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1 Introduction

As is well known, classical modular forms are associated to automorphic representations of the adelic group
GL(2,𝔸ℚ). Similarly, Siegel modular forms of degree 2 are related to automorphic representations of the
adelic group GSp(4,𝔸ℚ); see [4]. The latter have trivial central character and can hence be regarded as auto-
morphic representations of PGSp(4,𝔸ℚ). The split orthogonal group SO(5), which is isomorphic to PGSp(4)
as algebraic groups, is one of the groups forwhichArthur [3] has provided a classification of the discrete auto-
morphic spectrum in terms of the automorphic representations of general linear groups. (This classification
has been extended to GSp(4,𝔸ℚ) by Gee and Taïbi in [8].) In the following, let G = GSp(4).

Definition 1.1. Let k be a positive integer, and let p be a prime. Let Sk(p, Ω)be the set of cuspidal automorphic
representations π ≅⨂v≤∞ πv of G(𝔸ℚ) with trivial central character satisfying the following properties:
(i) π∞ is the lowest weight module with minimal K-type (k, k); it is a holomorphic discrete series repre-

sentation if k ≥ 3, a holomorphic limit of discrete series representation if k = 2, and a non-tempered
representation if k = 1. (It was denoted byBk,0 in [23, Section 3.5].)

(ii) πv is unramified for each v ̸= p,∞.
(iii) πp is an Iwahori-spherical representation of G(ℚp) of type Ω.

Here the representation type Ω is one of the types listed in Table 1: I, IIa, IIb, . . . . This table lists all the
irreducible, admissible representations of G(F) supported in the minimal parabolic subgroup, where F is
a non-archimedean local field of characteristic zero. By general principles, it is known that Sk(p, Ω) is finite.
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Let
sk(p, Ω) := #Sk(p, Ω) (1.1)

be its cardinality. In this paper, we will find an explicit formula for sk(p, Ω) except for k = 2. Moreover, we
give some partial results for k = 2 in Theorem 3.1, Theorems 3.3–3.4 and Proposition 3.12.

In order to do so, we explore the relationship between Siegel cusp forms of degree 2 and cuspidal auto-
morphic representations of G(𝔸ℚ) in Section 2. Using local representation theory of G(ℚp) (see [19]), we get
a system of equations involving the quantities sk(p, Ω) and the global dimensions for the spaces of Siegel
cusp forms Sk(Γp) of degree 2 under the various congruence subgroups Γp defined in (1.3) further below. We
partition the set Sk(p, Ω) according to the six Arthur types for GSp(4) and define the Arthur type versions
of the quantities sk(p, Ω) in Section 2.2. We show that these quantities are all zero for the Arthur packets of
types (B) and (Q) in Section 2.3.

Many mathematicians have studied the dimension formulas for the spaces of Siegel modular forms of
degree 2; see for example the references in Table 3. We consider scalar-valued Siegel cusp forms Sk(Γp) of
degree 2, weight k and level p. Using dimension formulas for these spaces, we compute a general formula
for sk(p, Ω) and a rational expression for the generating series∑k≥3 sk(p, Ω)tk in Sections 3.1 and 3.2. Hence
we find the numbers sk(p, Ω) in a uniform way, where Ω varies over the representation types described in
Table 1. Wakatsuki studied these cuspidal automorphic representations for the square-integrable represen-
tation types Ω = IVa,Va in [30].

Furthermore, using the global newform theory for various congruence subgroups of G(ℚ) defined in
[21, Section 3.3], we find the dimensions of the spaces of newforms Snewk (Γp) in terms of the quantities
sk(p, Ω) in Section 3.4.

In the final section, we study a connection between the quantities sk(p, Ω) and the total Plancherel
measure mΩ, defined in (4.2), of the tempered Iwahori-spherical representations of PGSp(4,ℚp) of type Ω.
In Section 4.1, we compute the mΩ, working over any non-archimedean local field F of characteristic zero. It
turns out (see (3.13) and (4.5)) that the leading terms in the global formulas for sk(p, Ω) are proportional to
the purely local quantitiesmΩ.Wewill showhow this is a consequence of the automorphic Plancherel density
theorem from [27], specialized to PGSp(4), even though [27] works on the level of real L-packets, while we
require a holomorphic discrete series representation at infinity. Finally, we will use the results of [27] to gen-
eralize the limit version of our formula for sk(p, Ω) to the vector-valued case and to more than one ramified
place; see Theorem 4.5.

Notation

We let

G = GSp(4) := {g ∈ GL(4) : tgJg = λ(g)J, λ(g) ∈ GL(1)}, J =
[[[[

[

1
1

−1
−1

]]]]

]

.

The function λ is called the multiplier homomorphism. The kernel of this function is the symplectic group
Sp(4). Let Z be the center of GSp(4) and PGSp(4) = GSp(4)/Z.

Congruence subgroups of GSp(4, F). Let F be a non-archimedean local field of characteristic zero. Let obe the
ring of integers of F, and let pbe themaximal ideal of o.Wefixageneratorϖ of p. Let q be the cardinality of o/p,
and let ν be the normalized absolute value on F; thus ν(ϖ) = q−1. We consider the following congruence
subgroups of GSp(4, F): the paramodular group K(p) of level p, the Siegel congruence subgroup Si(p) of level p,
the Klingen congruence subgroup Kl(p) of level p and the Iwahori subgroup I, which are defined as follows.
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K := GSp(4, o),

K(p) := {g ∈ GSp(4, F) : det(g) ∈ o×} ∩
[[[[

[

o o o p−1

p o o o

p o o o

p p p o

]]]]

]

,

Si(p) := GSp(4, o) ∩
[[[[

[

o o o o

o o o o

p p o o

p p o o

]]]]

]

,

Kl(p) := GSp(4, o) ∩
[[[[

[

o o o o

p o o o

p o o o

p p p o

]]]]

]

,

I := GSp(4, o) ∩
[[[[

[

o o o o

p o o o

p p o o

p p p o

]]]]

]

.

(1.2)

An admissible representation of G(F) is called Iwahori-spherical if it has non-zero I-invariant vectors.
These are exactly the constituents of the representations parabolically induced from an unramified charac-
ter of the Borel subgroup. The complete list of all irreducible, admissible representations of G(F) that are
constituents of Borel-induced representations is given in Table 1.

Let (π, V) be an Iwahori-spherical representation of G(F), and let H be one of the subgroups defined
in (1.2). We denote by VH , and sometimes by πH , the space of H-fixed vectors. The quantity dim(VH) is the
same across all Iwahori-spherical representations of type Ω; here Ω ∈ {I, IIa, . . . ,VId} is one of the types in
Table 1. We denote this common dimension by dH,Ω. These numbers are given explicitly in [21, Table 3].

Congruence subgroups for Siegel modular forms. Let Sk(Γ) be the space of Siegel cusp forms of degree 2
and weight k with respect to a congruence subgroup Γ of Sp(4,ℚ). (When speaking about Siegel modu-
lar forms, it is more convenient to realize symplectic groups using the symplectic form J = [ 0 12

−12 0 ].) The
following congruence subgroups, which correspond to the local groups in (1.2), will be of particular interest:

the full modular group Sp(4,ℤ),

the paramodular group of level N: K(N) =
[[[[

[

ℤ Nℤ ℤ ℤ
ℤ ℤ ℤ N−1ℤ
ℤ Nℤ ℤ ℤ
Nℤ Nℤ Nℤ ℤ

]]]]

]

∩ Sp(4,ℚ),

the Siegel congruence subgroup of level N: Γ0(N) =
[[[[

[

ℤ ℤ ℤ ℤ
ℤ ℤ ℤ ℤ
Nℤ Nℤ ℤ ℤ
Nℤ Nℤ ℤ ℤ

]]]]

]

∩ Sp(4,ℤ),

the Klingen congruence subgroup of level N: Γ0(N) =
[[[[

[

ℤ Nℤ ℤ ℤ
ℤ ℤ ℤ ℤ
ℤ Nℤ ℤ ℤ
Nℤ Nℤ Nℤ ℤ

]]]]

]

∩ Sp(4,ℤ),

the Borel congruence subgroup of level N: B(N) =
[[[[

[

ℤ Nℤ ℤ ℤ
ℤ ℤ ℤ ℤ
Nℤ Nℤ ℤ ℤ
Nℤ Nℤ Nℤ ℤ

]]]]

]

∩ Sp(4,ℤ).

(1.3)
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2 Iwahori-spherical representations and Arthur packets

In this section, we first discuss the relationship between sk(p, Ω) defined as in (1.1) and the dimensions
dimℂ Sk(Γ), where Γ is one of the congruence subgroups in (1.3) of prime level p. We introduce the refined
quantities s(∗)k (p, Ω), where (∗) is one of five types of Arthur packets.

2.1 Siegel modular forms associated to the representations in Sk(p, Ω)
We review the connection between Siegel modular forms of degree 2 and automorphic representations of
G(𝔸ℚ); for more details, see [4] and [23, Section 3.2].

Let π ≅⨂p≤∞ πp be a cuspidal automorphic representation of G(𝔸ℚ) with trivial central character,
where πp is an irreducible admissible representation of G(ℚp). Let Vp be a model for πp so that V ≅⨂p Vp,
a restricted tensor product. In order to get a holomorphic scalar-valued Siegel modular form of weight k,
we need to make an assumption that π∞ is a holomorphic discrete series representation with minimal
K-type (k, k). Let v∞ ∈ V∞ be a non-zero vector of weight (k, k) in this K-type. For each finite prime p, let vp
be a non-zero vector in Vp, and let Cp be an open-compact subgroup of G(ℚp) stabilizing vp. For almost all
primes p, we assume that vp is the distinguished unramified vector and Cp = G(ℤp). By our choices,⨂p vp
is a legitimate element in⨂p Vp, and it corresponds to a cusp form Φ ∈ V via the isomorphism V ≅⨂p Vp.
Using strong approximation for Sp(4), the automorphic form Φ gives rise to a cuspidal Siegel eigenform f
of degree 2 and weight k with respect to the congruence subgroup Γ = G(ℚ) ∩ G(ℝ)+∏p<∞ Cp of Sp(4,ℚ).
Every eigenform in Sk(Γ) arises in this way.

