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BOREL COMPLEXITY OF ISOMORPHISM BETWEEN QUOTIENT

BOOLEAN ALGEBRAS

SU GAO AND MICHAEL RAY OLIVER

§1. Introduction and nomenclature.

1.1. History of the question. In response to a question of Farah, “How
many Boolean algebras P(N)/I are there?” ([Far04]), one of us (Oliver) proved
that there are continuum-many nonisomorphic Boolean algebras of the form
P(ω)/I with I a Borel ideal on the natural numbers, and in fact that this result
could be improved simultaneously in two directions:

i) “Borel ideal” may be improved to “analytic P-ideal”
ii) “continuum-many” may be improved to “E0-many”; that is, E0 is Borel

reducible to the isomorphism relation on quotients by analytic P-ideals.

See [Oli04].
In [AdKech00], Adams and Kechris showed that the relation of equality on

Borel sets (and therefore, any Borel equivalence relation whatsoever) is Borel
reducible to the equivalence relation of Borel bireducibility. (In somewhat finer
terms, they showed that the partial order of inclusion on Borel sets is Borel
reducible to the quasi-order of Borel reducibility.) Their technique was to find
a collection of, in some sense, strongly mutually ergodic equivalence relations,
indexed by reals, and then assign to each Borel set B a sort of “direct sum”
of the equivalence relations corresponding to the reals in B. Then if B1 ⊆ B2

it was easy to see that the equivalence relation thus induced by B1 was Borel
reducible to the one induced by B2, whereas in the opposite case, taking x to be
some element of B1 \ B2, it was possible to show that the equivalence relation
corresponding to x, which was part of the equivalence relation induced by B1,
was not Borel reducible to the equivalence relation corresponding to B2.

The purpose of the current work is to show that every Borel equivalence rela-
tion is reducible to the isomorphism relation on quotients by Borel ideals, and
we shall follow approximately the same general plan that was used by Adams
and Kechris. However there are a couple of significant differences.

First, note that B will in general be uncountable, so the “direct sum” is over
uncountably many objects. For Adams and Kechris this was not a problem; they
could consider a Polish space in “two dimensions”, letting 〈x0, x1〉 be equivalent

Received by the editors February 17, 2008.
2000 Mathematics Subject Classification. Primary 03E15; Secondary 37A20.

c© 0000, Association for Symbolic Logic

0022-4812/00/0000-0000/$00.00

1



2 SU GAO AND MICHAEL RAY OLIVER

to 〈y0, y1〉 just in case x0 = x1 and y0 Ex0
y1 if x0 ∈ B. In our context this

will not quite work — we want our “direct sum” to be an ideal on a countable
underlying set, so we cannot directly accommodate uncountably many elements
of B without allowing them to interact in some way.

The second difference is that the equivalence relations Adams and Kechris
pieced together had a strong kind of mutual ergodicity, such that the restriction
of one of the relations to a non-negligible part of the space could not be Borel
reducible to any of the other relations. For us we cannot hope to prove, in
ZFC alone, the direct analogue of that result, which would be that there is no
isomorphic embedding from one of our underlying quotient Boolean algebras to
any other. This is because it follows from CH that, for any two ideals I and
J , where J has the property of Baire, there is an isomorphic embedding from
P(ω)/I into P(ω)/J .

There will be a collection of underlying ideals with a strong mutual incom-
patibility property (nonexistence of a Rudin–Keisler isomorphism between re-
strictions to positive sets), rather reminiscent of the mutual ergodicity of the
equivalence relations used by Adams and Kechris. But for the above reason, this
property cannot allow us to conclude the nonexistence of isomorphic embeddings
between quotient Boolean algebras. Therefore the argument must make strong
use of the fact that isomorphisms (as opposed to isomorphic embeddings) are
invertible.

1.2. Basic definitions.

Definition 1.1. If X and Y are Polish spaces and E and F are respectively
equivalence relations on X and Y , we say E is Borel reducible to F , in symbols
E ≤B F , if there is a Borel map Θ : X → Y such that, given any x0, x1 ∈ X,

x0 E x1 ⇐⇒ Θ(x0)FΘ(x1)

Definition 1.2. An ideal I on ω is a subset of P(ω) such that

i) For A ∈ I, if B ⊆ A, then B ∈ I.
ii) For A,B ∈ I, A ∪ B ∈ I.
iii) For every finite A ⊆ ω, A ∈ I.

Elements of I are said to be I-null.

Definition 1.3. For I an ideal on ω, a set A ⊆ ω is I-positive if A /∈ I.
The collection of all I-positive subsets of ω is written I+.

Definition 1.4. An ideal I on ω is dense if, for every infinite subset A ⊆ ω,
there is an infinite B ⊆ A such that B ∈ I.

