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Abstract

We work under ADT. The main result of this paper is that assuming
ADg, for every k < ©, letting X = P(k), every A C X has an oo-Borel
code; furthermore, if V = L(P(R)) holds and k < ©, every OD set A C X
has an OD oco-Borel code. These results led us to the formulation of AD*T,
which is the theory “AD™ + “for every x < ©, for every A C P(k), A has
an oco-Borel code”. It is not known whether ADT implies ADT*. ADTT
has structural consequences that are not known to follow from ADT. One
such instance is the ABC'D Conjecture.

1 Introduction

This paper deals with the topic of co-Borel codes, which are generalizations of
Borel codes for Borel sets. Borel codes are reals that canonically code a Borel
set of reals. oo-Borel codes are sets of ordinals that canonically code (often
times) much more complicated sets of reals or elements of the space A" for some
ordinals x, A\. ZFC implies that every set of reals is Suslin and therefore, has
an oo-Borel code; however, it is not known that the theory ZF 4+ AD implies
this. The axiom AD™, due to W. H. Woodin, is a strengthening of AD. Part of
AD™ stipulates that every set of reals has an co-Borel code. It is not known AD
implies AD™", but every known model of AD satisfies AD™.

oo-Borel codes have a number of applications within the general AD™ theory.
For example, under ZF, suppose there are no uncountable sequences of distinct
reals and every subset of P(w) has an co-Borel code, then every set of reals has
the Ramsey property. In particular, AD' implies this regularity property for
sets of reals. It is not known if AD implies this.

This paper gives partial answers to the following two questions about co-
Borel codes under AD™.

(i) Given a set A, can one construct an co-Borel code that is relatively simple
(in definability) compared to the complexity of A?
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(ii) For a cardinal k > w, are subsets of P(x) co-Borel?

Regarding (i), Woodin has shown the following unpublished theorem, con-
cerning the definability of oco-Borel codes under AD™.

Theorem 1.1 (Woodin). Assume ADT+V = L(P(R)). Suppose X = P(w) or
“wand A C X is OD. Then A has an OD oo-Borel code. Suppose furthermore
that V.= L(S,R) for some set S C ON, then every OD(S) A C X has an
OD(S) oco-Borel code.

Remark 1.2. The proof of the “futhermore” clause of Theorem 1.1 can be easily
adapted from a proof of a special case when V = L(R) given in [ ] or the
proof of the first part of the theorem. The main challenge is the proof of the
first part of the theorem.

In | , Therem 5], Tkegami and the third author prove the following the-
orem.! We will outline a proof here. In the following, © is the supremum of
ordinals « such that there is a surjection from R onto « and 6 is the supremum

of ordinals « such that there is an OD surjection from R onto «

Theorem 1.3. Assume AD'. Suppose k < ©, X = “k and A C X, then A
has an co-Borel code. Additionally, suppose V.= L(P(R)) and either © = 6y or
ADg, then for any set of ordinals S, for every OD(S) A C X, A has an OD(S)
oo-Borel code.

The above theorems have the following corollary.

Corollary 1.4. 1. (Woodin) Assume ADT+V = L(P(R)). Then for any
x € w¥, HOD, = HOD|[z]. Furthermore, suppose for some set of ordinals
S,V = L(S,R), then for any such x, HODg , = HODg|z].

2. Assume ADT+V = L(P(R)). Additionally, assume either © = 6y or
ADg, then for any set of ordinals S, for any k < ©, for any © € Rr*,
HODS’r = HODs[l'].

The proof of Corollary 1.4 gives a bit more than what’s stated. See Re-
mark 5.6. We will prove these theorems and use them to prove the following
improvement. Theorem 1.5, partially answers (ii), is the main theorem of the

paper.

Theorem 1.5. Assume ADT and w; is R-supercompact. Suppose r < ©,
X = P(k) and A C X, then A has an co-Borel code. Furthermore, assume
additionally V- = L(P(R)) = ADg, suppose A C X is ODg for some set of
ordinals S, then A has an OD(S) oco-Borel codes.

Theorem 1.5 has the following corollary.

1The authors of [ ] did not state the theorem this way. Furthermore, to prove the first
clause of | , Therem 5|, one does not need the supercompactness of w1, strong compactness
suffices.



Corollary 1.6. Assume ADT + ADg+V = L(P(R)). For any set of ordinals
S, for any k < ©, for any x C k, HODg , = HODg[z].

It is known that Woodin’s theorem (Theorem 1.1) cannot be extended be-
yond w in the situation where ADy fails. Woodin (unpublished) shows that if
ADT +-ADg+V = L(P(R)) holds , then there is an uncountable » (e.g. k = w;)
and a t C k such that HOD; # HOD[¢t]. Inspecting the proof of Corollary 1.6,
one sees that this implies there is an OD set A C P(x) that has no OD oco-Borel
codes.

[CJ] also used Theorem 1.1 to prove an analog of a result of Harrington-
Slaman-Shore | ] concerning the pointclass ¥1: Assuming AD' and V =
L(P(R)), if H C R has the property that there is a nonempty OD set K C R
so that H is OD, for all z € K, then H is OD.

We propose the following principle that strengthens AD™.

Definition 1.1 (ADT). AD™™ is the theory ADT + “for every x < ©, for
every A C P(k), A has an oco-Borel code”.

Theorem 1.5 shows that AD' + ADg implies ADT. In general, it is not
known that AD' implies ADTT. AD™" seems to yield structural properties not
known to follow from AD™.

One such type of structural properties concerns distinguishing cardinalities
of infinite sets under ADT. This is a fundamental problem in set theory. Let
X, Y be two sets. Cantor’s original formulation of cardinalities states that X, Y
have the same cardinality (denoted |X| = |Y|) if and only if there is a bijection
f:X =Y. |X| <|Y|if and only if there is an injection of X into Y. And
|X| < |Y] if and only if |X]| < |Y| but =(]Y| < |X]). The Axiom of Choice
(AC) implies that every set is well orderable, and hence the class of cardinalities
forms a wellordered class under the injection relation. Under AD, the class
of cardinalities is not wellorderable; in fact, (R < |wi|) and —=(|w1] < |R]).
The following conjecture gives a sufficient and necessary condition for when the
cardinalities of two sets of the form a?, 4% for infinite cardinals a, 3,7v,0 are
comparable.

Conjecture 1.7 (The ABCD Conjecture). Assume ZF. Let a, B,7,0 < © be
infinite cardinals. Suppose 5 < «a,§ <. Then

|a®| < |70 if and only if B < and o < 7.