In particular, consider π ≅⨂ πv ∈ Sk(p, Ω). Recall that πp is an Iwahori-spherical representation of
type Ω. Let Cp be one of the compact open subgroups in (1.2), and let Γp be the corresponding congruence
subgroup of Sp(4,ℚ), as in (1.3). Then every eigenform f ∈ Sk(Γp) arises from a vector in πCpp by the above
procedure. We thus obtain the formula

dimℂ Sk(Γp) =∑
Ω
∑

π∈Sk(p,Ω)
dim πCpp =∑

Ω
sk(p, Ω) dCp ,Ω , (2.1)

which will be the basis for our determination of the quantities sk(p, Ω). Here the quantities dCp ,Ω are defined
in the notation section.

Note that the representations of type IVb and IVc are never unitary and hence cannot occur as com-
ponents of cuspidal, automorphic representations. Thus sk(p, IVb) = sk(p, IVc) = 0. The one-dimensional
representations of type IVd can also not occur as components of cuspidal, automorphic representations, so
that sk(p, IVd) = 0. The family Vc is the same as the family Vb due to the fact that a representation of type Vc
is just a representation of type Vb twisted by some suitable character; see [19, (2.10)]. So, in the following,
we will ignore Vc, as it is subsumed under the Vb case.

2.2 The quantities sk(p, Ω) and Arthur packets
Recall from [3] that every π ∈ Sk(p, Ω) appears in the discrete spectrum of L2(G(ℚ)\G(𝔸ℚ)) inside a certain
global Arthur packet. Using [3, Theorem 1.5.2] for SO(5), we have

L2disc(SO(5,ℚ)\SO(5,𝔸ℚ)) ≅ ⨁
ψ∈Ψ2(G)

⨁
{π∈Πψ:⟨⋅,π⟩=εψ}

π, (2.2)

where ψ is an Arthur parameter, and Πψ is the corresponding global Arthur packet, consisting of certain
equivalence classes of representations of SO(5,𝔸ℚ). The quantities ⟨ ⋅ , π⟩ and εψ are characters of a cen-
tralizer group Sψ ≅ (ℤ/2ℤ)t. Since we identify the representations of SO(5,𝔸ℚ) with the representations
of G(𝔸ℚ) having trivial central character, a representation π ∈ Sk(p, Ω) appears in some global Arthur
packet Πψ on the right-hand side of (2.2). The Arthur packets fall into six classes: the finite type (F), the
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Ω Representation Tempered (G) (Y) (P) (Q) (B)

I χ1 × χ2 ⋊ σ (irred.) ∙ ∙ ∘

II a χ StGL(2) ⋊ σ ∙ ∙ ∘
b χ1GL(2) ⋊ σ ∙

III a χ ⋊ σStGSp(2) ∙ ∙
b χ ⋊ σ1GSp(2) ∘

IV a σStGSp(4) ∙ ∙
b L(ν2 , ν−1σStGSp(2)) never unitary
c L(ν3/2StGL(2) , ν−3/2σ) never unitary
d σ1GSp(4)

V a δ([ξ, νξ], ν−1/2σ) ∙ ∙ ∘
b L(ν1/2ξStGL(2) , ν−1/2σ) ∙
c L(ν1/2ξStGL(2) , ξν−1/2σ) ∘
d L(νξ, ξ ⋊ ν−1/2σ) ∘ ∘

VI a τ(S, ν−1/2σ) ∙ ∙ ∘
b τ(T, ν−1/2σ) ∙ ∙ ∙ ∙
c L(ν1/2StGL(2) , ν−1/2σ) ∙ ∘ ∘
d L(ν, 1F× ⋊ ν−1/2σ) ∘ ∘

Table 1: Irreducible, admissible representations of G(F) supported on the Borel subgroup.

general type (G), the Yoshida type (Y), and the types (P), (B) and (Q) consisting mostly of CAP representa-
tions (cuspidal associated to parabolics). Cuspidal representations cannot be finite-dimensional, so we will
ignore the type (F). See [2, 24] for more details about the Arthur packets for GSp(4).

Let S(∗)k (p, Ω) be the set of those π ∈ Sk(p, Ω) that lie in an Arthur packet of type (∗). Evidently,

Sk(p, Ω) = S(G)k (p, Ω) ⊔ S
(Y)
k (p, Ω) ⊔ S

(P)
k (p, Ω) ⊔ S

(Q)
k (p, Ω) ⊔ S

(B)
k (p, Ω), (2.3)

so that
sk(p, Ω) = s(G)k (p, Ω) + s

(Y)
k (p, Ω) + s

(P)
k (p, Ω) + s

(Q)
k (p, Ω) + s

(B)
k (p, Ω), (2.4)

where s(∗)k (p, Ω) = #S
(∗)
k (p, Ω).

Not every representation can occur as a local component in every type of packet. In the last five columns
of Table 1, we indicate by ∙ or ∘ the possible Arthur packet types in which a given local representation can
occur. This information is based on the explicit determination of local Arthur packets given in [25].

A symbol “∘” in the (Y) column means that this representation can occur as a local component in a cus-
pidal automorphic representation π inside an Arthur packet of Yoshida type; however, such π cannot be in
Sk(p, Ω). The reason is that, for discretely appearing π ≅⨂ πv in packets of type (Y), the number of πv’s that
are non-generic has to be even; this is the concrete meaning of the multiplicity formula in (2.2) for Yoshida
packets. Since, for π ∈ Sk(p, Ω), the archimedean component is non-generic, the component πp must also be
non-generic. Hence s(Y)k (p, Ω) = 0 for the generic types Ω ∈ {I, IIa,Va,VIa}.

We will prove in the next section that s(Q)k (p, Ω) = s
(B)
k (p, Ω) = 0 for all k and all Ω, hence the ∘ in these

columns of Table 1. By (2.4), for all k ≥ 1,

sk(p, Ω) = s(G)k (p, Ω) + s
(P)
k (p, Ω) + s

(Y)
k (p, Ω),

where s(Y)k (p, Ω) = 0 unless Ω = VIb.
Note that Arthur packets of type (G) are stable, meaning one can switch within local L-packets and

still retain the automorphic property. Most representations in Table 1 constitute singleton L-packets, except
VIa and VIb, which constitute a 2-element L-packet, and Va, which shares an L-packet with a non-generic
supercuspidal. Hence s(G)k (p,VIa) = s

(G)
k (p,VIb), and we denote this common number by s(G)k (p,VIa/b),

s(G)k (p,VIa/b) = s
(G)
k (p,VIa) = s

(G)
k (p,VIb). (2.5)
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A look at [21, Table 3] shows that, for each parahoric subgroup H, the dimensions of H-invariant vectors in
a type IIIa representation is the same as the dimensions of H-invariant vectors for the L-packet VIa/b com-
bined. (The reason for this is that both IIIa andVIa ⊕ VIbare of the form χ ⋊ σStGSp(2) for unramified characters
χ and σ. The dimension of the space of H-invariant vectors in such a parabolically induced representation
does not depend on χ and σ.) Hence our methods will not be able to determine the numbers s(G)k (p, IIIa) and
s(G)k (p,VIa/b) separately, but we will be able to determine

sk(p, IIIa + VIa/b) := s(G)k (p, IIIa) + s
(G)
k (p,VIa/b). (2.6)

Summarizing, we will compute the sk(p, Ω) given in Table 2.

Tempered representations Saito–Kurokawa type representations

sk(p, I) = s(G)k (p, I) sk(p, IIb) = s(P)k (p, IIb)
sk(p, IIa) = s(G)k (p, IIa) sk(p, Vb) = s(P)k (p, Vb)
sk(p, IIIa + VIa/b) = s(G)k (p, IIIa) + s

(G)
k (p, VIa/b) s(P)k (p, VIb)

sk(p, IVa) = s(G)k (p, IVa) sk(p, VIc) = s(P)k (p, VIc)
sk(p, Va) = s(G)k (p, Va)
s(Y)k (p, VIb)

Table 2

Representations of type (P) and (Y) are parametrized by automorphic representations of GL(2,𝔸ℚ).
Hence it is not difficult to express the sk’s for the Saito–Kurokawa type representations as well as s(Y)k (p,VIb)
in terms of dimension formulas for certain elliptic modular forms; see Theorem 3.1, Theorem 3.3 and Theo-
rem 3.4. It then remains to determine the quantities sk(p, Ω) for the five generic types I, IIa, IIIa + VIa/b,
IVa, Va. On the other hand, we have the five congruence subgroups Γp appearing in (1.3) (for N = p). It turns
out that (2.1) is a linear system with an invertible matrix, allowing us to calculate the sk(p, Ω) from the
dimℂ Sk(Γp). We do not have a good theoretical explanation for the non-singularity of this linear system.

2.3 Packets of type (B) and (Q) are not Iwahori-spherical

In this section, wewill prove that s(Q)k (p, Ω) = s
(B)
k (p, Ω) = 0 for all k and allΩ. This is a consequence of amore

general result about Arthur packets of type (Q) or (B). Thismore general result also implies that certain spaces
of Siegel modular forms of weight 1 are zero.

Proposition 2.1. Let π ≅⨂ πv be an automorphic representation of PGSp(4,𝔸ℚ) in an Arthur packet of
type (Q) or (B). Then πp is not Iwahori-spherical for at least one prime p.

Proof. Assume first that π lies in an Arthur packet of type (Q). Recall from [25] that one of the parameters
entering into the definition of such a packet is a non-trivial quadratic character ξ =⨂ ξv of ℚ×\𝔸×. There
exists a prime p for which the local character ξp is ramified. Looking at [25, Table 3], the description of the
local packets of type (Q), we see that none of the possibilities for πp (corresponding to a ramified ξp) is an
Iwahori-spherical representation.

The proof for π being in a packet of type (B) is similar. Such packets are parametrized by pairs (χ1, χ2)
of distinct, quadratic characters of χi =⨂ χi,v of ℚ×\𝔸×. There exists a prime p for which χ1,pχ2,p is ram-
ified. Then a look at [25, Table 1], the description of the local packets of type (B), shows that none of the
corresponding possibilities for πp is Iwahori-spherical.

Recall, for example from [23, Section 4.1], that vector-valued Siegel cusp forms of degree 2 form spaces
Sk,j(Γ), where k is a positive integer and j is a non-negative integer. We have Sk,0(Γ) = Sk(Γ). The following
generalizes [13, Theorem 6.1].
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Corollary 2.2. Let N be a square-free positive integer. Then S1,j(B(N)) = 0 for any j ≥ 0.

