . , hn ∈ G such that for all i ≥ 1, wi(h1, . . . , hn; g1, . . . , gk) 6= 1.

Then the map given by gj 7→ gj for j = 1, . . . , k and hl 7→ γl for l = 1, . . . , n gener-

ates a homomorphism from 〈g1, . . . , gn, h1, . . . , hn〉 onto Γ. To see this, note that if

w(x1, . . . , xn; g1, . . . , gk) ∈ G1 ∗ Fn \ G1 is such that w(h1, . . . , hn; g1, . . . , gk) = 1,

then w(γ1, . . . , γn; g1, . . . , gk) = 1 by our construction. �
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We have thus established the following implications for countable locally finite

groups G:

G is omnigenous

m
G is ∞-MIF

⇓
G is embeddable as a dense subgroup of Iso(U∆) for |∆| ≥ 2

⇓
G is k-MIF for all k ≥ 1

m
G is MIF

It follows from our results that H is ∞-MIF, along with all groups HP constructed

in Subsection 5.2. We now show that being∞-MIF is not equivalent to being MIF.

To this end, we will use the following recent result of Jacobson, which relies on a

construction due to Ol’shanskii, Osin and Sapir [20].

Theorem 6.19 ([16]). There is a MIF locally finite p-group.

Jacobson’s examples are explicit, but let us observe that the above result can be

shown directly as follows.

Proof. We construct an increasing sequence of finite p-groups {Gi}∞i=1 such that

G =
⋃∞
i=1Gi is MIF. Let G1 be any finite p-group and assume that we have

constructed the sequence {Gi}ni=1 of finite p-groups. For every 1 ≤ i ≤ n, let

Wi = {wi1, wi2, . . . } be the set of all nontrivial mixed identities of Gi of the form

w(g; g1, . . . , gj) where g1, g2, . . . , gj ∈ Gi. Furthermore, let σ : N × N → N be a

bijection such that for every s, t ∈ N we have max{s, t} ≤ σ(s, t). We find Gn+1

such that:

(1) Gn+1 is a finite p-group,

(2) Gn ≤ Gn+1, and

(3) wσ−1(n) is not a nontrivial mixed identity of Gn+1.

Assume wσ−1(n) = g1g
n1 · · · gkgnk where g1, . . . , gk ∈ Gn (this is possible since

σ−1(n) = (s, t) where s, t ≤ n). If wσ−1(n) is not a nontrivial mixed identity of

Gn, then we can take Gn+1 = Gn. Otherwise, wσ−1(n) ∈ Wn. Let m ∈ N be

such that n1, n2, . . . , nk < pm. Then wσ−1(n) is not a mixed identity of the free

product H = Gn ∗ Z/pmZ. Since both Gn and Z/pmZ are p-groups, by Higman

[12] H is a residually p-finite group. Let w′σ−1(n) = [wσ−1(n), h1, . . . , hl] where

Gn = {1, h1, h2, . . . , hl}. Since H is residually p-finite there exists N E H such

that [H : N ] is equal to a power of p and w′σ−1(n) /∈ N . Now Gn+1 = H/N is as

desired. By construction, it is clear that G =
⋃∞
i=1Gi is MIF. �

Proposition 6.20. There is a MIF locally finite group which is not ∞-MIF.

Proof. By Proposition 6.18 it suffices to construct a MIF locally finite group which

is not omnigenous. Consider a MIF p-group G as constructed above, let G1 be any

finite subgroup of G. Then consider some q ≥ 2 prime with p, and embed G1 into
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G1 × Z/qZ. Since G is a p-group, it is clear that no subgroup of G surjects onto

G1 × Z/qZ, so G fails to be omnigenous as wanted. �

Note that a p-group can not be dense in Iso(U∆) since for every q ∈ N (in

particular for q ∈ N where (q, p) = 1) there exists g ∈ Iso(U∆) such that g has an

orbit of length q. Therefore, by Proposition 6.20 there are MIF groups that are not

dense in Iso(U∆).