Some remarks are in order about the conjecture. First, the conjecture implies
in particular that if 6 < B or if v < «, then o cannot inject into 4°. One
easily sees that ZFC implies the failure of the ABC D Conjecture; one can see
that by, for instance, noticing that ZFC implies |w“| > |w%|?; in this case,
v =w < a = wi, yet wy injects into w*. The conjecture deals with the case
B < a,d < being infinite cardinals, but the other cases either have been known
to follow from AD™ or can simply be reduced to the cases the conjecture deals

2If ZFC holds, © is the successor of the continuum and w; < ©.



with. For instance, if 3 > o and & > v, then |@®| = [P(B)| and |y°| = |P(6)].
AD™ implies that |P(B)| < |P(d)| if and only if 3 < § < ©. If 8> a and § < 7,
then we really compare |3%| and |79|. It is important here that the cardinals
in the conjecture are infinite and are < ©. For instance, when 8 =1, « is an
infinite cardinal >~ > §, then |a®| = |a| and AD" implies that o cannot inject
into P(7) and therefore cannot inject into 7% if @ < ©. On the other hand,
a = 3 can inject into P(y) for v = 2, or for example, & = v and v > O, then «
does inject into P(v) if ADT+V = L(P(R)) holds. Also, if ADT+V = L(P(R))
holds, it is easy to see that (©1)“ injects into ©®; this shows the failure of the
conjecture for « = O, =w,d = v = 6.

The first author has recently shown that AD™" implies the ABC'D Conjec-
ture. This result will appear in an upcoming paper. The result of this paper and
the first author’s aforementioned work show that the ABC'D Conjecture is a
consequence of AD" 4+ ADg. It is not known that AD™ implies the ABC'D Con-
jecture, though many specific instances of this conjecture have been established.
See for example | , , , ].

In Section 2, we review basic facts about AD" and oo-Borel codes. In Section
3, we review homogeneous and weakly homogeneous sets in AD". In Section 4,
we review Vopénka algebras, which is a key tool in producing oco-Borel codes in
the ADT context. We prove 1.1-1.6 in Section 5. Some conjectures and open
questions are presented in Section 6.

The first author is partially supported by NSF grants DMS-1945592 and
DMS-1800323 and FWF grants 16087 and Y1498. The second author is partially
supported by NSF grant DMS-1800323. The third author is partially supported
by NSF grant DMS-1945592.

2 AD' and oo-Borel codes

We now review basic notions on determinacy axioms. For a nonempty set X,
the Axiom of Determinacy in X“ (ADx) states that for any subset A of
X% in the Gale-Stewart game with the payoff set A, one of the players must
have a winning strategy. We write AD for AD,,. The ordinal ® is defined as the
supremum of ordinals which are surjective images of R. Under ZF+AD, © is
very big, e.g., it is a limit of measurable cardinals while under ZFC, © is equal
to the successor cardinal of the continuum |R|. Ordinal Determinacy states
that for any A < ©, any continuous function 7: A* — w*, and any A C w¥,
in the Gale-Stewart game with the payoff set 771(A), one of the players must
have a winning strategy. In particular, Ordinal Determinacy implies AD while
it is still open whether the converse holds under ZF+DC.

For A < ©, we write Py(R) for the set of A C R such that the Wadge rank
of Ais < A. For any set X, we write g, (X) for the set of countable subsets of
X. We write D for the set of Turing degrees. For x,y € w*, we write x <p y,
x =7 y for x is Turing reducible to y and z is Turing equivalent to y respectively.
A Turing degree has the form [z]r = {y € w* : z =1 y}.

We will introduce the notion of co-Borel codes. Before that, we review some



terminology on trees. Given a set X, a tree on X is a collection of finite
sequences of elements of X closed under initial segments. Given an element ¢
of X<¢ 1h(t) denotes its length, i.e., the domain or the cardinality of t. Given
a tree T on X and elements s and t of T, s is an immediate successor of ¢
in T if s is an extension of ¢ and lh(s) = 1h(¢) + 1. Given a tree T on X and
an element ¢ of T', Succr(t) denotes the collection of all immediate successors
of t in T. An element ¢ of a tree T on X is terminal if Succy(t) = 0. For
an element ¢ of a tree T on X, term(7T) denotes the collection of all terminal
elements of T. Given a tree T on X, [T] denotes the collection of all x € X¥
such that for all natural numbers n, x [ n is in T. A tree T on X is well-
founded if [T] = . We often identify a tree T on X x Y with a subset of the
set {(s,t) € X<¥ x Y<¥ | Ih(s) = lh(¢)}, and p[T] denotes the collection of all
x € X such that there is a y € Y with (x,y) € [T].

Definition 2.1. Let A\, k be non-zero ordinals.

1. An co-Borel code in A\* is a pair (T, p) where T is a well-founded tree
on some ordinal v, and p is a function from term(T") to k X A.

2. Given an oo-Borel code ¢ = (T, p) in A", to each element ¢ of T', we assign
a subset B.: of A\* by induction on ¢ using the well-foundedness of the
tree T as follows:

(a) If t is a terminal element of T, let B, ; be the basic open set O, in
A". Here p(t) is a pair of ordinals (a, 3) € k x A and O has the
form {f € \*: p(t) € f}.

(b) If Succy(t) is a singleton of the form {s}, let B, be the complement
of B, in the space \".

(c) If Succy(t) has more than one element, then let B, be the union of
all sets of the form B, ; where s is in Succy(t).

We write B, for B, .

3. A subset A of \* is co-Borel if there is an co-Borel code ¢ in A® such that
A= B..

We will identify P(A\) with 2*. So an oo-Borel code for A C P()) is an
oo-Borel code for a subset of 2*. We can generalize the above definitions of oo-
Borel codes in a number of ways. One way is we can replace A in Definition 2.1
by a set of ordinals S. The definition of an co-Borel code for a set A € P(S*)
is modified in an obvious way from Definition 2.1. We can also generalize the
definition of co-Borel codes in AJ* x -+ x A&n for some n € w (with the product
topology) in an obvious way. We leave the details to the reader.

We will also use the following characterization of co-Borelness:

Fact 2.1. Let A\, k be a non-zero ordinals and A be a subset of \*. Then the
following are equivalent:

1. A is co-Borel, and



2. for some formula ¢ and some set S of ordinals, for all elements x of \*,
x is in A if and only if L[S, z] E “¢(S,x)”.

Proof. For the case A\ = 2, one can refer to [Lar, Theorem 8.7]. The general
case can be proved in the same way. O O

Remark 2.2. In fact, the second item of Fact 2.1 is equivalent to the following
using Lévy’s Reflection Principle:

e for some v > A\ Kk, some formula ¢, and some set S of ordinals, for all
elements x of \*, x is in A if and only if L[S, z] E “¢(S,x)”.

Throughout this paper, we will freely use either of the equivalent conditions
of co-Borelness.

We now introduce the axiom AD™, and review some notions on Suslin sets.
The axiom AD™" states that (a) DCg holds, (b) Ordinal Determinacy holds, and
(c) every subset of w® is oo-Borel. A subset A of w* is Suslin if there are
some ordinal A and a tree T' on w x A such that A = p[T]. A is co-Suslin if the
complement of A is Suslin. An infinite cardinal X is a Suslin cardinal if there is
a subset A of w* such that there is a tree on w x A such that A = p[T’] while there
are no vy < X and a tree S on w x A such that A = p[S]. Under ZF4+DCg, ADT is
equivalent to the assertion that Suslin cardinals are closed below © in the order
topology of (©,<). Another equivalence that is often useful in applications is
the statement that AD + V = L(P(R)) holds and every ¥; statement with
Suslin co-Suslin sets as parameters true in V' is true in a transitive model M
of ZF~ + DCg coded by a Suslin co-Suslin set of reals A. We call this X;-
reflection into the Suslin co-Suslin sets (or sometimes just ¥;-reflection).
Another form of ¥;-reflection that is also useful is ¥;-reflection into the A?

sets, which says that AD+ V = L(P(R)) holds and every ¥; statement with
A? sets as parameters true in V is true in a transitive model M of ZF~ + DCg
coded by a A? set of reals A.