Proof. Eigenforms in S1,j(B(N)) would have to originate from cuspidal, automorphic representations

π ≅⨂ πv of PGSp(4,𝔸ℚ)

for which π∞ is one of the lowest weight modules described in [23, Section 2.4]. Such lowest weight modules
are non-tempered and hence π cannot be of type (G). (More precisely, weak archimedean estimates preclude
the local parameter given in [23, (3.17)] to be that of the archimedean component of a cusp formonGL(4,𝔸).)
For a similar reason, π cannot be of type (Y). It can also not be of type (P), by the description of the local
packets of type (P) given in [25, Table 2]. It follows that π must be of type (Q) or (B). By Proposition 2.1,
πp is not Iwahori-spherical for at least one prime p. But all πp would have to be Iwahori-spherical in order to
extract from π an element of S1,j(B(N)).

Corollary 2.3. s(Q)k (p, Ω) = s
(B)
k (p, Ω) = 0 for all k and all Ω.

Proof. Since the elements of Sk(p, Ω) are, by definition, Iwahori-spherical at all finite places, this is an imme-
diate consequence of Proposition 2.1.

3 Counting certain automorphic representations

In Section 3.1, we give formulas for all s(P)k (p, Ω) and s
(Y)
k (p, Ω) (i.e., all the lifts), and in Section 3.2 for all

the s(G)k (p, Ω) (the non-lifts). In Section 3.4, we express the dimensions of the spaces of newforms for some
congruence subgroups of prime level in terms of the quantities we found.

For the results in this section, we introduce some notation. The symbol t = [t0, t1, . . . , tn−1; n]k means
that t = ti if k ≡ i (mod n). Then we define

f4(k) = [k − 2, −k + 1, −k + 2, k − 1; 4]k , c3(k) = [1, −1, 0; 3]k ,
f6(k) = [k − 3, −2k + 2, −2k + 4, k, k − 1, k − 2; 6]k , ̂c3(k) = [0, 1, −1; 3]k ,
c12(k) = [1, 0, 0, −1, −1, −1, −1, 0, 0, 1, 1, 1; 12]k , c4(k) = [1, 0, 0, −1; 4]k ,
c6(k) = [1, 0, 0, −1, 0, 0; 6]k , c4(k) = [1, −1, −1, 1; 4]k ,
c6(k) = [0, 1, 0, 0, −1, 0; 6]k , c5(k) = [1, 0, 0, −1, 0; 5]k ,
̂c6(k) = [0, 1, 1, 0, −1, −1; 6]k .

(3.1)

Let δk,n be the Kronecker symbol, i.e., δk,n = 1 if k = n and δk,n = 0 otherwise. For any prime p, we define

(
−1
p )
=
{{{
{{{
{

0 if p = 2,
1 if p ≡ 1 (mod4),
−1 if p ≡ 3 (mod4),

(
−3
p )
=
{{{
{{{
{

0 if p = 3,
1 if p ≡ 1 (mod3),
−1 if p ≡ 2 (mod3).

(3.2)

Note that ( ⋅p ) is not the usual Legendre symbol as we define (−12 ) = 0.

3.1 The representation types I, IIb, Vb, VIb, VIc

In this section,we compute the numbers sk(p, Ω) in Table 2when the representations in Sk(p, Ω) are of Saito–
Kurokawa type (P) or of Yoshida type (Y); these are two kinds of liftings from elliptic cuspidal automorphic
representations.

Wedenote by S±k (SL(2,ℤ)) the space spanned by the eigenforms in Sk(SL(2,ℤ))which have the sign±1 in
the functional equation of their L-functions. For the theorems in this section, we use the following standard
formula:

dimℂ Sk(SL2(ℤ)) =
k − 1
223
+

1
22
(−1)

k
2 +

1
3 (c3(k) +

̂c3(k)) −
1
2 + δk,2. (3.3)
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Theorem 3.1. For k ≥ 1, we have

sk(p, I) =
1

27335
(k − 2)(k − 1)(2k − 3) + 7(−1)

k

2732
(k − 2)(k − 1) + 5

243
+ δk,3 − δk,2 −

47
2733
(2k − 3)

+
61
27
(−1)k − 13

2233
̂c3(k) −

1
2 ⋅ 3 c3(k) +

1
253

f4(k) −
1
23
c4(k) +

1
23
c4(k) +

1
5 c5(k)

+
1

2233
f6(k) +

1
223
̂c6(k) +

1
32
c6(k) +

1
223

c12(k) −
2k − 3
24
(−1)k − 1

2 ⋅ 3
̂c3(k)(−1)k , (3.4)

sk(p, IIb) =
{
{
{

2k − 3
223
−

3
22
+
1
3
̂c3(k) + δk,2 if k is even,

0 if k is odd.
(3.5)

Equivalently,

∑
k≥1

sk(p, I)tk =
t35 + 1

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
−

1
(1 − t4)(1 − t6)

−
t10

(1 − t2)(1 − t6)
,

∑
k≥1

sk(p, IIb)tk =
t10

(1 − t2)(1 − t6)
. (3.6)

Proof. By [21, Table 3], the spherical representations in Table 1 are I, IIb, IIIb, IVd, Vd and VId. Hence, by
(2.1), and observing that one-dimensionals are irrelevant, we have

dimℂ Sk(Sp(4,ℤ)) = sk(p, I) + sk(p, IIb) + sk(p, IIIb) + sk(p,Vd) + sk(p,VId).

By Corollary 2.3, sk(p, IIIb) = s(Q)k (p, IIIb) = 0, and similarly, sk(p,Vd) = sk(p,VId) = 0. Thus

dimℂ Sk(Sp(4,ℤ)) = sk(p, I) + sk(p, IIb). (3.7)

The eigenforms constructed from the representations in Sk(p, IIb) are precisely the full-level Saito–Kurokawa
liftings. By [7], the space spanned by these is the image of an injective map

S−2k−2(SL(2,ℤ)) → Sk(Sp(4,ℤ)).

Since the sign in the functional equation of the eigenforms in S2k−2(SL(2,ℤ)) is (−1)k−1, we get

sk(p, IIb) = dimℂ S−2k−2(SL(2,ℤ)) =
{
{
{

dimℂ S2k−2(SL(2,ℤ)) if k is even,
0 if k is odd.

Then (3.5) and (3.6) follow from (3.3). Furthermore, using (3.7) and dimℂ Sk(Sp(4,ℤ)) from [9, Theorem 6-2]
(which is also implicit in [15, Section 3]), we obtain (3.4). Note that the dimension formula for Sp(4,ℤ)) in
[9, Theorem 6-2] does not work for k = 3; we add the term δk,3 so that the formula works for all k.

The following lemma is useful for finding the quantities sk(p, Ω) for the representations of Saito–Kurokawa
type and Yoshida type. This result can be derived from the work of Yamauchi [32], and it is explicitly given
in [16, Theorem 2.2]. Here Snewk (Γ

(1)
0 (p)) is the new subspace of weight k elliptic cusp forms on the congru-

ence subgroup Γ(1)0 (p) of SL(2,ℤ). The plus and minus spaces S±,newk (Γ
(1)
0 (p)) are the space spanned by the

eigenforms in Snewk (Γ
(1)
0 (p)) which have the sign ±1 in the functional equation of their L-functions.

Lemma 3.2. For any even integer k ≥ 2 and p ≥ 5,

dimℂ S±,newk (Γ
(1)
0 (p)) =

1
2 dimℂ Snewk (Γ

(1)
0 (p)) ±

1
2(

1
2hb − δk,2),

where h is the class number of ℚ(√−p) and

b =
{{{
{{{
{

1 if p ≡ 1 (mod4),
2 if p ≡ 7 (mod8),
4 if p ≡ 3 (mod8),

and δk,2 =
{
{
{

1 if k = 2,
0 if k ̸= 2.

(3.8)
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For k > 2,

dimℂ S±,newk (Γ
(1)
0 (2)) =

1
2 dimℂ Snewk (Γ

(1)
0 (2)) ±

{
{
{

1
2 if k ≡ 0, 2 (mod8),
0 else,

dimℂ S±,newk (Γ
(1)
0 (3)) =

1
2 dimℂ Snewk (Γ

(1)
0 (3)) ±

{
{
{

1
2 if k ≡ 0, 2, 6, 8 (mod12),
0 else.

For any even integer k ≥ 2, we have the following well-known results (for details, see [6, Section 3.5]):

dimℂ Sk(Γ(1)0 (p)) =
k − 1
223
(p + 1) + (−1)

k
2

22
(1 + (−1p )) +

c3(k) + ̂c3(k)
3 (1 + (−3p )) − 1 + δk,2,

dimℂ Snewk (Γ
(1)
0 (p)) = dimℂ Sk(Γ

(1)
0 (p)) − 2dimℂ Sk(SL(2,ℤ)).

(3.9)

Theorem 3.3. Let p ≥ 5 be a prime. Suppose h is the class number of ℚ(√−p) and b is defined as in (3.8).
(i) For k ≥ 2,

sk(p,Vb) =
{{
{{
{

2k − 3
233
(p − 1) +

1 − (−1p )
23
−
̂c3(k)(1 − (−3p ))

2 ⋅ 3 −
bh
22

if k is even,

0 if k is odd.

Equivalently,

∑
k≥2

sk(p,Vb)tk = [
(1 + 3t2)(p − 1)
233(1 − t2)2

+
1 − (−1p )
23(1 − t2)

+
1 − (−3p )

2 ⋅ 3(1 + t2 + t4)
−

bh
22(1 − t2)

]t2.

(ii) For k ≥ 2,

s(P)k (p,VIb) =
{{
{{
{

2k − 3
233
(p − 1) +

1 − (−1p )
23
−
̂c3(k)(1 − (−3p ))

2 ⋅ 3 +
bh
22
− δk,2 if k is even,

0 if k is odd.

Equivalently,

∑
k≥2

s(P)k (p,VIb)t
k = [
(1 + 3t2)(p − 1)
233(1 − t2)2

+
1 − (−1p )
23(1 − t2)

+
1 − (−3p )

2 ⋅ 3(1 + t2 + t4)
+

bh
22(1 − t2)

− 1]t2.

(iii) For k ≥ 2,

sk(p,VIc) =
{{
{{
{

0 if k is even,
2k − 3
233
(p − 1) −

1 − (−1p )
23
−
̂c3(k)(1 − (−3p ))

2 ⋅ 3 −
bh
22

if k is odd.

