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THE SPECIAL VALUES OF THE STANDARD L-FUNCTIONS

FOR GSp2n ×GL1

SHUJI HORINAGA, AMEYA PITALE, ABHISHEK SAHA, AND RALF SCHMIDT

Abstract. We prove the expected algebraicity property for the critical val-

ues of character twists of the standard L-function associated to vector-valued
holomorphic Siegel cusp forms of archimedean type (k1, k2, . . . , kn), where
kn ≥ n + 1 and all ki are of the same parity. For the proof, we use an ex-
plicit integral representation to reduce to arithmetic properties of differential
operators on vector-valued nearly holomorphic Siegel cusp forms. We establish
these properties via a representation-theoretic approach.
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1. Introduction

The arithmetic of special values of L-functions is of great interest in modern
number theory. A central problem here is to prove the algebraicity and Aut(C)-
equivariance (up to suitable periods) of critical L-values. For classical cusp forms
on the upper-half plane, Shimura [27–29] and Manin [19] were the first to study the
arithmetic of their critical L-values in the 1970s. In this paper, we focus on twists
of standard (degree 2n+1) L-functions of vector-valued Siegel cusp forms of degree
n; these correspond to L-functions L(s,Π�χ) on GSp2n(AQ)×GL1(AQ) such that
Π∞ is a holomorphic discrete series representation. The first results in this case
were obtained over forty years ago with the works of Harris [13] and Sturm [32]
who (independently) proved the expected algebraicity results for Π corresponding
to a scalar-valued Siegel cusp form of full level and χ = 1. Subsequent works on
the critical L-values of Siegel cusp forms by various authors [3, 5, 7, 16, 21, 31] have
strengthened and extended these results in various directions.

Nonetheless, a proof of algebraicity of critical L-values for holomorphic forms
on GSp2n ×GL1 in full generality has not yet been achieved. The case n = 2 has
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6948 SHUJI HORINAGA ET AL.

now been largely resolved by a recent result [24, Theorem 1.1]. For general n,
one can parameterize the possible archimedean types Π∞ by n-tuples of positive
integers (k1, k2, . . . , kn), where k1 ≥ k2 ≥ . . . ≥ kn. If Π is associated to a scalar-
valued Siegel cusp form, we have k1 = k2 = . . . = kn; this case is now essentially
solved by the succession of works cited above. The major stumbling block is the
general vector-valued case, where the various ki may not be equal. It was proved
by Kozima [16] that the expected algebraicity property holds for the critical values
of the (untwisted) standard L-function of a vector-valued Siegel cusp form of full
level and archimedean type (k, �, �, . . . , �) with k, � even and k ≥ � ≥ 2n+2. Here
we prove the conjectured algebraicity property of critical L-values for more general
archimedean types, general ramifications, and twists by characters.

Theorem 1.1 (Theorem 4.7). Let Π be a cuspidal automorphic representation of
GSp2n(AQ) whose archimedean component Π∞ is the holomorphic discrete series
representation with highest weight (k1, k2, . . . , kn), where the ki are integers of the
same parity and k1 ≥ k2 ≥ . . . ≥ kn ≥ n + 1. Let S be a finite set of places of Q
including ∞ such that Πp is unramified for p /∈ S. Let F be a nearly holomorphic
Siegel cusp form of scalar weight k1 with Fourier coefficients lying in a CM field such
that1 (the adelization of) F generates an automorphic representation ΠF whose local
component ΠF,p is twist-equivalent to Πp for all p /∈ S. For each Dirichlet character
χ such that χ∞ = sgnk1 and each integer r such that 1 ≤ r ≤ kn − n, r ≡ kn − n
(mod 2), define

D(Π, χ, r;F ) =
LS(r,Π� χ)

ik1πnk1+nr+rG(χ)n+1〈F, F 〉 .

In the special case r = 1 we also assume that χ2 	= 1. Then σ(D(Π, χ, r;F )) =
D(σΠ, σχ, r; σF ) for σ ∈ Aut(C); in particular D(Π, χ, r;F ) lies in a CM field.

Above, G(χ) denotes the Gauss sum and the notation LS indicates that we omit
the local L-factors corresponding to places in S.

Remark 1.2. The set of critical points for L(s,Π� χ) in the right-half plane is

(1) {1 ≤ r ≤ kn − n | r ≡ kn − n (mod 2)}.
Thus, Theorem 4.7 includes all the critical points in the right half-plane except in
the special case that kn ≡ n + 1 (mod 2) and χ is quadratic, in which case our
theorem cannot handle the critical point s = 1. The reason for this omission is
subtle, and is related to the fact that the normalization of the Eisenstein series
corresponding to this point involves the factor L(1, χ2) which has a pole when
χ2 = 1. Consequently the required arithmetic results for the Eisenstein series are
unavailable in this case. We also note that the critical points in the left half-plane
are related to those in the right-half plane via the global functional equation (which
is known by Theorem 62 of [8]).

Classically, the automorphic representation Π in Theorem 1.1 arises from a V -
valued holomorphic Siegel cusp form G on Hn such that G(γZ) = ρ(J(γ, Z))G(Z)
for all γ in some principal congruence subgroup of Sp2n(Z), where (ρ, V ) is the
finite-dimensional representation of GLn(C) with highest weight (k1, k2, . . . , kn).
(We refer to such G as vector-valued holomorphic Siegel cusp forms of archimedean

1We show in Section 4.1 that an F satisfying these properties always exists.
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type (k1, k2, . . . , kn).) The vector-valued holomorphic form G is related to the
scalar valued nearly holomorphic form F via certain differential operators.

Theorem 1.1 is an instance of a reciprocity result for the critical L-values in the
spirit of a famous conjecture due to Deligne [9]. However, Deligne’s conjecture is in
the motivic world and it is a non-trivial problem to relate Deligne’s motivic period to
our period 〈F, F 〉 appearing in Theorem 1.1. One way to observe the compatibility
of our result with Deligne’s conjecture is via ratios of L-values (which eliminates the
periods involved). In that direction, Theorem 1.1 implies the following consequence
of Deligne’s conjecture.

Corollary 1.3. Let k1 ≥ k2 ≥ . . . ≥ kn ≥ n+ 1 be integers, where all ki have the
same parity. Let Π1 and Π2 be irreducible cuspidal automorphic representations of
GSp2n(AQ) such that Π1,∞ 
 Π2,∞ is the holomorphic discrete series representation
with highest weight (k1, k2, . . . , kn). Suppose that for almost all primes p, the
representations Π1,p and Π2,p are twist-equivalent,2 i.e., there exists a character ψp

of Q×
p satisfying Π1,p 
 Π2,p⊗ (ψp ◦μn), where μn is the multiplier homomorphism

from GSp2n(Qp) → Q×
p . Let S be a finite set of places including ∞ such that Π1,p

and Π2,p are unramified for p /∈ S. Then, for primitive Dirichlet characters χ1, χ2

such that χ1,∞ = χ2,∞ = sgnk1 , and integers r1, r2 such that 2 ≤ r1, r2 ≤ kn − n,
r1 ≡ r2 ≡ kn − n (mod 2),

(2)
LS(r1,Π1 � χ1)

π(n+1)(r1−r2)LS(r2,Π2 � χ2)
lies in a CM field.

In the rest of this introduction we explain briefly the key ideas in our proof
of Theorem 1.1. The starting point here is an explicit integral representation (or
pullback formula) proved in [24, Theorem 6.4]. This formula roughly says that

(3)

〈
E

([−
Z2

]
,
r + n− k1

2

)
, F

〉
≈ LS(r,Π� χ)F (Z2),

where E(Z, s) is a certain Eisenstein series on H2n of weight k1, the function F
on Hn corresponds to a smooth modular form of weight k1 associated to a par-
ticular choice of archimedean vector inside Π∞, the element

[
Z1

Z2

]
of H2n is

obtained from the diagonal embedding of Hn×Hn, the Petersson inner product 〈 〉
is taken with respect to the Z1 variable, and the symbol ≈ indicates that the two
sides are equal up to some (well-understood) explicit factors. The Eisenstein series
E(Z, s) arises from the degenerate principal series obtained by inducing the charac-
ter

[
A X

v tA−1

]
�→ χ(v−n det(A))|v−n det(A)|2s+k of the Siegel parabolic of GSp4n;

we also refer the reader to [24, (120)] for an explicit formula for E(Z, s) (denoted
Eχ

k,N (Z, s) there).

Using the shorthand k = (k1, k2, . . . , kn), we prove in Section 3 that F = Dk(G)
where G is the vector-valued holomorphic Siegel cusp form on Hn of archimedean
type k mentioned earlier, and Dk is a certain differential operator obtained from a
Lie algebra element.

Via a linear algebra argument, the proof of Theorem 1.1 can now be reduced to
the heart of this paper, which is to show the Aut(C)-equivariance of Dk when viewed
as an operator on the space of nearly holomorphic cusp forms. This equivariance
is a priori not clear, as this operator is defined abstractly. To achieve this, we

2This essentially means that the two representations are equivalent when restricted to
Sp2n(Qp).
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6950 SHUJI HORINAGA ET AL.

re-interpret the space of nearly holomorphic modular forms of degree n in the
representation theoretic language, generalizing our work in the n = 2 case done
in [25]. After laying the necessary Lie-algebraic foundations in Section 2, we show
in Section 3.2 that the space of (vector-valued) nearly holomorphic modular forms
can be identified with the space of p−-finite automorphic forms, where p− (see
Section 2.1) is the span of the non-compact negative roots of Sp2n(R). We go on to
define the operator Dk representation-theoretically by choosing suitable Lie algebra
elements; the crucial Aut(C)-equivariance property of this operator (Proposition
3.20) is proved via a careful arithmetic analysis of the Lie algebra. A novel aspect
of our methodology is that we expand the domain of functions under consideration
from nearly holomorphic modular forms to functions which have a Fourier expansion
involving polynomials in Im(Z)±

1
2 (see Section 3.3). Along the way, we prove

several new results concerning nearly holomorphic Siegel cusp forms and p−-finite
automorphic forms, including a structure theorem (Proposition 3.2) and a finiteness
result for the dimension of the space of all nearly holomorphic cusp forms of given
level and archimedean type (Proposition 3.4). These results shed new light on nearly
holomorphic forms from the representation-theoretic point of view and should be
of independent interest.

Our approach differs from previous works in the direction of Theorem 1.1 in
the vector-valued setup such as [16]. There one works directly with holomorphic
vector-valued Siegel cusp forms and invokes vector-valued Eisenstein series, relying
on arithmetic properties of differential operators on tensor products of vector-valued
functions [4,15]. The relevant pullback formula for that approach has been recently
worked out in more generality by Liu [17,18]. In contrast, our pullback formula (3)
involves only scalar-valued (nearly holomorphic) forms and our differential opera-
tors correspond to elements of the universal enveloping algebra of the Lie algebra
of Sp2n(R). Thus, our proofs of the algebraicity theorems hinge on understanding
the arithmetic properties of nearly holomorphic cusp forms and of the relevant ele-
ments in the Lie algebra. A byproduct of our method is an explicit formula for the
scalar-valued function E(

[
Z1

Z2

]
, r+n−k

2 ) — whose p-integrality properties were re-

cently proved by us in [22] — as a bilinear sum over nearly holomorphic Siegel cusp
forms, with the coefficients equal to critical values of L-functions (see (64), (69)).
We hope to pursue further arithmetic applications of this formula elsewhere.

1.1. Notation. For any ring R, we let Mn(R) denote the ring of n-by-n matrices
over R. We let M sym

n (R) denote the submodule of symmetric matrices. For a
commutative ring R, we let

GSp2n(R) = {g ∈ GL2n(R) | tgJng = μn(g)Jn, μn(g) ∈ R×}, Jn =
[

In
−In

]
.

The symplectic group Sp2n(R) consists of those elements g ∈ GSp2n(R) for which
the multiplier μn(g) is 1. We let Γ2n(N) ⊂ Sp2n(Z) be the preimage of the identity
element in Sp2n(Z/NZ) under the natural surjection Sp2n(Z) → Sp2n(Z/NZ).

The Siegel upper half space of degree n is defined by

Hn = {Z ∈ Mn(C) | Z = tZ, i(Z − Z) is positive definite}.

For g = [A B
C D ] ∈ Sp2n(R), Z ∈ Hn, let J(g, Z) = CZ +D. For a finite dimensional

representation (ρ, V ) of GLn(C), a function f ∈ C∞(Hn, V ), and g ∈ Sp2n(R), we
define the function f |ρg ∈ C∞(Hn, V ) by (f |ρg)(Z) = ρ(J(g, Z))−1f(gZ).
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We let gn = sp2n(R) be the Lie algebra of Sp2n(R) and gn,C = sp2n(C) the
complexified Lie algebra. We let U(gn,C) denote the universal enveloping algebra
and let Zn be its center. For all smooth functions f : Sp2n(R) → V where V
is a complex vector space, and X ∈ gn, we define (Xf)(g) = d

dt

∣∣
0
f(g exp(tX)).

This action is extended C-linearly to gn,C. Further, it is extended to all elements
X ∈ U(gn,C) in the usual manner. Unless there is a possibility of confusion, we will
omit the subscript n and freely use the symbols g, gC, U(gC), Z, etc.

We let A = AQ denote the ring of adeles of Q. The symbol f denotes the set
of finite places (i.e., primes) of Q and the symbol Af denotes the finite adeles.
We define automorphic forms and representations as in [6]. All our automorphic
representations are over A and all our L-functions are normalized so that the ex-
pected functional equation takes s �→ 1 − s. All automorphic representations are
assumed to be irreducible. Cuspidal automorphic representations are assumed to
be unitary. Each cuspidal representation π of G(A) is isomorphic to a restricted
tensor product ⊗πv, where πv is an irreducible, admissible, unitary representation
of G(Qv). Given an automorphic representation π and a set of places S of Q, we
let LS(s, π) =

∏
v/∈S L(s, πv) be the associated global L-function where the local

factors coming from the places in S are omitted. For a positive integer N , we
denote LN (s, π) := LSN (s, π) where SN consists of the primes dividing N and the
place ∞.

We say that a character χ =
∏

χp of Q×\A× is a primitive Dirichlet character
if χ is of finite order, or equivalently, if χ∞ is trivial on R>0. We let cond(χ)
denote the conductor of such a χ, and we identify cond(χ) with a positive in-
teger. A primitive Dirichlet character χ as defined above gives rise to a homo-
morphism χ̃ : (Z/cond(χ)Z)× → C×, via the formula χ̃(a) =

∏
p|cond(χ) χ

−1
p (a),

and the association χ �→ χ̃ is a bijection between primitive Dirichlet charac-
ters in our sense and in the classical sense. We define the Gauss sum G(χ) by
G(χ) =

∑
n∈(Z/cond(χ)Z)× χ̃(n)e2πin/cond(χ).