The sequence (6, : a < Q) is called the Solovay sequence and is defined
as follows. 6 is the supremum of ordinals a: such that there is an OD surjection
m: R — a. For limit o < Q, 6, = supg_,05. Suppose 0, has been defined for
a < Q, letting A C R be of Wadge rank 6, 6,41 is the supremum of « such
that there is an OD(A) surjection 7 : R — a. © = 6.

The following fundamental facts about AD™ are due to Woodin.

Theorem 2.3 (Woodin). Assume ADT+V = L(P(R)). The following hold.
1. V = L(J,R) for some set of ordinals J if and only if ADg fails.
2. For any real x, HOD,, = L[Z] for some Z C ©.

We will not prove Theorem 2.3. Instead, we will discuss some key ingredients
that go into the proof. The proof of part (2) can be found in | ]. The
set Z basically codes a Vopénka algebra, to be discussed in the next section.



For part (1), let k be the largest Suslin cardinal and S(x) be the class of all
k-Suslin sets. If ADg fails, kK < ©. In that case, let T be a tree projecting to a
universal x-Suslin set and define the equivalence relation =7y on R as: =z =p y
iff L|T,z] = L[T,y]. We also define x <p y iff x € L[T,y]. The measure pr on
R/ =r is defined as: A € pp iff 3z {y : © <p y} C A. pr is non-principal and
countably complete. Let J = [z — T,,. One can show V = L(J,R).

We end this section by proving a basic fact concerning supercompact mea-
sures on @, (X) for some set X. Assume ADT 4+ ADg. Let X be a set such that
there is a surjection 7 : R — X. Let p be the Solovay measure. By a theorem of
Solovay, cf. | ], ADg implies p exists and is the club filter on @, (R). Let
wx be the measure on g, (X) induced by p and w. This means px is defined
as: for any A C g, (X),

Acpux e tA €p.

By a theorem of Woodin (cf. | 1), 1x is the unique normal, fine, countably
complete measure on g, (X). In fact, px is just the club filter on p,,, (X).

Fact 2.4. Assume V = L(P(R)) + AD" + ADg. The ultrapower Ul(V, ux) is
well-founded.

Proof. Suppose not. By >;-reflection, there is a transitive model NV of the form
L.(Ps(R)) for o, f < O that satisfies ZF~ + ADg, RU g, (X) C N, and N =
“the ultrapower M = Ult(V, ux) is ill-founded”. Now since px is the club
measure on g, (X),

px = px NN.

Since DCg holds and that there is a surjection from R onto N, we can find a
sequence (f, : n < w) such that ([f,]unn : 7 < w) witnesses the ill-foundedness
of the ultraproduct in N. Let A, = {0 : fuy1(c) € fn(o)} for each n. Then
A, € pN N for each n. By countable completeness of p, (), An # 0. Let
o € (), An. Then the sequence (f,(c) : n < w) is a e-descending sequence.
Contradiction. O

3 Homogeneously Suslin sets and applications

We summarize basic facts about (weakly) homogeneously Suslin sets. For a
more detailed discussion, the reader should consult for example | ]. Recall
we identify the set of reals R with the Baire space “w.

Given an uncountable cardinal x, and a set Z, meas,(Z) denotes the set of
all s-additive measures on Z<“. If u € meas,(Z), then there is a unique n < w
such that Z"™ € u by k-additivity; we let this n = dim(p). If p,v € meas,(Z),
we say that p projects to v if dim(v) = m < dim(p) = n and for all A C Z™,

Aceve{u:u|me Al e p.

For each p € meas,(Z), let j, : V. — Ult(V, ) be the canonical ultrapower
map by u. In this case, there is a natural embedding from the ultrapower of V'
by v into the ultrapower of V' by u:



Ty s ULL(V,v) — ULL(V, )

defined by 7, ,([f],) = [f*], where f*(u) = f(u [ m) for all w € Z"™. A tower
of measures on Z is a sequence (u, : n < k) for some k < w such that for all
m < n <k, dim(u,) = n and u, projects to p,. A tower (u, : n < w) is
countably complete if the direct limit of {Ult(V, ), Ty, p M < 1 < w} is
well-founded. We will also say that the tower (i, : n < w) is well-founded.

Definition 3.1. Given a tree T on w x k, a homogeneity system for T is a
system (us : s € w<¥) of countably complete measures on £<“ such that for all
5,t € w<¥ and z € w¥, the following hold:

o 15(Ts) =1, here Ty = {t € 6l*! : (5,t) € T},
e s Ct = yu; projects to us, and
o 2 € p[T] = (fign : 1 < w) is wellfounded.

If such a system exists for T, we say that T is homogeneous.
A = p[T] is k-homogeneous if the measures (i : s € w<¥) are k-complete.
A is < y-homogeneous if it is k-homogeneous for all xk < ~.

Definition 3.2. The tree T' on w x k is weakly homogeneous if there is a weak
homogeneity system i associated with T', i.e. there is a system (M : s € w<%)
such that the following hold:

e for each s, M, is a countable set of countably complete measures on <%

such that for each p € My, u(Ts) = 1, and

e x € p[T]| = there is a wellfounded tower (u,, : n < w) such that Vn pu, €
Mgy

A = p[T] C R is k-weakly homogeneous iff the measures in the weak
homogeneity system [ associated with T are k-complete. A is < y-weakly
homogeneous if it is k-weakly homogeneous for all xk < ~.

Here are some facts about homogeneous sets and weakly homogeneous sets
under AD and AD™. Part (iii) of the theorem is an improvement of part (ii).
We will only need part (i) of the theorem in this paper; but we state parts (ii)
and (iii) for completeness.

Theorem 3.1. (i) (Martin, [ ]) Assume AD and suppose A C R is
Suslin co-Suslin, then A is < ©-homogeneously Suslin.

(i) (Martin-Woodin, [ ]) Assume ADg. Then every tree is < O-weakly
homogeneous.

(i1i) (Woodin, [ 1) Assume ADT. Then every tree T on w X k for r less
than the largest Suslin cardinal is < ©-weakly homogeneous and hence
every Suslin co-Suslin set of reals is < ©-weakly homogeneous.



Theorem 3.1 allows us to prove the following facts.

Lemma 3.2. Assume ZF + ADT+V = L(P(R)). Then for any set C of reals
that is Suslin co-Suslin, there is an s € |, g ¥* such that C is OD from s and
that C is in HOD¢, (R). If in addition ADg holds, then any set of reals C' is
OD from some s € ), g7 and that C € HOD (4 (R).

Proof. See | , Lemma 2.11].
O

We also have the following variation, in fact a refinement, of the above lemma
that will be useful in Section 5.

Lemma 3.3. Assume ZF+AD+V = L(P(R)). Let C = HOD(U,.¢7*). Let
A be Suslin co-Suslin, then A € C.