Equivalently,

∑
k≥2

sk(p,VIc)tk = [
(3 + t2)(p − 1)
233(1 − t2)2

−
1 − (−1p )
23(1 − t2)

+
(1 − (−3p ))t

2

2 ⋅ 3(1 + t2 + t4)
−

bh
22(1 − t2)

]t3.

Proof. It follows from [22, Section 1] that

sk(p,Vb) =
{
{
{

dimℂ S−,new2k−2 (Γ
(1)
0 (p)) if k is even,

0 if k is odd,

s(P)k (p,VIb) =
{
{
{

dimℂ S+,new2k−2 (Γ
(1)
0 (p)) if k is even,

0 if k is odd,

sk(p,VIc) =
{
{
{

0 if k is even,
dimℂ S−,new2k−2 (Γ

(1)
0 (p)) if k is odd.

(3.10)

Then, using Lemma 3.2, (3.3) and (3.9), the formulas for s(P)k (p,VIb), sk(p,VIc) and sk(p,Vb) follow from
straightforward calculations.
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For the next theorem, we define

C(p) = p − 1
233
+
1 − (−1p )

23
+
1 − (−3p )
2 ⋅ 3 −

1
2

for any prime p ≥ 5.

Theorem 3.4. Let p ≥ 5 be a prime. Suppose h is the class number of ℚ(√−p) and b is defined as in (3.8).
For k ≥ 2,

s(Y)k (p,VIb) = C(p) ⋅ (
2k − 3
223
(p − 1) + (−1)k

1 − (−1p )
22
−
̂c3(k)(1 − (−3p ))

3 − δk,2)

+
2 − bh
22

δk,2 + (−1)k
b2h2 − 2bh

23
.

Equivalently,

∑
k≥2

s(Y)k (p,VIb)t
k = [C(p)( 1 + t

223(1 − t)2
(p − 1) +

1 − (−1p )
22(1 + t)

+
(1 + t)(1 − (−3p ))
3(1 + t + t2)

− 1)

+
2 − bh
22
+
b2h2 − 2bh
23(1 + t)

]t2.

Proof. In order to compute s(Y)k (p,VIb), we look at the Yoshida lifting. This lifting associates a holomorphic
Siegel modular form F ∈ Snewk (Γ0(p)) to two eigenforms

f ∈ Snew2k−2(Γ
(1)
0 (p)) and g ∈ Snew2 (Γ

(1)
0 (p));

see [20, Proposition 3.1]. Let πf =⨂v≤∞ πf,v and πg =⨂v≤∞ πg,v be the automorphic representations
of PGL(2,𝔸ℚ) attached to f and g, respectively. Both local representations πf,p and πg,p are either the
Steinberg representation StGL(2) or its non-trivial unramified twist ξStGL(2); here ξ is the unique non-trivial
unramified quadratic character of ℚ×p . In order to produce a Yoshida lifting πF =⨂p≤∞ πF,p with Iwahori-
fixed vectors at p, we must have πf,p = πg,p by [20, (16)]. In this case, πF,p is of type VIb. More pre-
cisely, if πf,p = πg,p = StGL(2) (and hence the local root numbers at p are −1), then πF,p = τ(S, ν−1/2), and
if πf,p = πg,p = ξStGL(2) (and hence the local root numbers at p are +1), then πF,p = τ(S, ν−1/2ξ). Since the
archimedean signs are (−1)k−1 for eigenforms in Snew2k−2(Γ

(1)
0 (p)), and −1 for eigenforms in Snew2 (Γ

(1)
0 (p)), it

follows that

s(Y)k (p,VIb) =

{{{{{{{
{{{{{{{
{

dimℂ S+,new2k−2 (Γ
(1)
0 (p)) × dimℂ S

+,new
2 (Γ

(1)
0 (p))

+dimℂ S−,new2k−2 (Γ
(1)
0 (p)) × dimℂ S

−,new
2 (Γ

(1)
0 (p)) if k is even,

dimℂ S−,new2k−2 (Γ
(1)
0 (p)) × dimℂ S

+,new
2 (Γ

(1)
0 (p))

+dimℂ S+,new2k−2 (Γ
(1)
0 (p)) × dimℂ S

−,new
2 (Γ

(1)
0 (p)) if k is odd.

(3.11)

Then, using (3.3), (3.9), (3.10), (3.11) and Lemma 3.2, we obtain the general formula and hence the gener-
ating function for s(Y)k (p,VIb).

3.2 The representation types IIa, IIIa + VIa/b, IVa, Va

In this section, we compute the generating functions∑k≥3 sk(p, Ω)tk for the representation types

Ω ∈ {IIa, IIIa + VIa/b, IVa,Va}.

Note that the Arthur packets contributing to such Sk(p, Ω) are necessarily of type (G).
We will use dimension formulas for the spaces Sk(Γ), where Γ is one of K(p), Γ0(p), Γ0(p) or B(p). Many

authors have contributed such dimension formulas. We summarize the sources of the formulas we will use
in Table 3, without claim to historical completeness.

In the following theorems, let b and h be as in Lemma 3.2.Wewill also use the quantities defined in (3.1)
and (3.2).
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p = 2 p = 3 p ≥ 5
K(p) k = 1 [13, Theorem 6.1] [13, Theorem 6.1] [13, Theorem 6.1]

k = 2 [11, Section 1] [14, Section 5.3] [17] (p < 600)
k = 3 [13, Theorem 2.1] [13, Theorem 2.1] [13, Theorem 2.1]
k = 4 [13, Section 2.4] [13, Section 2.4] [13, Section 2.4]
k ≥ 5 [12, Theorem 4] [12, Theorem 4] [12, Theorem 4]

Γ0(p) k = 1 [13, Theorem 6.1] [13, Theorem 6.1] [13, Theorem 6.1]
k = 2 [11, Section 1] [14, Section 5.3]
k = 3 [13, Theorem 2.2] [13, Theorem 2.2] [13, Theorem 2.2]
k = 4 [28, Corollary 4.12] [28, Corollary 4.12] [28, Corollary 4.12]

[13, Section 2.4] [13, Section 2.4] [13, Section 2.4]
k ≥ 5 [28, Corollary 4.12] [9, Theorem 7-1] [9, Theorem 7-1]

[29, Theorem 7.4] [28, Corollary 4.12] [28, Corollary 4.12]
[29, Theorem 7.4] [29, Theorem 7.4]

Γ0(p) k = 1 [13, Theorem 6.1] [13, Theorem 6.1] [13, Theorem 6.1]
k = 2 [11, Section 1] [14, Section 5.3]
k = 3 [13, Theorem 2.4] [13, Theorem 2.4] [13, Theorem 2.4]
k = 4 [13, Section 2.4] [13, Section 2.4] [13, Section 2.4]
k ≥ 5 [30, Theorem A.1] [30, Theorem A.1] [10, Theorem 3.3]

[30, Theorem A.1]

B(p) k = 1 [13, Theorem 6.1] [13, Theorem 6.1] [13, Theorem 6.1]
k = 2 [11, Section 1] Proposition 3.12
k = 3 [13, Theorem 2.3] [13, Theorem 2.3] [13, Theorem 2.3]
k = 4 [13, Section 2.4] [13, Section 2.4] [13, Section 2.4]
k ≥ 5 [30, Theorem A.2] [30, Theorem A.2] [10, Theorem 3.2]

[30, Theorem A.2]

Table 3: History of dimension formulas for congruence subgroups of Iwahori-type.
Earlier references appear above later references.

Theorem 3.5. Let p ≥ 5 be a prime and k ≥ 3. Then

sk(p, IIa) =
p2 − 1
27335
(k − 2)(k − 1)(2k − 3) +

−4(−3p ) − 3(
−1
p ) + p − 3

233
+
bh
22
− δk,3

+
16(p + 3)(−3p ) + 9(p + 4)(

−1
p ) − 84p + 119

2733
(2k − 3)

+
(16(−3p ) − p + 12)((

−1
p ) − 1) + 3(p − 49)

273
(−1)k + (−1)

k(2k − 3)
233

+
((−3p ) + 1)(9(

−1
p ) + p − 6) − 4(p − 8)
2333

̂c3(k) +
(−1)k ̂c3(k)

2 ⋅ 3

−
c4(k)
22
{
{
{

0, p ≡ 1, 7 (mod8),
1, p ≡ 3, 5 (mod8),

−
c5(k)
5

{{{
{{{
{

1, p = 5,
0, p ≡ 1, 4 (mod5),
2, p ≡ 2, 3 (mod5).

Equivalently,

∑
k≥3

sk(p, IIa)tk

= [
(p2 − 1)(1 + t)
26325(1 − t)4

−
(p − 1)(5 + 13t + 17t2 + 12t3 + 12t4)

2532(1 − t2)(1 − t3)
+

t7

(1 − t2)(1 − t6)
+

bh
22(1 − t)

− 1

+ (
p(1 + t)

2332(1 − t)(1 − t3)
+
−3 + t + 4t3

233(1 − t)(1 − t3)
)((
−3
p )
− 1)

+ (
p

253(1 − t)(1 − t2)
+
−4 + 2t − t2 + 3t3 + 3t4
233(1 − t2)(1 − t3)

)((
−1
p )
− 1) −

((−3p ) − 1)((
−1
p ) − 1)

233(1 + t)(1 + t + t2)
]t3
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+
t3

22(1 + t)(1 + t2)
{
{
{

0, p ≡ 1, 7 (mod8),
1, p ≡ 3, 5 (mod8),

+
(1 + t)t3

5(1 + t + t2 + t3 + t4)

{{{
{{{
{

1, p = 5,
0, p ≡ 1, 4 (mod5),
2, p ≡ 2, 3 (mod5).

Theorem 3.6. Let p ≥ 5 be a prime and k ≥ 3. Then

sk(p, IIIa + VIa/b)

=
(p − 1)(p2 + p + 2)

28335
(k − 2)(k − 1)(2k − 3) +

3(−1p ) − p − 2
243

−
bh
23
−
b2h2 − 2bh

24
(−1)k − δk,3

+
7(p − 1)(p + 3)(−1)k

2832
(k − 2)(k − 1) −

(p − 1)(−32(−3p ) − 27(
−1
p ) + 12p − 97)

2833
(2k − 3)

−
(32(−3p ) − 5p − 3)(9(

−1
p ) − 17) − 40(p + 7)

2833
(−1)k − p − 1

233
(−1)k(2k − 3)

+
1 − (−3p )
2 ⋅ 3 c3(k) +

(p + 5)(1 − (−3p ))
2233

̂c3(k) +
1 − (−3p )
223

̂c3(k)(−1)k

+
(p + 1)(−1p ) + p − 3

263
f4(k) +

1 − (−1p )
23

c4(k) +
(p + 1)(−3p ) + p − 3

2333
f6(k)

+
2((−3p ) − 2)

33
c6(k) +

5(−3p ) − 13
2233

̂c6(k) +
2((−3p ) + 1)

33
c6(k)

+
((−3p ) + 1)((

−1
p ) + 1) − 4

233
c12(k)

−
c4(k)
22
{
{
{

1, p ≡ 7 (mod8),
0 otherwise,

−
c5(k)
5

{{{{{{
{{{{{{
{

1, p = 5,
0, p ≡ 1 (mod5),
1, p ≡ 2, 3 (mod5),
2, p ≡ 4 (mod5).