Definition 1.5. For I, J ideals on ω, their product ideal I × J , on ω × ω
is defined as follows: for A ⊆ ω × ω,

A ∈ I × J ⇐⇒ {n|{m|〈n,m〉 ∈ A} ∈ J+} ∈ I

We also write I × ∅ and ∅ × J for the products with the ideal {∅} (even though
{∅} is not officially an ideal by our definition).

Definition 1.6. Two ideals I and J on ω are Rudin–Keisler isomorphic, in
symbols I ∼=RK J , if there are sets A,B ⊆ ω, with ω \ A ∈ I and ω \ B ∈ J ,
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and a bijection f : A → B, such that for every C ⊆ A,

C ∈ I ⇐⇒ f“C ∈ J

Definition 1.7. If I is an ideal on ω and A ⊆ ω, then the restriction of I to
A, in symbols I ↾ A, is the ideal defined by, for C ⊆ ω,

C ∈ I ↾ A ⇐⇒ C ∩ A ∈ I

Definition 1.8. For I an ideal on ω and A ⊆ ω, an ω-partition of A with
respect to I is an ω-sequence A0, A1, . . . such that:

i) For i 6= j, Ai ∩ Aj = ∅.
ii) For each i ∈ ω, Ai ∈ I+

iii) A is the least upper bound of the Ai with respect to I (that is, for each i ∈ ω,
Ai \A ∈ I, and if B is such that for each i ∈ ω, Ai \B ∈ I, then A\B ∈ I).

Definition 1.9. Given an ideal I, the deep ideal of I, denoted DI(I), is the
set of all A ⊆ ω such that A does not have an ω-partition with respect to I. A
set is said to be deep with respect to I if it is an element of DI(I).

Definition 1.10. An ideal I is shallow if there are no positive deep sets with
respect to I; that is, every I-positive set has an ω-partition with respect to I.

Definition 1.11. Given an ideal I, the shallowizing ideal of I, or shallowizer
of I, denoted SI (I), is the set of all A such that I ↾ A is shallow. That is, for
X ⊆ ω,

X ∈ SI (I) ⇐⇒ ∀Y ⊆ X (Y ∈ DI(I) ⇐⇒ Y ∈ I)

A set is said to be shallow with respect to I if it is an element of SI (I).

Definition 1.12. Given an ideal I, the antishallowizing ideal of I, or anti-
shallowizer of I, denoted ASI (I), is defined as follows:

X ∈ ASI (I) ⇐⇒ ∀Y ⊆ X (Y ∈ SI (I) ⇐⇒ Y ∈ I)

Definition 1.13. Given an ideal I, SASI (I) is the ideal generated by the
union of SI (I) and ASI (I):

X ∈ SASI (I) ⇐⇒ (∃X0 ∈ SI (I)) (∃X1 ∈ ASI (I))X = X0 ∪ X1

This last definition may be made more concise by adopting the convenient
notation according to which, given ideals I and J , we write I ∪J for the ideal
of all sets X ∪ Y where X ∈ I and Y ∈ J . Then by definition

SASI (I) = SI (I) ∪ ASI (J )

Note that

DI(I) ∩ SI (I) = I = SI (I) ∩ ASI (I)

Also note the table of inclusions below:
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I
⊆

DI (I) ⊆ ASI (I)

⊆
SI (I)

⊆

⊆

SASI (I)

1.3. Abstractions from previous proof. In [Oli04], it was shown that
there are continuum-many nonisomorphic Boolean algebras that are quotients
by Borel ideals. Changing notation slightly, and eliding some detail not relevant
to our current purposes, the outline of that proof is as follows:

i) In [Oli04, Section 4.2], one defines a family of Π
e

0
3 ideals J x, x a real, such

that each J x is shallow and dense, and such that, for x 6= y, there do not

exist X̄ ∈ J
+

x , Ȳ ∈ J
+

y such that

J x ↾ X̄ ∼=RK J y ↾ Ȳ

ii) Then, letting Jx =
(

J x × ∅
)

∩ (∅ × Fin), and assuming

P(ω × ω)/Jx
∼= P(ω × ω)/Jy

it is shown that sets X̄ and Ȳ , as above, do exist.
iii) One key to showing the existence of RK-isomorphic nontrivial restrictions

of J x and J y is to “pare down” the underlying sets of the Boolean algebras
P(ω×ω)/Jx and P(ω×ω)/Jy so that the RK-isomorphism between Jx ↾ X̄
and Jy ↾ Ȳ can be read off from the isomorphism between the pared-down
versions of the Boolean algebras. However it must be checked that the sets X̄
and Ȳ thus obtained are still positive; otherwise this fact simply trivializes.

In retrospect, the key to making sure that X̄ and Ȳ remain positive is to
guarantee that the underlying sets pared down from ω×ω (the underlying set
of the original Boolean algebras) remain positive with respect to SASI (Jx)
(respectively SASI (Jy)). This is the condition we shall maintain in the new
proof.

§2. New construction.