Let us end this section with another class of potentially relevant examples in the

above implications, namely some MIF highly transitive groups coming from Cantor

dynamics. Recall that, if ϕ is a minimal homeomorphism of a Cantor space X, its

topological full group [[ϕ]] is the group of all homeomorphisms g of X such that

there is a clopen partition A1, . . . , An of X and integers i1, . . . ,n with the property

that g(x) = ϕik(x) for all x ∈ Ak. These groups are amenable (by a celebrated

result of Juschenko-Monod [17]), and provide many examples of highly transitive

countable amenable groups (their action on any ϕ-orbit is highly transitive and

faithful). Now if one fixes some x0 ∈ X and consider the subgroup Γ of all elements

of [[ϕ]] which map the positive semi-orbit of x0 on itself, then Γ is locally finite

and also highly transitive. A basic example is the group of dyadic permutations,

obtained for ϕ being the odometer. All these groups are MIF; we would guess

they cannot be embedded as dense subgroups of any Iso(U∆) besides S∞. If this

were true, then in particular the stabilizers of positive semi-orbits would never be

∞-MIF.

7. A Characterization of Isomorphism

In this section we turn to a different problem, namely to study how the isomor-

phism type of Iso(U∆) is dependent on ∆.

7.1. Topological simplicity of Iso(U∆). The main theorem of this subsection

is a result about topological simplicity for pointwise stabilizers in Iso(U∆), which

we will use later. Tent–Ziegler [30], [31] have studied simplicity for many related

automorphism groups, and the result here also follows from their techniques. We

give a direct proof using techniques developed in the previous section.

Lemma 7.1. Let ∆ be any countable distance set. Let A ⊆ U∆ be a finite set,

p a nontrivial 1-type over A, x, y ∈ [p], and s ≤ 2d(x,A) an element of ∆. Then

there exist an integer m and elements x0 = x, x1 . . . , xm−1, xm = y ∈ [p] such that

d(xi−1, xi) = s for all i = 1, . . . ,m.

Proof. Since x and y have the same 1-type over A, we have d(x, y) ≤ 2d(x,A). If

s ≥ d(x,A), then consider the Katĕtov map f : A ∪ {x, y} → ∆ defined by

f(a) =

{
d(x, a), if a ∈ A,

s, if a ∈ {x, y}.

Let x1 ∈ U∆ be such that f(x1) = d(x1, a) for all a ∈ A ∪ {x, y}. Then x1 ∈ [p]

and d(x, x1) = d(x1, y) = s. If s < d(x,A), then let m be the least integer so that

ms ≥ 2d(x,A). Define a metric space A ∪ {x = x0, x1, . . . , xm−1, xm = y} as an
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extension of A ∪ {x, y} by letting, for all 1 ≤ i < m, d(xi, a) = d(x, a) for all a ∈ A
(i.e. xi ∈ [p]), and for all 1 ≤ i ≤ m and j < i, d(xj , xi) = (i− j)s if i− j < m. By

the Urysohn property of U∆, we can find such x1, . . . , xm−1 ∈ U∆. �

For a finite subset A ⊆ U∆, denote by GA the pointwise stabilizer of A, i.e.,

GA = {g ∈ Iso(U∆) : ∀a ∈ A g(a) = a}.

Lemma 7.2. Let ∆ be any countable distance value set with |∆| ≥ 2. Let A ⊆
U∆ be a finite set, p a nontrivial 1-type over A, and distinct x, y ∈ [p]. Let

g be a nontrivial element of GA. Then there exist h1, . . . , hn ∈ GA such that

hngh
−1
n · · ·h1gh

−1
1 (x) = y.

Proof. Since U∆ is discerning by Proposition 6.7, there is some z ∈ [p] such that

d(g(z), z) = s > 0. Since U∆ is homogeneous, there is h0 ∈ Iso(U∆) with h0(z) = x.

Then d(h0gh
−1
0 (x), x) = d(g(z), z) = s. Note that s ≤ 2d(x,A) since g fixes A

pointwise, so by Lemma 7.1 we may find x = x0, x1, . . . , xn−1, xn = y ∈ [p] such

that d(xi−1, xi) = s for all i = 1, . . . , n. By the ultrahomogeneity of U∆ we can find

g1, . . . , gn ∈ GA such that gi(x) = xi−1 and gi(h0gh
−1
0 (x)) = xi. Letting hi = gih0,

we thus have high
−1
i (xi−1) = xi for all i = 1, . . . , n and we are done. �

Theorem 7.3. Let ∆ be any countable distance value set. Let A ⊂ U∆ be a finite

set. Then the pointwise stabilizer GA is topologically simple.