Equivalently,

∑
k≥3

sk(p, IIIa + VIa/b)tk

= [
(p − 1)(p2 + p + 2)(1 + t)

27325(1 − t)4
−
(p − 1)(p + 3)(13 + 2t + 19t2 − 2t4)

2732(1 + t)(1 − t2)2
+

(p − 1)N(t)
2432(1 + t2)2(1 − t6)2

− 1

− (
(p + 1)C−3,1(t)

2332(1 − t)2(1 + t2 + t4)2
+

C−3,2(t)
2232(1 − t)(1 − t2 + t4)(1 − t6)

)((
−3
p )
− 1)

− (
(p + 1)C−1,1(t)

263(1 − t)(1 + t2)(1 − t4)
+

C−1,2(t)
253(1 − t)(1 − t4)(1 − t2 + t4)

)((
−1
p )
− 1)

+
t(−2 − 2t + t3)

233(1 + t)(1 − t2 + t4)
((
−3
p )
− 1)((−1p ) − 1) +

b2h2

24(1 + t)
−

bh
22(1 − t2)

]t3

+
t3

22(1 + t)(1 + t2)
{
{
{

1, p ≡ 7 (mod8),
0 otherwise,

+
t3(1 + t)

5(1 + t + t2 + t3 + t4)

{{{{{{
{{{{{{
{

1, p = 5,
0, p ≡ 1 (mod5),
1, p ≡ 2, 3 (mod5),
2, p ≡ 4 (mod5),

where

N(t) = 34 − 6t + 133t2 − 35t3 + 264t4 − 88t5 + 344t6 − 120t7 + 342t8

− 58t9 + 224t10 + 86t12 + 14t13 + 13t14 + 5t15,
C−3,1(t) = −2 + 2t − 6t2 + 6t3 − 5t4 + 3t5 − 5t6 + 3t7 − 3t8 + t9,
C−3,2(t) = 14 − 8t − 10t2 + 6t3 − 5t4 − 2t5 + 20t6 − 6t7 − 16t8 + 4t9 + 7t10,
C−1,1(t) = −3 − 4t + 4t2 − 8t3 + t4 − 4t5 + 2t6,
C−1,2(t) = 12 + 10t − 43t2 + 40t4 − 36t6 + 10t7 + 13t8.
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Theorem 3.7. Let p ≥ 5 be a prime and k ≥ 3. Then

sk(p, IVa) =
(p − 1)(p3 − 1)

27335
(k − 2)(k − 1)(2k − 3) + 7(p − 1)

2(−1)k
2732

(k − 2)(k − 1) + δk,3

+
(p − 1)(16(−3p ) + 9(

−1
p ) − 25)

2733
(2k − 3) +

((−3p ) − 1)(9(
−1
p ) + p − 10)

2333
̂c3(k)

+
(16(−3p ) − p − 15)(9(

−1
p ) − 25) − 16(p + 31)

2733
(−1)k +

(−1p ) − 1
253
(p − 1)f4(k)

+
(−3p ) − 1
2233
(p − 1)f6(k) −

4((−3p ) − 2)
33

c6(k) +
2((−3p ) + 1)

33
̂c6(k) −

4((−3p ) + 1)
33

c6(k)

+
((−3p ) − 1)((

−1
p ) − 1)

223
c12(k)

+
c4(k)
2
{
{
{

1, p ≡ 7 (mod8),
0 otherwise,

+
c5(k)
5

{{{{{{
{{{{{{
{

1, p = 5,
0, p ≡ 1 (mod5),
2, p ≡ 2, 3 (mod5),
4, p ≡ 4 (mod5).

Equivalently,

∑
k≥3

sk(p, IVa)tk

= [
(p − 1)(p3 − 1)(t + 1)

26325(1 − t)4
−

7(p − 1)2

2632(1 + t)3
+ 1

+ (
(p − 1)(1 + t)(3 − 5t + 10t2 − 13t3 + 10t4 − 5t5 + 3t6)

2332(1 − t)2(1 + t2 + t4)2
+

2
32(1 + t3)

)((
−3
p )
− 1)

+
(p − 1)(3 − 2t2 + 3t4)((−1p ) − 1)

253(1 − t)(1 + t2)(1 − t4)
−
(3 + 6t + 7t2 + 6t3 + 3t4)((−3p ) − 1)((

−1
p ) − 1)

233(1 + t)(1 + t + t2)(1 − t2 + t4)
]t3

−
t3

2(1 + t)(1 + t2)
{
{
{

1, p ≡ 7 (mod8),
0 otherwise,

−
t3(1 + t)

5(1 + t + t2 + t3 + t4)

{{{{{{
{{{{{{
{

1, p = 5,
0, p ≡ 1 (mod5),
2, p ≡ 2, 3 (mod5),
4, p ≡ 4 (mod5).

Theorem 3.8. Let p ≥ 5 be a prime and k ≥ 3. Then

sk(p,Va) =
p(p − 1)2
28335

(k − 2)(k − 1)(2k − 3) +
1 − (−1p )

24
−
bh
23
+
b2h2 − 2bh

24
(−1)k

−
7(p − 1)2(−1)k

2832
(k − 2)(k − 1) + p − 1

243
(2k − 3)(−1)k −

1 − (−3p )
223

̂c3(k)(−1)k

−
(p − 1)(−32(−3p ) − 27(

−1
p ) + 12p − 97)

2833
(2k − 3) −

(p − 4)((−3p ) − 1)
2233

̂c3(k)

+
(32(−3p ) − 5p − 3)(−9(

−1
p ) + 1) − 40(p + 7)

2833
(−1)k −

(p − 1)((−1p ) − 1)
263

f4(k)

−
(p − 1)((−3p ) − 1)

2333
f6(k) +

2(2(−3p ) − 1)
33

c6(k) +
(−3p ) + 1

33
̂c6(k) −

2((−3p ) + 1)
33

c6(k)

−
((−3p ) − 1)((

−1
p ) − 1)

233
c12(k)

−
c4(k)
22
{
{
{

1, p ≡ 7 (mod8),
0 otherwise,

+
c5(k)
5

{{{
{{{
{

1, p ≡ 2, 3 (mod5),
−2, p ≡ 4 (mod5),
0 otherwise.
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Equivalently,

∑
k≥3

sk(p,Va)tk

= [
p(p − 1)2(1 + t)
27325(1 − t)4

+
(p − 1)2(1 − 30t − 5t2 + 2t4)

2732(1 − t)2(1 + t)3
+
(p − 1)(5 − t2)t
233(1 − t2)2

−
b2h2

24(1 + t)
−

bht
22(1 − t2)

+ (
(p − 1)(2 − 2t + 9t2 − 7t3 + 7t4 − 5t5 + 3t6 − t7)t2

2332(1 − t)2(1 + t2 + t4)2

+
−2 + t2 + 3t3 + 2t4

2 ⋅ 32(1 + t)(1 + t2 + t4)
)((
−3
p )
− 1)

− (
(p − 1)(1 − 4t − 4t2 − 8t3 + 5t4 − 4t5 + 2t6)

263(1 − t)(1 + t2)(1 − t4)
+

1 + 3t
25(1 − t2)

)((
−1
p )
− 1)

+
2 + 2t + t4

233(1 + t)(1 − t2 + t4)
((
−3
p )
− 1)((−1p ) − 1)]t

3

+
t3

22(1 + t)(1 + t2)
{
{
{

1, p ≡ 7 (mod8),
0 otherwise,

−
t3(1 + t)

5(1 + t + t2 + t3 + t4)

{{{
{{{
{

1, p ≡ 2, 3 (mod5),
−2, p ≡ 4 (mod5),
0 otherwise.

Proof of Theorems 3.5–3.8. By (2.1) and [21, Table 3], we obtain

dimℂ Sk(K(p)) = 2sk(p, I) + sk(p, IIa) + sk(p, IIb) + sk(p,Vb) + sk(p,VIc),
dimℂ Sk(Γ0(p)) = 4sk(p, I) + sk(p, IIa) + 3sk(p, IIb) + 2sk(p, IIIa) + sk(p,Vb)

+ sk(p,VIa) + sk(p,VIb),
dimℂ Sk(Γ0(p)) = 4sk(p, I) + 2sk(p, IIa) + 2sk(p, IIb) + sk(p, IIIa) + sk(p,Va)

+ sk(p,Vb) + sk(p,VIa) + sk(p,VIc),
dimℂ Sk(B(p)) = 8sk(p, I) + 4sk(p, IIa) + 4sk(p, IIb) + 4sk(p, IIIa) + sk(p, IVa)

+ 2sk(p,Va) + 2sk(p,Vb) + 3sk(p,VIa) + sk(p,VIb) + sk(p,VIc).

(3.12)

Let us replace sk(p,VIb) by s(G)k (p,VIb) + s
(Y)
k (p,VIb) + s

(P)
k (p,VIb). Observing (2.5) and (2.6), we get the

system of equations

sk(p, IIa) = dimℂ Sk(K(p)) − 2sk(p, I) − sk(p, IIb) − sk(p,Vb) − sk(p,VIc),

sk(p, IIIa + VIa/b) =
1
2 dimℂ Sk(Γ0(p)) −

1
2 dimℂ Sk(K(p))

− sk(p, I) − sk(p, IIb) −
1
2 s

(P)
k (p,VIb) −

1
2 s

(Y)
k (p,VIb) +

1
2 sk(p,VIc),

sk(p,Va) = dimℂ Sk(Γ0(p)) −
1
2 dimℂ Sk(Γ0(p)) −

3
2 dimℂ Sk(K(p))

+ sk(p, I) + sk(p, IIb) + sk(p,Vb) +
1
2 s

(P)
k (p,VIb) +

1
2 s

(Y)
k (p,VIb) +

1
2 sk(p,VIc),

sk(p, IVa) = dimℂ Sk(B(p)) + dimℂ Sk(K(p)) − dimℂ Sk(Γ0(p)) − 2dimℂ Sk(Γ0(p))
+ 2sk(p, I) + 2sk(p, IIb).