For a complex representation π of some group H and an automorphism σ of C,
there is a complex representation σπ ofH defined as follows. Let V be the space of π
and let V ′ be any vector space such that t : V → V ′ is a σ-linear isomorphism (that
is, t(v1 + v2) = t(v1) + t(v2) and t(λv) = σ(λ)t(v)). We define the representation
(σπ, V ′) by σπ(g) = t ◦ π(g) ◦ t−1. It can be shown easily that the representation
σπ does not depend on the choice of V ′ or t. We define Q(π) to be the fixed field
of the set of all automorphisms σ such that σπ 
 π.

2. Lie algebra action and differential operators

Throughout this section, n will be a fixed positive integer. In this section, we
will obtain some information on the action of the Lie algebra of Sp2n(R) and the
corresponding differential operators acting on functions on the Siegel upper half
space. We will also explain the relation between functions on the Siegel upper half
space and on the group Sp2n(R).

2.1. Basics on the Lie algebra of Sp2n(R). Recall that g is the Lie algebra of
Sp2n(R). Let K∞ denote the maximal compact subgroup of Sp2n(R) consisting of
matrices of the form

[
A B
−B A

]
. We identify K∞ with U(n) via

[
A B
−B A

]
�→ A + iB.

Let k be the Lie algebra of K∞ and kC denote the complexification of k. Then we
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have the Cartan decomposition

gC = kC ⊕ pC,

for some subspace pC of gC. The complex structure of Sp2n(R)/K∞ determines the
decomposition pC = p+ ⊕ p− satisfying (see [30, p. 245])

(4) [kC, p±] = p±, [p+, p+] = [p−, p−] = 0, [p+, p−] = kC.

The explicit description of p± is given in [30, p. 260] as follows. Set T := M sym
n (C).

As in [30, p. 260], we define the C-linear isomorphisms ι± from T to p± by

(5) ι±(u) =
1

4

[∓iu u
u ±iu

]
∈ p± for u ∈ T.

Let ei,j be the n × n matrix whose (i, j)th entry is 1 and all others are 0. For
1 ≤ i, j ≤ n, we define, as in [20],
(6)

Bi,j =
[

1
2 (ei,j−ej,i)

−i
2 (ei,j+ej,i)

i
2 (ei,j+ej,i)

1
2 (ei,j−ej,i)

]
, E±,i,j = E±,j,i =

[
1
2 (ei,j+ej,i)

±i
2 (ei,j+ej,i)

±i
2 (ei,j+ej,i)

−1
2 (ei,j+ej,i)

]
.

Then {Bi,j : 1 ≤ i, j ≤ n} is a basis for kC and {E±,i,j : 1 ≤ i ≤ j ≤ n} is a basis
for p±.

A Cartan subalgebra hC of kC (and of gC) is spanned by the n elements Bi,i,
1 ≤ i ≤ n. If λ is in the dual space h∗C, we identify λ with the element (λ(B1,1),
λ(B2,2), . . . , λ(Bn,n)) of Cn. In this way we identify h∗C with Cn. If kC acts on a
space V , and v ∈ V satisfies Bi,iv = λiv for λ = (λ1, λ2, . . . , λn) ∈ Cn, then we
say that v has weight λ.

We let Λ = Zn ⊂ h∗C be the weight lattice, consisting of the integral weights.
Let V be a finite-dimensional kC-module. Then this representation of kC can be
integrated to a representation of K∞ if and only if all occurring weights lie in Λ.
The isomorphism classes of irreducible kC-modules, or the corresponding irreducible
representations of K∞, are called K∞-types.

We take a system of positive roots to be

Φ+ = {ei − ej | 1 ≤ i < j ≤ n} ∪ {ei + ej | 1 ≤ i ≤ j ≤ n},
where ei is the element of Cn with 1 in the i’th position and 0 everywhere else.
(Concretely, ei(Bj,j) = δi,j .) The positive compact roots are {ei − ej | 1 ≤ i < j ≤
n}, and the corresponding root vectors are {Bi,j | 1 ≤ i < j ≤ n}. Let V be a
K∞-type, which we think of as a kC-module. A non-zero vector v ∈ V is called a
highest weight vector if

Bi,jv = 0 for all 1 ≤ i < j ≤ n.

Such a vector v is unique up to scalars. Let k = (k1, k2, . . . , kn) be its weight.
Then the ki are integers and k1 ≥ k2 ≥ . . . ≥ kn; we say that k is the highest
weight of V . We let Λ+ ⊂ Λ be the set of tuples k = (k1, k2, . . . , kn) such that
each ki ∈ Z and k1 ≥ k2 ≥ . . . ≥ kn. Then the elements of Λ+ parametrize the
irreducible representations of K∞ via their highest weights, as above. We let Λ++

consists of those k = (k1, . . . , kn) ∈ Λ+ with kn ≥ 1.

2.2. Generators for the center of the universal enveloping algebra. For
notational convenience we define matrices B, E+, E− with matrix valued entries
as follows:

B = (Bk,�)k,� ∈ Mn(M2n(C)), E± = (E±,k,�)k,� ∈ M sym
n (M2n(C)).
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Let B∗ = (B�,k)k,� be the transpose of B. We consider words in the “letters” B,
B∗, E+ and E− satisfying the following five conditions.3

(1) E+ is followed by E− or B∗.
(2) E− is followed by E+ or B.
(3) B is followed by E+ or B.
(4) B∗ is followed by E− or B∗.
(5) E+ and E− occur with the same multiplicity.

For a word w = X1 · · ·Xm, we denote by Tr(w) the trace as the M2n(C)-valued
matrix, which we identify with an element of U(gC). Let L(w) equal the sum of
the number of times E−B and BE+ occur isolatedly in w counted cyclicly. By
isolatedly, we mean that the E−B and BE+ concerned must not intersect each
other, so, for e.g., L(E−BE+B

∗) = 1 but L(E−BBE+) = 2. And cyclically means
that we have to take into account that the trace is cyclically invariant, so, e.g.,
L(E+E−BB) = L(E−BBE+) = 2. Theorem 2.1 is the main result of [20].

Theorem 2.1 (Theorem 2.2 of [20]). For r ∈ Z>0, put

D2r =
∑
w

(−1)L(w)Tr(w),

where the sum is over all words w of length 2r satisfying the conditions (1) to (5)
above. Then the center Z of U(gC) is generated by the n elements D2, . . . , D2n as
an algebra over C.

For our purposes, we will only need Corollaries 2.2 and 2.3 of Theorem 2.1.

Corollary 2.2. Let 1 ≤ r ≤ n, and let D2r be as in Theorem 2.1. Then there
exists an expression of the form

D2r =

t∑
i=1

ciH
(i)
1 · · ·H(i)

ri X
(i)
1 · · ·X(i)

pi
Y

(i)
1 · · ·Y (i)

qi E
(i)
+,1 · · ·E

(i)
+,siE

(i)
−,1 · · ·E

(i)
−,si .

Above, t ∈ Z>0, and for each i, we have ci ∈ Z, pi, qi, ri, si ∈ Z≥0. Moreover, each

H
(i)
k is equal to Ba,a for some a, each X

(i)
k is equal to Ba,b for some a < b, each

Y
(i)
k is equal to Ba,b for some a > b, each E

(i)
+,k is equal to some E+,a,b, and each

E
(i)
−,k is equal to some E−,a,b.

Proof. Using Theorem 2.1, we can write D2r as a Z-linear combination of words in
B∗,∗, E+,∗,∗, and E−,∗,∗ where there are an equal number of E+,∗,∗, and E−,∗,∗ in
each word. We now use the Lie bracket relations (see Section 1 of [20]):

[E+,i,j , E+,k,�] = 0, [E−,i,j , E−,k,�] = 0,

[E+,i,j , E−,k,�] = δi,kBj,� + δj,�Bi,k + δi,�Bj,k + δj,kBi,�

[Bi,j , E+,k,�] = δj,kE+,i,� + δj,�E+,i,k

[Bi,j , E−,k,�] = −δi,kE−,j,� − δi,�E−,j,k

[Bi,j , Bk,�] = δj,kBi,� − δi,�Bk,j

to make the following moves on each word. First we move all the E−,∗,∗ elements
one by one to the right so that they make a block at the end. Then we move all the
E+,∗,∗ to the right so that they end up just before the E−,∗,∗ part. Note that these

3Conditions 1–4 do not apply to the last letter of a word.
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two steps do not affect the equality of the number of E+,∗,∗, and E−,∗,∗ elements.
Then we move all the Ba,b, a > b elements to the right of the other B∗,∗ elements
so that they end up just before the E+,∗,∗ part. (Note by the relations above that
no new E+,∗,∗ or E−,∗,∗ elements are generated by this step.) Finally we move the
Ba,b, a < b elements to the right of the Ba,a elements. This brings each word to
the desired form.

Corollary 2.3. There exists an expression of the form

D2r =
t∑

i=1

ciE
(i)
+,1 · · ·E

(i)
+,siE

(i)
−,1 · · ·E

(i)
−,siH

(i)
1 · · ·H(i)

ri X
(i)
1 · · ·X(i)

pi
Y

(i)
1 · · ·Y (i)

qi ,

where ci ∈ Z, and H
(i)
k , X

(i)
k , Ba,b, Y

(i)
k , E

(i)
+,k and E

(i)
−,k are elements of g with the

same meanings as in Corollary 2.2.

Proof. This follows from the expression obtained in Corollary 2.2, by moving the
Ba,b elements to the very right, using the Lie bracket relations.

2.3. Differential operators. Recall that Hn is the Siegel upper half space of
degree n. Let (ρ, V ) be a finite dimensional representation of GLn(C). Recall that
T = {u ∈ Mn(C) | tu = u}. Let {εν}ν be any R-rational basis for T . For u ∈ T ,
write u =

∑
ν uνεν with uν ∈ C, and for z ∈ Hn write z =

∑
ν zνεν with zν ∈ C.

For a non-negative integer e, let Se(T, V ) denote the vector space of all homoge-
neous polynomial maps T → V of degree e. Note that S0(T, V ) = V . We can iden-
tify Se(T, V ) with the symmetric elements in the space Mle(T, V ) of e-multilinear
maps from T e to V (see Lemma 12.4 of [31]). We define two representations of
GLn(C) denoted by ρ⊗ τ e and ρ⊗ σe on Mle(T, V ) as follows. For h ∈ Mle(T, V ),
(u1, . . . , ue) ∈ T e and a ∈ GLn(C), define

[(ρ⊗ τ e)(a)h](u1, . . . , ue) := ρ(a)h(tau1a, . . . ,
tauea),

[(ρ⊗ σe)(a)h](u1, . . . , ue) := ρ(a)h(a−1u1
ta−1, . . . , a−1ue

ta−1).

We will denote the restriction of ρ ⊗ τ e and ρ ⊗ σe to Se(T, V ) also by the same
notation.

Given f ∈ C∞(Hn, V ) we can define the functions Df, D̄f, Cf,Ef in
C∞(Hn, S1(T, V )) as follows.(

(Df)(z)
)
(u) :=

∑
ν

uν
∂f

∂zν
(z),

(
(D̄f)(z)

)
(u) :=

∑
ν

uν
∂f

∂z̄ν
(z),(7) (

(Cf)(z)
)
(u) := 4

(
(Df)(z)

)
(yuy),

(
(Ef)(z)

)
(u) := 4

(
(D̄f)(z)

)
(yuy).(8)

Here, u = (uν) ∈ T, z = (zν) ∈ Hn and y = Im(z). These are exactly the for-
mulas defined in [31, p. 92] with ξ(z) = η(z) = 2y in our case. For 0 ≤ e ∈
Z, we can define Def , D̄ef , Cef and Eef recursively, and these take values in
Mle(T, V ). For f ∈ C∞(Hn, V ), let ρ(Ξ)f ∈ C∞(Hn, V ) be the function defined
by z �→ ρ(2y)f(z). More generally, for f ∈ C∞(Hn,Mle(T, V )), let (ρ⊗ τ e)(Ξ)f ∈
C∞(Hn,Mle(T, V )) be the function defined by z �→ (ρ ⊗ τ e)(2y)(f(z)). We then
define De

ρf ∈ C∞(Hn, Se(T, V )) by

(9) De
ρf = (ρ⊗ τ e)(Ξ)−1(Ce(ρ(Ξ)f)).

The following is Proposition 12.10 of [31].

Licensed to Univ of North Texas. Prepared on Mon Dec 26 15:30:53 EST 2022 for download from IP 129.120.93.218.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SPECIAL VALUES FOR GSp2n ×GL1 6955

Proposition 2.4.

(1) We have De+1
ρ = Dρ⊗τeDe

ρ = De
ρ⊗τDρ.

(2) For f ∈ C∞(Hn, V ) and α ∈ Sp2n(R), define the slash action by

(f |ρα)(z) := ρ(J(α, z))−1f(αz).

Then, for all α ∈ Sp2n(R), we have

De
ρ(f |ρα) = (De

ρf)|ρ⊗τeα, Ee(f |ρα) = (Eef)|ρ⊗σeα.

2.4. The relationship between elements of U(gC) and differential oper-
ators. Let (ρ, V ) be a finite-dimensional representation of GLn(C) and let f ∈
C∞(Hn, V ). Define fρ ∈ C∞(Sp2n(R), V ) by

(10) fρ(g) = (f |ρg)(iIn).

Note that if f is a modular form with respect to a discrete subgroup Γ of Sp2n(Q),
i.e., if f |ργ = f for all γ ∈ Γ, then fρ is left Γ-invariant. Recall the maps ι± defined
in (5) which map u ∈ T to ι±(u) ∈ p±. The elements of p± act on functions on
Sp2n(R) in the usual way. Given any collection {ε1, . . . , εe} of symbols ±, we get
a map from Sp2n(R) to Mle(T, V ) as follows

T e � (u1, . . . , ue) �→
(
ιε1(u1) . . . ιεe(ue)f

ρ
)
(g), g ∈ Sp2n(R).

Proposition 2.5 gives the relation between the above action of p± on V -valued
functions on the group and the differential operators Dρ and E acting on V -valued
functions on the Siegel upper half space.

Proposition 2.5. Let (ρ, V ) be a finite dimensional representation of GLn(C).
Let f be in C∞(Hn, V ) and let fρ ∈ C∞(Sp2n(R), V ) be the corresponding function
defined in (10). Let u1, . . . , ue ∈ T , and g ∈ Sp2n(R).

(1) We have

(ι+(u1) . . . ι+(ue)f
ρ)(g) = ((De

ρf)
ρ⊗τe

(g))(u1, . . . , ue),

(ι−(u1) . . . ι−(ue)f
ρ)(g) = ((Eef)ρ⊗σe

(g))(u1, . . . , ue).

