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In previous work, we introduced harmonic Maass–Jacobi forms. The space of such forms
includes the classical Jacobi forms and certain Maass–Jacobi–Poincaré series, as well as

Zwegers’ real-analytic Jacobi forms, which play an important role in the study of mock
theta functions and related objects. Harmonic Maass–Jacobi forms decompose naturally
into holomorphic and non-holomorphic parts. In this paper, we give exact formulas for
the Fourier coefficients of the holomorphic parts of harmonic Maass–Jacobi forms and, in
particular, we obtain explicit formulas for the Fourier coefficients of weak Jacobi forms.
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1. Introduction and Statement of Results

In 1985, Eichler and Zagier [5] systematically developed a theory of Jacobi forms.
That theory has since grown enormously, establishing deep connections to many
other areas of mathematics and physics, such as the theory of Heegner points
(see [6]), the theory of elliptic genera (see [10]), string theory (see, for example,
[4]), and more recently, mock theta functions (see [11]). In [2], we initiated a the-
ory of harmonic Maass–Jacobi forms, which includes the holomorphic Jacobi forms
of [5], the real-analytic Jacobi forms in [11], and certain Maass–Jacobi–Poincaré
series as explicit examples. Of particular interest is Ĵ

cusp
k,m , a distinguished subspace

of harmonic Maass–Jacobi forms, which we will briefly review in Sec. 2. If φ ∈ Ĵ
cusp
k,m ,

then φ = φ+ + φ−, where

φ+(τ, z) =
∑

n,r∈Z

D�∞

c+(n, r)qnζr (1)
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is the holomorphic part of φ, while the non-holomorphic part of φ is given by

φ−(τ, z) =
∑

n,r∈Z

D>0

c−(n, r)Γ
(

3
2
− k,

πDy

m

)
qnζr. (2)

Here and throughout the paper, τ = x + iy ∈ H (the usual complex upper half-
plane), z = u + iv ∈ C, q := e2πiτ , ζ := e2πiz , D := r2 − 4nm, and Γ(s, x) :=∫∞

x
e−tts−1 dt is the incomplete Gamma-function. In particular, if φ ∈ Ĵ

cusp
k,m is

holomorphic, then φ = φ+ is a weak Jacobi form. If, in addition, the Fourier series
in (1) is only over D ≤ 0, then φ is a Jacobi form as in [5] and if the Fourier series
in (1) is only over D < 0, then φ is a Jacobi cusp form. Note that our notion of
weak Jacobi form is slightly more general then the one in [5], where weak Jacobi
forms have an expansion as in (1) with the additional condition that n ≥ 0. If φ+

is as in (1), then we call

Pφ+(τ, z) :=
∑

n,r∈Z

D>0

c+(n, r)qnζr (3)

the principal part of φ+.
In this paper, we extend ideas of [1] to obtain exact formulas for the coefficients

of φ+ in (1). It turns out that the principal part Pφ+ in (3) dictates the coefficients
of φ+ for D < 0, as explained in the following theorem, which is the main result of
this paper.

Theorem 1. Let φ ∈ Ĵ
cusp
k,m with holomorphic part φ+ as in (1). If k < 0 is even

and D′ := r′2 − 4mn′ < 0, then

c+(n′, r′) =
1

2Γ
(

5
2
− k

) ∑
r (mod2m)

D>0

c+(n, r)c(k)
n,r(n

′, r′),

where Γ(·) is the Gamma-function and

c(k)
n,r(n

′, r′) := b(k)
n,r(n

′, r′) + (−1)kb(k)
n,r(n

′,−r′) (4)

with

b(k)
n,r(n

′, r′) :=
√

2πi−km− 1
2

( |D′|
D

) k
2− 3

4

×
∑
c>0

c−
3
2Kc(n, r, n′, r′)Ik− 3

2

(
π
√|D′|D
mc

)
.

Here Is(x) is the usual I-Bessel function of order s and Kc(n, r, n′, r′) is the Kloost-
erman sum

Kc(n, r, n′, r′) := e2mc(−rr′)
∑

d (mod c)∗

λ (mod c)

ec(d̄mλ2 + n′d− r′λ+ d̄n+ d̄rλ),
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where ec(x) := e
2πix

c and the sum over d runs through the primitive residue classes
modulo c and d̄ is the inverse of d modulo c.