Proof. Let A be Suslin co-Suslin. By Theorem 3.1, A = p[T] where T is ho-
mogeneously Suslin witnessed by the sequence (p, | v € w<*) of measures on
k<¥ for some k < ©. By a theorem of Kunen, all countably complete measures
on k< are OD; in fact, there is an OD injection f : meas,, (k<*) — ON.
We let s € ON¥ enumerate the parameters defining (i, | u € w<*), that is
s = fl{{u : u € w<¥}]. Now the set

R={(u,,f) : u€w<“ Aj,, (o) =5}

is well-orderable, and R € HOD[s]. Now we can compute the Martin-Solovay
tree T of T inside of HOD(s] using R, where

(t,@) € T' & Vi < |t| Juy,p (@) > a@i+1).
Now for any = € R,
x ¢ Az e p[T’] < the tower (uzp, 1 n < w) is ill-founded.

The illfoundedness of the tower (uz, : 7 < w) can be computed in HOD(s][z]
using 77, R. So HOD[s][z] can decide whether x ¢ A, equivalently whether
xz € A

The above sketch shows that A,—A € HOD[s|(R) and hence A € C. O

4 Vopénka algebras

We next introduce Vopénka algebras and their variants we will use in this paper.
In this section, all definitions assume the hypothesis ADT4 V = L(P(R)). The
results of this section are all essentially due to W. H. Woodin. Recall the
definition of forcing projection maps o : Q — P between posets Q and P as
defined in | , Section 7]. As a matter of notation, we write 1p for the
weakest condition in P.

Definition 4.1. Let v be a non-zero ordinal < © and T be a set of ordinals.



1. Let n be a natural number with n > 1 and C’)WT’n be the collection of all
nonempty subsets of (y*)"™ which are OD from T'. Fix a bijection 7, : n —
(’)Z;, ,», Which is OD from T, where 7 is some ordinal. Let Q?n be the poset
on 7 such that for each p,q in (@Z;,n, we have p < ¢ if m,(p) C 7,(q). We

call Qan the Vopénka algebra for adding an element of (7)™ in HOD 1.

2. For all natural numbers ¢ and m with 1 < £ < m, let o, 0 Qg’m —

Qf,e be the natural map induced from =, and m,,, i.e., for all p € erj,m,
T (0me(p)) = {z | 3y € Tm(p) y | £ = x}. Then each o, ¢ is a projection
between posets. Let (QF,,(0n: QF, = QF, | n < w)) be the inverse
limit of the system (o, ¢: QF,, = QF, |1 < £ <m <w). Wecall QT
the inverse limit of Vopénka algebras for adding an element of (v*)¥ in
HODy1y.

3. When T' = @ or T is OD, then we omit it from our notation. Similarly,
when v = 2, we omit it from our notation. In particular, we denote Q,,
the Vopénka algebra for adding an element of (2)™ in HOD.

Definition 4.2. Let v be a non-zero ordinal < © and T be a set of ordinals.

1. Let n be a natural number with n > 1 and let B(C;:;; be the poset consisting
of OD(T) oo-Borel codes for subsets of (v¥)" with the ordering p < ¢ if
B, C B,;. We define the equivalence relation ~ on IBBC?;: as follows: p ~ ¢

iff B, = B;. We let BC!, =BCI"/ ~.

2. For all natural numbers £ and m with 1 < £ < m, let oy, ¢: IB%(CZ;M — IBS(C,{J
be the natural map, i.e., for all p € IB%(Cf)m, Om,e(p) is the equivalent class
of Borel codes that code the set {z € (y*)! |3y € B, y | £ = z}. Assume
each o, is a well-defined projection between posets (see Remark 4.1).

Let (IB%(C?W (op: IB%(CS’n — IB%(C;M | n < w)) be the inverse limit of the

system (ot BCT , — BCL, | 1 < ¢ < m < w). We call BC! | the

¥,m
inverse limit of Vopénka algebras of co-Borel codes for adding an element

of (v*)* in HODpy.

3. When T = () or T is OD, then we omit it from our notation. Similarly,
when vy = 2, we omit it from our notation as before.

Remark 4.1. For each m < w, we can regard IB(Cf,m as a sub-algebra of Qam.

In Definition 4.1, it is clear that the maps o, ¢ are projections. However, in
Definition 4.2, proving om s a well-defined forcing projection is non-trivial
and uses

(%): ifpe IB%(C:‘C,mH then {t : 3s € B, s | m =t} has an ODr oco-Borel code.

If (%) fails, then there is some m and some p € BC$7m+1 such that omt1,m(p)
is not even defined. If (%) holds, then all 0., are well-defined total functions.
It is easy to check then they are all forcing projection maps (see [ , Fact

7.14)).

10



The reader can see [ , Section 7] for a more detailed discussion of these
facts in the case v = w. For vy > w, it is not clear to us if (x) holds in general.
We will prove some version of (x) in the last section of the paper. The same
remarks apply to the maps op, ¢ in Definition 4.4.

The following lemmas will be useful in Section 5:
Lemma 4.2. Assume ZF + AD' 4 “V = L(T,R)” for some set T of ordinals.

1. Qg is of size at most © and Qg has the ©-c.c. in HOD¢py for alln < w.
A similar statement holds for ]E%(CZ for alln < w.

2. For any condition p € QL, there is a QL -generic filter H over HODyry
such that p € H, and V = L(T,R) C HODy7y[H] and the set RV is
countable in HODry[H] and moreover, RY is the symmetric reals of
HODT}[H].

3. Items (1) and (2) hold for IB%(CZ:M if IB(CZ;M is well-defined (see Corollary
4.5).

Lemma 4.3. Assume ZF + ADgr +V = L(P(R)). Let v < ©.
1. The posets Qy. for n <w are of size less than © in HOD.

2. Let s € ()" forn < w, and hy = {p € Qy, | s € m(p)}, where
Tt Qyn — Oyn is as in Definition 4.1. Then the set hs is a Qypn-
generic filter over HOD such that HOD[h,] = HODy,;.

3. (Woodin) For any condition p € Q,.,, there is a Q. ,-generic filter H
over HOD such that p € H and the set (v*)" is countable in HOD[H|
and HOD(~¥) is a symmetric extension.

4. Items (1) — (3) hold for IB%(C?W ifIB%(Ciw is well-defined (see Corollary 4.5).

The proofs are standard; the reader can consult for instance | , ].
The following generalization of the previous lemmas also holds. For more details,
see [ ]. We first recall the definitions of the Vopénka algebras for adding
elements of (J,_g 7.

Definition 4.3. Let T be a set of ordinals.

1. Let n be a natural number with n > 1 and O&,n be the collection of
all nonempty subsets of v x --- x 4% which are OD from T for some
Y1, --5Yn < O. The order on O;n is defined as: for p,q € OOTo,n, we say
p < g if for some vi,...,7, < O, p,g T Y X -+ x ¥ and p C ¢. Fix
a bijection m,: n — OZM which is OD from T, where 7 is some ordinal.
Let wa be the poset on 7 such that for each p, g in onjn, we have p < ¢

if 0, (p) € mn(q). We call QL ,, the Vopénka algebra for adding an element
of (U,<e7*)" in HOD7y.

