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In previous work, we introduced harmonic Maass—Jacobi forms. The space of such forms
includes the classical Jacobi forms and certain Maass—Jacobi—Poincaré series, as well as
Zwegers’ real-analytic Jacobi forms, which play an important role in the study of mock
theta functions and related objects. Harmonic Maass—Jacobi forms decompose naturally
into holomorphic and non-holomorphic parts. In this paper, we give exact formulas for
the Fourier coefficients of the holomorphic parts of harmonic Maass—Jacobi forms and, in
particular, we obtain explicit formulas for the Fourier coefficients of weak Jacobi forms.
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1. Introduction and Statement of Results

In 1985, Eichler and Zagier [5] systematically developed a theory of Jacobi forms.
That theory has since grown enormously, establishing deep connections to many
other areas of mathematics and physics, such as the theory of Heegner points
(see [6]), the theory of elliptic genera (see [10]), string theory (see, for example,
[4]), and more recently, mock theta functions (see [11]). In [2], we initiated a the-
ory of harmonic Maass—Jacobi forms, which includes the holomorphic Jacobi forms
of [5], the real-analytic Jacobi forms in [11], and certain Maass—Jacobi—Poincaré

series as explicit examples. Of particular interest is Jzu;p , a distinguished subspace

Tcusp

of harmonic Maass—Jacobi forms, which we will briefly review in Sec. 2. If ¢ € J} "

then ¢ = ¢ + ¢~, where

¢t (r2)= Y t(nr)d"¢ (1)
Do
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is the holomorphic part of ¢, while the non-holomorphic part of ¢ is given by

6= 3 (5-+2 e @)
D>0

Here and throughout the paper, 7 = z + iy € H (the usual complex upper half-
plane), z = u +iv € C,q := ™7 ( := €*™* D : — 4nm, and I'(s,z) :=
[Ze =1 dt is the incomplete Gamma- functlon In partlcular if ¢ € JCHSP is
holomorphic, then ¢ = ¢ is a weak Jacobi form. If, in addition, the Fourier series
in (1) is only over D < 0, then ¢ is a Jacobi form as in [5] and if the Fourier series
in (1) is only over D < 0, then ¢ is a Jacobi cusp form. Note that our notion of
weak Jacobi form is slightly more general then the one in [5], where weak Jacobi
forms have an expansion as in (1) with the additional condition that n > 0. If ¢T
is as in (1), then we call

P¢+ (T7Z) = Z C+(n’,’,)qn<r (3)
B0

the principal part of ¢+.

In this paper, we extend ideas of [1] to obtain exact formulas for the coefficients
of T in (1). It turns out that the principal part P+ in (3) dictates the coefficients
of ¢ for D < 0, as explained in the following theorem, which is the main result of
this paper.

Theorem 1 Let ¢ € JCUSp with holomorphic part ¢* as in (1). If k < 0 is even
and D' :==1"? — 4mn’ < 0, then

— — k) r (mod 2m)
D>0

1
) = e Y ),
(3 - k)

where I'(+) is the Gamma-function and

AP r') =0 (! ) + ()R, =) (4)
with

E
2

3
D 1
) o i (121)

v/ |D'\D
X ZC_%KC(n7T7nI7T/)Ik:%<7T | | )

mc
c>0

Here I;(x) is the usual I-Bessel function of order s and K.(n,r,n’,r") is the Kloost-
erman sum

Kc(n,r,n',7") := eame(—r1") Z ec(dmA? +n'd — ' X+ dn + dr)),

d (mod ¢)*
A (mod ¢)
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2mix

where e.(x) :=e"e  and the sum over d runs through the primitive residue classes
modulo ¢ and d is the inverse of d modulo c.

In Sec. 2, we follow [3] to define a pairing of harmonic Maass—Jacobi forms
and skew-holomorphic Jacobi forms. We find that this pairing is determined by the
principal part of the holomorphic part of a harmonic Maass—Jacobi form. In Sec. 3,
we recall the Maass—Jacobi-Poincaré series from [2]. Given a harmonic Maass—
Jacobi form, linear combinations of such Poincaré series allow one to construct a
new harmonic Maass—Jacobi form whose holomorphic part has the same principal
part as the given one. This is the key idea in our proof of Theorem 1. Finally, we
give an explicit application of our results. The ring of Jacobi forms of even weights
is generated (over the ring of modular forms) by certain weak Jacobi forms of index
1 and weights —2 and 0, which we denote by ¢_21 and ¢g 1, respectively (see
[5, §88 and 9]). We show that ¢_51 can be expressed as Jacobi-Poincaré series. It
is likely that ¢g ; can also be realized as a Jacobi-Poincaré series, but this requires
the existence of a Maass—Jacobi-Poincaré series of weight 0, which we have not
constructed yet.