Proof. When |∆| = 1, Iso(U∆) is isomorphic to S∞. It is well-known that S∞ is

topologically simple, and in S∞ pointwise stabilizers of finite tuples are isomorphic

to S∞. In the rest of this proof, we assume |∆| ≥ 2. Let g be a nontrivial element

of GA. We show that the normal subgroup of GA generated by g is dense in GA.

Let N be the set of all products of conjugates of g by elements of GA, plus the

identity. It suffices to show that N is dense in GA.

For this we show that for any finite A ⊆ U∆ and any partial isometry ψ such

that A ⊆ dom(ψ) and ψ(a) = a for all a ∈ A, there is an h ∈ N extending ψ.

Without loss of generality assume ψ is not the identity. We prove this by induction

on |dom(ψ) \ A|. Suppose dom(ψ) = A ∪ {x1, . . . xn}, and let yi = ψ(xi) for

i = 1, . . . , n. For n = 1, this is exactly the content of Lemma 7.2. Assume that

n > 1 and the statement has been proved for n−1. Using our inductive hypothesis,

we find f ∈ N such that f(x1) = y1, . . . , f(xn−1) = yn−1. Let ϕ = fψ−1. Then

dom(ϕ) = A ∪ {y1, . . . , yn−1, yn}, ϕ(a) = a for all a ∈ A, ϕ(yi) = yi for i =

1, . . . , n−1 and ϕ(yn) = f(xn). Applying Lemma 7.2 to A′ = A∪{y1, . . . , yn−1} and

ϕ, we get f ′ ∈ N such that f ′(a) = a for all a ∈ A, f ′(yi) = yi for i = 1, . . . , n− 1,

and f ′(yn) = f(xn). Let h = f ′
−1
f . Then h ∈ N , h(a) = a for all a ∈ A, h(xi) = yi

for all i = 1, . . . , n. �

7.2. Open subgroups and reconstruction.

Definition 7.4. Let ∆ be a distance value set. A ∆-triangle is a triple (d1, d2, d3)

of elements of ∆ which satisfies the triangle inequalities, i.e. for all distinct i, j, k ∈
{1, 2, 3}, |dj − dk| ≤ di ≤ dj + dk.
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Definition 7.5. Two distance value sets ∆,Λ are equivalent if there exists a bijec-

tion θ : ∆→ Λ such that, for any (d1, d2, d3) ∈ ∆3, we have

(d1, d2, d3) is a ∆-triangle⇔ (θ(d1), θ(d2), θ(d3)) is a Λ-triangle.

The following is the main theorem of this subsection, whose remainder is devoted

to its proof.

Theorem 7.6. Let ∆,Λ be two countable distance value sets. The following are

equivalent:

(1) ∆ and Λ are equivalent.

(2) Iso(U∆) and Iso(UΛ) are isomorphic (as abstract topological groups).

(3) There exists a (continuous) group homomorphism ϕ : Iso(U∆) → Iso(UΛ)

with dense image.

The implication (1) ⇒ (2) is easy: starting from U∆, and a map θ witnessing

that ∆ and Λ are equivalent, define a new distance dθ on U∆ by setting dθ(x, y) =

θ(d(x, y)). Then (U∆, dθ) is isometric to UΛ, and its isometry group has not changed

under this operation.

The implication (2) ⇒ (3) follows from the automatic continuity property for

Iso(U∆), which in turn follows from the fact that it has ample generics (cf. Corollary

4.1 of [27]).

Next we prove (3)⇒ (2). We will need to use stabilizers of Iso(U∆) for elements

x ∈ U∆, which we will denote as G∆
x for notational simplicity. More generally, for

any tuple x̄ ∈ Un∆, we also denote by G∆
x̄ the pointwise stabilizer of Iso(U∆) for x̄.