2.1. Idea. As in the Adams-Kechris technique, we want to reduce equality
on Borel sets to the relevant isomorphism relation by associating, to each Borel
set B, an ideal ÎB that somehow sums up all the ideals Jx for all x ∈ B.
Moreover we want the Boolean algebra obtained by modding out by ÎB to have,
for each x ∈ B, an element 1x below which the structure of the Boolean algebra
is determined by Jx.

Then, if everything works, for B and C distinct Borel sets, there should be
no isomorphism between the quotients by ÎB and ÎC , because for an element
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x ∈ B \ C, the element 1x should have “nowhere to go”, as ÎC is composed of
ideals that are incompatible with Jx.

But there is a problem: We are summing over (potentially) uncountably many
elements of the Borel sets B and C, and the ideals are on countable sets. The idea
(due to Hjorth) is to define ideals on the complete binary tree (we will actually
use a variant thereof) and consider what happens along branches corresponding
to elements of the Borel set.

More precisely: Consider ω × ω × 2<ω as a countably infinite collection of
complete binary trees; a set X ⊆ ω×ω× 2<ω is then a sequence of binary trees,
after closing under initial segment. For a real x ∈ 2ω, we consider whether the
set of all indices n such that the nth tree contains x as a branch, is an element
of Jx.

2.2. Formalization and nomenclature. Here we start with the same def-
initions (for example, of Jx) as in Section 1.3.

Given a set B ⊆ 2ω, we define an ideal IB on ω × ω × 2<ω as follows: For
x ∈ 2ω, X ⊆ ω × ω × 2<ω, put

1x = {〈n,m, x↾ k〉 |n,m, k ∈ ω}

X ∈ I{x} ⇐⇒ {〈n,m〉 | (∃∞k)〈n,m, x↾k〉 ∈ X} ∈ Jx

X ∈ IB ⇐⇒ (∀x ∈ B) X ∈ I{x}

Note that the last definition could as well have been written

X ∈ IB ⇐⇒ (∀x ∈ B) X ∩ 1x ∈ I{x}

and that, for x ∈ B,

IB ↾ 1x = I{x}.

2.3. Shallowizers, antishallowizers, etc. It is easy to see that the ideal
I{x} defined above is RK-isomorphic to the ideal

(

J x × ∅ × Fin
)

∩(∅ × Fin × Fin).
(The RK-isomorphism is literal equality for elements of 1x, which is an I{x}-
conull set).

We defer until Section 4 the proof of the following identities for the derived
ideals defined in the previous section (here we identify I{x} with

(

J x × ∅ × Fin
)

∩
(∅ × Fin × Fin)).

DI
(

I{x}

)

= (J x × ∅ × Fin) ∩ (Fin × Fin × Fin)

SI
(

I{x}

)

= ∅ × Fin × Fin

ASI
(

I{x}

)

= J x × ∅ × Fin

SASI
(

I{x}

)

= J x × Fin × Fin

2.4. Finite-threaded ideal. The ideal IB defined above is in general Π
e

1
1

since its definition contains a universal real quantifier that is not in any obvious
way eliminable; it is quite plausible that IB may be Π

e

1
1-complete even if B itself

is Borel. To obtain Borel ideals, we make the following modification.
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Definition 2.1. A subset X ⊆ ω × ω × 2<ω is finite-threaded if there is a
finite set x0, x1, . . . , xk−1 ∈ 2ω such that

X ⊆
⋃

i<k

1xi

We write FT for the collection of all finite-threaded sets.

Lemma 2.1. FT is a Σ
e

0
2 ideal.

Proof. FT is obviously an ideal. It is Σ
e

0
2 since X ∈ FT just in case

(∃k) (∀〈n0,m0, s0〉, 〈n1,m1, s1〉, . . . , 〈nk,mk, sk〉 ∈ X) (∃i 6= j ≤ k)(si 6⊥ sj).

⊣

Now, for B ⊆ 2ω, we define

ÎB = IB ∩ FT

Lemma 2.2. If B ⊆ 2ω is Borel, then ÎB is a Borel ideal.

Proof. Both IB and FT are Π
e

1
1. It follows that ÎB is Π

e

1
1. But ÎB is also

Σ
e

1
1 since X ∈ ÎB just in case

∃x0, x1, . . . , xk−1 ∈ 2ω

[

X ⊆
⋃

i<k

1{xi} & ∀i < k
(

xi ∈ B ⇒ X ∩ 1xi
∈ I{xi}

)

]

(where easily I{xi} is Borel, tracing the definitions back to the Π
e

0
3 ideal J xi

from Section 1.3). ⊣

§3. Main theorem. We are now ready to state the main result of this paper.
We shall state the theorem in a rather technical form; the “quotable” result will
actually be a corollary.

Theorem 3.1. There is a Borel function f : ωω → ωω such that:

i) If x is a Borel code for a Borel subset of 2ω, then f(x) is a Borel code for
a Borel ideal on ω × ω × 2<ω. In this case we write Kx for the ideal with
Borel code f(x).

ii) If x and y are Borel codes for the same Borel set, then Kx = Ky.
iii) If x and y are Borel codes for distinct Borel sets, then P(ω×ω×2<ω)/Kx 6∼=

P(ω × ω × 2<ω)/Ky.