11



2. For all natural numbers ¢ and m with 1 < £ < m, let o, ¢: (@T — QT
be the natural map induced from w, and m,,, i.e., for all p € QOO s
T (ome(p) ={z | Fy € mm(p) y [E = z}. Then each oy, is a projection
between posets. Let (QL . (on: QL , = QL ,, [ n < w)) be the inverse
limit of the system (o, ¢: Qoo,m - QL 11<l<m<w). Wecall QF, ,
the inverse limit of Vopénka algebras for adding an element of (U, .o 7*)

3. When T = () or T is OD, then we omit it from our notation. In particular,
we denote Qoo , the Vopénka algebra for adding an element of (U, g 7*)"
in HOD.

Definition 4.4. Let T be a set of ordinals.

1. Let n be a natural number with n > 1 and let IB%(CT *. be the poset con-
sisting of OD(T') oo-Borel codes for subsets of 4 x --- x 4% for some
Yiy-eosYn < O with the ordering p < qif B, C Bq. We define the
equlvalence relation ~ on BCL:* as follows: p ~ ¢ iff B, = B;. We let

oo,n

2. For all natural numbers £ and m with 1 < £ < m, let oy, ¢: IB%(CZOM —
BCY ¢ be the natural map, i.e., for all p € IB%(COO ms Om,2(p) is the equivalent
class of Borel codes that code the set {z € (U, V]13dyeByyll=
y}. Suppose each oy, is a well-defined projection between posets (see
Remark 4.1). Let (IB%(COTO ws (O IB%(C;W — IB%(CZO,n | n < w)) be the inverse
limit of the system (o, ¢: IB%(CZOM — IB%(C;@ |1 <?¢<m<w). Wecall
IB%(CZOM the inverse limit of Vopénka algebras of co-Borel codes for adding
an element of (U, 7*)” in HODry.

3. When T'= @ or T is OD, then we omit it from our notation. Similarly,
when v = 2, we omit it from our notation as before.

Definition 4.5. Let v be a non-zero ordinal < © and T be a set of ordinals.

1. Let n be a natural number with n > 1 and Q;Fm be the collection of all
nonempty subsets of P(y)™ which are OD from T Fix a bijection 7, : n —
Qz;n which is OD from T, where 1 is some ordinal. Let IP’Z;W be the poset
on 7 such that for each p,q in IP’A{ ns We have p < ¢ if 7, (p) C 7,(q). We
call PT,,n the Vopénka algebra for adding an element of P(y)" in HODyrpy.

2. For all natural numbers ¢ and m with 1 < £ < m, let oy, ¢: ]P’ —

PT e be the natural map induced from 7, and m,,, i.e., for all p 6 ]P’7 s
m (Um’g( )) ={z | 3y € mm(p) y | £ =}. Then each o, is a projection
between posets. Let (]P’A/ w(on: QL = Q| n < w)) be the inverse
limit of the system (o, ¢: PT — IP’T |1 <f<m<w). Wecal PT
the inverse limit of Vopenka algebms for adding an element of P(v)* in
HOD(r;.

12



3. When T'= 0 or T is OD, then we omit it from our notation.

—T
4. For n < w, we define BC, ,, be the “oo-Borel” version of Pz’n the same
way IB%(C;’H is defined from szn in Definition 4.2.

Definition 4.6. Let T be a set of ordinals.

1. Let n be a natural number with n > 1 and ng’n be the collection of all
nonempty OD(T') subsets of P(y1) X - -+ X P(7,) for some y1,...,7, < O©.
The order on Q:‘;,n is defined as: for p,q € ng’n, we say p < ¢ if for
some Yi,...,Y, < ©, p,g € P(y) x -+ x P(y,) and p C ¢q. Fix a
bijection m,: n — ng)n which is OD from T, where 1 is some ordinal.

Let IPOTOJL be the poset on 7 such that for each p,q in Pgm, we have p < q

if 7, (p) C 7, (q). We call PZW the Vopénka algebra for adding an element

of (U7<® P(y))" in HODpy.

2. For all natural numbers ¢ and m with 1 < /£ < m, let g, ¢: on,m — on’e

T

be the natural map induced from 7w, and mp, ie., for all p € Py,

M (O‘m7g(p)) ={z | 3y € mn(p) y | £ = z}. Then each o, is a pro-
jection between posets. Let (PL ., (0n: PL , = PL , | n < w)) be the

inverse limit of the system (op¢: PL ,, — IP’;Z [1<f<m<w). We
call PL  the inverse limit of Vopénka algebras for adding an element of

(U, <o P(7))* in HOD 7.

3. When T = () or T'is OD, then we omit it from our notation. In particular,
we denote Pog ;, the Vopénka algebra for adding an element of (U, g 7*)"
in HOD.

4. For n < w, we define me be the “co-Borel” version of PZ , the same
way IB(CZO’ is defined from QZ  in Definition 4.4.

n 00,n

For a given v and T, if all OD(T') subsets of v* have OD(T') co-Borel codes,
then the posets Qgﬂ_’l and IB%(Cﬁl are isomorphic. In general, we do not know if

this follows from ADT. Let t € 4%, hy = {p € QT |t em(p)} € QL be the
HODy-generic for adding ¢, and g, = {p € I[B(Cz’1 | t € By} C IB%(Cz’l be the
HOD7-generic for adding t. Clearly,

e hy € HODT,t7
o t € HODy,.

We do not know in general that hy € HOD7[t]. However, it is easy to see that
(see [ , Fact 7.6] for a proof)

e t € HOD7[g:], and

® g; € HODT[t]
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Therefore,
HODT[t] == HODT[gt] g HODT,ht = HODT)t. (41)

A similar conclusion holds for ]P’z,1 and Wﬂl.

A similar conclusion also holds for the forcings Qo 1.Poc,1 and their co-Borel
versions BCy 1,BCs 1 (respectively). Let t € 4% (t € P(vy) respectively) for
some v < O, hy € Qo1 (ht C Po 1 respectively) be the generic over HOD for

adding ¢, and g; € BCw 1 (g¢ € BCw,1 respectively) be the generic over HOD
for adding t. Then

HOD(t] = HOD|[g;] C HOD,, = HOD;. (4.2)

Equations 4.1 and 4.2 also hold for ¢t € (4*)" or t € P(y") for n > 1.
Also note that the first equality of 4.1 and 4.2 also holds for any ZFC model

containing the forcing. For instance, L[BCy 1][t] = LBCoo,1][g:]). Some im-
provements of these will be presented in Section 5. The reader is advised to
consult [ , | for more detailed treatments of Vopénka forcing and the

variations discussed above.

We now address the extent to which the inverse limit IB(C?W is well-defined

and topics related to the forcings ]B%(C;)n.

Lemma 4.4. ZF + AD". Suppose v < ©, n < w, and A C (v*)"*! has an
oo-Borel code (S, ), then the set B = {g € (v*)" : 3f(f,9) € A} has an
OD(S, i) co-Borel code for any fine, countably complete measure p on g, (7*).
If additionally either ADg holds or v = w, then B has an OD(S) oco-Borel code.