We will be using the following theorem which is essentially due to Slutsky (cf.

Theorems 4.12, 4.16 and Corollary 4.17 of [26]).

Theorem 7.7 (Slutsky [26]). Let ∆ be any countable distance value set. If A,B

are finite subsets of U∆, then 〈GA, GB〉 is dense in GA∩B.

Lemma 7.8. Let V be a proper open subgroup of Iso(U∆). Then there exists an

element x ∈ U∆ with a finite V -orbit.

Proof. Assume that V is open and has only infinite orbits. We claim that V is

dense, so that V = Iso(US), since any open subgroup is also closed. Let ā ∈ Un∆ be

such that G∆
ā ⊆ V . By Neumann’s lemma (cf. Corollary 4.2.2 of [13]), there exists

v ∈ V such that g(ā) ∩ ā = ∅. By Theorem 7.7, 〈G∆
ā , G

∆
g(ā)〉 is a dense subgroup of

Iso(U∆). This group is contained in V , and we are done. �

Lemma 7.9. Assume that τ is a Hausdorff, separable group topology on Iso(U∆)

which admits a proper open subgroup. Then τ coincides with the usual Polish

group topology of Iso(U∆).

Proof. Consider the identity embedding from Iso(U∆) into (Iso(U∆), τ). By auto-

matic continuity, this embedding is continuous. Let V be a proper τ -open sub-

group. By continuity, V is open for the usual Polish group topology. By the

previous lemma, there is an a ∈ U∆ with a finite V -orbit A. Using universality

and ultrahomogeneity of U∆, we may find g ∈ Iso(U∆) such that g(A) ∩ A = {a}
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is a singleton. Then V ∩ gV g−1 is τ -open, and contained in G∆
a . Thus G∆

a is

τ -open. Since Iso(U∆) acts transitively on U∆, any point stabilizer is thus τ -open.

Since the point stabilizers form a neighborhood subbasis for 1 in the usual Polish

group topology, we have that τ is finer than the usual topology, hence they are the

same. �

Proposition 7.10. Assume that ϕ : Iso(U∆) → S∞ is a nontrivial group homo-

morphism. Then ϕ is a topological group isomorphism onto its image.

Proof. We know that ϕ is continuous by automatic continuity. By Theorem 7.3,

Iso(U∆) is topologically simple, so ϕ is also injective. Let τ be the topology on

Iso(U∆) pulled back via ϕ. Then τ is Hausdorff, separable and admits a proper

open subgroup by the nature of the topology of S∞. By the previous lemma,

τ coincides with the usual Polish topology on Iso(U∆). This means that ϕ is a

topological group isomorphism onto its image. �

We note that the assumption on the target group being nonarchimedean is nec-

essary in general: for instance, Iso(UQ) is isomorphic to a proper dense subgroup

of Iso(U).

Now the implication (3) ⇒ (2) follows immediately from the previous proposi-

tion. In fact, let ϕ : Iso(U∆)→ Iso(UΛ) be a nontrivial group homomorphism with

a dense image. Since Iso(UΛ) is a closed subgroup of S∞, ϕ satisfies the assumption

of the previous proposition. It follows that ϕ is a topological group isomorphism

onto its image, which is closed in Iso(UΛ). Thus ϕ is onto.

Lemma 7.11. Let V be a proper open subgroup of Iso(U∆). The following are

equivalent:

(i) There exists a (unique) x ∈ U∆ such that V = G∆
x .

(ii) V is topologically simple, and is maximal among proper closed subgroups

of Iso(U∆).

Proof. First suppose V = G∆
x for some x ∈ U∆. Then by Theorem 7.3, V is

topologically simple. AssumeH is a proper closed overgroup of G∆
x . Let g ∈ H\G∆

x .

Then g(x) 6= x and G∆
g(x) = gG∆

x g
−1 ≤ H. By Theorem 7.7, 〈G∆

x , G
∆
g(x)〉, which is

a subgroup of H, is dense in Iso(U∆). Since H is closed, H = Iso(U∆).