The proof of Theorem 3.1 will comprise Sections 3.1, 3.2, 3.3, 3.4, 3.5, and
3.6.

Corollary 3.1. For any Polish space X and any Borel equivalence relation
E on X, E is Borel reducible to the equivalence relation of isomorphism between
quotient Boolean algebras by Borel ideals.

Proof of Corollary 3.1. To any element x of X, assign, as a complete
E-invariant, the ideal Kθ(x), where θ : X → ωω is a Borel function picking out a
Borel code for the Borel set [x]E , the E-equivalence class of x. ⊣
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3.1. Nonisomorphism between threads. We need to show that if A and
B are Borel sets, x ∈ A, y ∈ B, x 6= y, then

P(ω × ω × 2<ω)/
(

ÎA ↾ 1x

)

6∼= P(ω × ω × 2<ω)/
(

ÎB ↾ 1y

)

Indeed, we shall go further and show that if X ⊆ 1x is SASI
(

ÎA

)

-positive,

then there is no Y ⊆ 1y such that

P(ω × ω × 2<ω)/
(

ÎA ↾ X
)

∼= P(ω × ω × 2<ω)/
(

ÎB ↾ Y
)

Lemma 3.1. Let X ⊆ 1x and Y ⊆ 1y, with X /∈ SASI
(

ÎA

)

, and suppose

P(X)/ÎA
∼= P(Y )/ÎB

Then there are sets X̄, Ȳ ⊆ ω, with X̄ /∈ J x and Ȳ /∈ J y, such that

J x ↾ X̄ ∼=RK J y ↾ Ȳ

In particular, by Section 1.3, it follows that x = y.

The proof of this lemma is spread out over Sections 3.1, 3.2, and 3.3.
Suppose φ is an isomorphism from P(X)/ÎA to P(Y )/ÎB . We fix a lift of φ

to a map φ : P(X) → P(Y ); that is, when it is convenient, we shall write φ (X ′),

where X ′ ⊆ X, to mean some arbitrary representative of φ
(

[X ′]ÎA

)

, chosen in

advance. We do likewise for the inverse isomorphism φ−1.
For convenience, we fix a notation for the “slices” of the underlying space,

with first coordinate fixed:

An = X ∩ ({n} × ω × ω)

Bi = Y ∩ ({i} × ω × ω)

Now we define the S relation associated to φ by

nSi ⇐⇒ φ
(

[An]I{x}

)

∧ [Bi]I{y}
> 0

Claim 3.1. For each n, {i|nSi} is finite, and for each i, {n|nSi} is finite.

Proof. First note that a subset W of An is I{x}-positive if and only if
{〈k, ℓ〉|〈n, k, ℓ〉 ∈ W} /∈ Fin × Fin. Therefore there is no ω-partition of An

(or any subset thereof) with respect to I{x} (see Claim 4.1 below). But suppose

{i|nSi} were infinite. Then we could choose an infinite, yet J y-null, subset I
of {i|nSi}, and note that for each i ∈ I and any subset V of φ (An) ∩ Bi, V
is I{y}-positive if and only if {〈k, ℓ〉|〈i, k, ℓ〉 ∈ V } /∈ Fin × Fin. It follows that
I{y} ↾ φ (An)∩

⋃

i∈I Bi
∼=RK ∅×Fin×Fin. But this is impossible, because there

are no ω-partitions of any positive subsets of φ (An).
For the second assertion, we apply the symmetrical reasoning to φ−1. ⊣

Claim 3.2. For each n,

φ
(

[An]I{x}

)

=
∨

i|nSi

(

φ
(

[An]I{x}

)

∧ [Bi]I{y}

)
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and for each i,

φ−1
(

[Bi]I{y}

)

=
∨

n|nSi

(

φ−1([Bi]I{y}
) ∧ [An]I{x}

)

Proof. We prove the first assertion; the second will follow symmetrically. It
is immediate that

∨

i|nSi

(

φ
(

[An]I{x}

)

∧ [Bi]I{y}

)

≤ φ
(

[An]I{x}

)

Thus we need only refute the possibility
∨

i|nSi

(

φ
(

[An]I{x}

)

∧ [Bi]I{y}

)

< φ
(

[An]I{x}

)

Suppose the above were true. Then
⋃

i|¬nSi

(φ (An) ∩ Bi) /∈
(

J y × ∅ × Fin
)

∩ (∅ × Fin × Fin)

and thus
⋃

i|¬nSi

(φ (An) ∩ Bi) /∈ J y × ∅ × Fin

by the definition of the S relation. But this is impossible, because An is deep
with respect to I{x}, so ∪i|¬nSi (φ (An) ∩ Bi) (being a subset of φ (An)) is deep

with respect to I{y}, but J y × ∅ × Fin is shallow. ⊣

3.2. Paring. For each n such that An /∈ I{x}, let in be least such that nSin.

B′
in

= Bin
∩ φ (An)

A′
n = φ−1(B′

in
) ∩ An

X ′ =
⋃

n∈ω

A′
n

This “pares” the union of the An—that is, X—down to a subset X ′; then φ
restricts to an isomorphism φ : P(X ′)/I{x} → P (φ (X ′)) /I{y}.