(2) Set D+
ρ = Dρ, D−

ρ = E, μ+ = τ and μ− = σ. Let ε1, . . . , εe ∈ {±}. Then

(ιε1(u1) . . . ιεe(ue)f
ρ)(g)

= (Dε1
ρ⊗με2⊗···⊗μεeDε2

ρ⊗με3⊗···⊗σμe · · · Dεe
ρ f)ρ⊗με1⊗···⊗μεe

(g)(u1, . . . , ue).

Proof. Part 1 follows from [30, Proposition 7.3], part 1 of Proposition 2.4, and
Ee+1 = EEe. For part 2, we proceed inductively in e. If e = 1, it is already proven
in part 1. Put

F = Dε2
ρ⊗με3⊗···⊗μεe · · · Dεe

ρ f.

By the induction hypothesis,

F ρ⊗με2⊗···⊗μεe
(g)(u2, . . . , ue) = ιε2(u2) · · · ιεe(ue)f

ρ(g),

and by the e = 1 case,

ιε1(u1)F
ρ⊗με2⊗···⊗μεe

(g) = (Dε1
ρ⊗με2⊗···⊗μεeF )ρ⊗με1⊗···⊗μεe

(g)(u1).(11)
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Note that F ρ⊗με2⊗···⊗μεe
is a Mle−1(T, V )-valued function on Sp2n(R). By substi-

tuting the tuple (u2, . . . , ue) ∈ T e−1 into (11), the right hand side equals

((Dε1
ρ⊗με2⊗···⊗μεeF )ρ⊗με1⊗···⊗μεe

(g)(u1))(u2, . . . , ue)

= (Dε1
ρ⊗με2⊗···⊗μεeF )ρ⊗με1⊗···⊗μεe

(g)(u1, u2, . . . , ue).

This equals

(Dε1
ρ⊗με2⊗···⊗μεeDε2

ρ⊗με3⊗···⊗μεe · · · Dεe
ρ f)ρ⊗με1⊗···⊗μεe

(g)(u1, . . . , ue).

The left hand side of (11) becomes

(ιε1(u1)F
ρ⊗με2⊗···⊗μεe

)(g)(u2, . . . , ue) = ιε1(u1)(F
ρ⊗με2⊗···⊗μεe

(g)(u2, . . . , ue))

= ιε1(u1)ιε2(u2) · · · ιεe(ue)f
ρ(g).

This concludes the proof.

2.5. Scalar and vector-valued automorphic forms. Let Γ be a congruence
subgroup of Sp2n(Q) and let V be a finite dimensional complex vector space. We
let A(Γ;V ) denote the space of V -valued automorphic forms on Γ\ Sp2n(R), i.e.,
the space of smooth V -valued functions on Sp2n(R) that are left Γ-invariant, Z-
finite, K∞-finite and slowly increasing. Let A(Γ;V )◦ ⊂ A(Γ;V ) be the subspace
of V -valued cusp forms. Let A(Γ) := A(Γ;C) and A(Γ)◦ := A(Γ;C)◦ denote the
usual spaces of (complex valued) automorphic forms and cusp forms on Γ\ Sp2n(R).

Let (ρ, V ) be a rational, finite dimensional representation of GLn(C). We will
abuse notation and use ρ to denote its restriction4 to U(n), as well as use ρ to denote

the corresponding representation of K∞ via the identification K∞
∼→ U(n) given by[

A B
−B A

]
�→ A+iB, as defined earlier. Concretely, for g ∈ K∞, the element J(g, iIn)

belongs to U(n) and our identification means that ρ(ḡ) = ρ−1(ι(g)) = ρ(J(g, iIn))
for g =

[
A B
−B A

]
∈ K∞, where the involution ḡ on K∞ corresponds to complex

conjugation on U(n) and the anti-involution ι on K∞ corresponds to the transpose

on U(n), i.e., ḡ =
[
A −B
B A

]
, ι(g) =

[
tA tB
−tB tA

]
. The derived map, also denoted by ι, is

an anti-involution of gln(C) and of kC, and it extends naturally to an anti-involution
of their respective universal enveloping algebras.

Given f ∈ C∞(Hn, V ), the function fρ defined in (10) satisfies

(12) fρ(gk) = ρ(ι(k))fρ(g)

for all g ∈ Sp2n(R), k ∈ K∞. We will abuse notation and also use ρ to denote the
derived representation of gln(C) 
 kC, i.e., for X ∈ gln(C), we denote

(13) ρ(X)v :=
d

dt

∣∣
0
ρ(exp(tX))v.

This action extends to U(gln(C)) 
 U(kC). It can be checked that if
fρ ∈ C∞(Sp2n(R), V ) satisfies (12) then it also satisfies

(14) (Xfρ)(g) = ρ(ι(X))(fρ(g))

for X ∈ U(kC) and g ∈ Sp2n(R).
We fix once and for all a rational structure on ρ, i.e., we fix a Q-vector space VQ

such that VQ ⊗ C = V and such that the representation ρ restricts to a homomor-
phism from GLn(Q) to GLQ(VQ).

4Recall that the restriction functor is an equivalence between the categories of rational, irre-
ducible, finite dimensional representations of GLn(C) and U(n).
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We define

(15)
Aρ(Γ) = {f ∈ A(Γ;V ) | f(gk) = ρ(ι(k))f(g) for all k ∈ K∞},

Aρ(Γ)
◦ = Aρ(Γ) ∩A(Γ;V )◦.

Recall here that ρ(ι(k)) = ρ−1(J(k, iIn)).
We consider the following general result.

Lemma 2.6. Let G be a group, K a subgroup, (σ, V ) a finite-dimensional, irre-
ducible representation of K, and let f : G → V be a function satisfying

f(gk) = σ(k)−1f(g) for all g ∈ G, k ∈ K.

Let (σ̂, V̂ ) be the contragredient of (σ, V ).

(1) The K-module spanned by the right K-translates of f is isomorphic to
dim(V ) copies of σ̂.

(2) Let L be any fixed non-zero linear map from V to C, and define the C-valued
function f0 on G by f0 := L ◦ f . Then the K-module spanned by the right
K-translates of f0 is isomorphic to σ̂.

Proof. For part 1, let W be the space spanned by all right K-translates of f . For
L ∈ V̂ , we define a map αL : W → V̂ by

αL

(∑
i

cif(·ki)
)
=
∑
i

ciσ̂(ki)L (ci ∈ C, ki ∈ K).

It is easy to verify that αL is well-defined, linear, non-zero if L 	= 0, and satisfies

αL(k.w) = σ̂(k)αL(w) for all w ∈ W,k ∈ K,

where k.w means right translation. Hence, if L 	= 0, then αL is a surjection W → V̂
that intertwines the right translation action on W with σ̂. We claim that the linear
map

(16) V̂ −→ HomK(W, V̂ ), L �−→ αL,

is an isomorphism. Clearly, it is injective. To see the surjectivity, let β : W → V̂
be an intertwining operator. Set L := β(f). Then it is easy to see that β = αL.

We proved that W contains n := dim V̂ = dimV copies of σ̂. To see that W
contains no other representations, let L1, . . . , Ln be a basis of V̂ , and consider the
map

W −→ V̂ × . . .× V̂ (n copies),(17)

w �−→ (αL1
(w), . . . , αLn

(w)),

It is straightforward to verify that this map is injective. Considering dimensions, we
see that the map (17) is in fact an isomorphism, and that W consists of n = dimV

copies of V̂ as a K-module.
For part 2, we change notation and let W be the space spanned by the right

K-translates of f0. Then, with similar arguments as above, we see that the map

α : W −→ V̂ ,∑
i

cif0(·ki) �−→
∑
i

ciσ̂(ki)L (ci ∈ C, ki ∈ K)

is well-defined, injective, and commutes with the K-action, so that W ∼= V̂ as
K-modules.
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Lemma 2.7. Assume that the representation (ρ, V ) of GLn(C) is irreducible.

(1) For each f ∈ Aρ(Γ), the K∞-module generated by the K∞-translates of f
is isomorphic to dim(V )ρ.

(2) Let L be any fixed non-zero linear map from V to C, and define the C-valued
function f0 on Sp2n(R) by f0 := L ◦ f . Then the K∞-module generated by
the K∞-translates of f0 is isomorphic to ρ.

Proof. Let σ be the representation of K∞ (on the same representation space V as
of ρ) defined by σ(k) := ρ(ι(k)−1). Then it is well-known that the contragredient
representation σ̂ is isomorphic to ρ. Recall that the function f satisfies f(gk) =
σ(k)−1f(g) for all g ∈ G, k ∈ K. Hence our assertions follow from Lemma 2.6

Recall that the set of (isomorphism classes of) irreducible rational representations
ρ of GLn(C) is parameterized via their highest weights by integers k1 ≥ k2 ≥ . . . ≥
kn, i.e., elements of Λ+. More precisely, we say that such a ρ has highest weight
(k1, k2, . . . , kn) if there exists vρ ∈ V that, under the action of the Lie algebra kC,
satisfies ρ(Bi,j)vρ = 0 for i < j and ρ(Bi,i)vρ = kivρ. As recalled already, such a
vρ ∈ V is known as a highest weight vector in Vρ and is unique up to multiples.
For k = (k1, k2, . . . , kn) ∈ Λ+, we use ρk to denote the irreducible rational
representation of GLn(C) (as well as of U(n) and of K∞) with highest weight k.

We remark that the highest weight (k, k, . . . , k) corresponds to the character detk

of GLn(C) and the character det(J(g, iIn))
−k of K∞.

It is well-known that an irreducible rational representation ρ of GLn(C) with
highest weight (k1, k2, . . . , kn) with kn ≥ 0 is a polynomial representation of
homogeneous degree k(ρ) = k1 + k2 + · · · + kn. More generally, given any finite-
dimensional (not necessarily irreducible) representation ρ of GLn(C), we say that
ρ is polynomial of homogeneous degree k(ρ) if ρ is a direct sum of irreducible
polynomial representations and

(18) ρ(tg) = tk(ρ)ρ(g) for all t ∈ C×, g ∈ GLn(C).

Given an irreducible rational representation (ρ, V ), we fix a highest weight vector
vρ that is rational with respect to the given rational structure on ρ. Let 〈, 〉 be the
unique U(n)-invariant inner product on V normalized such that 〈vρ, vρ〉 = 1. Let
Lρ : V → C be the orthogonal projection operator from V to Cvρ followed by the
isomorphism Cvρ ∼= C. Equivalently, we may define Lρ(w) := 〈w, vρ〉.

Given ρ as above, let A(Γ; ρ) ⊂ A(Γ) denote the set of all C-valued automorphic
forms f in A(Γ) with the following properties: (a) Either f equals 0, or the K∞-
module generated by the K∞-translates of f is isomorphic to ρ, (b) f is a highest
weight vector in the above module. Using the fact that the highest weight vector
in ρ is unique up to multiples, we see that A(Γ; ρ) is a vector-space. One may
equivalently define A(Γ; ρ) as the space of all the automorphic forms f satisfying
Bi,jf = 0 for 1 ≤ i < j ≤ n and Bi,if = kif where (k1, . . . , kn) is the highest
weight of ρ. Let A(Γ; ρ)◦ = A(Γ; ρ) ∩A(Γ)◦. We have Lemma 2.8.

Lemma 2.8. Let (ρ, V ) be an irreducible, rational, finite dimensional represen-
tation of GLn(C). The map f �→ Lρ ◦ f gives an isomorphism of vector spaces
Aρ(Γ) → A(Γ; ρ) and Aρ(Γ)

◦ → A(Γ; ρ)◦.

Proof. Let V be the space of ρ and let f ∈ Aρ(Γ). By Lemma 2.7, theK∞-translates
of the function Lρ ◦ f generate a module W isomorphic to ρ. A calculation shows
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that

(19) (X(Lρ ◦ f))(g) = 〈f(g), ρ(X)vρ〉
for g ∈ Sp2n(R) and X ∈ kC. It follows that Lρ ◦ f is a highest weight vector in W .
Therefore, Lρ ◦ f ∈ A(Γ; ρ). Next, we show that the map f �→ Lρ ◦ f is injective.
If not, there exists some non-zero f ∈ Aρ(Γ) such that Lρ(f(g)) = 0 for all g; this
contradicts the fact that the vectors f(g), as G runs through Sp2n(R), span all of
V .

To complete the proof we need to show that the map f �→ Lρ ◦ f is surjective.
Suppose that h ∈ A(Γ; ρ). Let Vh be the space generated by the right-translates
R(k)h with k ∈ K∞. By assumption, there exists an isomorphism τ : Vh → V as

K∞-modules. Consider the element h̃ ∈ A(Γ;V ) given by

h̃(g) =

∫
K∞

h(gι(k−1))τ (R(k)h) dk,

where dk is a Haar measure on K∞. A calculation shows that h̃ ∈ Aρ(Γ). Using the

Schur orthogonality relations, one can further show that Lρ ◦ h̃(g) = 〈h̃(g), vρ〉 is a
constant multiple of h(g). By renormalizing if needed, we obtain that Lρ ◦ h̃ = h.
This completes the proof that f �→ Lρ ◦ f gives an isomorphism Aρ(Γ) → A(Γ; ρ).
Finally, it is clear that f is cuspidal if and only if Lρ ◦ f is.

3. Nearly holomorphic Siegel modular forms

In this section we define nearly holomorphic Siegel modular forms and reframe
them in the representation-theoretic language, construct some key differential oper-
ators linking holomorphic and nearly holomorphic forms, and prove the arithmetic
properties of these operators that will be crucial for our main theorem on L-values.

3.1. Definitions and basic properties. Let (ρ, V ) be a finite dimensional rep-
resentation of GLn(C). Write z ∈ Hn as z = x + iy. For an integer e ≥ 0, define
Ne

ρ (Hn) to be the space of all functions f : Hn → V of the form f =
∑

i fivi where

vi ranges over some fixed basis5 of V and each fi : Hn → C is a polynomial of
degree ≤ e in the entries of y−1 with holomorphic functions Hn → C as coeffi-
cients. Note that the definition does not involve the representation ρ but merely
the representation space V . The space

Nρ(Hn) =
⋃
e≥0

Ne
ρ (Hn)

is called the space of V -valued nearly holomorphic functions. By [31, Lemma 13.3
(3) and equation (13.10)] we see that for f ∈ C∞(Hn, V ), we have

(20) f ∈ Ne
ρ (Hn) if and only if Ee+1f = 0,

where E is defined as in (8). Now, by Proposition 2.5, part 1, we conclude that

f ∈ Nρ(Hn) if and only if U(p−)fρ is finite-dimensional,(21)

f ∈ N0
ρ (Hn) if and only if fρ is annihilated by p−.(22)

We say that a (g,K∞)-module V ′ is locally (p−)-finite, if U(p−)v is finite-dimen-
sional for all v ∈ V ′. It follows from the above and (4) that if f ∈ Nρ(Hn), then
U(gC)fρ is a locally (p−)-finite (g,K∞)-module.

