Math 3510 Handout 2 02/16/16 Facts from Number Theory

Division Algorithm for \mathbb{Z}

If m is a positive integer and n is any integer, then there exist unique integers q and r such that

$$n = mq + r$$
 and $0 \le r < m$.

Greatest common divisor

The greatest common divisor of two positive integers m and n is usually defined as the greatest integer d with $1 \le d \le \min\{m, n\}$ such that d is a divisor of both m and n.

Theorem If m and n are positive integers, then the greatest common divisor of m and n is the the least positive integer d such that d = km + ln for some **integers** k and l.

Lemma 1 Let m and n be positive integers. If d = km + ln for some integers $k, l \in \mathbb{Z}$ and d is the least positive integer of this form, then d is a common divisor of m and n.

Proof Consider the set

$$H = \{km + ln \mid k, l \in \mathbb{Z}\}.$$

One can show that H is a group. By Theorem 6.6, H is cyclic, and thus there is a positive integer d such that $H = \langle d \rangle$. Now $n = 0 \cdot m + 1 \cdot n$ and $m = 1 \cdot m + 0 \cdot n$ are both in H. Thus d is a common divisor of m and n.

Lemma 2 Let m and n be positive integers, and let d = km + ln for some $k, l \in \mathbb{Z}$. If d' is any common divisor of m and n, then d' is a divisor of d.

Proof If d' is a common divisor of m and n, then d' is a divisor of km + ln = d.

Lemma 3 Let m and n be positive integers and d be the greatest common divisor of m and n. Then there exist $k, l \in \mathbb{Z}$ such that d = km + ln.

Proof Perform Euclid's division algorithm repeatedly: let $n = a_0$ and $m = a_1$, then there exist q_1 and a_2 such that

$$a_0 = a_1 q_1 + a_2$$
 and $0 \le a_2 < a_1$.

Repeating this, we get q_2 and a_3 such that

$$a_1 = a_2 q_2 + a_3.$$

Etc. The remainders $a_1 > a_2 > a_3 > \ldots \ge 0$. Thus there is integer t such that $a_{t+1} = 0$. We would have

$$a_{t-2} = a_{t-1}q_{t-1} + a_t$$

and

$$a_{t-1} = a_t q_t + a_{t+1} = a_t q_t.$$

Then we can argue that $d = a_t$: on the one hand, any common divisor of m and n would be a divisor of each of a_2, a_3, \ldots, a_t ; on the other hand, any divisor of a_t is also a divisor of $a_{t-1}, \ldots, a_2, a_1, a_0$. Finally, every number in the sequence a_2, a_3, \ldots, a_t can be written as km + ln for some $k, l \in \mathbb{Z}$. In particular $a_t = d$ is of the form km + ln for $k, l \in \mathbb{Z}$.

Relatively prime

Two positive integers are relatively prime if there greatest common divisor is 1.

Theorem If m and n are relatively prime and n divides km, then n divides k.

Proof Let $a, b \in \mathbb{Z}$ be such that 1 = am + bn. Then k = akm + bkn. Now *n* is a divisor of both km (therefore akm) and bkn, so it is a divisor of *k*.