Our goal here is to establish that, without loss of generality, we may assume
that the S relation is a partial function (that is, we want to replace X by X ′).
For that we need to see that the S relation restricts correctly; that is, that for
any n such that An is positive, and any i ∈ ω,

φ
(

[X ′ ∩ An]I{x}

)

∧ [φ (X ′) ∩ Bi]I{y}
> 0 ⇐⇒ i = in

and that X ′ /∈ SASI
(

I{x}

)

(so therefore φ (X ′) /∈ SASI
(

I{y}

)

).
The first point is by construction. For the second point, note that since

X /∈ SASI
(

I{x}

)

, it follows that
{

n|An /∈ I{x}

}

/∈ J x. This uses the fact that

An /∈ I{x} ⇐⇒ {〈k, ℓ〉|〈n, k, ℓ〉 ∈ An} /∈ Fin × Fin

and the characterization above of SASI
(

I{x}

)

. Thus, for a J x-positive collection
of n, φ (An) is positive, so B′

in
is positive, so A′

n is positive. But since each A′
n
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is a subset of {n} × ω × ω, this says exactly that their union, namely X ′, is
SASI

(

I{x}

)

-positive.

3.3. RK isomorphism. Section 3.2 establishes that we may assume that
the S relation is a function, by paring X down to a smaller set and recovering an
isomorphism between smaller Boolean algebras. By applying the same technique
to the inverse isomorphism φ−1, we may in fact assume that S is a bijection
between a J x-positive subset X̄ of ω and a J y-positive subset Ȳ of ω, such
that φ is an isomorphism between P(X)/I{x} and P(Y )/I{y}, X̄ is the set of all

indices n such that X ∩ An /∈ I{x}, and Ȳ is the set of all indices i such that
Y ∩ Bi /∈ I{y}.

We now show that, in this situation, S in fact induces an RK-isomorphism
between J x ↾ X̄ and J y ↾ Ȳ . We need to see that, for any subset C of X̄,

C ∈ J x ⇐⇒ S“C ∈ J y

By symmetry it is enough to show one direction, so assume C /∈ J x. Then
∪n∈CAn /∈ J x ×Fin×Fin, so ∪n∈CAn /∈ SASI

(

I{x}

)

by Section 2.3. Therefore

φ (∪n∈CAn) /∈ SASI
(

I{y}

)

. Letting D denote {i|φ (∪n∈CAn) ∩ Bi /∈ I{y}}, we

have D /∈ J y. But for any i ∈ D, we have that φ−1 (φ (∪n∈CAn) ∩ Bi) /∈ I{x}, so

[∪n∈CAn]I{x}
∧φ−1([Bi]I{x}

) is positive. But we also know that φ−1([Bi]I{y}
) ≤

[AS−1(i)]I{x}
(see Claim 3.2 and recall that S is a bijection). Therefore S−1(i) ∈

C. Thus it follows that S−1“D ⊆ C, so D ⊆ S“C. Since D /∈ J y, we have that

S“C /∈ J y, as required. This finishes the proof of Lemma 3.1. ⊣

3.4. Nonisomorphism between whole algebras. Suppose there were an
isomorphism

φ : P(ω × ω × 2<ω)/ÎA
∼= P(ω × ω × 2<ω)/ÎB

where A 6= B. Without loss of generality, suppose A \ B is nonempty, and let

x ∈ A \ B. Then φ restricts to an isomorphism between P(ω × ω × 2<ω)/ÎA ↾

[1x]ÎA
and P(ω × ω × 2<ω)/ÎB ↾ φ

(

[1x]ÎA

)

. We know that 1x ∈ SASI
(

ÎA

)+

,

so φ (1x) ∈ SASI
(

ÎB

)+

.

If we could identify a y ∈ B such that φ (1x) ∩ 1y ∈ SASI
(

ÎB

)+

, we would

be done, because we could then apply φ−1 to φ (1x)∩ 1y and find a SASI
(

ÎA

)

-

positive subset of 1x and a SASI
(

ÎB

)

-positive subset of 1y such that the re-

strictions of the corresponding Boolean algebras were isomorphic, contradicting
Lemma 3.1.