We derive the explicit formulas of sk(p, Ω) for Ω ∈ {IIa, IIIa + VIa/b, IVa,Va} using Theorems 3.1, 3.3, 3.4
and the global dimension formulas of Sk(K(p)), Sk(Γ0(p)), Sk(Γ0(p)) and Sk(B(p)). The generating series
∑k≥3 sk(p, Ω)tk follow in a straightforward way.

Note that the quantities sk(p, IVa) and sk(p,Va) are the same as the quantities

n(DHol
k−1,k−2, St, p) and n(DHol

k−1,k−2,Va, p)

in [30], respectively.
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For p = 2, 3
Here we give rational expression for the generating function of sk(p, Ω) for p = 2, 3. We compute them sepa-
rately as follows because the formulas in Lemma 3.2 are different for these two primes:

∑
k≥2

sk(2,Vb)tk =
t8

(1− t4)(1− t6)
, ∑

k≥2
s(P)k (2,VIb)t

k =
t6 + t8 − t12

(1− t4)(1− t6)
,

∑
k≥2

sk(3,Vb)tk =
t6

(1− t2)(1− t6)
, ∑

k≥2
s(P)k (3,VIb)t

k =
t4 + t8 − t10

(1− t2)(1− t6)
,

∑
k≥2

sk(2,VIc)tk =
t11

(1− t4)(1− t6)
, ∑

k≥2
s(Y)k (2,VIb)t

k = 0,

∑
k≥2

sk(3,VIc)tk =
t9

(1− t2)(1− t6)
, ∑

k≥2
s(Y)k (3,VIb)t

k = 0,

∑
k≥3

sk(2, IIa)tk =
t19(−t8 − t6 + t4 + t2 +1)
(1− t4)2(1− t6)(1− t10)

+
t16(t8 − t6 − t4 + t2 +1)
(1− t4)2(1− t6)(1− t10)

,

∑
k≥3

sk(3, IIa)tk =
t15(−t14 − t12 − t10 +2t8 +2t6 + t4 + t2 +1)

(1− t4)(1− t6)2(1− t10)
+
t12(t14 − t12 − t10 +2t6 + t4 + t2 +1)
(1− t4)(1− t6)2(1− t10)

,

∑
k≥3

sk(2, IIIa+VIa/b)tk =
t25(−t10 + t8 + t6 + t4 + t2 +1)
(1− t4)(1− t6)(1− t10)(1− t12)

+
t12(t22 − t18 − t16 − t14 −2t12 + t8 +2t6 +2t4 +2t2 +1)

(1− t4)(1− t6)(1− t10)(1− t12)
,

∑
k≥3

sk(3, IIIa+VIa/b)tk =
t17(−t18 + t16 +2t14 +2t12 +2t10 +3t8 +2t6 + t4 + t2 +1)

(1− t4)(1− t6)(1− t10)(1− t12)

+
t8(t26 − t22 −2t20 −2t18 −2t16 + t12 +4t10 +5t8 +4t6 +3t4 +2t2 +1)

(1− t4)(1− t6)(1− t10)(1− t12)
,

∑
k≥3

sk(2, IVa)tk =
t13(t22 − t18 − t16 + t12 +2t8 +2t6 + t4 + t2 +1)
(1− t4)(1− t6)(1− t10)(1− t12)

+
t10(−t22 + t18 + t16 + t12 +2t10 + t4 + t2 +1)
(1− t4)(1− t6)(1− t10)(1− t12)

,

∑
k≥3

sk(3, IVa)tk =
t9(t26 − t22 +2t18 +5t16 +5t14 +9t12 +9t10 +8t8 +6t6 +5t4 +2t2 +1)

(1− t4)(1− t6)(1− t10)(1− t12)

+
t6(−t26 + t22 +2t20 +2t18 +5t16 +7t14 +7t12 +7t10 +8t8 +6t6 +5t4 +2t2 +1)

(1− t4)(1− t6)(1− t10)(1− t12)
,

∑
k≥3

sk(2,Va)tk =
t15(−t12 + t2 +1)+ t30

(1− t4)(1− t6)(1− t10)(1− t12)
,

∑
k≥3

sk(3,Va)tk =
t11(−t18 − t16 +2t8 +2t6 +2t4 + t2 +1)+ t16(1+ t4 + t6)(1+ t8)

(1− t4)(1− t6)(1− t10)(1− t12)
.

Note that the series∑k≥3 kn tk has a pole of order n + 1 at t = 1. The pole of order 4 at t = 1 in the rational ex-
pression of∑k≥3 sk(p, Ω)tk for Ω ∈ {I, IIa, IIIa + VIa/b, IVa,Va} is coming from the term (k − 2)(k − 1)(2k − 3)
in sk(p, Ω). In fact, we have the following results.

Corollary 3.9. Let p ≥ 2 be a prime and k ≥ 3. Then, for Ω ∈ {I, IIa, IIIa + VIa/b, IVa,Va},

sk(p, Ω) = aΩ ⋅
(k − 2)(k − 1)( k3 −

1
2 )

26325
+ bΩ ⋅

7(−1)k
2732
(k − 2)(k − 1) + O(k), (3.13)

where aΩ and bΩ are given in Table 4.
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Ω I IIa IIIa + VIa/b IVa Va

aΩ 1 p2 − 1 (p − 1)(p
2 + p + 2)
2 (p − 1)(p3 − 1) p(p − 1)2

2

bΩ 1 0 (p − 1)(p + 3)
2 (p − 1)2 −

(p − 1)2

2

Table 4

Proof. For p ≥ 5, the result follows from Theorems 3.1, 3.5–3.8. For p = 2, 3, we note that the second term
of (3.13) does not contribute a pole at t = 1 in∑k≥3 sk(p, Ω)tk, and the rational expression for

∑
k≥3

sk(p, Ω)tk − ∑
k≥3

aΩ ⋅
(k − 2)(k − 1)( k3 −

1
2 )

26325
tk

has a pole of order 2 at t = 1. Hence we obtain (3.13) for p = 2, 3 as well.

In Section 4.1, we will show that aΩ equals the total Plancherel measure of the tempered Iwahori-spherical
representations of PGSp(4,ℚp) of type Ω. We do not know a similar interpretation for the quantity bΩ.

3.3 The cases k = 1 and k = 2
The formulas in the theorems in the previous section hold for k ≥ 3. We now consider k = 1 and k = 2.

Proposition 3.10. We have s1(p, Ω) = 0 for all Ω in Table 1.

Proof. By [13, Theorem 6.1], the left-hand sides of the equations in (3.12) are all zero. Since all the quantities
on the right-hand sides are non-negative numbers, this implies our assertion.

We cannot determine the numbers s2(p, Ω) in general because of a lack of global dimension formulas, but
we can at least treat the cases p = 2 and p = 3 (see Table 3). The following lemma is useful for proving that
dimℂ S2(B(3)) = 0.

Lemma 3.11. Let k be a positive integer, and let Γ be either Γ0(p) or Γ0(p). Suppose f ∈ Sk(B(p)). If f 2 ∈ S2k(Γ),
then f ∈ Sk(Γ).

Proof. Suppose f ∈ Sk(B(p)) and f 2 ∈ S2k(Γ). We have the slash operator (f |kγ)(Z) := (CZ + D)−k f(γZ) for
γ = [ A B

C D ] ∈ Sp(4,ℤ). Since (f |kγ)2 = f 2|2kγ = f 2 for γ ∈ Γ, there exists a sign εγ ∈ {±1} such that f |kγ = εγ f .
Since f |kγ1γ2 = (f |kγ1)|kγ2, we see that ε : Γ → {±1} is a homomorphism and f ∈ Sk(Γ, ε).

Wewill show that ε is trivial. Since f ∈ Sk(B(p)), the kernelH of ε contains B(p). HenceH is a normal sub-
group of Γwith B(p) ⊂ H ⊂ Γ. This implies H = Γ, which is maybemost easily seen by applying the projection
mod p.

Proposition 3.12. We have s2(p, Ω) = 0 for p ∈ {2, 3} and all Ω in Table 1.

Proof. We already know this is true for Ω = I and for all the Saito–Kurokawa and Yoshida types. Hence the
formulas in (3.12) become

dimℂ S2(K(p)) = s2(p, IIa),
dimℂ S2(Γ0(p)) = s2(p, IIa) + 2s2(p, IIIa + VIa/b),
dimℂ S2(Γ0(p)) = 2s2(p, IIa) + s2(p, IIIa + VIa/b) + s2(p,Va),
dimℂ S2(B(p)) = 4s2(p, IIa) + 4s2(p, IIIa + VIa/b) + s2(p, IVa) + 2s2(p,Va).

Most of the dimensions on the left, except for S2(B(3)), are known to be zero by [14, Section 5.3] and [11, Sec-
tion 1]. It follows that the only potentially non-zero number is

dimℂ S2(B(3)) = s2(3, IVa).
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Suppose that there exists a non-zero f ∈ S2(B(3)). We have

dimℂ S4(B(3)) = dimℂ S4(Γ0(3)) = 1

by [13, Section 2.4]. In particular, S4(B(3)) = S4(Γ0(3)). The function f 2 spans this 1-dimensional space.
Lemma 3.11 then implies that f ∈ S2(Γ0(3)). But S2(Γ0(3)) = 0 by [14, Section 5.3], a contradiction. So
s2(3, IVa) = dimℂ S2(B(3)) = 0.

For Ω = {IIa, IIIa + VIa/b, IVa,Va}, we give some numerical examples of sk(p, Ω), 2 ≤ p < 20, in Appendix A.

3.4 Dimensions of the spaces of newforms

In this section, we discuss some of the available notions of newforms for the spaces of Siegel modular forms
and write their dimensions in terms of the quantities sk(p, Ω).

There is no uniform definition of the spaces of newforms for Siegel modular forms for all the congruence
subgroups in (1.3), but there have been several attempts in the literature to define a good notion of Siegel
modular newforms. Ibukiyama defines old- and newforms for theminimal congruence subgroup B(p) in [11],
and for the paramodular group K(p) in [12]. He provides further evidence to support these definitions. There
is a definition of newforms for Γ0(N) for any N by Andrianov [1]. These definitions coincide with the notion
of newforms in [21] for B(p), Γ0(p) and K(p).