2. The Pairing

In this section, we introduce a pairing between skew-holomorphic Jacobi forms
and harmonic Maass—Jacobi forms, which is vital to our proof of Theorem 1 in

Sec. 3. Let J ,fkm denote the space of skew-holomorphic Jacobi forms of weight k and
index m and let J,‘zk"f " be the subspace of cusp forms (for details, see [8, 9]). If

0, € J,j’i;f“p, then the Petersson scalar product of ¢ and ¢ is defined by

_ drmo?

wwwz/' o(r, )BT 2)e = ykay,
T'7\HxC

where I'Y := SLy(Z) x Z2 is the Jacobi group and dV := % is the ['/-invariant
volume element on H x C (for details, see [7, 9]). Note that skew-holomorphic Jacobi
forms have a theta decomposition, i.e. if

o(r,2) = Z c(nm)e_%yq"(r € J,ikw

n,rel
D>0
then
(ZS(Ta Z) = Z h’u(T)QTn,# (Ta Z)a (5)
pn(mod 2m)
where

hu(r) = 3 cu(N)gom

N>0
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with
r2— N o
c ;] forreZ, r=p (mod2m), and N = p* (mod 4m),
Cp (N) = 4m
0 if N # p? (mod4m)
(6)
and
’7‘2 r
O (T, 2) := Z gt ¢ (7)
re’Z
r=p(mod 2m)
If
$(r,2) = Y hu(1)0mu(r,2) € JRhP
p(mod 2m)
and

W(rz)= Y gu()mp(r.2) € TP,

p(mod 2m)

then analogous to Theorem 5.3 of [5], one finds that

Gy = [ 3 gy ddady, (3)
7 ju(mod 2m)
where F is the standard fundamental domain for the action of SLy(Z) on H.
We wish to review the definition of harmonic Maass—Jacobi forms of [2]. There-
fore, we need to recall the slash action for Jacobi forms and a certain differential
operator which is invariant under that action. If ¢ : H x C — C, then

(¢|k,mA)(T’ Z)

g dT b AT (CT+d)7kezﬂim(—c<%;;w2+m+zxz)
' ct+d  er+d

9)

forall A=[(¢ %),(\p)] €T, Furthermore, if 9, := aw for a variable w, then

— Jw
km . 9 =28 — _ (9 — = -7 kr=7), _
CP™ = =2(1 —=7)°0= — (2k — 1)(1 — 7) 0= + Toim Orzz + Arim 0.z

TDCy s — D0+ (- Bz - D)0

4mim
T —7)? z—%)?2 k(r—7 T-T)(z—%
s N ARt SN s N VRSN ot ot PO
4mim 2 4mim 4mim
which (up to the constant % + ﬁ) is the Casimir operator with respect to the

action in (9). There is a misprint in [2]: the term k(z—%)0z should be (1—k)(z—Z)0.

Definition 1. A function ¢ : H x C — C is a harmonic Maass—Jacobi form of
weight k& and index m if ¢ is real-analytic in 7 € H and z € C and satisfies the
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following conditions:

(1) For all A €T, (¢|pmA) = 6.
(2) We have that C*™(¢) = 0.

7\"77’1/1)2
(3) We have that ¢(7,2) = O(e“ye2 v ) asy — oo for some a > 0.

Of particular interest are harmonic Maass—Jacobi forms, which are holomorphic in
z; the space of such forms is denoted by Jx .

The differential operator
Ehm = y" 72 (—%yr% — 2ivdz + L&)
4mm

plays an important role in this context. It maps harmonic Maass—Jacobi forms that
are holomorphic in the Jacobi variable z to skew-holomorphic Jacobi forms. Let
qubp C Ji,m denote the pre-image of the space of skew-holomorphic Jacobi cusp

Cubp via Maass—Jacobi—

Poincaré series (see (12) for the definition) and we show that &k.om maps these
Maass—Jacobi-Poincaré series to skew-holomorphic Jacobi—Poincaré series, which
implies the surjectivity of the map &g ., in the following proposition.

forms under & ,,,. In [2], we construct explicit examples of J},

Proposition 1 ([2]). The map

cubp sk ,cusp
Ek,m J 57, m

18 surjective.

If ¢ € JCUSp and ¢ € J3PUP then we define the (non-degenerate) pairing

—k,m >

{6, 9} := (Ehm (9), V). (10)

The next result extends [3, Proposition 3.5] to Jacobi forms and shows that the
pairing in (10) is determined by the principal part Py« of ¢7.

Proposition 2. Let ¢ = ¢T+¢~ € qusp with ¢ and ¢~ as in (1) and (2) and let

D= X done B < B
n,rez
D>0

If k is even, then

= S mndmn).
r(mod 2m)
D>0

Proof. Let

V)= Y gu(1)m(r2)

pu(mod 2m)
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with

(1) = Z du(N)q%

N>0

be the theta decomposition of 1. It is easy to see that elements in I k P and hence
also their holomorphic and non-holomorphic parts have theta decomposmons. More
precisely, we have

¢(7—7 Z) = Z h# (T)em,ﬂ (7—7 Z)7

pn(mod 2m)

where h, = ht +h,,

and ¢E(N) is as in (6).
We now follow the proof of [3, Proposition 3.5]. First, if k is even, then one
verifies that