5This definition does not depend on the choice of basis.
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For a congruence subgroup Γ of Sp2n(Q), let Nρ(Γ) be the space of nearly holo-
morphic modular forms of weight ρ with respect to Γ. Precisely, Nρ(Γ) consists of
the space of functions f ∈ Nρ(Hn) such that f |ργ = f for all γ ∈ Γ; if n = 1, we
also require that the Fourier expansion of f |ργ is supported on the non-negative
rationals for all γ ∈ Sp2n(Z). Let N

e
ρ (Γ) = Nρ(Γ)∩Ne

ρ (Hn). Any f ∈ Ne
ρ (Γ) has a

Fourier expansion of the form

(23) f(z) =
∑

h∈Msym
n (Q)

ch((πy)
−1) exp(2πi tr(hz)),

where ch ∈
⋃

0≤p≤e Sp(T, V ). We use Nρ(Γ)
◦ to denote the space of cusp forms

in Nρ(Γ), which consists of the forms f for which the Fourier expansion of f |ργ is
supported on positive definite matrices for all γ ∈ Sp2n(Z).

For k = (k1, k2, . . . , kn), we denote

Nk(Γ) = Nρk
(Γ), Ne

k(Γ) = Ne
ρk
(Γ), Nk(Γ)

◦ = Nρk
(Γ)◦, Ne

k(Γ)
◦ = Ne

ρk
(Γ)◦.

Furthermore, for a non-negative integer k, we denote Nk(Γ) = Ndetk(Γ), Nk(Γ)
◦ =

Ndetk(Γ)
◦. Note that Nk(Γ) = Nk,k,...,k(Γ). Given forms f1, f2 in Nk(Γ)

◦, we define
the Petersson inner product 〈f1, f2〉 by

(24) 〈f1, f2〉 = vol(Γ\Hn)
−1

∫
Γ\Hn

det(y)kf1(Z)f2(z) dz.

Above, dz is any Sp2n(R)-invariant measure on Hn (the definition of the inner
product does not depend on the choice of dz).

Finally we denote the set of holomorphic cusp forms as follows:

Sρ(Γ) = N0
ρ (Γ)

◦, Sk(Γ) = N0
k(Γ)

◦.

3.2. Nearly holomorphic modular forms and (p−)-finite automorphic
forms. We let A(Γ;V )p−-fin denote the subspace of A(Γ;V ) consisting of all f ∈
A(Γ;V ) such that U(p−)f is finite-dimensional. If V = C we denote this space
by A(Γ)p−-fin. Let A(Γ;V )◦p−-fin and A(Γ)◦p−-fin denote the corresponding spaces

of cusp forms. It is easy to see that A(Γ;V )p−-fin, A(Γ;V )◦p−-fin, A(Γ)p−-fin and

A(Γ)◦p−-fin are all locally (p−)-finite (g,K∞)-modules.

Define

Aρ(Γ)p−-fin = A(Γ;V )p−-fin ∩ Aρ(Γ), Aρ(Γ)
◦
p−-fin = A(Γ;V )p−-fin ∩ Aρ(Γ)

◦.

A(Γ; ρ)p−-fin = A(Γ)p−-fin ∩ A(Γ; ρ), A(Γ; ρ)◦p−-fin = A(Γ)p−-fin ∩ A(Γ; ρ)◦.

Recall that Aρ(Γ) was defined in (15) and A(Γ; ρ) was defined before Lemma 2.8.
The following crucial proposition, which generalizes Proposition 4.5 of [25], gives the
relation between nearly holomorphic modular forms and (p−)-finite automorphic
forms. For a function f on Hn, recall the associated function fρ on Sp2n(R) defined
in (10).

Proposition 3.1.

(1) The map f �→ fρ gives isomorphisms of vector spaces Nρ(Γ)
∼−→Aρ(Γ)p−-fin

and Nρ(Γ)
◦ ∼−→ Aρ(Γ)

◦
p−-fin.

(2) Assume that ρ is irreducible. The map f �→ Lρ ◦ fρ gives isomorphisms of

vector spaces Nρ(Γ)
∼−→ A(Γ; ρ)p−-fin and Nρ(Γ)

◦ ∼−→ A(Γ; ρ)◦p−-fin.
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Proof. In view of Lemma 2.8 and the fact that Lρ preserves the (p−)-finiteness
property, it suffices to prove the first part of the proposition.

Let us first show that for each f in Nρ(Γ), the function fρ lies in Aρ(Γ)p−-fin.
Clearly, fρ is left Γ-invariant and K∞-finite. Let π = U(gC)fρ. Since f is a nearly
holomorphic modular form, π is a (g,K∞)-module, and is locally p−-finite; see (21).
The action of the Cartan subalgebra h is semisimple, hence π is a weight module.
This implies that π lies in Category O in the sense of [14]. By [14, Thm 1.1 (e)]
we have that fρ is Z-finite. Finally, fρ has the moderate growth condition from
Theorem 1.1 of [23]. This completes the proof that fρ lies in Aρ(Γ)p−-fin.

To show that the map f �→ fρ is an isomorphism, we construct an inverse map.
Let f ′ ∈ Aρ(Γ)p−-fin, z ∈ Hn and g ∈ Sp2n(R) such that g(iIn) = z. Then define
f(z) := ρ(J(g, iIn))f

′(g). Then f ∈ Nρ(Γ) by the left Γ-invariance of f ′ and (21)
and it can be easily checked that the map f ′ �→ f defined above is the inverse of
the map f �→ fρ.

Finally, the argument of Proposition 4.5 of [25] shows that fρ is cuspidal if and
only if f is.

For the rest of this subsection, we assume that ρ is irreducible. The above result
implies that for any f ∈ Nρ(Γ)

◦ the function Lρ◦fρ is a cuspidal automorphic form
on Sp2n(R) and the (g,K∞)-module generated by Lρ ◦ fρ decomposes into a finite
direct sum of irreducible, admissible, unitary (g,K∞)-modules. We now make this
observation more precise.

For each k ∈ Λ+, let Fk be any model for ρk, and consider Fk as a module for
kC + p− by letting p− act trivially. Let N(k) := U(gC)⊗U(kC+p−) Fk. Then N(k) is
a locally p−-finite (g,K∞) module, and by the general theory of category Op (see
Section 9.4 of [14]), it admits a unique irreducible quotient, which we denote by
L(k). The (g,K∞) module L(k) is locally p−-finite and contains the K∞-type ρk
with multiplicity one.

From the theory developed in Chapter 9 of [14], any irreducible, locally p−-finite
(g,K∞)-module is isomorphic to L(k) for some k ∈ Λ+. More precisely, given an
irreducible, locally p−-finite (g,K∞)-module V , there exists a k ∈ Λ+ and a v ∈ V
such that L(k) ∼= U(gC)v and the following properties hold: (a) v is a highest weight
vector of weight k generating the K∞-type ρk, (b) v is annihilated by p−. These
two properties identify v ∈ V uniquely up to multiples, and ensure that V 
 L(k).

For any k ∈ Λ+, we define A(Γ;L(k))◦ to be the subspace of A(Γ)◦ spanned
by the forms f such that U(gC)f is isomorphic to a sum of copies of L(k) as a
(g,K∞)-module. Since L(k) is locally p−-finite, it follows that

A(Γ;L(k))◦ ⊆ A(Γ)◦p−-fin.

Hence A(Γ;L(k))◦ is the L(k)-isotypical component of A(Γ)◦p−-fin.

Proposition 3.2. As (g,K∞)-modules, we have

A(Γ)◦p−-fin =
⊕
k∈Λ+

A(Γ;L(k))◦ where A(Γ;L(k))◦ ∼= dim(Sk(Γ))L(k).

The highest weight vectors of weight k in A(Γ;L(k))◦ correspond to elements of
Sk(Γ) via the map from Proposition 3.1. The direct sum decomposition above is
orthogonal with respect to the Petersson inner product.

Proof. The existence of the Petersson inner product implies that the (g,K∞)-
module A(Γ)◦p−-fin decomposes as a direct sum of irreducible, locally p−-finite
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(g,K∞)-modules. As noted earlier, any such module is isomorphic to L(k) for
some k ∈ Λ+.

Next we show that the (g,K∞)-module L(k) occurs in A(Γ)◦p−-fin with mul-

tiplicity equal to dim(Sk(Γ)). For this, let W ′ be the subspace of A(Γ;L(k))◦

spanned by all the highest weight vectors of weight k. In each copy of L(k), the
highest weight vector of weight k is unique up to multiples, and W ′ is spanned
by these highest weight vectors. Therefore the dimension of W ′ equals the multi-
plicity of L(k) in A(Γ)◦p−-fin. It suffices to then show that the map Sk(Γ) → W ′

given by f �→ Lρk
◦ fρk is an isomorphism. Note here that W ′ is the subspace of

A(Γ; ρk)
◦
p−-fin that is annihilated by p−. Now the required result follows from (22)

and Proposition 3.1.

As is well-known, for k = (k1, k2, . . . , kn) ∈ Λ+, we have Sk(Γ) = {0} if kn ≤ 0
(see [10]). So a consequence of the above results is that L(k) cannot occur in
A(Γ)◦p−-fin when kn ≤ 0.

Lemma 3.3. Let k′,k ∈ Λ+ with k′ = (k′1, k
′
2, . . . , k

′
n) and k = (k1, k2, . . . , kn).

Suppose that L(k′) contains the K∞-type ρk. Then ki ≥ k′i for 1 ≤ i ≤ n.

Proof. It suffices to prove the analogous statement for the representation N(k′).
Let Bi,j be the elements defined in (6), and set k+ = 〈Bi,j : 1 ≤ i < j ≤ n〉 (the
space spanned by the root vectors for the positive compact roots), k− = 〈Bi,j : 1 ≤
j < i ≤ n〉. Then kC = hC + k+ + k−. Let v0 be a highest weight vector in Fk′ ,
which we recall is a model for ρk′ . Then, as vector spaces,

N(k′) = U(gC)⊗U(kC+p−) Fk′ = U(p+)Fk′ = U(p+)U(k−)v0 = U(k−)U(p+)v0.
The last equality follows from [kC, p+] ⊂ p+. It is clear that all the highest weight
vectors of the K∞-types occurring in N(k′) must be contained in U(p+)v0. Hence
the weight of such a highest weight vector is of the form (k1, k2, . . . , kn) with
ki ≥ k′i for 1 ≤ i ≤ n.

We can now prove the following fact.

Proposition 3.4. Let ρ be a rational, irreducible, finite dimensional representa-
tion of GLn(C), and let Γ be a congruence subgroup of Sp2n(Q). Then the space
Nρ(Γ)

◦ 
 A(Γ; ρ)◦p−-fin is finite dimensional.

Remark 3.5. A well-known result of Shimura [31, Lemma 14.3] implies that Ne
ρ (Γ)

◦

is finite-dimensional for each non-negative integer e. However, Proposition 3.4 goes
much further and asserts that the space

⋃∞
e=1 N

e
ρ (Γ)

◦ is itself finite-dimensional,

i.e., Ne
ρ (Γ)

◦ = Ne+1
ρ (Γ)◦ for all sufficiently large e.

Proof. Let k = (k1, k2, . . . , kn) be such that ρ = ρk. Recall that each element
of A(Γ; ρ)◦p−-fin generates a K∞-module isomorphic to ρ. Since a given irreducible

(g,K∞)-module contains the K∞-type ρ with finite multiplicity, it suffices to show
that the (g,K∞)-module U(gC)A(Γ; ρ)◦p−-fin decomposes into a direct sum of finitely

many irreducible (g,K∞)-modules.
Using Proposition 3.2 and the remarks following it, let

(25) U(gC)A(Γ; ρ)◦p−-fin = ⊕λ∈Λ+ dλL(λ),

where dλ ≤ dim(Sλ(Γ)) and dλ = 0 if λ = (λ1, λ2, . . . , λn) satisfies λn ≤ 0. We
now claim that if dλ 	= 0 then λi ≤ ki for all i. This will complete the proof, since
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there are only finitely many elements (λ1, λ2, . . . , λn) ∈ Λ+ satisfying λn > 0 and
λi ≤ ki for 1 ≤ i ≤ n.

To prove the aforementioned claim, we appeal to Lemma 3.3. Suppose that
dλ 	= 0. Then there exists an element f in A(Γ; ρ)◦p−-fin whose component fλ in

(25) along dλL(λ) is non-zero. Clearly, fλ generates the K∞-type ρ = ρk, and
hence ρk occurs in L(λ). Now, Lemma 3.3 implies that λi ≤ ki for 1 ≤ i ≤ n.

Next recall the space A(Γ;L(k))◦ defined before Proposition 3.2, and define

A(Γ; ρ, L(k))◦ = A(Γ; ρ)◦ ∩ A(Γ;L(k))◦.

If ρ = ρλ then by the results above we have

(26) A(Γ; ρ, L(k))◦ 	= {0} ⇒ 1 ≤ ki ≤ λi for 1 ≤ i ≤ n.

Let Nρ(Γ;L(k))
◦ ⊂ Nρ(Γ)

◦ and Aρ(Γ;L(k))
◦ ⊂ Aρ(Γ)

◦
p−-fin be the isomor-

phic images of A(Γ; ρ, L(k))◦ under the isomorphisms Nρ(Γ)
◦ ∼−→ Aρ(Γ)

◦
p−-fin

∼−→
A(Γ; ρ)◦p−-fin given by Proposition 3.1. Then we have orthogonal (with respect to

the Petersson inner product) direct sum decompositions of finite-dimensional vector
spaces

(27) A(Γ; ρ)◦p−-fin =
⊕

k∈Λ++

A(Γ; ρ, L(k))◦, Nρ(Γ)
◦ =

⊕
k∈Λ++

Nρ(Γ;L(k))
◦,

where we recall that Λ++ consists of those k = (k1, . . . , kn) ∈ Λ+ with kn ≥ 1.
Above, if λ = (λ1, . . . , λn) is the highest weight of ρ, then the sum in (27) can be
taken over the (finitely many) k = (k1, . . . , kn) ∈ Λ++ such that ki ≤ λi for all i,
since the summands are zero otherwise.

Remark 3.6. The decomposition (27) together with Proposition 3.2 may be viewed
as a structure theorem for the space of nearly holomorphic cusp forms from the
representation-theoretic point of view.

3.3. Action of Aut(C). Recall that T denotes the space of symmetric n× n com-
plex matrices. Let V be a vector space with a rational structure VQ, i.e., VQ ⊂ V
is a vector-space over Q such that VQ ⊗ C = V . Then VQ gives rise to a rational
structure on Mle(T, V ), as follows. Let {v1, . . . , vd} be a basis of VQ. For i1, . . . ,
ie, j1, . . . , je ∈ {1, . . . , n}, define the function f(i1,j1),...,(ie,je) ∈ Mle(T,C) by

(28) f(i1,j1),...,(ie,je)(y
(1), . . . , y(e)) := y

(1)
i1,j1

· · · y(e)ie,je
.