Now there is awell established newform theory for Siegelmodular formswith respect to the paramodular
groupK(p); see [18, 21]. ASiegelmodular formwith respect to theparamodular group is called aparamodular
form. Let Snewk (K(p)) be the space of paramodular newforms, and let Snew,(G)k (K(p)) be the space of paramod-
ular newforms of (G) type. Using the local and global newform theory, we can write dimℂ Snewk (K(p)) and
dimℂ Snew,(G)k (K(p)) in terms of the quantities sk(p, Ω) as follows.

Proposition 3.13. Suppose k ≥ 1 and p is a prime. Then

dimℂ Snewk (K(p)) = sk(p, IIa) + sk(p,Vb) + sk(p,VIc),

dimℂ Snew,(G)k (K(p)) = sk(p, IIa).

Proof. By [21, Theorem 3.3.12], there is a paramodular newform f ∈ Snewk (K(p)) that corresponds to a cus-
pidal automorphic representation π ∈ Sk(p, Ω) such that Ω is one of the types IIa, Vb and VIc. Out of these
three types, only a representation of type IIa can appear as a local component of a cuspidal automorphic
representation of (G) type. The assertions follow.

There is adefinitionof the space Snewk (B(p))of newformswith respect to the Iwahori subgroupB(p) in [21, Sec-
tion 3.3]. Using this definition and [21, Theorem 3.3.2], it is easy to see that if π ∈ Sk(p, Ω) is the cuspidal
automorphic representation associated to f ∈ Snewk (B(p)), then Ω is of type IVa. Hence we get the following
result.

Proposition 3.14. Suppose k ≥ 1 and p is a prime. Then dimℂ Snewk (B(p)) = sk(p, IVa).

Similarly, using the definition of the space Snewk (Γ0(p)) of newforms with respect to the Siegel congruence
subgroup Γ0(p) and [21, Theorem 3.3.9], we get the following result.

Proposition 3.15. Suppose k ≥ 1 and p is a prime. Then

dimℂ Snewk (Γ0(p)) = sk(p, IIa) + 2sk(p, IIIa + VIa/b) + sk(p,Vb) + s
(P)
k (p,VIb) + s

(Y)
k (p,VIb).

There is no definition of the newforms with respect to the Klingen congruence subgroup given in [21]. But
one can define the space Snewk (Γ


0(p)) in a similar manner as the space Snewk (Γ0(p)) is defined in [21]. In that

case, one would have the following.

Remark 3.16. For k ≥ 1 and any prime p, dimℂ Snewk (Γ

0(p)) = sk(p, IIIa + VIa/b) + sk(p,Va).
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4 Plancherel measures

In this section, we relate the global quantity sk(p, Ω) to the total Plancherelmeasure of the tempered Iwahori-
spherical representations of PGSp(4,ℚp) of type Ω, which is a local quantity. In Section 4.1, we compute the
local Plancherel measures of the tempered Iwahori-spherical representations of PGSp(4,ℚp). In Section 4.2,
we derive that the local representation types at v = p as π ≅⨂v πv varies in Sk(p, Ω) are equidistributed
with respect to their Plancherel measure. We establish a similar result for the vector-valued case using the
automorphic Plancherel density theorem from [27].

4.1 Calculation of local Plancherel measures

Let F be a non-archimedean local field of characteristic zero with residual characteristic p. Let o be the ring
of integers of F with the maximal ideal p, and let q be the order of the residue field of F. In this section, let
G = PGSp(4, F). Let K be the image of GSp(4, o) in G. We fix a Haar measure μ on G for which K has volume 1.
Let Ĝ be the temperedunitary dual ofG. There is a uniqueBorelmeasure ̂μ on Ĝ, called thePlancherelmeasure
with respect to μ, characterized by

f(1) = ∫
Ĝ

Tr(π(f)) d ̂μ(π) (4.1)

for all locally constant, compactly supported functions f : G → ℂ and π ∈ Ĝ. It is well known that the
Plancherelmeasure is supported on the tempered dual Ĝtemp, and that a representation π is square-integrable
if and only if the point π in Ĝ has positive Plancherel measure.

For Ω ∈ {I, II, III, IV,V,VI}, let ĜΩ be the part of the unitary dual that consists of all Iwahori-spherical
representations of type Ω. LetmΩ be the total Plancherel measure of the Iwahori spherical representations of
type Ω, defined by

mΩ = ∫

ĜΩ

d ̂μ(π). (4.2)

For example, mI denotes the total Plancherel measure of the unramified dual. The quantity mII is the total
Plancherel measure of all representations of the form χ StGL(2) ⋊ σ, where χ, σ are unramified, unitary char-
acters of F× satisfying χ2σ2 = 1. Note that these are of type IIa, and that the non-tempered representations of
type IIb do not contribute to mII. Similarly, only representation type IIIa contributes to mIII, only representa-
tion type IVa contributes to mIV, and only representation type Va contribute to mV. Also,

mVI = 0, (4.3)

since the four tempered representations of type VIa/b are not square-integrable.
Now we consider the following open-compact subgroups of GSp(4, F) defined in (1.2): K = GSp(4, o),

K(p), Kl(p), Si(p) and I. We use the same symbol for the images of these groups in G = PGSp(4, F).

Lemma 4.1. We have

Volμ(Kl(p)) =
1

(1 + q)(1 + q2)
, Volμ(K(p)) =

1
1 + q2

,

Volμ(Si(p)) =
1

(1 + q)(1 + q2)
, Volμ(I) =

1
(1 + q)2(1 + q2)

.

Proof. For Kl(p) and K(p), see [19, Lemma 3.3.3]. One can prove the cases for Si(p) and I in a similar manner.

Let H be one of these five subgroups of G. Let (π, V) be an Iwahori-spherical representation of G, and let VH
be the space of H-fixed vectors. Let f be the characteristic function of H. Then

Tr(π(f)) = Volμ(H)dim(VH).
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Here Volμ(H) is the volume of H with respect to μ. The quantity dim(VH) is the same across all tempered rep-
resentations in ĜΩ if, for type VI, we view the L-packet VIa/b as one representation. We denote this common
dimension by dH,Ω. Then, by (4.1) and (4.2), we get

1 = ∑
Ω∈{I,II,III,IV,V,VI}

∫

ĜΩ

Tr(π(f)) d ̂μ(π) = Volμ(H) ∑
Ω∈{I,II,III,IV,V,VI}

dH,Ω ⋅ mΩ . (4.4)

We can now compute all the mΩ.

Theorem 4.2. The total Plancherel measuremΩ of the tempered Iwahori-spherical representations of the group
PGSp(4, F) of type Ω is given in Table 5.

Ω I IIa IIIa IVa Va VIa/b

mΩ 1 q2 − 1 (q − 1)(q
2 + q + 2)
2 (q − 1)(q3 − 1) q(q − 1)2

2 0

Table 5

Proof. Running through all H ∈ {K, K(p), Kl(p), Si(p), I}, we get the following system of equations using
[21, Table 3], Lemma 4.1 and (4.4):

K: 1 = mI,
K(p): (1 + q2) = 2mI + mII,
Kl(p): (1 + q)(1 + q2) = 4mI + 2mII + mIII + mV + mVI,
Si(p): (1 + q)(1 + q2) = 4mI + mII + 2mIII + 2mVI,
I: (1 + q)2(1 + q2) = 8mI + 4mII + 4mIII + mIV + 2mV + 4mVI.

Then, using (4.3), the discussion after (4.2), and the above system of equations, we get Table 5.

Let us combine, as before, the types III and VI. Hence we define mΩ = mIII + mVI (= mIII) for Ω = III + VI.
Assume that F = ℚp. Then, comparing Tables 4 and 5, we see that the coefficient aΩ appearing in (3.13)
equals the Plancherel mass mΩ:

aΩ = mΩ for Ω ∈ {I, II, III + IV, IV,V}. (4.5)

Here we allowed ourselves to write aII for aIIa, etc.

4.2 More general limit multiplicity formulas

Let k ≥ 3 and j ≥ 0 be integers. In the following, let ξk,j be the irreducible, finite-dimensional representation
of Sp(4,ℂ) with highest weight (k + j − 3, k − 3), where the weight is defined as in [23]. By [5], it is known
that

dim ξk,j =
(j + 1)(k − 2)(k + j − 1)(2k + j − 3)

6 . (4.6)

The infinitesimal character of ξk,j is (k + j − 1, k − 2). Let Πdisc(k, j) be the L-packet consisting of the dis-
crete series representations of PGSp(4,ℝ) with the same infinitesimal character (k + j − 1, k − 2). It consists
of a holomorphic (non-generic) discrete series representation Dhol(k, j) with minimal K-type (k + j, k) and
a large (generic) discrete series representation Dgen(k, j) with minimal K-type (k + j, 2 − k). The representa-
tion Dhol(k, j) is the archimedean component of the automorphic representations underlying vector-valued
Siegel modular forms of weight (k, j).

Note that, by Corollary 3.9 and equations (4.5) and (4.6),

lim
k→∞

sk(p, Ω)
2−63−25−1 dim ξk,0

= mΩ . (4.7)
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In this form, the result is reminiscent of the automorphic Plancherel density theorem in [27] for G = PGSp(4),
more precisely, [27, Corollary 4.12]. Roughly speaking, the automorphic Plancherel density theorem says
that, in a family of global representations for which the archimedean parameter tends to infinity andwhich is
unramifiedoutside afinite set of finite places T, the local representations at the places in T are equidistributed
according to the Plancherel measure. However, there is a difference in that [27] considers archimedean
L-packets, whereas our representations are all holomorphic at infinity.

To clarify the relationship, we assume that k ≥ 3 and define the set ̃Sk(p, Ω) as in Definition 1.1, except
we replace condition (i) by “π∞ ∈ Πdisc(k, 0)”. Let ̃sk(p, Ω) = # ̃Sk(p, Ω). We also define Arthur type versions
of these quantities, as in (2.3) and (2.4). Then, by the stability of the packets of type (G), we have

̃s(G)k (p, Ω) = 2s
(G)
k (p, Ω).