3.5. Key structural property. A key structural property of ÎA ↾ 1x is
that, while 1x has no ω-partition into deep sets, 1 it has an ω-partition into deep
sets modulo shallow sets. That is, there are X0,X1, . . . ⊆ 1x such that:

1In the two-dimensional analogue, suppose X0, X1, . . . is an ω-partition, into deep sets, of
ω×ω with respect to Jx =

`

J x × ∅
´

∩ (∅ × Fin). Note that no vertical slice {n}×ω can meet
infinitely many Xi (otherwise we could easily find an upper bound strictly below ω × ω) so
each vertical slice has infinite intersection with at least one Xi. But since each Xi is deep, it’s

in Fin × Fin. So from each Xi choose one element of each infinite intersection with a vertical
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i) (∀i)Xi ⊆ 1x

ii) (∀i 6= j)Xi ∩ Xj = ∅

iii) (∀i)Xi ∈ DI
(

ÎA

)

iv) (∀Y ⊆ 1x)
[

(∀i)Y ∩ Xi ∈ ÎA

]

=⇒Y ∈ SI
(

ÎA

)

Specifically, take Xi to equal {i} × ω × {x ↾ k |k ∈ ω}.
Therefore φ (1x) — recall that by this notation we mean some arbitrary

representative of φ
(

[1x]ÎA

)

— has the same property; specifically, there are

Y0, Y1, . . . ⊆ φ (1x) such that:

i) (∀i)Yi ⊆ φ (1x)
ii) (∀i 6= j)Yi ∩ Yj = ∅

iii) (∀i)Yi ∈ DI
(

ÎB

)

iv) (∀Y ⊆ φ (1x))
[

(∀i)Y ∩ Yi ∈ ÎB

]

=⇒Y ∈ SI
(

ÎB

)

For property (ii), what literally follows from the isomorphism is that Yi ∩ Yj

is ÎB-null. However it is easy to disjointify the Yi and verify that the remaining
properties still hold.

3.6. Use of FT ideal. By the argument of Section 3.4, we would also have
a contradiction if there were a finite sequence y0, y1, . . . , yk−1 ∈ B such that

φ (1x) ⊆
⋃

i<k

1yi

because then, for at least one i < k, we would have

φ (1x) ∩ 1yi
∈ SASI

(

ÎB

)+

and could then apply the same argument. Therefore φ (1x) /∈ FT.
The plan is to find an infinite set Z ⊆ P(ω × ω × 2<ω) with the following

properties:

i) Z is a subset of φ (1x)
ii) the projection of Z to the “tree coordinate” is an antichain in 2<ω

iii) each Yi contains at most one element of Z.

The contradiction will then be that Z ∈ SI
(

ÎB

)

by (iii) above and property

(iv) of Section 3.5, but ÎB ↾ Z ∼=RK Fin, because a subset of Z is positive if
infinite (because not finite-threaded), and obviously null if finite.

The plan for constructing Z is to start with φ (1x), and consider each Yi in
turn, trying to add an element of Z that belongs to both Yi and the “current
set” (that is, φ (1x) less whatever we’ve cut away from it). To make sure that
the tree coordinates of the elements of Z form an antichain, we try to find two
elements of Yi, in the current set, with incompatible tree coordinates, and take
one of them in an attempt to build the antichain, removing from the current set
everything whose tree coordinate is compatible with that of the chosen element,

slice, and put them all together – the horizontal projection is all of ω, so the set is positive,

but its intersection with each Xi is finite, so null.
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so that later choices will continue to build up an antichain. We do so in a way

that preserves the SASI
(

ÎB

)

-positivity of the current set.

Sometimes this may work (“Case III” below), but there are two things that
can go wrong: Yi may have trivial intersection with the current set (“Case I”), or
it may not be possible to find elements with incompatible tree coordinate (“Case
II”). In Case II, there are infinitely many elements of the intersection of Yi and
the current set whose tree coordinates lie along a single branch; we keep track
of that branch for possible use in constructing Z.

By recursion we define, for each i < ω, sets Ci,Di ⊆ i and Wi ⊆ P(ω×ω×2<ω),
and yi ∈ 2ω whenever i ∈ Ci+1, and 〈ni,mi, si〉 ∈ Yi ∩ Wi whenever i ∈ Di+1,
such that:

i) Ci ⊆ Ci+1, Di ⊆ Di+1

ii) Ci ∩ Di = ∅

iii) Wi /∈ SASI
(

ÎB

)

iv) Wi ⊇ Wi+1

v) [W0]ÎB
≤ φ

(

[1x]ÎB

)

vi) (∀j < i) [j ∈ Ci =⇒ (∀〈n,m, t〉 ∈ Wi)t * yj ]
vii) (∀j < i) [j ∈ Di =⇒ (∀〈n,m, t〉 ∈ Wi)t ⊥ sj ]

viii) i ∈ Ci+1 =⇒Yi ∩ Wi ∩ 1yi
/∈ ÎB

Start with C0 and D0 empty, and W0 equal to φ (1x); easily all the above
conditions are met. Now assume we have met all the conditions for all j < i,
and we will attempt to pick an element of the antichain from Yi ∩Wi. There are
three possible cases:

Case I: Yi ∩ Wi ∈ ÎB. Then we “do nothing”: that is, we take Ci+1 = Ci,
Di+1 = Di, Wi+1 = Wi, and do not assign values to yi or 〈ni,mi, si〉.