For the converse, assume that V is an open subgroup which is maximal among

proper closed subgroups of G. By Lemma 7.8, there is a ∈ U∆ with a finite V -

orbit, which we denote as A. Now {g ∈ Iso(U∆) : g(A) = A} is a closed subgroup

of Iso(U∆) containing V . By maximality we know that V = {g ∈ GS : g(A) = A}.
We claim that A = {a}, and so V = G∆

a . Otherwise, A 6= {a}, then G∆
A ≤ V is a

proper normal open subgroup of V , thus V is not topologically simple.

For uniqueness, if V = G∆
x = G∆

y for x 6= y, then by Theorem 7.7 〈G∆
x , G

∆
y 〉 is

dense in Iso(U∆), which, together with the openness (and therefore closedness) of

V , would imply that V is not proper. �

Note that in the characterization above, we may replace the condition “V is

topologically simple” by “V has a comeagre conjugacy class” or “V has a dense
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conjugacy class”, since these two properties are true for stabilizers of singletons

(which have ample generics) while the other maximal open subgroups admit a

proper clopen normal subgroup (hence do not have a dense conjugacy class).

We can now prove the last remaining implication (2) ⇒ (1) of Theorem 7.6.

Assume that ϕ : Iso(U∆) → Iso(UΛ) is an isomorphism. By the previous lemma,

we know that for any x ∈ U∆ there exists a unique y ∈ UΛ such that ϕ(G∆
x ) = GΛ

y ,

and vice versa. We write y = ψ(x); since ϕ is an isomorphism, ψ is a bijection from

U∆ to UΛ.

Note that, for any (x, y), (x′, y′) ∈ U∆ the groups G∆
{x,y} = G∆

x ∩ G∆
y and

G∆
{x′,y′} = G∆

x′ ∩G∆
y′ are conjugate iff d(x, y) = d(x′, y′). Since ϕ is a group isomor-

phism which maps point stabilizers to point stabilizers, this implies that

∀x, y ∈ U∆ d(x, y) = d(x′, y′)⇔ d(ψ(x), ψ(y)) = d(ψ(x′), ψ(y′)).

Given d ∈ ∆, we can then define θ(d) ∈ Λ by finding x, y ∈ U∆ such that

d(x, y) = d, and then setting θ(d) = d(ψ(x), ψ(y)). Then θ is a bijection from

∆ to Λ. It remains to prove that θ is an equivalence between S and T . Pick

(d1, d2, d3) ∈ ∆3. Then (d1, d2, d3) is a ∆-triangle iff there exists x, y, z ∈ U∆ such

that d(x, y) = d1, d(y, z) = d2 and d(z, x) = d3. Then (ψ(x), ψ(y), ψ(z)) ∈ U3
Λ,

so that (θ(d1), θ(d2), θ(d3)) = (d(ψ(x), ψ(y)), d(ψ(y), ψ(z)), d(ψ(z), ψ(x)) is a Λ-

triangle. By symmetry, (d1, d2, d3) is a ∆-triangle if (θ(d1), θ(d2), θ(d3)) is a Λ-

triangle.

We have thus completed the proof of Theorem 7.6.

8. Open Problems

The first general problem is to characterize all dense countable locally finite

subgroups of Iso(U∆).

When |∆| = 1, Iso(U∆) is just S∞, so we are asking which locally finite groups

are highly transitive. Note that the Hull-Osin dichotomy states that such groups

are either MIF or contain a normal subgroup isomorphic to Alt(N).

For |∆| ≥ 2, the likely answer to the characterization problem for locally finite

groups is a condition strictly in between ∞-MIF and MIF, but we do not know

that the following question has a negative answer.

Question 1. For |∆| ≥ 2, are all dense locally finite subgroups of Iso(U∆)∞-MIF?

The second general problem is to explore the possibility of the other extreme,

namely to characterize the isomorphism type of Iso(U∆) by the isomorphism types

of their countable dense subgroups.

Question 2. If S, T are countable distance value sets that are not equivalent,

is there always a dense countable (locally finite) subgroup of one of Iso(US) and

Iso(UT ) that cannot be embedded into the other as a dense subgroup?
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Applications 154 (2007) 2173–2184.
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