Then the elements f(i1,j1),...,(ie,je)vi, where i1, . . . , ie, j1, . . . , je run through {1, . . . ,
n} and i runs through {1, . . . , d}, define a rational structure on Mle(T, V ), which
is independent of the choice of basis of VQ. We also obtain a rational structure
on Se(T, V ), which we recall can be identified with the symmetric elements of
Mle(T, V ).

Let ti,j , 1 ≤ i ≤ j ≤ n be indeterminates. For i, j as above, define tj,i = ti,j and
let T denote the symmetric n×n matrix of indeterminates whose (i, j) entry equals
ti,j . For a field F , let F [T ] denote the algebra of polynomials in the indeterminates

ti,j ; clearly F [T ] can be identified with the polynomial ring over F in n2+n
2 variables.

We let F (T ) denote the field of fractions of F [T ]. We let T −1 denote the (formal)
inverse of T according to Cramer’s rule, i.e., T −1 = 1

det T adj(T ) where adj denote
the adjugate. We define the algebra F [T ±] ⊂ F (T ) as follows.

(29) F [T ±] := {polynomials over F in the entries of T and T −1}.
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It is an easy exercise that F [T ±] equals the extension of the polynomial ring F [T ]
by 1

det T . Equivalently, F [T ±] is the localization of F [T ] in the multiplicative set
consisting of the non-negative powers of det(T ). Given c ∈ F [T ±] we obtain a well-
defined function from the set of invertible symmetric matrices over F to F . As a
special case of this which will be relevant for us, recall that a real, positive-definite
matrix y has a unique positive definite square-root y1/2 and so for any c ∈ C[T ±],
the complex number c(y1/2) makes sense.

We say that a non-zero c ∈ C[T ±] is homogeneous of degreem if c(rT ) = rmc(T ).
This makes the space C[T ±] into a graded algebra, graded by degree m ∈ Z. We
say that an element c ∈ C[T ±] is rational if c ∈ Q[T ±]. Let

(30) V [T ±] := C[T ±]⊗C V.

We define an action of Aut(C) on the space V [T ±] as follows. Given c ∈ V [T ±],
write it as c(y) =

∑
i ci(y)vi where vi ranges over a fixed rational basis of VQ and

ci ∈ C[T ±]. For σ ∈ Aut(C), we define

σc(y) =
∑
i

σci(y)vi,

where σci is obtained by letting σ act on the coefficients of ci. This gives a well-
defined action of Aut(C) on the space V [T ±] (that does not depend on the choice
of the basis {vi} of VQ). An element c ∈ V [T ±] is defined to be rational if the
components ci all belong to Q[T ±]. We let VQ[T ±] denote the Q-vector space of
rational elements in V [T ±] so that

VQ[T ±] = Q[T ±]⊗Q VQ.

It is clear that an element c in V [T ±] belongs to VQ[T ±] if and only if σc = c for
all σ ∈ Aut(C).

We let NS(Hn, V ) ⊂ C∞(Hn, V ) consist of all functions f ∈ C∞(Hn, V ) with
the property that there exists an integer N (depending on f) such that f has an
absolutely and uniformly (on compact subsets) convergent expansion

(31) f(z) = f(x+ iy) =
∑

h∈ 1
N Msym

n (Z)

qh((πy)
1/2) exp(2πi tr(hz)),

where each qh = qh,f is an element of V [T ±]. Observe that for any finite di-
mensional rational representation ρ of GLn(C) on V we have Nρ(Γ) ⊆ NS(Hn, V ).
Indeed, if f ∈ Nρ(Γ), the corresponding qh in (31) actually belong to the subalgebra
C[T −2]⊗C V of V [T ±] (cf. (23)).

Given a function f ∈ NS(Hn, V ), we define σf ∈ NS(Hn, V ) by

(32) σf(z) =
∑
h

σqh((πy)
1/2) exp(2πi tr(hz)).

A very special case of all this is the (well-known) action of Aut(C) on Nρ(Γ).
Suppose that ρ is a representation of GLn(C) on V that respects the rational
structure on V (meaning that ρ restricts to a homomorphism from GLn(Q) to
GLQ(VQ)). The action of Aut(C) on elements of Se(T, V ) leads to an action of
Aut(C) on Nρ(Γ), via

(33)
σ
(∑

h

ch((πy)
−1) exp(2πi tr(hz))

)
=
∑
h

σch((πy)
−1) exp(2πi tr(hz)),
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where ch ∈
⋃

e Se(T, V ). This is a special case of the definition (32). From Theorem
14.12 (2) of [31], we get the following result in this special setup.

(34) For f ∈ Ne
ρ (Γ) and σ ∈ Aut(C), we have σf ∈ Ne

ρ (Γ).

In the special case that σ equals the complex conjugation, we will denote σf by f̄ .
Note that f̄(z) = f(−z̄). We will need the following result, which is Theorem 14.12
(3) of [31].

Proposition 3.7. Let f ∈ Nρ(Γ). For a positive integer p, let Dp
ρ and Ep be

defined as in (9). Then we have

σ((πi)−pDp
ρf) = (πi)−pDp

ρ(
σf), σ((πi)pEpf) = (πi)pEp(σf).

We will now prove some general results on Aut(C)-equivariance of operators,
culminating in Proposition 3.12 below, which will be crucial for the results of the
next subsection. To begin with, we prove a lemma that will allow us to move
from Mlb(T, V )-valued functions to V -valued functions, and will also clarify why
we cannot restrict ourselves to the space Nρ(Γ) and instead need to consider the
larger space NS(Hn, V ).

Lemma 3.8. Let e, b be positive integers, and for 1 ≤ i ≤ b, let ui ∈ M sym
n (Q)

and εi ∈ Z.

(1) Let T>0 denote the set of real, symmetric, positive-definite, n×n matrices.
Let q ∈

⋃
a≤e Sa(T,Mlb(T, V )). Then there exists rq ∈ V [T ±] such that for

all y ∈ T>0,

rq(y
1/2) = q(y−1)(y

ε1
2 u1y

ε1
2 , . . . , y

εb
2 uby

εb
2 )

and for any σ ∈ Aut(C) we have

σ(rq) = rσq.

(2) Let ρ be a finite dimensional, rational representation of GLn(C) on
Mlb(T, V ) that respects the rational structure on Mlb(T, V ). For each f ∈
Nρ(Γ), define the function θf ∈ C∞(Hn, V ) by

(θf)(z) = (f(z))((πy)
ε1
2 u1(πy)

ε1
2 , . . . , (πy)

εb
2 ub(πy)

εb
2 ).

Then θf ∈ NS(Hn, V ) and for all σ ∈ Aut(C) we have θ(σf) = σ(θf).

Proof. We first prove part 1 of the lemma. Recall the definition of the functions
f(i1,j1),...,(ib,jb) in (28), and the rational structure of Mlb(T, V ) given by the elements
f(i1,j1),...,(ib,jb)vi. From our definitions, we have that the function from T>0 to V
given by

y �→ f(i1,j1),...,(ib,jb)(y
ε1
2 u1y

ε1
2 , . . . , y

εb
2 uby

εb
2 )vi

is the evaluation of a function in VQ[T ±] at y1/2, i.e., there is g(i1,j1),...,(ib,jb);i ∈
VQ[T ±] such that

g(i1,j1),...,(ib,jb);i(y
1/2) = f(i1,j1),...,(ib,jb)(y

ε1
2 u1y

ε1
2 , . . . , y

εb
2 uby

εb
2 )vi.

Now write q =
∑

cq;(i1,j1),...(ib,jb);if(i1,j1),...,(ib,jb)vi where cq;(i1,j1),...,(ib,jb);i ∈ C[T ]
are of degree ≤ e and the sum runs over all i1, . . . , ib, j1, . . . , jb in {1, . . . , n} and
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vi runs through a fixed rational basis of VQ. By definition,

σcq;(i1,j1),...,(ib,jb);i = cσq;(i1,j1),...,(ib,jb);i and(35)

q(y−1)(y
ε1
2 u1y

ε1
2 , . . . , y

εb
2 uby

εb
2 ) =

∑
cq;(i1,j1),...,(ib,jb);i(y

−1)g(i1,j1),...,(ib,jb);i(y
1/2).

(36)

Now define rq(T )=
∑

cq;(i1,j1),...,(ib,jb);i(T −2)g(i1,j1),...,(ib,jb);i(T ). Then rq∈V [T ±]
satisfies the required properties by (35), (36).

Finally, part 2 is an immediate consequence of part 1.

Lemma 3.9. Let f in NS(Hn, V ) and let ρ be a finite-dimensional, rational repre-
sentation of GLn(C) on V of homogeneous degree k such that ρ respects the rational
structure on V . For u = ±1, define the function Ru

ρ (f) on Hn by (Ru
ρ(f))(z) =

ρ(y
u
2 )f(z). Then Ru

ρ(f) ∈ NS(Hn, V ), and for each σ ∈ Aut(C) we have

π
uk
2 Ru

ρ(
σf) = σ(π

uk
2 Ru

ρ(f)).

Proof. By assumption, we can write

f(z) =
∑
h

(∑
a

qh,a((πy)
1/2)va

)
exp(2πi tr(hz)),

where qh,a ∈ C[T ±] and the va form a rational basis of V . Furthermore, from the

assumptions on ρ we have ρ(yu/2)va =
∑

b ru,a,b(y
1/2)vb where the ru,a,b ∈ Q[T ±]

have homogeneous degree uk. In particular ru,a,b((πy)
1/2) = πuk/2ru,a,b(y

1/2).
This gives us

πuk/2Ru
ρ (f)(z) =

∑
h

(∑
a,b

qh,a((πy)
1/2)ru,a,b((πy)

1/2)vb

)
exp(2πi tr(hz)),

from which the assertion of the lemma is clear.

We define U(kQ) to be the Q-subalgebra of U(kC) generated by the various Ba1,b1

(see (6)). The elements of U(kQ) are sums of the form c0+
∑n

i=1 ciBai
1,b

i
1
· · ·Bai

ui
,biui

where n ≥ 0, ci ∈ Q for 0 ≤ i ≤ n, ui ≥ 1 for 1 ≤ i ≤ n, and 1 ≤ aik, b
i
k ≤ n for

1 ≤ k ≤ ui.
Recall that for each representation (ρ, V ) of GLn(C), the derived representation

of U(kC) on V is also denoted by ρ. For a general X ∈ U(kC), ρ(X) ∈ End(V )
may not be invertible (i.e., ρ(X) may not be in GL(V )). However Lemma 3.10 is
immediate.

Lemma 3.10. Let X ∈ U(kQ) and let ρ be a finite-dimensional representation of
GLn(C) on V . Then for i = 1, 2, there exists Xi ∈ U(kQ) such that X = X1 +X2

and ρ(ι(Xi)) is invertible.

Proof. We choose a sufficiently large c ∈ Q such that ρ(ι(X))+ cI and ρ(ι(X))− cI
are both invertible, where I denotes the identity map on V . Now the result follows
from taking X1 = 1

2 (X + c), X2 = 1
2 (X − c).

Lemma 3.11. Let ρ be an irreducible rational representation of GLn(C) on V
such that ρ respects the rational structure on V . Let X ∈ U(kQ) and for each f
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in NS(Hn, V ), define X̃f ∈ C∞(Hn, V ) by (X̃f)(z) = ρ(ι(X))f(z). Then X̃f ∈
NS(Hn, V ) and for each σ ∈ Aut(C), we have

σ(X̃f) = X̃(σf).

Furthermore, suppose that ρ(ι(X)) is invertible and let the representation ρ′ of
GLn(C) on V be given by ρ′(h) = ρ(ι(X))ρ(h)ρ(ι(X))−1. Then the following hold:

(1) If f ∈ Nρ(Γ), then X̃f ∈ Nρ′(Γ),

(2) (X̃f)ρ
′
= Xfρ,

(3) ρ′ respects the rational structure on V .

Proof. First of all, we note that

(37) ρ(ι(X)) ∈ EndQ(VQ).

This follows from the definition of the rational structure and the fact that the
ρ(Bai,bi) preserve VQ.

We now show that X̃f ∈ NS(Hn, V ) and that σ(X̃f) = X̃(σf) for each σ ∈
Aut(C). Since f ∈ NS(Hn, V ), we can write

f(z) =
∑
h

(∑
a

qh,a((πy)
1/2)va

)
exp(2πi tr(hz)),

where qh,a ∈ C[T ±] and the va form a rational basis of V . Using (37) we can write
ρ(ι(X))va =

∑
b ra,bvb where the ra,b ∈ Q. This gives us

(X̃f)(z) =
∑
h

(∑
a,b

qh,b((πy)
1/2)ra,bvb

)
exp(2πi tr(hz)),

from which the required facts follow immediately.

Next, for each z = x+ iy ∈ Hn, put gz =
[
y1/2 xy−1/2

y−1/2

]
. Using (10) and (14), we

see that

(X̃f)ρ
′
(gz) = ρ′(y1/2)(X̃f)(z) = ρ(ι(X))ρ(y1/2)f(z) = ρ(ι(X))fρ(gz) = Xfρ (gz) .

On the other hand, using (12), (14) we observe that for each g ∈ Sp2n(R), k ∈ K∞,

(X̃f)ρ
′
(gk) = ρ′(ι(k))(X̃f)ρ

′
(g), Xfρ(gk) = ρ′(ι(k))Xfρ(g). Since each element of

Sp2n(R) can be written as a product of an element of the form gz and an element

of K∞, it follows that (X̃f)ρ
′
= Xfρ.

Next, suppose that f ∈ Nρ(Γ). We will show then that X̃f ∈ Nρ′(Γ). It is

clear that X̃f is nearly holomorphic in this case, so we only need to show that

(X̃f)|ρ′γ = X̃f for all γ ∈ Γ. This follows from the calculation

(X̃f)(γz) = ρ(ι(X))f(γz) = ρ(ι(X))ρ(J(γ, z))f(z) = ρ′(J(γ, z))X̃f(z).

The assertion that ρ′ respects the rational structure on V follows from (37) and the
fact that ρ respects the rational structure on V .

Proposition 3.12. Let ρ1 and ρ2 be finite-dimensional rational representations of
GLn(C) on V of homogeneneous degrees k(ρ1) and k(ρ2) respectively and admitting
a common rational structure on V ; assume also that ρ1 is irreducible. Let R ∈ U(gC)
be of the form

R =
∑
i

ciE+,m1,n1
· · ·E+,msi

,nsi
E−,p1,q1 · · ·E−,pti

,qti
Ba1,b1 · · ·Baui

,bui
,
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6968 SHUJI HORINAGA ET AL.

where the ci are rational numbers and si, ti, ui are non-negative integers. Let Γ
be a congruence subgroup of Sp2n(Q). For each f in Nρ1

(Γ), define the function

R̃f ∈ C∞(Hn, V ) by

(38) (R̃f)(z) = ρ2(y
−1/2)

(
(Rfρ1)

[
y1/2 xy−1/2

y−1/2

])
.