Proof. The first part of the lemma is proved in | , Claim 2]. For the second
part, if ADg holds then there exists a unique normal, fine, and countably com-
plete measure p on g, (7*) by results of Solovay | ] and Woodin | ]

Therefore, pis OD and OD(S, u) = OD(S). If v = w, then there is an OD fine,
countably complete measure p on g, (w*) is induced from the Martin measure
as follows. First let v be the Martin measure on D and 7 : D — g, (w*) be de-
fined as: 7([z]r) = {y € w* : y <7 z}. Clearly, 7 is an OD map. The measure
p is defined as: A € p iff 7=1[A] € v. Tt is easy to verify that p is an OD fine,
countably complete measure on g, (w*). Therefore, OD(S, ) = OD(S). O

Corollary 4.5. Suppose ZF + ADT +V = L(J,R) for some set of ordinals .J.
The following hold.

(i) The inverse limit BC.  is well-defined. In fact, BC? _ is isomorphic to

w,w w,w
o
(i) For any x € R, any OD(J,z) set A C (w*)™, A has an OD(J, x) oco-Borel
code.

(i) HOD; = L[J,BC] ).
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Proof. Part (i) is a consequence of Lemma 4.4 and | , Fact 7.14]. Lemma
4.4 implies (*) for B(Ci)n 41 holds all n < w. The calculations in [ , Fact
7.14] show that the inverse limit ]B%(Ci’w is well-defined because the maps o,,, ; are
all well-defined forcing projection maps. For part (ii), without loss of generality,
let us fix an OD(J, z) set A C w*. The general case just involves more notations.
Say z € A iff L(J,R) & ¢[J,z,s,2] for some finite sequence of ordinals s.
The following calculations produce an OD(J,x) oco-Borel code for A (see cf
[ , Corollary 7.20] for a similar calculation with more details). Work over
L[J, IB%(Ci,w], for any z € R, we let g, C IB%(Ci’Q be the generic adding z, z. Let
R be the symmetric reals added by a generic g C BCiw.

2 € A e LIBC, )00, F “Isg /.. W82 /0. LILR) E @] 28,27
& LIJ,BC) . 2,21 F “lgs /g gcs g . LILR) E @l z,5,2]".

w,w?

The fact that L[J, IB%(CUJJMng,z] = L[J, IB%(CZ,W x, z] follows from the remark after
4.2. The equivalences above follow from standard properties of the inverse limit
of projections IB%(Ciw and calculations as in [ , Theorems 7.18, 7.19]. The
oo-Borel code for A is the set of ordinals S € HOD,, coding (/J, IBB(C;iw, x). Part

(ii) immediately gives BCi’w is isomorphic to Qi’w. Part (iii) now follows from

calculations in [ , Corollary 7.20, 7.21].
U

Lemma 4.6. Assume ZF + AD" + ADg +V = L(P(R)).

1. The posets Qoo 1y Poo,n for n < w are ©-cc in HOD.

2. Lets € (U,co7”)" forn <w andhs = {p € Qo5 | s € mn(p)}. Then the
set hs is a Qoo n-generic filter over HOD such that HOD[hs] = HODy,;.
A similar statement can be made for s € (U, .o P(7))" with regard to the
forcing Pog .

3. For any condition p € Qo , there is a Qo ,-generic filter H over HOD
such that p € H and the set (U, g vV is countable in HOD[H]|. Fur-
thermore, V. = HOD((U, .o V) is the symmetric part of HOD[H].
Similarly, for any condition p € P, there is a Py ,-generic filter H
over HOD such that p € H and the set (U .o P(7))" is countable in

HOD[H]. Furthermore, V.=HOD((U, ¢ P(v))V) is the symmetric part
of HOD[H].

4. (1) — (3) above also hold for the posets BCoo n (BCoo,n respectively) and
for BCoo,» (BCoo, ) if these forcings are well-defined. In fact, BCo , is
a well-defined inverse limit and is isomorphic to Qo -

Proof sketch. We will not prove the lemma; instead, we sketch the main ideas
here. (1) — (3) are standard calculations. The “Furthermore” clause of part (3)
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can be seen to follow from Lemma 3.3 and the fact that every set of reals is
Suslin co-Suslin under AD™ + ADg. For (4), first note that Lemma 4.4 implies
BC,. is a well-defined inverse limit because the maps oy, are all well-defined
forcing projection maps. To see BC ,, is isomorphic to Qu ., it suffices to
show if v < ©, n < w and A C (v¥)™ is OD, then A has an OD oo-Borel
code. For ease of notation, we assume n = 1. For f € 4%, suppose f € A
ifft V= ¢[s, f] for some finite set of ordinals s. As in the previous corollary,
we can produce an OD oo-Borel code for A as follows. Let Z be a set of
ordinals such that HOD = L[Z]?® and gf C BCw 1 be the generic adding f. Let
C =HOD((U, <o v“)V). We note that by Theorem 3.3, C = V. Then

fedAs HOD[gf] = ul]Boo,u/gf ”_]Boo,w/gf C ': Lp[S, f]”
& LZ, f1F “Is., /¢, FBCw../g; C F ©ls, f17.

The above calculations easily yield and OD oo-Borel code for A. O

We will prove in Section 5 a version of Lemma 4.4 for A C P(y)"*+! under
AD" + ADg and use this to show that the inverse limit BCwo, is well-defined
and is isomorphic to P .

5 The existence of co-Borel codes

In this section, we prove Theorems 1.1, 1.3, 1.5 and their corollaries.

Proof of Theorem 1.1. Without loss of generality, we let A C P(w) and assume
Ais OD. First we assume ADg holds. Since ADg holds, V = C by Lemma 3.3.
We show A has an OD oco-Borel code. Suppose

€A CEplz,s]

for some formula ¢ and some finite sequence of ordinals s.
We note that for any f € U7<@ v¥, letting gy € BC. 1 be generic over HOD
that adds f, then
HOD[f] = HOD[gy]

by (4.2). Here is a brief sketch. First note that f € HOD[gs] so HOD[f] C
HOD(g;]; for the converse, we have that g = {c: f € B.} and this calculation
of gy can be done over HOD|f]. Here we use essentially here that conditions of
the forcing are co-Borel codes.

Let Z C © be such that HOD = L[Z]. Then we can produce an OD oo-
Borel code for A as follows, recall the definition of BCo, ., and related objects
in Section 4.

r € A< HOD[g,] F “Ig_ /g, FB. /9. C F @[z, 5]”
~ L[Z] [:U] ': “]‘]Boo,w/gm “_Boo,w/gw (C ': SO[SC,S]”.

30ne can show Z can be taken to the the set of ordinals that canonically codes BCoo,w-
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Again, the main point is by Lemma 4.6, the inverse limit BC , is well-defined.
The above equivalence shows that ((Z,s), ) where ¢(z, (Z,s)) is the formula
“IB... /g0 FB /9. C I @lr,s]”, is an OD oo-Borel code for A.

Now assume ADg fails. By Theorem 2.3, V' = L(J,R) for some set of or-
dinals J. In fact, we can take J = [d + T],, where T is a tree projecting to
a universal S(k) set, where x is the largest Suslin cardinal, S(k) is the largest
Suslin pointclass, and pr is the T-degree measure defined in Section 2. Now
there are two cases.

Case 1: © =40,
We start with a claim.

Claim 5.1. The largest Suslin pointclass is 3.

