Math 3510 Handout 2

02/16/16

Facts from Number Theory

Division Algorithm for \mathbb{Z}

If m is a positive integer and n is any integer, then there exist unique integers q and r such that

$$
n=m q+r \text { and } 0 \leq r<m
$$

Greatest common divisor

The greatest common divisor of two positive integers m and n is usually defined as the greatest integer d with $1 \leq d \leq \min \{m, n\}$ such that d is a divisor of both m and n.

Theorem If m and n are positive integers, then the greatest common divisor of m and n is the the least positive integer d such that $d=k m+l n$ for some integers k and l.

Lemma 1 Let m and n be positive integers. If $d=k m+l n$ for some integers $k, l \in \mathbb{Z}$ and d is the least positive integer of this form, then d is a common divisor of m and n.

Proof Consider the set

$$
H=\{k m+\ln \mid k, l \in \mathbb{Z}\} .
$$

One can show that H is a group. By Theorem $6.6, H$ is cyclic, and thus there is a positive integer d such that $H=\langle d\rangle$. Now $n=0 \cdot m+1 \cdot n$ and $m=1 \cdot m+0 \cdot n$ are both in H. Thus d is a common divisor of m and n.

Lemma 2 Let m and n be positive integers, and let $d=k m+l n$ for some $k, l \in \mathbb{Z}$. If d^{\prime} is any common divisor of m and n, then d^{\prime} is a divisor of d.

Proof If d^{\prime} is a common divisor of m and n, then d^{\prime} is a divisor of $k m+l n=d$.

Lemma 3 Let m and n be positive integers and d be the greatest common divisor of m and n. Then there exist $k, l \in \mathbb{Z}$ such that $d=k m+\ln$.

Proof Perform Euclid's division algorithm repeatedly: let $n=a_{0}$ and $m=a_{1}$, then there exist q_{1} and a_{2} such that

$$
a_{0}=a_{1} q_{1}+a_{2} \quad \text { and } 0 \leq a_{2}<a_{1} .
$$

Repeating this, we get q_{2} and a_{3} such that

$$
a_{1}=a_{2} q_{2}+a_{3}
$$

Etc. The remainders $a_{1}>a_{2}>a_{3}>\ldots \geq 0$. Thus there is integer t such that $a_{t+1}=0$. We would have

$$
a_{t-2}=a_{t-1} q_{t-1}+a_{t}
$$

and

$$
a_{t-1}=a_{t} q_{t}+a_{t+1}=a_{t} q_{t}
$$

Then we can argue that $d=a_{t}$: on the one hand, any common divisor of m and n would be a divisor of each of $a_{2}, a_{3}, \ldots, a_{t}$; on the other hand, any divisor of a_{t} is also a divisor of $a_{t-1}, \ldots, a_{2}, a_{1}, a_{0}$. Finally, every number in the sequence $a_{2}, a_{3}, \ldots, a_{t}$ can be written as $k m+l n$ for some $k, l \in \mathbb{Z}$. In particular $a_{t}=d$ is of the form $k m+l n$ for $k, l \in \mathbb{Z}$.

Relatively prime

Two positive integers are relatively prime if there greatest common divisor is 1 .
Theorem If m and n are relatively prime and n divides $k m$, then n divides k.
Proof Let $a, b \in \mathbb{Z}$ be such that $1=a m+b n$. Then $k=a k m+b k n$. Now n is a divisor of both $k m$ (therefore $a k m)$ and $b k n$, so it is a divisor of k.