Then R̃f ∈ NS(Hn, V ) and

(39)
σ(
π

k(ρ1)−k(ρ2)
2 R̃f

)
= π

k(ρ1)−k(ρ2)
2 R̃(σf)

for all σ ∈ Aut(C).

Proof. By linearity and using Lemma 3.10, it suffices to consider the case

R = E+,m1,n1
· · ·E+,ms,ns

E−,p1,q1 · · ·E−,pt,qtX,

where X ∈ U(kQ) and ρ1(ι(X)) is invertible. Put E = E+,m1,n1
· · ·E+,ms,ns

E−,p1,q1

· · ·E−,pt,qt , gf = ρ1(ι(X))f , and ρ′(h) = ρ1(ι(X))ρ1(h)ρ1(ι(X))−1. For each z =

x+ iy ∈ Hn, put gz =
[
y1/2 xy−1/2

y−1/2

]
. By Lemma 3.11,

(40) (R̃f)(z) = ρ2(y
−1/2)

(
(Egρ

′

f )(gz)
)

and

(41) gf ∈ Nρ′(Γ), σ(gf ) = g(σf).

For 1 ≤ a ≤ s, 1 ≤ b ≤ t, let ua and vb be elements such that ι+(ua) = E+,ma,na
,

ι−(vb) = E−,pb,qb . By (5) and (6), we see that iua, ivb ∈ M sym
n (Q). Using part

2 of Proposition 2.5 and Proposition 3.7, we see that there exists an operator
DE : C∞(Hn, V ) → C∞(Hn,Mls+t(T, V )) such that

(42) σ((πi)t−sDEgf ) = (πi)t−sDE(
σgf ) = (πi)t−sDE(gσf )

and such that the following identities hold

(Egρ
′

f )(gz) = (ι+(u1) . . . ι+(us)ι−(v1) . . . ι−(vt)g
ρ′

f )(gz)

=
(
(DEgf )

ρ′⊗τs⊗σt

(gz)
)
(u1, . . . , us, v1, . . . , vt)

=
(
(ρ′ ⊗ τ s ⊗ σt)(y1/2)(DEgf )(z)

)
(u1, . . . , us, v1, . . . , vt)

= ρ′(y
1
2 )
(
(DEgf )(z)(y

1
2u1y

1
2 , . . . y

1
2 usy

1
2 , y−

1
2 v1y

− 1
2 , . . . , y−

1
2 vty

− 1
2 )
)
.

Combining this with (40) and using multilinearity we obtain

(43)
(R̃f)(z) = ρ2(y

− 1
2 )ρ′(y

1
2 )
(
((πi)t−sDEgf )(z)

×
(
(πy)

1
2 (iu1)(πy)

1
2 , . . . , (πy)−

1
2 (−ivt)(πy)

− 1
2

))
.

Now, combining (43) with Lemma 3.8, Lemma 3.9, and (42), we obtain the desired
result.
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3.4. Arithmeticity of certain differential operators on nearly holomorphic
cusp forms. For each k ∈ Λ+, let χk be the character by which Z acts on L(k).
(Note that this notation differs from what we used in [25]; χk was denoted χk+�

there.)

Lemma 3.13. Let k = (k1, . . . , kn) and k′ = (k′1, . . . , k
′
n) be elements of Λ+ such

that either kn, k
′
n ≥ n or kn + k′n > 2n. Then χk′ = χk if and only if k′ = k.

Proof. Suppose that χk = χk′ . Then k′ = w ·k for a Weyl group element w, where
· denotes the dot action of the Weyl group (see Sections 1.8 to 1.10 of [14]). The
element w decomposes as w = τIσ with σ ∈ Sn, the symmetric group for {1, . . . ,
n}, and I a subset of {1, . . . , n}. The action τIσ · k is given by

τIσ · k =
(
ε1(kσ(1) − σ(1)), . . . , εn(kσ(n) − σ(n))

)
+ (1, . . . , n),

where εi = 1 if i /∈ I and εi = −1 if i ∈ I. (Note that the dot action is given by
w · k = w(k+ �)− �, where � is half the sum of the positive roots. In order to be
in the setting of [14], the positive roots have to be ei − ej for 1 ≤ i < j ≤ n and
−(ei + ej) for 1 ≤ i ≤ j ≤ n, resulting in � = −(1, . . . , n).) Hence

(44) εj(kσ(j) − σ(j)) = k′j − j for j ∈ {1, . . . , n}.
Let S = {j ∈ {1, . . . , n} | σ(j) 	= j}. Then σ induces a permutation of S without
fixed points. The condition (44), together with kj + k′j ≥ 2n, forces εj = 1 for all
j ∈ S. Hence xσ(j) = x′

j for j ∈ S, where xi := ki − i and x′
i = k′i − i. Since the

xi and the x′
i are strictly ordered from largest to smallest, this is only possible if

S = ∅.
We proved that σ is the identity, so that εj(kj − j) = k′j − j for all j ∈ {1, . . . ,

n}. If εj = 1, then kj = k′j . If εj = −1, then our hypothesis implies j = n and
kj = k′j = n. This proves k = k′.

For 1 ≤ i ≤ n, let D2i be the generators of Z from Theorem 2.1. Note that Z,
and hence each D2i, acts on the space A(Γ; ρ)◦p−-fin. By the isomorphism Nρ(Γ)

∼−→
A(Γ; ρ)p−-fin of Proposition 3.1, it follows that D2i gives rise to an operator Ω2i on
the space Nρ(Γ). Precisely, for each f ∈ Nρ(Γ),

(Ω2if)
ρ = D2i(f

ρ), Lρ((Ω2if)
ρ) = D2i(Lρ(f

ρ)).

More concretely, for z = x + iy ∈ Hn and f ∈ Nρ(Γ), the above definition is
equivalent to

(45) (Ω2if)(z) = ρ(y−1/2)
(
(D2if

ρ)
[
y1/2 xy−1/2

y−1/2

])
.

For each character χ of Z, we define A(Γ; ρ, χ)◦p−-fin ⊆ A(Γ; ρ)◦p−-fin to be the

subspace consisting of all the elements on which Z acts via the character χ. We let
Nρ(Γ;χ)

◦ be the corresponding subspace of Nρ(Γ)
◦. In the notation introduced in

Section 3.2, it is clear that

(46) A(Γ; ρ, L(k))◦ ⊆ A(Γ; ρ, χk)
◦
p−-fin, Nρ(Γ;L(k))

◦ ⊆ Nρ(Γ;χk)
◦.

More precisely,
(47)⊕
k′∈Λ++

χk′=χk

A(Γ; ρ, L(k′))◦ = A(Γ; ρ, χk)
◦
p−-fin,

⊕
k′∈Λ++

χk′=χk

Nρ(Γ;L(k
′))◦ = Nρ(Γ;χk)

◦.
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It follows from Lemma 3.13 that

(48) Nρ(Γ;L(k))
◦ = Nρ(Γ;χk)

◦ if k = (k1, . . . , kn) ∈ Λ++ with kn ≥ 2n,

and similarly for A(Γ; ρ, χk)
◦
p−-fin.

Lemma 3.14. Let k ∈ Λ+. Then for all 1 ≤ i ≤ n, χk(D2i) ∈ Z.

Proof. Since D2iv = χk(D2i)v for any v in the space of L(k), it is enough to prove
that D2ivk is an integral multiple of vk, where we fix vk to be a highest weight
vector of weight k in L(k). For this we appeal to Corollary 2.2. We know that vk is
annihilated by all the E−,∗,∗ elements, as well as all the Ba,b elements for a > b, and
the number of E−,∗,∗ elements is the same as the number of E+,∗,∗ elements in the

expression of D2i. Hence, we may write D2ivk =
∑t

i=1 ciH
(i)
1 · · ·H(i)

ri X
(i)
1 · · ·X(i)

pi vk

where the ci are integers, ri, pi ≥ 0 and each H
(i)
k is equal to Ba,a for some a, and

each X
(i)
k is equal to Ba,b for some a < b. We break up the expression above into

two parts corresponding to whether pi = 0 or pi > 0, and obtain D2ivk = w1 + w2

where w1 =
∑u

i=1 ciH
(i)
1 · · ·H(i)

ri vk and w2 =
∑t

i=u+1 ciH
(i)
1 · · ·H(i)

miX
(i)
1 · · ·X(i)

ni vk
with each ni > 0. Looking at weights, we see w2 = 0. Since Ba,avk = kavk, it
follows that w1 is an integral multiple of vk, completing the proof.

Lemma 3.15. Let σ ∈ Aut(C). Then for any f ∈ Nρ(Γ)

σ(Ω2if) = Ω2i(
σf).

Proof. This follows from Corollary 2.3, Proposition 3.12 and (45).

For each k ∈ Λ++, let pχk
denote the orthogonal projection map from Nρ(Γ)

◦

to its subspace Nρ(Γ;χk)
◦. (We omit ρ from the notation of pχk

for brevity.) If
k = (k1, . . . , kn) ∈ Λ+ such that kn ≥ 2n, then (48) implies that pχk

is precisely
the orthogonal projection map from Nρ(Γ)

◦ to its subspace Nρ(Γ;L(k))
◦.

Proposition 3.16. For any σ ∈ Aut(C), f ∈ Nρ(Γ)
◦, and k ∈ Λ++, we have

σ(pχk
(f)) = pχk

( σf).

Proof. We can give an explicit formula for pχk
as follows,

(49) pχk
= C−1

k

∏
k′∈Λ++

k′ �=k

n∑
i=1

sgn
(
χk(D2i)− χk′(D2i)

)(
Ω2i − χk′(D2i)

)
,

where

(50) Ck =
∏

k′∈Λ++

k′ �=k

n∑
i=1

|χk(D2i)− χk′(D2i)|.

In both (49) and (50), the product extends only over those finitely many k′ for
which the space Nρ(Γ;χk)

◦ is non-zero. Now the proposition follows from Lemmas
3.14 and 3.15.

In the following we denote by kQ the Lie algebra over Q spanned by the elements
Bij defined in (6). Then kC = kQ ⊗Q C.
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Lemma 3.17. For k ∈ Λ+, let Fk be a model for ρk, and let vk be a highest weight
vector in Fk. Let Fk,Q := U(kQ)vk. Then Fk,Q is an irreducible kQ-module, and
Fk,Q ⊗Q C ∼= Fk as kC-modules.

Proof. By Weyl’s theorem [33, Theorem 7.8.11], Fk,Q is a direct sum U1⊕· · ·⊕Um

of irreducible kQ-modules. Evidently, vk must have a non-zero component vi in
each of the Ui. Then each vi has weight k. Since, up to multiples, vk is the only
vector of weight k in Fk, there exist ci ∈ C with vi = civk. We can get from vk
to any other vector in Fk,Q with an appropriate element of U(kQ). In particular,
there exists Xi ∈ U(kQ) with Xivk = vi. Looking at weights, we see that Xi must
be a constant, so that in fact Xi = ci. It follows that all the ci are rational. On
the other hand, the vi are Q-linearly independent. This is only possible if m = 1.

We proved the irreducibility assertion. It follows that Fk,Q⊗QC is an irreducible
kC-module. The obvious map from Fk,Q ⊗Q C to Fk is then an isomorphism.

Let p±,Q be the Q-span of the elements E±,i,j defined in (6); then p±,Q is a Lie
algebra over Q. Set gQ = p+,Q ⊕ kQ ⊕ p−,Q. Then gQ is a rational form of gC.

Lemma 3.18. For k ∈ Λ+, recall the gC-module N(k) = U(gC) ⊗U(kC+p−) Fk.
Consider the gQ-module N(k)Q := U(gQ)⊗U(kQ+p−,Q)Fk,Q. Then N(k) ∼= N(k)Q⊗Q

C as gC-modules. There exists a direct sum decomposition of N(k)Q into irreducibles
Uj such that the Uj ⊗Q C are the K∞-types of N(k).

Proof. Inside U(p+), let U(p+)(m) be the C-linear span of the elements E+,i1,j1

. . . E+,im,jm , and let U(p+)(m)
Q be the Q-linear span of the same elements. Using

the PBW theorem, we have

(51) N(k) = U(gC)⊗U(kC+p−) Fk
∼= U(p+)⊗C Fk

∼=
∞⊕

m=0

(
U(p+)(m) ⊗C Fk

)
as complex vector spaces. It follows from the PBW theorem and Lemma 3.17 that

(52) U(p+)(m) ⊗C Fk
∼= (U(p+,Q)

(m) ⊗Q Fk,Q)⊗Q C

(both sides have the same C-dimension). Hence

N(k) ∼=
( ∞⊕

m=0

(
U(p+,Q)

(m) ⊗Q Fk,Q

))
⊗Q C

∼=
(
U(p+,Q)⊗Q Fk,Q

)
⊗Q C

∼=
(
U(gQ)⊗U(kQ+p−,Q) Fk,Q

)
⊗Q C.(53)

This proves N(k) ∼= N(k)Q ⊗Q C as C-vector spaces. It is easy to see that the
isomorphism is compatible with the action of gC ∼= gQ ⊗Q C.

It follows from [kQ, p+,Q] = p+,Q that U(p+,Q)
(m) ⊗Q Fk,Q is a kQ-module. By

Weyl’s theorem, we may decompose it into irreducibles Uj . Then the Uj ⊗Q C
are irreducible under the action of kC ∼= kQ ⊗ C, i.e., they are the K∞-types of

U(p+)(m) ⊗C Fk.

Lemma 3.19. For k ∈ Λ+, let vk be a highest weight vector in the K∞-type ρk
of L(k). Then for any K∞-type ρ of L(k) there exists a non-negative integer m
such that ρ admits a C-basis consisting of vectors of the form Yivk, where Yi ∈
U(p+,Q)

(m)U(kQ).
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Proof. Let Uj⊗QC be one of theK∞-types from Lemma 3.18 such that it maps onto
ρ under the projection N(k) → L(k). By construction there exists an m such that
Uj has a basis consisting of vectors of the form Yiv0 with Yi ∈ U(p+,Q)

(m)U(kQ);
here v0 is a highest weight vector in Fk,Q. The vectors Yiv0 ⊗ 1 = Yi(v0 ⊗ 1) are a
C-basis of Uj ⊗Q C. Our assertion follows since, after proper normalization, v0 ⊗ 1
projects to vk.

For the rest of this subsection let k = (k1, k2, . . . , kn) where k1 ≥ . . . ≥ kn > n
are integers with the same parity. In this case, L(k) is a holomorphic discrete
series representation that contains the K∞-type6 ρk1,k1,...,k1

with multiplicity one
(see Lemma 5.3 of [24]). We use the notation Nk1

(Γ;L(k))◦ := Ndetk1 (Γ;L(k))
◦.