Z hugndr s an SLo(Z)-invariant 1-form on H. (11)
p(mod 2m)
Set Ly, := —2iy?0= and &, := y*2L;. From (8) we have

4m—1

(6.0} = Jim - Z/ S & ) (Pgn(ryt " dedy,

j=0 Fij p(mod 2m)

where each

1
Fij = {TEH |T—j|21,0§x—j§§7y§t, or

—_

lr—7—1/>1, §§x—]<1 y<t}
is a translation by j of the truncated fundamental domain 7 := {7 € F |y < t}, and
where, in addition, the “left half” is “cut and pasted” to the right. Let dw := 42
denote the usual invariant volume form on H. With the help of Stokes’ theorem, we
find that
4m—1
1_
mZL S G ge Tyt dady
= tJ p(mod 2m)
4m—1

e [, X Lyl

tJ p(mod 2m)




Ezact Formulas for Coefficients of Jacobi Forms 831

4m1

d
Stokes 4m Z /a Hg# T

Ft.i ( mod2m

4m
(1) 4m / hu(z +it)gu(z +it) dx
/.L(II]Od 2m)
d,(N) ST T (3 TNt
= Y GWMLM+ Y g (Nd(NT (5 ok W)
pu(mod 2m) p(mod 2m)
N>0 N>0

where the last equation follows from inserting the Fourier expansions of f, and g,,.

Finally,
3 Nt N\ FF
F(——k,L>=O<<L) e_wmt> as t — oo,
2 m m

which shows that

{o0r=" > NMduN)= > " (nr)dn,r).
p(mod 2m) r(mod 2m) 0
N>0 D>0

3. Maass—Jacobi—Poincaré Series and the Proof of Theorem 1

In [2], we investigated Maass—Jacobi-Poincaré series, which we will now recall after
introducing necessary notation. Let M, , be the usual M-Whittaker function. Let
D=r?>—4nm+#0,and for s€C, k € %Z, and t € R\{0}, define

MS,H( ) - |t| sgn(t)2,s——(|t|)

and

n,r D rirz— T TinT

I(c,;n,)s(T; 2) =M1 (-—ﬂmy) e? T T2mInT
Set I'Z, == {[(47).(0,n)] |n,n € Z}. Then the Poincaré series

B ma) = D (@00 lmA) (7 2) (12)
AeT\T7

converges absolutely and uniformly for Re(s) > 7 5 and Pk . € Ti mifs=2 —%, k>
Jorifs=5— %, k < 0.In [2], we determined the Fourier expansion of P,E,mf)s, which

features a certain theta series 19,(€T2n. It is not difficult to see that

90 (7, 2) = g5 (O (7, 2) + (= 1)50 (7, 2)). (13)

For brevity, we will only recall the part of the Fourier expansion, which is needed

+
for the purpose of this paper. Let P,gfnr)s denote the holomorphic part of P,ET:WT)S
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If D>0ands=2—k 0, then [2, Corollary 1] and (13) imply that
172

k,m,s

k<
P(n,r) " = <g k)q 412" (em,r(Ta Z) + (_1)k0m7—7’(7-’ Z))

+ Z (', r)g" ¢, (14)
n',r' €Z
D'<0

where (as before) D' = 7'2 — 4n'm. If D' < 0, then cﬁfl(n’,r’) is as in (4).

Proof of Theorem 1. Let ¢ € qubp (k < 0) with holomorphic part ¢ as in (1)
and principal part

Py (1,2) = Z cZ(N)q_%Hm#(T,z)

p(mod 2m)
N>0
with ¢} (N) as in (6). Equation (14), together with the identity cf#(N) =
(—1)kc:(N), shows that the holomorphic part of

r(mod 2m)
D>0

1 n,r
b= D SmnBIT
2F<——k>
1 BN,
- > goorl Y
2 (— — k’) pu(mod 2m)
2 N>0

has the same principal part as ¢*. Consider ® := ¢—¢ € JCUSp Suppose that ® has
a non-trivial non-holomorphic part. Then & ., (P) # 0 and hence {D,&em (D)} =
(€k,m (®), &om (@) # 0. On the other hand, Proposition 2 expresses {®, &k ., (D)}
in terms of the principal part of ®, which is zero by construction. This gives a
contradiction and thus ® is necessarily holomorphic, i.e. ® is a weak Jacobi form.
Again, the principal part of ® is zero and hence @ is a holomorphic Jacobi form (as
n [5]) of weight k& < 0. We conclude that ® = 0 and Theorem 1 follows. |

We end with an explicit example.

Example 1. Let ¢_21(7,2) = (—2+ ("1 +--- be the weak Jacobi form of weight
—2 and index 1 alluded to in Sec. 1. Note that

S = S T =g 00 2)

n,re€Z r=1(mod 2)
D=1
appears as the principal part of ¢_2 1(7, ) and also of 5T (T )P(Oéll) o (7, z). Hence we
1,3
find that
G211 = ! POy

,2’1,_
2F<9) !
2
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