Case II: Case I fails, but there do not exist incompatible nodes s and s′ in 2<ω

and natural numbers n,m, n′,m′ such that 〈n,m, s〉 and 〈n′,m′, s′〉 are both in
Yi∩Wi. In that case, all tree coordinates of elements of Yi∩Wi lie along a single
branch of the complete binary tree. We call that branch yi and throw i into Ci+1;
that is, Ci+1 = Ci ∪ {i}, Di+1 = Di. Now we form Wi+1 by removing from Wi

everything whose tree coordinate is compatible with yi; that is, Wi+1 = Wi \1yi
.

We leave 〈ni,mi, si〉 undefined.

Note here that yi 6= x, because 1x ∈ ÎB . Therefore we must have Wi ∩

1yi
∈ SASI

(

ÎB

)

; otherwise we could look at the isomorphism φ restricted to

φ−1 (Wi ∩ 1yi
) and recover a contradiction to Lemma 3.1. Thus Wi+1 = Wi \

1yi
/∈ SASI

(

ÎB

)

.

Case III: There do exist 〈n,m, s〉, 〈n′,m′, s′〉 ∈ Yi ∩ Wi with s ⊥ s′. Then
let E = {〈k, ℓ, t〉 ∈ ω × ω × 2<ω|t ⊥ s}, E′ = {〈k, ℓ, t〉 ∈ ω × ω × 2<ω|t ⊥ s′},
and note ω × ω × 2<ω \ (E ∪ E′) consists of triples whose tree coordinates have

bounded length, so it is ÎB-null, and thus certainly SASI
(

ÎB

)

-null. Thus either

E ∩ Wi /∈ SASI
(

ÎB

)

, or E′ ∩ Wi /∈ SASI
(

ÎB

)

. In the former case, take

〈ni,mi, si〉 = 〈n,m, s〉 and Wi+1 = E∩Wi; in the latter case, do the symmetrical
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thing. In either case we add i to Di+1; that is, Ci+1 = Ci, Di+1 = Di ∪ {i}, and
yi is not defined.

Most of the properties are clearly inductively preserved by construction; how-
ever property (iii) deserves comment. In Case I there is nothing to do; in case II,

we noted that Wi+1 = Wi \ 1yi
/∈ SASI

(

ÎB

)

. In Case III we specifically choose

E or E′ so that intersecting with Wi will preserve SASI
(

ÎB

)

-positivity.

Now Case I cannot happen cofinitely often, because if it did, then let i be large
enough that Case I happens at step i and all later steps. Then notice that, for
all j > i, Wj = Wi, and therefore Wi ∩ Yj is ÎB-null for all j ≥ i. But there are

only finitely many Yj for j smaller than i, and they are all elements of DI
(

ÎB

)

and therefore of SASI
(

ÎB

)

, so we can subtract them all from Wi, and be left

with a SASI
(

ÎB

)

-positive set whose intersection with every Yj is ÎB-null. But

that contradicts property (iv) of Section 3.5.
At the end, let C =

⋃

i<ω Ci, D =
⋃

i<ω Di. By the previous paragraph, at
least one of C, D must be infinite. If D is infinite, then the 〈ni,mi, si〉 for i ∈ D
are the desired antichain Z. If C is infinite, then for each i ∈ C, it follows by
property (viii) that we have a new branch yi ∈ 2ω such that there are infinitely
many triples 〈n,m, yi ↾ k〉 ∈ Wi∩Yi, so we can easily choose our desired antichain
Z from those.

This finishes the proof of Theorem 3.1. We simply define Kx to be ÎA, where
A is the Borel set coded by the Borel code x. To see that there is a function f
returning a Borel code f(x) for Kx involves noticing that there are uniform-in-x
Π
e

1
1 codes for Kx and its complement (by the proof of Lemma 2.2), and applying

the Suslin–Kleene theorem (for which see [Mosch80, 7B]). ⊣

§4. Calculation of derived ideals. Here we sketch the proofs of the iden-
tities stated in Section 2.3:

Claim 4.1 (Folklore). ω × ω has no ω-partition with respect to Fin × Fin (so
DI(Fin × Fin) = P(ω × ω)).

Proof. Suppose C0 ∪ C1 ∪ . . . = ω × ω, where the Cn are pairwise disjoint
and all Fin × Fin-positive. Then let n0 be least such that C0 ∩ ({n0} × ω) is
infinite, and let C ′

0 = C0 \ ({n0} × ω). Let n1 be least greater than n0 such that
C1 ∩ ({n1} × ω) is infinite, and let C ′

1 = C1 \ ({n1} × ω), and so on.
Now for each k, Ck \ C ′

k is in Fin × Fin, but letting C ′ =
⋃

k<ω C ′
k, we have

that (ω × ω) \ C ′ is Fin × Fin-positive.
⊣

Lemma 4.1. DI
(

I{x}

)

= (J x × ∅ × Fin) ∩ (Fin × Fin × Fin)
Proof.