In Sec. 2, we follow [3] to define a pairing of harmonic Maass–Jacobi forms
and skew-holomorphic Jacobi forms. We find that this pairing is determined by the
principal part of the holomorphic part of a harmonic Maass–Jacobi form. In Sec. 3,
we recall the Maass–Jacobi–Poincaré series from [2]. Given a harmonic Maass–
Jacobi form, linear combinations of such Poincaré series allow one to construct a
new harmonic Maass–Jacobi form whose holomorphic part has the same principal
part as the given one. This is the key idea in our proof of Theorem 1. Finally, we
give an explicit application of our results. The ring of Jacobi forms of even weights
is generated (over the ring of modular forms) by certain weak Jacobi forms of index
1 and weights −2 and 0, which we denote by φ−2,1 and φ0,1, respectively (see
[5, §§8 and 9]). We show that φ−2,1 can be expressed as Jacobi–Poincaré series. It
is likely that φ0,1 can also be realized as a Jacobi–Poincaré series, but this requires
the existence of a Maass–Jacobi–Poincaré series of weight 0, which we have not
constructed yet.

2. The Pairing

In this section, we introduce a pairing between skew-holomorphic Jacobi forms
and harmonic Maass–Jacobi forms, which is vital to our proof of Theorem 1 in
Sec. 3. Let Jsk

k,m denote the space of skew-holomorphic Jacobi forms of weight k and
index m and let Jsk,cusp

k,m be the subspace of cusp forms (for details, see [8, 9]). If
φ, ψ ∈ Jsk,cusp

k,m , then the Petersson scalar product of φ and ψ is defined by

〈φ, ψ〉 :=
∫

ΓJ\H×C

φ(τ, z)ψ(τ, z)e−
4πmv2

y ykdV,

where ΓJ := SL2(Z)�Z2 is the Jacobi group and dV := dudvdxdy
y3 is the ΓJ -invariant

volume element on H×C (for details, see [7, 9]). Note that skew-holomorphic Jacobi
forms have a theta decomposition, i.e. if

φ(τ, z) =
∑

n,r∈Z

D≥0

c(n, r)e−
πDy

m qnζr ∈ Jsk
k,m,

then

φ(τ, z) =
∑

µ(mod 2m)

hµ(τ)θm,µ(τ, z), (5)

where

hµ(τ) :=
∑
N≥0

cµ(N)q
N
4m
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with

cµ(N) :=

c
(
r2 −N

4m
, r

)
for r ∈ Z, r ≡ µ (mod 2m), and N ≡ µ2 (mod 4m),

0 if N �≡ µ2 (mod 4m)

(6)

and

θm,µ(τ, z) :=
∑
r∈Z

r≡µ(mod2m)

q
r2
4m ζr. (7)

If

φ(τ, z) =
∑

µ(mod 2m)

hµ(τ)θm,µ(τ, z) ∈ Jsk,cusp
k,m

and

ψ(τ, z) =
∑

µ(mod 2m)

gµ(τ)θm,µ(τ, z) ∈ Jsk,cusp
k,m ,

then analogous to Theorem 5.3 of [5], one finds that

〈φ, ψ〉 =
∫
F

∑
µ(mod2m)

hµ(τ)gµ(τ)yk− 5
2 dxdy, (8)

where F is the standard fundamental domain for the action of SL2(Z) on H.
We wish to review the definition of harmonic Maass–Jacobi forms of [2]. There-

fore, we need to recall the slash action for Jacobi forms and a certain differential
operator which is invariant under that action. If φ : H × C → C, then

(φ|k,mA)(τ, z)

:= φ

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
(cτ + d)−ke

2πim

„
−c(z+λτ+µ)2

cτ+d +λ2τ+2λz

«
(9)

for all A =
[(

a b
c d

)
, (λ, µ)

] ∈ ΓJ . Furthermore, if ∂w := ∂
∂w for a variable w, then

Ck,m := −2(τ − τ )2∂ττ − (2k − 1)(τ − τ )∂τ +
(τ − τ)2

4πim
∂τzz +

k(τ − τ )
4πim

∂zz

+
(τ − τ)(z − z)

4πim
∂zzz − 2(τ − τ )(z − z)∂τz + (1 − k)(z − z)∂z

+
(τ − τ)2

4πim
∂τzz +

(
(z − z)2

2
+
k(τ − τ)
4πim

)
∂zz +

(τ − τ )(z − z)
4πim

∂zzz

which (up to the constant 5
8 + 3k−k2

2 ) is the Casimir operator with respect to the
action in (9). There is a misprint in [2]: the term k(z−z)∂z should be (1−k)(z−z)∂z .

Definition 1. A function φ : H × C → C is a harmonic Maass–Jacobi form of
weight k and index m if φ is real-analytic in τ ∈ H and z ∈ C and satisfies the
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following conditions:

(1) For all A ∈ ΓJ , (φ |k,mA) = φ.
(2) We have that Ck,m(φ) = 0.

(3) We have that φ(τ, z) = O(eaye
2πmv2

y ) as y → ∞ for some a > 0.