We note that sk(p, Ω) can be replaced by s(G)k (p, Ω) in (4.7). The reason is that, similarly to (3.10) and (3.11),
the s(∗)k (p, Ω) for the non-(G) types grow at most linearly or quadratically in k. Substituting into (4.7) and
reverting back to all packet types with the same argument, we see that (4.7) is equivalent to

lim
k→∞

̃sk(p, Ω)
2−53−25−1 dim ξk,0

= mΩ . (4.8)

In this form, the statement almost follows from [27, Corollary 4.12] (see the proof of Theorem 4.5 below),
except that the highest weights of ξk,0 lie on a wall, and hence this particular sequence of finite-dimensional
representations does not satisfy the conditions in [27, Definition 3.5]. However, [27, Lemma 4.9], where this
hypothesis is used, can easily be proven directly for the ξk,0, using the known weight multiplicities from [5].

Remark 4.3. For G = PGSp(4), the signed measure ̄μ(G(ℚ)\G(𝔸ℚ)) appearing in [27, Definition 3.5] is given
by

̄μ(G(ℚ)\G(𝔸ℚ)) =
−1

25325
. (4.9)

This can be seen in two different ways. First, one can reduce it to a question for Sp(4) and then use [26, Theo-
rems 4 and 5]. Second, by considering the vector-valued case, one can reverse engineer the constant by let-
ting Û be the set of spherical, tempered representations at a single place in [27, Theorem4.11] and comparing
with the known formula [29, Theorem 7.1].

Hence we see that (4.7) does indeed follow from [27, Corollary 4.12]. In fact, we can use this corollary
and the same arguments to expand the result (4.7) so as to include more general weights and more than one
ramified place. To this end, we first make Definition 1.1 more general.

Definition 4.4. Let k ≥ 3 and j ≥ 0 be integers, and let T be a finite set of finite primes. For p ∈ T, let
Ωp ∈ {I, II, III + VI, IV,V}, and let ΩT = (Ωp)p∈T . We denote by Sk,j(T, ΩT) the set of cuspidal automorphic
representations π ≅⨂v≤∞ πv of G(𝔸ℚ) satisfying the following properties:
(i) π∞ = Dhol(k, j).
(ii) For each v ∉ T ∪ {∞}, πv is unramified.
(iii) For each p ∈ T, πp is an Iwahori-spherical representation of G(ℚp) of type Ωp.
Let sk,j(T, ΩT) = #Sk,j(T, ΩT).

Theorem 4.5. Let T and ΩT be as in Definition 4.4. Let mΩp be the total Plancherel measure of the tempered
Iwahori-spherical representations of PGSp(4,ℚp) of type Ωp, given in Table 5. Then

lim
k+j→∞

sk,j(T, ΩT)
2−63−25−1 dim ξk,j

= ∏
p ∈ T

mΩp , (4.10)

where dim ξk,j is given in (4.6).

Proof. Wewill use the notations of [27, Theorem4.11]. LetϕS,∞ be the characteristic function of∏p∉T G(ℤp).
Let ̂f T be the characteristic function, on the unitary dual of ∏p∈T G(ℚp), of those representations that are



M. Roy, R. Schmidt and S. Yi, On counting cuspidal automorphic representations for GSp(4) | 841

Iwahori-spherical of type Ωp at p ∈ T. Then, unraveling the definition of the measure μ̂cuspϕS,∞ ,ξk,j in [27, equa-
tion (3.5)], we see

μ̂cuspϕS,∞ ,ξk,j (
̂f T) =

(−1)dim(G(ℝ)/K∞)/2

̄μ(G(ℚ)\G(𝔸ℚ))dim ξk,j
[ ̃s(G)k,j (T, ΩT) + ̃s

(P)
k,j (T, ΩT) + ̃s

(Y)
k,j (T, ΩT)].

Here K∞ is the maximal compact subgroup of G(ℝ), and we have dim(G(ℝ)/K∞) = 6. The ̃s(∗)k,j (T, ΩT) are
defined similarly to the scalar-valued case above. Then, using (4.9) and an argument similar to the one above
that connected (4.7) and (4.8), we obtain (4.10).

Remark 4.6. Instead of Iwahori-spherical representations, one can work with any relatively quasi-compact
subset of the unitary dual of ∏p∈T G(ℚp). We restricted ourselves to Iwahori-spherical representations
because for these we know the right-hand side of (4.10) explicitly.

A Some numerical examples

Here we give some numerical values of sk(p, Ω) for Ω ∈ {IIa, IIIa + VIa/b,Va, IVa} using Theorems 3.5–3.8.
We have used Mathematica [31] to compute these numerical examples.

p \ k 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

2 0 0 0 0 0 0 0 0 1 1 3 2 5 5 8 9 12
3 0 0 0 0 0 0 1 1 2 5 6 7 13 14 18 26 28
5 0 0 0 0 1 2 4 7 11 16 23 30 40 51 64 79 96
7 0 0 0 1 3 6 10 17 25 36 50 65 85 108 134 165 199

11 0 0 0 2 7 14 26 42 63 90 124 164 213 270 336 412 499
13 0 0 2 6 14 26 43 67 98 137 186 243 313 394 488 596 718
17 0 0 2 9 22 42 71 112 164 231 314 412 531 670 830 1015 1224
19 0 1 4 13 30 55 93 144 210 294 398 522 671 845 1046 1277 1540

p \ k 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

2 0 0 0 0 0 0 1 1 1 2 3 3 6 5 8 9
3 0 0 0 0 1 1 2 5 4 7 11 12 16 22 24 30
5 0 0 0 1 2 4 7 11 15 22 29 38 49 61 75 92
7 0 0 1 2 5 9 15 23 32 45 60 78 100 124 153 186

11 0 0 1 5 11 21 35 54 78 109 146 191 244 306 377 459
13 0 1 4 10 20 35 56 84 118 163 216 280 356 443 544 660
17 0 1 6 15 32 57 92 139 198 273 364 473 602 751 924 1121
19 0 2 8 21 42 74 118 177 252 346 460 597 758 946 1162 1409

Table 6: sk(p, IIa) for 3 ≤ k ≤ 35 and 2 ≤ p < 20.

p \ k 3 5 7 9 11 13 15 17 19 21 23 25 27 29

2 0 0 0 0 0 0 0 0 0 0 0 1 1 2
3 0 0 0 0 0 0 0 1 1 2 4 6 8 13
5 0 0 0 0 1 2 6 9 17 24 37 50 70 89
7 0 0 0 2 6 11 24 40 59 91 128 170 230 297

11 0 0 3 13 33 68 121 195 295 424 585 785 1023 1306
13 0 1 8 28 68 124 224 350 521 744 1026 1350 1770 2242
17 0 2 23 70 165 312 537 837 1247 1756 2404 3178 4120 5211
19 0 5 32 107 241 451 772 1207 1771 2511 3418 4509 5839 7391

Table 7: sk(p, IIIa + VIa/b) for 3 ≤ k ≤ 30 and 2 ≤ p < 20.
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p \ k 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 0 0 0 0 1 2 3 5 6 8 10 14 16 20
3 0 0 1 2 4 7 11 15 20 27 33 43 53 63
5 0 1 4 8 16 25 39 54 75 97 127 159 199 240
7 0 3 9 21 38 60 93 133 178 241 311 391 491 602

11 0 9 30 67 123 202 308 444 614 822 1071 1367 1710 2107
13 3 18 52 111 203 323 500 715 987 1324 1732 2195 2766 3401
17 5 35 106 226 417 681 1047 1510 2104 2821 3699 4725 5942 7330
19 7 49 142 311 569 931 1434 2079 2881 3889 5092 6509 8193 10127

Table 7 (continued)

p \ k 3 5 7 9 11 13 15 17 19 21 23 25 27 29

2 0 0 0 0 0 1 1 2 4 5 6 11 11 15
3 0 0 0 1 2 6 9 16 24 35 46 66 81 106
5 0 1 7 17 39 75 121 188 279 385 522 693 884 1116
7 0 8 31 88 181 332 541 832 1201 1678 2253 2962 3789 4774

11 2 56 235 610 1255 2260 3661 5576 8055 11170 14995 19640 25101 31536
13 8 118 477 1232 2529 4514 7335 11136 16065 22268 29891 39082 49985 62748
17 23 362 1456 3728 7632 13606 22058 33456 48240 66800 89622 117146 149744 187920
19 38 578 2295 5892 12033 21430 34739 52680 75897 105126 140995 184256 235521 295554

p \ k 4 6 8 10 12 14 16 18 20 22 24 26 28

2 0 0 0 1 1 2 2 3 6 7 9 13 14
3 0 1 2 6 9 16 22 33 46 62 79 104 126
5 1 7 20 41 76 128 193 282 398 532 700 904 1132
7 5 26 73 162 297 498 767 1126 1575 2138 2811 3624 4567

11 25 150 445 984 1839 3100 4805 7070 9945 13504 17819 23000 29045
13 51 292 869 1930 3619 6084 9471 13926 19597 26628 35167 45360 57353
17 144 848 2550 5674 10672 17984 28016 41238 58090 78960 104336 134656 170294
19 225 1326 3979 8888 16713 28170 43911 64660 91061 123846 163647 211212 267157

Table 8 sk(p, IVa) for 3 ≤ k ≤ 29 and 2 ≤ p < 20.

p \ k 3 5 7 9 11 13 15 17 19 21 23 25 27 29

2 0 0 0 0 0 0 1 1 1 2 2 3 4 5
3 0 0 0 0 1 1 3 4 6 7 11 13 17 21
5 0 0 1 4 7 11 19 27 36 51 66 82 106 130
7 0 1 5 10 21 33 54 76 109 144 192 243 309 378

11 0 3 15 38 76 125 205 298 420 573 761 970 1240 1533
13 0 8 28 66 127 216 339 500 705 959 1267 1635 2067 2569
17 0 15 56 141 274 467 746 1106 1560 2141 2837 3661 4653 5794
19 1 20 81 192 381 652 1037 1536 2187 2982 3967 5126 6513 8106

p \ k 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 1 0 2 2 3 4 7 7
5 0 0 0 1 2 3 7 11 15 24 33 42 58 74
7 0 0 1 3 8 14 26 39 61 84 118 154 203 255

11 0 0 5 18 43 75 135 205 300 423 578 750 980 1230
13 0 3 14 39 82 149 245 375 545 759 1023 1342 1721 2166
17 0 8 35 101 208 368 608 923 1325 1848 2480 3232 4147 5205
19 0 12 58 146 306 540 882 1330 1922 2652 3564 4644 5944 7442

Table 9 sk(p, Va) for 3 ≤ k ≤ 30 and 2 ≤ p < 20.
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