We will construct a differential operator that maps Sk(Γ) isomorphically onto
Nk1

(Γ;L(k))◦. The idea is to find a Q-rational element of U(gC) that maps a
highest-weight vector of weight k inside L(k) onto a vector in the one-dimensional,
multiplicity one K∞-type ρk1,k1,...,k1

in L(k). This can be done thanks to Lemma
3.19.

Proposition 3.20. Let k = (k1, k2, . . . , kn) where k1 ≥ . . . ≥ kn > n are integers
with the same parity. Then there exists an injective linear map Dk from Sk(Γ) to
Nk1

(Γ)◦ with the following properties.

(1) The image Dk(Sk(Γ)) is equal to Nk1
(Γ;L(k))◦.

(2) For any σ ∈ Aut(C) and f ∈ Sk(Γ) we have Dk(
σf) = σ(Dkf).

Proof. For brevity, we write ρ = ρk. Let f ∈ Sk(Γ), and put f ′ = Lρ ◦ fρ. By
Proposition 3.2, f ′ is a highest weight vector of weight k inside V = U(gC)(f ′) 

L(k).

By Lemma 3.19, there exists an element Y ∈ U(p+,Q)
(m)U(kQ) such that when Y

is viewed as an operator on V , then Y vk is a non-zero vector in the one-dimensional

K∞-type ρ2 := ρk1,k1,...,k1
. Denote Ỹ = π

k1+···+kn−nk1
2 Y and define the map Dk

from Sk(Γ) to C∞(Hn) by

(Dkf)(z) := det(y)−k1/2Ỹ (Lρ(f
ρ))(gz)

= Lρ

(
det(y)−k1/2(Ỹ (fρ))(gz)

)
.(54)

From the construction and the aforementioned property of Y , it is clear that

(Dkf)
ρ2 = Lρ(Ỹ fρ) = Ỹ (Lρf

ρ). This, together with the fact that ρ2 is one-
dimensional and occurs with multiplicity one in L(k) (and using Propositions 3.1
and 3.2), it follows that Dk maps Sk(Γ) surjectively onto Nk1

(Γ;L(k))◦. This
proves part 1. Using Proposition 3.12 and the expression (54) (and the fact that
the projection map Lρ is rational) we obtain part 2.

Remark 3.21. In the case n = 2, we may take Dk = π− k1−k2
2 U

k1−k2
2 using the

notation of [25] (see Propositions 3.15 and 5.6 of [25]).

4. Special values of L-functions

Throughout this section, we fix an n-tuple k = (k1, k2, . . . , kn) of positive
integers such that k1 ≥ . . . ≥ kn ≥ n + 1 and all ki have the same parity. For
brevity we write k = k1.

6The K∞-type ρk1,k1,...,k1
corresponds to the character det(J(k∞, iIn))−k1 of K∞, or equiv-

alently, the character detk1 of U(n).
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4.1. Automorphic representations. We recall that L(k) is the holomorphic
discrete series representation of Sp2n(R) with highest weight (k1, k2, . . . , kn).
Let GSp2n(R)

+ be the index two subgroup of GSp2n(R) consisting of elements
with positive multiplier. We may extend L(k) in a trivial way to GSp2n(R)

+ ∼=
Sp2n(R) × R>0. This extension induces irreducibly to GSp2n(R). We denote the
resulting representation of GSp2n(R) by the same symbol L(k).

Let p be a prime and let σ be an irreducible spherical representation of
GSp2n(Qp). Let b0, b1, . . . bn be the Satake parameters associated to σ (see, e.g.,
[1, §3.2]). For each character χ of Q×

p , put αχ = χ(�) for any uniformizer � of Qp

if χ is unramified, and put αχ = 0 if χ is ramified. Define the local GSp2n ×GL1

standard L-function

L(s, σ � χ) := (1− αχp
−s)−1

n∏
i=1

(
(1− biαχp

−s)(1− b−1
i αχp

−s)
)−1

.

Given another irreducible spherical representation σ′ of GSp2n(Qp) with Satake
parameters b′0, b′1, . . . b′n we say that σ ∼ σ′ if (b1, . . . , bn) and (b′1, . . . , b′n)
represent the same tuple under the action of the Weyl group. Using Lemma 2.4 of
[12] for G = GSp2n(Qp), H = Z(Qp) Sp2n(Qp), we see that the following conditions
are equivalent:

(1) σ ∼ σ′,
(2) there is an unramified character χ of Q×

p such that σ′ 
 σ ⊗ (χ ◦ μn),
(3) there exists an irreducible admissible representation of Sp2n(Qp) that occurs

as a direct summand inside both σ|Sp2n(Qp) and σ′|Sp2n(Qp),
(4) σ|Sp2n(Qp) 
 σ′|Sp2n(Qp).

Given any character χ of Q×
p , and irreducible spherical representations σ, σ′ of

GSp2n(Qp) we have

(55) σ ∼ σ′ ⇒ L(s, σ � χ) = L(s, σ′ � χ).

We let Rk(N) denote the set of irreducible cuspidal automorphic representations
Π 
 ⊗Πv of GSp2n(A) such that Π∞ 
 L(k) and such that Π has a vector right

invariant under the principal congruence subgroup K2n(N) of GSp2n(Ẑ). Note that
if Π ∈ Rk(N) then Πp is spherical for all p � N . For Π1,Π2 ∈ Rk(N), we define an
equivalence relation Π1 ∼ Π2 if Π1,p ∼ Π2,p for all p � N . We define

R̃k(N) = Rk(N)/ ∼ .

For Π ∈ Rk(N), let [Π] denote its equivalence class in R̃k(N). For Π1,Π2 ∈ Rk(N),
and σ ∈ Aut(C), it follows from the definition that if Π1 ∼ Π2 then σΠ1 ∼ σΠ2;

therefore for any class [Π] ∈ R̃k(N), the element σ[Π] = [σΠ] ∈ R̃k(N) is well-

defined. For [Π] ∈ R̃k(N), and any set S of places of Q such that ∞ ∈ S and Πp is
unramified for p /∈ S, define LS(s, [Π]�χ) =

∏
p/∈S L(s,Πp�χp) (this is well-defined

by (55)). If the set of finite primes in S coincides with the set of primes dividing N ,

we will use the notation LN (s, [Π]�χ) := LS(s, [Π]�χ). Given [Π] ∈ R̃k(N), we let
Q([Π]) be the fixed field of the set of σ ∈ Aut(C) satisfying σ[Π] = [Π]. Since Q([Π])
is contained in the field of rationality Q(Π) of any automorphic representation in
its equivalence class, it follows that Q([Π]) is a totally real or CM field [2, Theorems
3.2.1 and 4.4.1].
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4.2. Classical and adelic cusp forms. By the strong approximation theorem,
we have

(56) GSp2n(A) =
⊔

1≤a<N
(a,N)=1

GSp2n(Q)Z(R)+ Sp2n(R)daK2n(N),

where da ∈ GSp2n(Af) is given by (da)p =
[
In

aIn

]
if p|N , and (da)p = I2n other-

wise.
For each h ∈ GSp2n(Af), and each φ : GSp2n(A) → C, define h ·φ : GSp2n(A) →

C by (h · φ)(g) := φ(gh). For any compact open subgroup U of GSp2n(Ẑ), let

ΓU = Sp2n(Q) ∩ U.

Let ρ be a K∞-type that occurs in L(k). Then we define AGSp2n(A)
(U ; ρ, L(k))◦ to

be the space of functions φ from GSp2n(A) to C such that

(1) φ is a cuspidal automorphic form on GSp2n(A),
(2) φ(gQgz∞u) = φ(g) for all g ∈ GSp2n(A), u ∈ U , z∞ ∈ Z(R)+, gQ ∈

GSp2n(Q),
(3) for each h ∈ GSp2n(Af), the function (h · φ)|Sp2n(R)

lies in
A(ΓhUh−1 ; ρ, L(k))◦.

It is clear that given any irreducible cuspidal automorphic representation Π of
GSp2n(A), we have

Π ∈ Rk(N) ⇐⇒ VΠ ∩AGSp2n(A)
(K2n(N); ρ, L(k))◦ 	= {0}.

For each φ ∈ AGSp2n(A)
(U ; ρ, L(k))◦, let Fφ : Hn �→ Vρ be the function cor-

responding to φ|Sp2n(R)
under the isomorphism given by Proposition 3.1. Then

we have Fφ ∈ Nρ(ΓU ;L(k))
◦. Now, consider U = K2n(N) which is a subgroup

normalized by each da. Define for φ ∈ AGSp2n(A)
(K2n(N); ρ, L(k))◦ and each

1 ≤ a < N , (a,N) = 1, the function F
(a)
φ : Hn �→ Vρ via F

(a)
φ := Fda·φ, where

da · φ ∈ AGSp2n(A)
(K2n(N); ρ, L(k))◦ is given by the usual right-translation action.

Then using Proposition 3.1 and (56) we deduce the key isomorphism
(57)

AGSp2n(A)
(K2n(N); ρ, L(k))◦ 


⊕
1≤a<N
(a,N)=1

Nρ(Γ2n(N);L(k))◦, φ �→ (F
(a)
φ )a.

Recall that ρk denotes the K∞-type with highest weight k. Also, we let ρk be a
shorthand for the K∞-type ρk,...,k with highest weight k, . . . , k (recall that k = k1).
Using (57) and the notation of Section 3.4 we obtain the commutative diagram of
isomorphisms

(58)

AGSp2n(A)
(K2n(N); ρk, L(k))

◦ 
−−−−−−−→
φ �→(F

(a)
φ )a

⊕
1≤a<N
(a,N)=1

Sk(Γ2n(N))



⏐⏐�˜Y 


⏐⏐�⊕aDk

AGSp2n(A)
(K2n(N); ρk, L(k))

◦ 
−−−−−−−→
φ �→(F

(a)
φ )a

⊕
1≤a<N
(a,N)=1

Nk(Γ2n(N);L(k))◦.

For brevity, we henceforth use the notation

VN,k = Dk(Sk(Γ2n(N))) = Nk(Γ2n(N);L(k))◦.
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Lemma 4.1. Let F̃1 = (F
(a)
1 )a, F̃2 = (F

(a)
2 )a be elements of⊕

1≤a<N
(a,N)=1

Nρ(Γ2n(N);L(k))◦.

Let φ1, φ2 be the elements of AGSp2n(A)
(K2n(N); ρ, L(k))◦ corresponding to F̃1, F̃2

respectively under the isomorphism (57). Suppose that F
(1)
1 = F

(1)
2 . Then there

exists an irreducible constituent Π1 ∈ Rk(N) of the representation of GSp2n(A)
generated by φ1, and an irreducible constituent Π2 ∈ Rk(N) of the representation
of GSp2n(A) generated by φ2 such that Π1 ∼ Π2.

Proof. For i = 1, 2, let σi be the representation of GSp2n(A) generated by φi. By
assumption, φ1|Sp2n(A)

= φ2|Sp2n(A)
. It follows that the restrictions to Sp2n(A) of

σ1 and σ2 have a common non-zero quotient. So for some irreducible constituents
Π1, Π2 of σ1, σ2 respectively, there exists an irreducible cuspidal automorphic
representation of Sp2n(A) that occurs as an automorphic restriction (in the sense
of [11, §5.1]) of both Π1 and Π2. Hence using [11, Lemma 5.1.1] we see that
Π1 ∼ Π2.

Let K ′
2n(N) be the subgroup of elements g ∈ GSp2n(Ẑ) such that g ≡

[
In

aIn

]
(mod N) for some a ∈ Ẑ. Given any F in VN,k, let the adelization ΦF be the
function on GSp2n(A) defined as

ΦF (g) = det(J(g∞, iIn))
−kF (g∞(iIn)),

where we write any element g ∈ GSp2n(A) as

g = λgQg∞kf, gQ ∈ GSp2n(Q), g∞ ∈ Sp2n(R), kf ∈ K ′
2n(N), λ ∈ Z(R)+.

It is clear then that φF ∈ AGSp2n(A)
(K ′

2n(N); ρk, L(k))
◦. One has the following

commutative diagram.

(59)

AGSp2n(A)
(K2n(N); ρk, L(k))

◦ 
−−−−−−−→
φ �→(F

(a)
φ )a

⊕
1≤a≤N
(a,N)=1

Nk(Γ2n(N);L(k))◦

ι

�⏐⏐ �⏐⏐F �→(F,F,...,F )

AGSp2n(A)
(K ′

2n(N); ρk, L(k))
◦

φF �→F

−−−−→

φ �→Fφ

Nk(Γ2n(N);L(k))◦ = VN,k.

In the above diagram, the top row coincides with the bottom row of (58), and the
map ι is the inclusion. Prima facie, the bottom isomorphism in (59) appears to give
a cleaner way to go back and forth between classical and adelic forms than the top
one; however there is one major disadvantage. Namely, every automorphic represen-
tation Π ∈ Rk(N) is generated by some element in AGSp2n(A)

(K2n(N); ρk, L(k))
◦

but the same is not known to be true for AGSp2n(A)
(K ′

2n(N); ρk, L(k))
◦ (unless

n ≤ 2 in which case the latter assertion can be proved identically to [26, Theorem
2]). In other words, we do not know whether every representation in Rk(N) is
generated via the adelization process. Nonetheless, we will soon observe (see next
lemma) that for each Π ∈ Rk(N), some representative Π′ ∈ [Π] is generated by an
element of AGSp2n(A)

(K ′
2n(N); ρk, L(k))

◦, and hence obtained via adelization.
For each F ∈ VN,k, let ΠF denote the representation of GSp2n(A) generated by

φF . Clearly ΠF is a finite direct sum of irreducible cuspidal automorphic represen-

tations. We now make the following definition. Given a class [Π] ∈ R̃k(N), we let
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VN,k([Π]) be the space generated by all F ∈ VN,k with the property that each irre-
ducible constituent of ΠF belongs to [Π]. We define Sk(Γ2n(N); [Π]) similarly. It is
clear that VN,k([Π]) = Dk(Sk(Γ2n(N); [Π])). We have direct sum decompositions

VN,k =
⊕

[Π]∈ ˜Rk(N)

VN,k([Π])(60)

Sk(Γ2n(N)) =
⊕

[Π]∈ ˜Rk(N)

Sk(Γ2n(N); [Π])

into a sum of orthogonal subspaces with respect to the Petersson inner product.

Lemma 4.2. Let Π ∈ Rk(N).

(1) There exists F ∈ VN,k such that ΠF is irreducible and satisfies ΠF ∼ Π. In
particular, VN,k([Π]) 	= {0}.

(2) The space VN,k([Π]) has a basis consisting of forms F as above.