Proof. ¥ has the scale property by ADT (cf. [ ]). By the fact that © = 6 is
regular, we have that $2 = 3 (R)NP(R). To see this note that the C-direction

is clear. To see the converse, let A C R be ¥;(z) for some real x; so let ¢ be a
¥;-formula such that for any y € R, y € A < ¢y, z]. Since © is regular, it is
easy to see that there is a transitive M = L, (Pg(R)) for some a, 5 < O such
that for y € R,

yeAe MEply .

So we can define y € A iff “there is a set of reals B coding a transitive structure
M containing all reals such that M |= o[y, x]”. This is easily seen to be ¥3(z).
So A € 2.

Now we finish proving the claim by noting that the set C' = {(z,y) € R? :
y ¢ OD(z)} is a IIy-set that has no uniformization. This is a result by Martin,
cf. | ]. By the above, C is 112 and cannot be uniformized. This gives ¥7 is

the largest pointclass with the scale property as claimed. O

Therefore, we can take 7' and hence J = [d — T],, to be OD, where
T € HOD is a tree projecting to a universal X2 set. Hence for some Z C © with
Z € 0D,
HOD = HOD, = L[Z].

We can produce an OD oo-Borel code for A by the following calculations. Sup-
pose
re AV Eyp, s

for some finite sequence of ordinals s. Letting g, C BC,, ; be HOD-generic that
adds z, then HODJg,] = HOD[z]. We note that by Corollary 4.5, the inverse
limit BC,, ., is well-defined. We have

r € A& HODg,| F “Ig_ /g, IFE, . /9. L(J,R) = o[z, 5]
& L[Z][z] F “1g, /9. FBC. 00 /9. L(SR) = @[z, 5]
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The above equivalence easily gives an OD oo-Borel code for A.
Case 2: © > 0,

Let My = L(Pg, (R)).
Claim 5.2. Let I' = ¥2. The following hold.
(i) For any real z, Env(T'(z)) = Env™o(T(x)).*
(i1) My = © = 0.

Proof. The proof of Claim 5.1 shows that Y2 is the largest Suslin pointclass

below 0y in V. The fact that for each € R, Env(I'(z)) C M,y follows from
results in | ]; see for instance Lemma 3.14. A set A is in Env(T")(x) iff for
each countable o C R, there is a OD<I'(z) set B such that ANo = BNo (cf.
[ ). This calculation is absolute between V' and M. Part (i) follows. In
My, %7 is the largest Suslin pointclass and Env(l) =gey U, ep Env(L(z)) =

P(R); the last equality holds because the set {(z,y) : y ¢ OD,} has no scale in
My. This easily implies that in My, every set of reals A is OD from some real
x. This means My = © = y. This proves part (ii). O

Claim 5.3. Let ACR be OD. Then A is OD in M.

Proof. Suppose A is OD, say « € A iff p[z, s] holds for some finite sequence of
ordinals s. For each countable ¢ C R, there is a transitive model M of ZF~ +DC
of the form L, (Pg(R)) that ordinal defines AN o via ¢ and {s,c}, i.e.

Veeoxe As M E= [z, s, o).

By ¥j-reflection into A2, for each o, there are oy, B,, max(s,) < 65 such that

VeeoxeAs Ly, (Ps,(R)) = ¢lz,ss,0].

Note the Wadge rank of A is < 6y and therefore, A € M,. Working in
Moy, let p be the fine, countably complete measure on g, (R) induced by the
Turing measure via the canonical surjection 7 : D — g, (R), where 7(d) =
{zr e R:2 <pd}. pis OD. Let a = [0 = a5y, B = [0 — oy, and
s* = [0 = S5]u. We claim that A is definable in M, from (¢, 3, s*). This
is because for any x € R, z € A iff for any function F,, Fj3, Fs« such that
Falu = o, [Faly = B.[Fuly = 5720 Li(o)(Pryo(®) E ola, Fas (o), 0]
The above calculation finishes the proof of the claim.

O

4Recall that that I' = %2 so 62 = o(I") is the Wadge ordinals of I'. A set A is in Env(I'(z))

iff for any countable ¢ C R, ANo = BNo for some B € OD<I'(x). Here B is OD<I'(x)
iff there are I'(z) sets U,W C R x R and a I'(z)-norm ¢, and an ordinal a < 82 such that

A = Uy = -W,y, for every y € dom(p) with ¢(y) = a. | ] shows that this notion of
envelopes generalizes Martin’s notion of envelopes A(L, 62) (cf | 1), as it can be applied

in situations where AD may not hold. Under AD these two notions are equivalent.
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Using Claim 5.3 and Claim 5.2, we can quote the result of the © = 6, case
to get that A has an OD oo-Borel code.

This completes the proof of the first clause of Theorem 1.1. As mentioned in
Remark 1.2, the ”Furthermore” clause has a similar proof to the proof of Case
1, so we leave it to the kind reader.

O

Remark 5.4. We do not know if ADT+V = L(P(R)) implies that for an
arbitrary set of ordinals S, every OD(S) subset of P(w) has an OD(S) co-Borel
code.

Proof of Theorem 1.3. The proof of | , Claim 2] shows the following.

Lemma 5.5. Assume ADT. Suppose k < ©, n < w, and A* C (k*)"*! has oo-
Borel code S*. Let u be a fine, countably complete measure on g, (k*). Then

A={f:3z e k¥ (z,f) € A*} has an oco-Borel code S that is OD(S*, u).

Let k < © and A C k¥. Then by basic AD" theory, there is a set of ordinals
T such that A € L(T,R). To see this, first fix a pre-wellordering < of R of
order type x and let Sy be an co-Borel code for <. Using < and the fact that
one can canonically code an w-sequence of reals by a real, one sees that k¥ can
be simply coded by < and R. Therefore, using <, one can code A by a subset
B C R. Let S; be an oo-Borel code for B and let T' = (S, 51). It is clear that
kY, A e L(T,R).

Suppose V = L(P(R)) = ADT +0© = 6, then V = L(T, R) for some OD set
of ordinals 7. Then for any kK < © = 6, there is an OD surjection 7 : R — k.
Let 11 be the OD fine, countably complete measure on g, (R) in Claim 5.3. m, u
induce an OD fine, countably complete measure v on g, (k*) by a standard
procedure:

Acve {rto:0c A} cp.

By the above discussion, every OD = OD(T') subset of k“ has OD(T, u) = OD
oo-Borel code. A similar argument also gives every OD(S) subset of k* has an
OD(S) co-Borel code for any set of ordinals S.

Suppose V = L(P(R)) + ADg = AD* + ADg. By | ] and ADg, there is
a unique normal, fine measure p, on p,, (k*) for each k < ©. So p, is OD for
each k < O. Let S be a set of ordinals and A C k* be OD(S). By Lemma 5.5
applied to the p,’s, we have that (*) holds and therefore IB%(CfOM is a well-defined
limit. Let k < © and A C k* be OD(S), so there is a formula ¢ and some finite
set of ordinals 5 such that

feAsVEfBS).

Let Z be an OD(S) set of ordinals such that HODg = L[Z] and g; C IB%(C;1
be the generic for adding f, we then have
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f € A HODslgf] F “lec.. /g, Fece /g, HOD(| 7*) k= ¢lf. 5, S
<O

& LIZ|[f1 F “Isc.. /g, Woce /g, HOD(|J 7*) E olf, B, 8]
v<O

The above calculations easily imply that A has an OD(S) oco-Borel code. O

Proof of Corollary 1.4. For each x C w, let g, C BC,, ; be the generic for adding
z. Thus we have as before

HOD|z] = HOD|g.].