Of particular interest are harmonic Maass–Jacobi forms, which are holomorphic in
z; the space of such forms is denoted by Ĵk,m.

The differential operator

ξk,m := yk− 3
2

(
−2iy∂τ − 2iv∂z +

y

4πm
∂zz

)
plays an important role in this context. It maps harmonic Maass–Jacobi forms that
are holomorphic in the Jacobi variable z to skew-holomorphic Jacobi forms. Let
Ĵ
cusp
k,m ⊂ Ĵk,m denote the pre-image of the space of skew-holomorphic Jacobi cusp

forms under ξk,m. In [2], we construct explicit examples of Ĵ
cusp
k,m via Maass–Jacobi–

Poincaré series (see (12) for the definition) and we show that ξk,m maps these
Maass–Jacobi–Poincaré series to skew-holomorphic Jacobi–Poincaré series, which
implies the surjectivity of the map ξk,m in the following proposition.

Proposition 1 ([2]). The map

ξk,m : Ĵ
cusp
k,m → Jsk,cusp

3−k,m

is surjective.

If φ ∈ Ĵ
cusp
k,m and ψ ∈ Jsk,cusp

3−k,m , then we define the (non-degenerate) pairing

{φ, ψ} := 〈ξk,m(φ), ψ〉. (10)

The next result extends [3, Proposition 3.5] to Jacobi forms and shows that the
pairing in (10) is determined by the principal part Pφ+ of φ+.

Proposition 2. Let φ = φ+ +φ− ∈ Ĵ
cusp
k,m with φ+ and φ− as in (1) and (2) and let

ψ(τ, z) =
∑

n,r∈Z

D>0

d(n, r)e−
πDy

m qnζr ∈ Jsk,cusp
3−k,m .

If k is even, then

{φ, ψ} =
∑

r(mod2m)
D>0

c+(n, r)d(n, r).

Proof. Let

ψ(τ, z) =
∑

µ(mod 2m)

gµ(τ)θm,µ(τ, z)
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with

gµ(τ) =
∑
N>0

dµ(N)q
N
4m

be the theta decomposition of ψ. It is easy to see that elements in Ĵ
cusp
k,m and hence

also their holomorphic and non-holomorphic parts have theta decompositions. More
precisely, we have

φ(τ, z) =
∑

µ(mod 2m)

hµ(τ)θm,µ(τ, z),

where hµ = h+
µ + h−µ ,

h+
µ (τ) =

∑
N�∞

c+µ (N)q−
N
4m ,

h−µ (τ) =
∑
N>0

c−µ (N)Γ
(

3
2
− k,

πNy

m

)
q−

N
4m ,

and c±µ (N) is as in (6).
We now follow the proof of [3, Proposition 3.5]. First, if k is even, then one

verifies that ∑
µ(mod 2m)

hµgµ dτ is an SL2(Z)-invariant 1-form on H. (11)

Set Lk := −2iy2∂τ and ξk := yk−2Lk. From (8) we have

{φ, ψ} = lim
t→∞

1
4m

4m−1∑
j=0

∫
Ft,j

∑
µ(mod 2m)

ξk− 1
2
(hµ)(τ)gµ(τ)y

1
2−k dxdy,

where each

Ft,j :=
{
τ ∈ H

∣∣∣∣ |τ − j| ≥ 1, 0 ≤ x− j ≤ 1
2
, y ≤ t, or

|τ − j − 1| ≥ 1,
1
2
≤ x− j ≤ 1, y ≤ t

}
is a translation by j of the truncated fundamental domain Ft := {τ ∈ F | y ≤ t}, and
where, in addition, the “left half ” is “cut and pasted” to the right. Let dω := dxdy

y2

denote the usual invariant volume form on H. With the help of Stokes’ theorem, we
find that

1
4m

4m−1∑
j=0

∫
Ft,j

∑
µ(mod 2m)

ξk− 1
2
(hµ)(τ)gµ(τ)y

1
2−k dxdy

=
1

4m

4m−1∑
j=0

∫
Ft,j

∑
µ(mod 2m)

Lk− 1
2
(hµ)gµ dω
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=
Stokes

−1
4m

4m−1∑
j=0

∫
∂Ft,j

∑
µ(mod 2m)

hµgµ dτ

=
(11)

1
4m

∫ 4m

0

∑
µ(mod 2m)

hµ(x+ it)gµ(x+ it) dx

=
∑

µ(mod 2m)
N>0

c+µ (N)dµ(N) +
∑

µ(mod 2m)
N>0

c−µ (N)dµ(N)Γ
(

3
2
− k,

πNt

m

)
,

where the last equation follows from inserting the Fourier expansions of hµ and gµ.
Finally,

Γ
(

3
2
− k,

πNt

m

)
= O

((
πNt

m

) 1
2−k

e−
πNt

m

)
as t→ ∞,

which shows that

{φ, ψ} =
∑

µ(mod2m)
N>0

c+µ (N)dµ(N) =
∑

r(mod2m)
D>0

c+(n, r)d(n, r).