• ⊇: Suppose X is an element of the right-hand side. If X ∈ I{x} there
is nothing to do, so assume X is I{x}-positive. Since by hypothesis X ∈

J x × ∅ × Fin, this can only be because X /∈ ∅ × Fin × Fin, but again by
hypothesis, X ∈ Fin × Fin × Fin.
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Thus there is a finite but nonempty collection of first coordinates such
that the slice of X corresponding to that coordinate is Fin × Fin-positive.
The restriction of I{x} to each such slice is RK-isomorphic to Fin × Fin, so
I{x} restricted to X is the direct sum of finitely many copies of Fin × Fin,
which is easily RK-isomorphic to Fin × Fin itself. Then by Claim 4.1, X is
deep with respect to I{x}.

• ⊆: Suppose X is not in the right-hand side. Then either there is a J x-
positive collection of first coordinates such that the corresponding slices are
∅ × Fin-positive, or there are infinitely many first coordinates such that the
corresponding slices are Fin × Fin-positive.

In the first case, cut X down so that for each of the J x-positively many
first coordinates mentioned, exactly one second coordinate is represented;
call the resulting set X ′. Then X ′ is I{x}-positive, and I{x} ↾ X ′ is RK-

isomorphic to (J x × ∅ × Fin) ↾ X ′. But this last ideal is shallow (see
[Oli04, Lemma 4.1]), so X /∈ DI

(

I{x}

)

.
In the second case, from the infinitely many first coordinates whose slices

are Fin × Fin-positive, choose an infinite J x-null subset (this is possible
because J x is dense) and cut X down to an X ′ with first coordinates only
in that subset. Then X ′ is I{x}-positive and I{x} ↾ X ′ is RK-isomorphic to
∅×Fin×Fin. But ω×ω×ω has an ω- partition with respect to ∅×Fin×Fin
(just cut it up into slices corresponding to different first coordinates), so
again X ′ /∈ DI

(

I{x}

)

.

⊣

Lemma 4.2. SI
(

I{x}

)

= ∅ × Fin × Fin
Proof.

• ⊇: Suppose X is an element of the right-hand side. Then if X is positive, it
can only be because X is J x×∅×Fin- positive, and I{x} ↾ X = J x×∅×Fin ↾

X, which is shallow. Therefore X ∈ SI
(

I{x}

)

.
• ⊆: Suppose X is not an element of the right-hand side. Then there is at

least one first coordinate such that the corresponding slice of X is Fin×Fin-
positive. Call that slice X ′. Then I{x} ↾ X ′ ∼=RK Fin×Fin, so X /∈ SI

(

I{x}

)

by Claim 4.1.

⊣

Lemma 4.3. ASI
(

I{x}

)

= J x × ∅ × Fin
Proof.

• ⊇: Suppose X is an element of the right-hand side. Then if X ′ ⊆ X is
positive, it can only be because X ′ /∈ ∅×Fin×Fin. But now by Lemma 4.2,
X ′ /∈ SI

(

I{x}

)

. Since X ′ was an arbitrary positive subset of X, it follows

that X ∈ ASI
(

I{x}

)

.

• ⊆: Suppose X is not in the right-hand side. Then there is a J x-positive
set of first coordinates whose corresponding slices of X are ∅×Fin-positive.
Pare X down so that exactly one second coordinate is represented for each
of the aforementioned first coordinates; call this new set X ′. Then X ′ is an
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I{x}-positive element of ∅ × Fin × Fin, which equals SI
(

I{x}

)

. Therefore

X /∈ ASI
(

I{x}

)

.

⊣

Lemma 4.4. SASI
(

I{x}

)

= J x × Fin × Fin

Proof. By Lemmata 4.2 and 4.3, and using the notation mentioned in the
remark following Definition 1.13, we want

(∅ × Fin × Fin)∪ (J x × ∅ × Fin) = J x × Fin × Fin

For simplicity we show instead the two-dimensional version (the three-dimensional
version is not essentially different):

(∅ × Fin)∪ (J x × ∅) = J x × Fin

• ⊇: Let X be an element of the right-hand side. Then letting A be the set of
all first coordinates whose slices in X are infinite, we have that A ∈ J x. Let
X ′ be the set of all elements of X whose first coordinates are in A. Then
X = X ′ ∪ (X \ X ′), with X ′ ∈ J x × ∅ and X \ X ′ ∈ ∅ × Fin.

• ⊆: Immediate by the inclusions ∅×Fin ⊆ J x ×Fin and J x ×∅ ⊆ J x ×Fin,
and the fact that J x × Fin is an ideal.

⊣
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