Proof. Let φ ∈ AGSp2n(A)
(K2n(N); ρk, L(k))

◦ be such that φ generates Π. Let

F ′ = F
(1)
φ . Using Lemma 4.1, we see that some irreducible constituent of ΠF ′ lies

inside [Π]. Letting F be the projection of F ′ onto this constituent, we see that
ΠF ∼ Π. This proves the first assertion. The second assertion is immediate from
the definitions.

Let [Π] ∈ R̃k(N). By Theorem 4.2.3 of [2] (see also the proof of Theorem 3.13
of [26]), it follows that

F ∈ Sk(Γ2n(N); [Π]) =⇒ σF ∈ Sk(Γ2n(N); σ[Π]).

Using the Aut(C)-equivariance of the Dk map given by Proposition 3.20 (see also
(58)) we obtain

(61) F ∈ VN,k([Π]) =⇒ σF ∈ VN,k(
σ[Π]).

In particular, the space VN,k([Π]) is preserved under the action of the group
Aut(C/Q([Π])). Using Lemma 3.17 of [26], it follows that the space VN,k([Π])
has a basis consisting of forms whose Fourier coefficients are in Q([Π]). We note
also that given any irreducible cuspidal automorphic representation Π of GSp2n(A)
such that Π∞ 
 L(k), there exists N such that Π ∈ Rk(N), and consequently,
using Lemma 4.2 we have VN,k([Π]) 	= {0}.

4.3. Eisenstein series. Define the element Q =

[
In 0 0 0
0 0 0 In
0 0 In In
In −In 0 0

]
embedded diago-

nally in
∏

p<∞ Sp4n(Zp), and for any τ ∈ Ẑ× =
∏

p<∞ Z×
p , let

Qτ =
[
τI2n

I2n

]
Q
[
τ−1I2n

I2n

]
.

Note that Q = Q1. Given a positive integer N =
∏

p p
mp , and a primitive Dirichlet

character χ satisfying cond(χ) | N and χ∞ = sgnk, we define the Eisenstein series
Eχ

k,N (Z, s;Q) and Eχ
k,N (Z, s;Qτ ) for each

7 s ∈ C as in [24, (117)] (see also Section

2.3 of [22]).

7As usual, the Eisenstein series is given by an absolutely convergent series for Re(s) sufficiently
large, and by analytic continuation outside that region.
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Let 0 ≤ m0 ≤ k
2 −

n+1
2 , and if χ2 = 1 assume that m0 	= k

2 −
n+1
2 . By Proposition

6.6 of [24] we have that

(62) Eχ
k,N (

[
Z1

Z2

]
,−m0;Qτ ) ∈ Nk(Γ2n(N))⊗Nk(Γ2n(N));

furthermore, for m0 as above and σ ∈ Aut(C) we have by Proposition 6.8 of [24],

(63) σ
(
π−2m0nEχ

k,N (Z,−m0;Q)
)
= π−2m0nE

σχ
k,N (Z,−m0;Qτ ) ,

where τ ∈ Ẑ× is the element corresponding to σ via the natural map Aut(C) →
Gal(Qab/Q) 
 Ẑ×.

For [Π] ∈ R̃k(N), an integer r satisfying 1 ≤ r ≤ kn − n, r + n − k ≡ 0
(mod 2), and a primitive Dirichlet character χ satisfying cond(χ) | N , χ∞ = sgnk,
r = 1 ⇒ χ2 	= 1, define

(64) Gχ
k,N (Z1, Z2, r;Qτ ) := πn(r+n−k)Eχ

k,N (
[
Z1

Z2

]
,
n− k + r

2
;Qτ ),

(65)

CN ([Π], χ, r)

:= inkπn(r+n−k)
πn(n+1)/2LN(r,Π � χ)Ak(r − 1)

∏
p|N vol(Γ2n(p

mp))

vol(Sp2n(Z)\Sp2n(R))L
N(r + n, χ)

∏n
j=1 L

N(2r + 2j − 2, χ2)
,

where the rational number Ak(r−1) is defined in [24, (106)]. Note that CN ([Π], χ, r)
depends only on the class [Π]. Given any G ∈ VN,k([Π]), Corollary 6.5 of [24] tells
us that

(66) 〈Gχ
k,N (−, Z2, r;Qτ ), G〉 = χ(τ )−nCN ([Π], χ, r) Ḡ(Z2).

We complement this with Lemma 4.3 which considers the inner product in the other
variable.

Lemma 4.3. Let k,N, χ, r, τ be as above. For each G ∈ VN,k([Π]), there exists
H ∈ VN,k([Π]) such that

(67) 〈Gχ
k,N(Z1,−, r;Qτ ), G〉 = H̄(Z1).

Proof. Let φ denote the adelization of G. We may assume without loss of generality
that φ generates an irreducible representation Π′ ∈ [Π]. Define the function H as

in the lemma. Clearly, H ∈ Nk(Γ2n(N)) and H̄(Z2) = H(−Z2). Using a standard
adelic-to-classical translation (see Theorems 6.1 and 6.6 of [24]), the lemma will
follow if we can show that

(68)

∫
Sp2n(F )\ g·Sp2n(A)

E((h, g), s, f (Qτ))φ(g) dg ∈ VΠ′

where E((h, g), s, f (Qτ)) is defined as in Section 6.1 of [24]. However (68) follows
immediately from Theorem 3.6 of [24] and the observation that E((h, g), s, f (Qτ)) =
E((g, h), s, f ′) for some suitable section f ′ obtained by right-translation of f .

We can now prove the following result.

Lemma 4.4. Let k,N, χ, r, τ be as above. For each [Π′] in R̃k(N), let B[Π′] be
an orthogonal basis of VN,k([Π

′]). Let WN,k denote the orthogonal complement of
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VN,k in Nk(Γ2n(N)) and let CN,k be a basis of WN,k. Then there exists complex
numbers αH1,H2

such that

Gχ
k,N (Z1, Z2, r;Qτ ) =χ(τ )−n

∑
[Π′]∈ ˜Rk(N)

CN ([Π′], χ, r)
∑

G∈B[Π′]

G(Z1)Ḡ(Z2)

〈G,G〉

+
∑

H1,H2∈CN,k

αH1,H2
H1(Z1)H2(Z2).

(69)

Proof. Note that BN,k =
⋃

[Π′]∈ ˜Rk(N) B[Π′] is an orthogonal basis of VN,k. Let

B̄N,k be the set obtained by replacing each element G of BN,k by the element Ḡ;

then using the identity 〈F1, F2〉 = 〈F̄1, F̄2〉, we see that B̄N,k is also an orthogonal
basis of VN,k. So BN,k ∪ CN,k and B̄N,k ∪ CN,k are both bases of Nk(Γ2n(N)).
From (62) and (66) we obtain an expression of the form

Gχ
k,N (Z1, Z2, r;Qτ ) =χ(τ )−n

∑
[Π′]∈ ˜Rk(N)

CN ([Π′], χ, r)
∑

G∈B[Π′]

G(Z1)Ḡ(Z2)

〈G,G〉

+
∑

H1∈CN,k

G2∈BN,k

αH1,G2
H1(Z1)Ḡ2(Z2)

+
∑

H1,H2∈CN,k

αH1,H2
H1(Z1)H2(Z2).

(70)

Now using Lemma 4.3 we see that each αH1,G2
= 0.

Remark 4.5. If n+2 ≤ r, then by the results of [22] we have that Gχ
k,N (Z1, Z2, r;Qτ )

is cuspidal in each of the variables Z1, Z2.

4.4. Algebraicity of critical L-values.

Proposition 4.6. Let Π ∈ Rk(N), χ a primitive Dirichlet character such that
cond(χ) | N and χ∞ = sgnk, and F ∈ VN,k([Π]) be such that the Fourier coefficients
of F lie in a CM field. Let r be an integer such that 1 ≤ r ≤ kn − n, r ≡ kn − n
(mod 2); if r = 1 assume that χ2 	= 1. Then for any σ ∈ Aut(C), we have

σ

(
G(χ)nCN ([Π], χ, r)

〈F, F 〉

)
=

G(σχ)nCN (σ[Π], σχ, r)

〈σF, σF 〉 ,

where CN ([Π], χ, r) is defined in (65).

Proof. The proof follows the method8 of the lemma in [5, Appendix]. For each [Π′]

in R̃k(N), we pick an orthogonal basis B[Π′] of VN,k([Π
′]) such that B[Π] includes

F and Bσ[Π] includes
σF . We can do this thanks to (61). Let WN,k denote the

orthogonal complement of VN,k in Nk(Γ2n(N)) and let CN,k be a basis of WN,k.

8We are grateful to the referee for encouraging us to take a closer look at [5, Appendix].
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We now use Lemma 4.4 to express σGχ
k,N (Z1, Z2, r;Q) in two different ways.

First, using (63) and Lemma 4.4 we obtain

σGχ
k,N (Z1, Z2, r;Q) =G

σχ
k,N (Z1, Z2, r;Qτ )

=σχ(τ )−n
∑

[Π′]∈ ˜Rk(N)

CN ([Π′], σχ, r)
∑

G∈B[Π′]

G(Z1)Ḡ(Z2)

〈G,G〉

+
∑

H1,H2∈CN,k

α′
H1,H2

H1(Z1)H2(Z2),

(71)

for some α′
H1,H2

∈ C. On the other hand, by letting σ act on each term of the

expression for Gχ
k,N (Z1, Z2, r;Q) = Gχ

k,N (Z1, Z2, r;Q1) in the expression given by
Lemma 4.4, we obtain

σGχ
k,N (Z1, Z2, r;Q) =

∑
[Π′]∈ ˜Rk(N)

σ(CN ([Π′], χ, r))
∑

G∈B[Π′]

σG(Z1)
σḠ(Z2)

σ(〈G,G〉)

+
∑

H1,H2∈CN,k

βH1,H2

σH1(Z1)
σH2(Z2),

(72)

for some βH1,H2
∈ C.

We now evaluate L := 〈σGχ
k,N (−, Z2, r;Q), σF 〉 in two ways. On the one hand,

using (71), and recalling that σF is an element of Bσ[Π] and that σF is orthogonal

to all elements in

(⋃
[Π′]∈ ˜Rk(N)
[Π′] �=σ[Π]

B[Π′]

)⋃
CN,k, we get

(73) L = σχ(τ )−nCN (σ[Π], σχ, r)σF (Z2) =
σχ(τ )−nCN (σ[Π], σχ, r)σF̄ (Z2),

where the second equality uses our hypothesis that the Fourier coefficients of F
belong in a CM field. On the one hand, using (72), we get

L =
∑

[Π′]∈ ˜Rk(N)

σ(CN ([Π′], χ, r))
∑

G∈B[Π′]

〈σG, σF 〉
σ(〈G,G〉)

σḠ(Z2)

+
∑

H1,H2∈CN,k

βH1,H2
〈σH1,

σF 〉σH2(Z2).

(74)

We now make the obvious but crucial observation that the elements of the set
σB̄N,k ∪ σCN,k are linearly independent. So by comparing the coefficients of σF̄ (Z2)
in (73) and (74) together with the well known fact σ(G(χ)n) = σχ(τn)G(σχ)n, we
obtain the desired equality.

In Theorem 4.7, we will obtain an algebraicity result for the special values
LS(r,Π� χ) at all the critical points r in the right half plane.

Theorem 4.7. Let k1 ≥ k2 ≥ . . . ≥ kn ≥ n + 1 be integers where all ki have
the same parity. Let Π be an irreducible cuspidal automorphic representation of
GSp2n(A) such that Π∞ is the holomorphic discrete series representation with high-
est weight (k1, k2, . . . , kn). Let S be a finite set of places of Q including ∞ such
that Πp is unramified for all primes p /∈ S. Let F be a nearly holomorphic cusp form
of scalar weight k1 (with respect to some congruence subgroup) whose Fourier coef-
ficients lie in a CM field, such that any irreducible constituent ΠF = ⊗vΠF,v of the
automorphic representation generated by (the adelization) ΦF satisfies ΠF,∞ 
 Π∞
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and ΠF,p ∼ Πp for p /∈ S. Let χ be a Dirichlet character such that χ∞ = sgnk1 and
let r be an integer such that 1 ≤ r ≤ kn − n, r ≡ kn − n (mod 2); if r = 1 assume
that χ2 	= 1. Then for σ ∈ Aut(C), we have

(75) σ

(
LS(r,Π� χ)

ik1πnk1+nr+rG(χ)n+1〈F, F 〉

)
=

LS(r, σΠ� σχ)

ik1πnk1+nr+rG(σχ)n+1〈σF, σF 〉 .

Proof. We fix an integer N divisible by all primes in S such that cond(χ) | N and
F ∈ VN,k([Π]). By Proposition 4.6,

σ

(
ink1

G(χ)nLN (r,Π� χ)

πn(k1−r−n)LN (r + n, χ)
∏n

j=1 L
N (2r + 2j − 2, χ2)〈F, F 〉

)

= ink1
G(σχ)nLN (r, σΠ� σχ)

πn(k1−r−n)LN (r + n, σχ)
∏n

j=1 L
N (2r + 2j − 2, σχ2)〈σF, σF 〉 .

(76)

If p is a prime such that p /∈ S, then it is clear from the definition of local
L-factors that

(77) σ

(
L(r,Πp � χp)

L(r + n, χp)
∏n

j=1 L(2r + 2j − 2, χ2
p)

)

=
L(r, σΠp � σχp)

L(r + n, σχp)
∏n

j=1 L(2r + 2j − 2, σχ2
p)
.

Combining (76) and (77) we get

σ

(
ink1

G(χ)nLS(r,Π� χ)

πn(k1−r−n)LS(r + n, χ)
∏n

j=1 L
S(2r + 2j − 2, χ2)〈F, F 〉

)

= ink1
G(σχ)nLS(r, σΠ� σχ)

πn(k1−r−n)LS(r + n, σχ)
∏n

j=1 L
S(2r + 2j − 2, σχ2)〈σF, σF 〉 .

(78)

For a Dirichlet character ψ and a positive integer t satisfying ψ∞ = sgnt, we
have by [28, Lemma 5])

(79) σ

(
LS(t, ψ)

(πi)tG(ψ)

)
=

LS(t, σψ)

(πi)tG(σψ)
.

Plugging (79) (for ψ = χ and ψ = χ2) into (78), we obtain (75).

Remark 4.8. One can choose F in Theorem 4.7 such that its Fourier coefficients
lie in Q([Π]) (see the last paragraph of Section 4.2). For such an F , Theorem 4.7
implies that

LS(r,Π� χ)

ik1πnk1+nr+rG(χ)n+1〈F, F 〉 ∈ Q([Π])Q(χ).

Proof of Corollary 1.3. This follows immediately from Theorem 4.7, and the
fact that the Gauss sums G(χ) are algebraic numbers. In fact, using the algebraic
properties of Gauss sums (see Lemma 8 of [28]), one observes that the quantity in

(2) lies in the CM field given by Q([Π])Q(χ)Q(e
2πi

cond(χ) ), where χ = χ1χ2.
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