3. Maass–Jacobi–Poincaré Series and the Proof of Theorem 1

In [2], we investigated Maass–Jacobi–Poincaré series, which we will now recall after
introducing necessary notation. Let Mν,µ be the usual M -Whittaker function. Let
D = r2 − 4nm �= 0, and for s ∈ C, κ ∈ 1

2Z, and t ∈ R\{0}, define

Ms,κ(t) := |t|−κ
2Msgn(t) κ

2 ,s− 1
2
(|t|)

and

φ
(n,r)
k,m,s(τ, z) := Ms,k− 1

2

(
−πDy

m

)
e2πirz−πr2y

2m +2πinx.

Set ΓJ
∞ :=

{[(
1 η
0 1

)
, (0, n)

] | η, n ∈ Z
}
. Then the Poincaré series

P
(n,r)
k,m,s(τ, z) :=

∑
A∈ΓJ∞\ΓJ

(φ(n,r)
k,m,s |k,mA)(τ, z) (12)

converges absolutely and uniformly for Re(s) > 5
4 and P (n,r)

k,m,s ∈ Ĵk,m if s = k
2− 1

4 , k >

3 or if s = 5
4 − k

2 , k < 0. In [2], we determined the Fourier expansion of P (n,r)
k,m,s, which

features a certain theta series ϑ(r)
k,m. It is not difficult to see that

ϑ
(r)
k,m(τ, z) = q−

r2
4m

(
θm,r(τ, z) + (−1)kθm,−r(τ, z)

)
. (13)

For brevity, we will only recall the part of the Fourier expansion, which is needed

for the purpose of this paper. Let P (n,r)
k,m,s

+
denote the holomorphic part of P (n,r)

k,m,s.
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If D > 0 and s = 5
4 − k

2 , k < 0, then [2, Corollary 1] and (13) imply that

P
(n,r)
k,m,s

+
= Γ

(
5
2
− k

)
q−

D
4m (θm,r(τ, z) + (−1)kθm,−r(τ, z))

+
∑

n′,r′∈Z

D′≤0

c(k)
n,r(n

′, r′)qn′
ζr′
, (14)

where (as before) D′ = r′2 − 4n′m. If D′ < 0, then c(k)
n,r(n′, r′) is as in (4).

Proof of Theorem 1. Let φ ∈ Ĵ
cusp
k,m (k < 0) with holomorphic part φ+ as in (1)

and principal part

Pφ+(τ, z) =
∑

µ(mod 2m)
N>0

c+µ (N)q−
N
4m θm,µ(τ, z)

with c+µ (N) as in (6). Equation (14), together with the identity c+−µ(N) =
(−1)kc+µ (N), shows that the holomorphic part of

ϕ :=
1

2Γ
(

5
2
− k

) ∑
r(mod2m)

D>0

c+(n, r)P (n,r)

k,m, 5
4− k

2

=
1

2Γ
(

5
2
− k

) ∑
µ(mod 2m)

N>0

c+µ (N)P

“
µ2−N

4m ,µ
”

k,m, 5
4−k

2

has the same principal part as φ+. Consider Φ := φ−ϕ ∈ Ĵ
cusp
k,m . Suppose that Φ has

a non-trivial non-holomorphic part. Then ξk,m(Φ) �= 0 and hence {Φ, ξk,m(Φ)} =
〈ξk,m(Φ), ξk,m(Φ)〉 �= 0. On the other hand, Proposition 2 expresses {Φ, ξk,m(Φ)}
in terms of the principal part of Φ, which is zero by construction. This gives a
contradiction and thus Φ is necessarily holomorphic, i.e. Φ is a weak Jacobi form.
Again, the principal part of Φ is zero and hence Φ is a holomorphic Jacobi form (as
in [5]) of weight k < 0. We conclude that Φ = 0 and Theorem 1 follows.

We end with an explicit example.

Example 1. Let φ−2,1(τ, z) = ζ− 2+ ζ−1 + · · · be the weak Jacobi form of weight
−2 and index 1 alluded to in Sec. 1. Note that∑

n,r∈Z

D=1

qnζr =
∑

r≡1(mod2)

q
r2−1

4 ζr = q−
1
4 θ1,1(τ, z)

appears as the principal part of φ−2,1(τ, z) and also of 1
2Γ( 9

2 )
P

(0,1)

−2,1, 9
4
(τ, z). Hence we

find that

φ−2,1 =
1

2Γ
(

9
2

)P (0,1)

−2,1, 9
4
.
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