Clearly HOD[z] C HOD,. To see the converse, let X C ON be OD(x); say
X C +. Let ¢ be a formula defining X from z and some s € ON<¥. So

VB <vBEX 9B s, 1)
and for each 8 < 7, let
T) = {a: ¢(8,5,a)}.

Note that T3 is OD for each S.

Fix an OD injection 7* : ODNP(w) — HOD as in the definition of the usual
Vopénka forcing Q. 1, where 7* maps the algebra O, 1 of OD subsets of P(w)
into its isomorphic copy Q1 in HOD. We can assume that 7*[O,, 1] = BC,, 1
because we have shown every OD subset of P(w) has an OD oo-Borel code. We
have that

Z={(8,7"(T})): B <} € HOD

and that for g < ~,
peX e (B,n(T5) € ZANT"(T}) € ga-
The above equivalence implies
X € HOD[g,] = HOD|z].

So we have shown

HOD, = HOD[z].

For the “furthermore” clause of part (1), we use the “furthermore” clause of
Theorem 1.1, which states that if A C P(w) is ODg for some set of ordinals S
then A has an ODg oco-Borel code when V' = L(S,R). By an argument similar
to the above, we get for each real x,

HODS,I = HODs[JT]

This completes the proof of part (1).
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The proof of part (1) can be adapted to prove part (2). But we will give
here a different proof of part (2) that cannot be used to prove part (1). We
assume ADg and use the forcing BC., ., and related objects as in Section 4 to
prove part (2) holds for any s € v¥ for v < ©. Again, we have that for any
s € ¥ for some v < O, letting g; C BC, 1 be the generic adding s,

HOD[s] = HOD|gs].

Furthermore, by Lemma 4.6, V' = HOD(|J 4<O ~¥) is the symmetric extension of
HOD induced by a generic H C BC . Note here that by Theorem 1.3, BC ,,
is well-defined. Let X € HODy be a set of ordinals. So there is a formula ¢ and
a finite sequence of ordinals ¢ such that

aeX &VEa,s,t].

Now we have:

a € X < HODIg,] F “lgc__, /g, IFzc.. /. HOD(| ) %) = ¢l 5,17
¥<O

& HOD(s| F “Igc__ /g, Fsc.../q. HOD(|J 1) = ¢la, s, )7,
v<O

The above calculations show that X € HOD[s]. So HOD[s] = HOD,. The
argument above can be easily adapted to work for an arbitrary set of ordinals
S by running the argument above over HODg using ]B%(Cfo,w.

Suppose now © = 0y. Then since ADy fails, by Theorem 2.3, there is a set
of ordinals T such that V' = L(T,R). Since © = 6y, we can in fact take T to be
OD. Therefore, HODyr = HOD. Furthermore, for any v < ©, V.= HOD(+*)
is a symmetric extension of HOD induced by a generic H C BC, ,,. The fact
that BC, ., is well-defined follows from Theorem 1.3. The rest of the proof is
the same as in the ADg case with BC, ., used in place of BC . O

Remark 5.6. (i) The main reason we need a different proof for part (1) of
Corollary 1.4 is because we do not have an analogue of Lemma 4.6 in the
situation of part (1), where ADg may fail.

(i) One can easily modify the proof above and [ , Claims 2 and 3] to show
that if V.= L(T,R) = AD" for some set of ordinals T, and f € @, (k)
for some uncountable cardinal Kk < ©, then

HODT,f = HODT[f] = HODT [gf]

where gy is HOD7 generic for the variation of the Vopenka algebra in
HODy consisting of OD(T') subsets of p.,, (k) with OD(T') co-Borel codes.
The main point is that there is an OD(T) fine, countably complete measure

0N Py (P, (K))-
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Proof of Theorem 1.5. We assume AD™ and let v witness w; is R-supercompact.
Let k < © and A C P(k). Let < be a prewellordering of the reals of length &
and let

A={zeR:zcodes C, € A}.°

Let R
A" ={(z,Cy) 1 x € A}.

In other words, (z,f) € A* iff z € A and f = C,. We claim that A* has
an oo-Borel code. Note that A C R and hence by AD+, A has an oo-Borel
code; similarly, < has an co-Borel code. We fix co-Borel codes Sy, S for <, A
respectively. If k < 6y and A C P(k) is OD, then we can in fact assume < is
OD and hence can take S1,S3 € HOD by Theorem 1.1.

Let T = (S1,S:). We work in L(T,R). Let R € HOD be the canonical
IB%CSM—name for the symmetric reals added by a IB%Caw—generic over HOD¢ and

Z C ON be such that HODy = L[Z]. We note that the system (IBS(CZ)W7 (IB%(Cg}n, Onym
n > m)) is a well-defined inverse limit system and satisfies Lemma 4.2 in L(T, R)
(see Remark 4.1 and Theorem 1.1). We then have the following equivalence,

where g, C IB%(CZ’1 is the generic adding x:

(z,f) € A* & HODr[z, f]F “c € Bg, AVa <k
a€ f < “HODrla] = lger | Irger L(S1, S5, R) E
y(lyl< =any € )"

< L[Z][z, f]E “x € Bg, A\Va <k
ac fe “LiZllz] Flger |, IFeer /. L(S1, 82, R) F
“Ely(|y‘§ _ Ol/\y c Cx)ww'

The above calculations easily produce an OD(Sy, Sa, 1) co-Borel code for A*,
noting that the clause “ly|< = a Ay € C,” can easily be written as a formula
©(S1, 52, 1, y, @).

Next, we want to produce an co-Borel code for A from an oco-Borel code for
A*. This is accomplished by proving the following lemma.

Lemma 5.7. Assume AD" and suppose there is a supercompact measure on
9w, (R). Suppose A* C P(w) x P(k) is co-Borel for some k < ©. Then IRA* =
{f:3x (z, f) € A*} is co-Borel.

Proof. Let ¢ = (T, p) be an co-Borel code for A* and A = F*A*. We may assume
c is coded as a subset of A < ©V. We sketch an argument here. Suppose
¢ = (T,p) be an oo-Borel code for A* and suppose sup(c) > ©V. Work in
L(c,R); we want to find an co-Borel code ¢* for A* such that sup(c*) < ©. We
may assume ¢ codes a prewellordering < of R of order type k. So in L(c,R),
Kk < ©j; furthermore, L(c,R) = “O is regular”. Let & >> sup(c) be a regular

5The coding z ++ Cy, is via the Coding Lemma relative to <.
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cardinal and X be the Skolem hull of L¢ (¢, R) from parameters RU{A, A*, c} and
let 7 : M — X be the uncollapse map. Then M has the form L, (c*,R), there is
a surjection from R onto M, and 7 is an elementary embedding. Furthermore,
A, A* € M, ~. Since there is a surjection from R onto M, sup(c*) < ©. Since
7 is elementary,

M = “c* is an oo-Borel code for A*”.

It is clear that ¢* is indeed an co-Borel code for A* since P(w) x P(k) C M. c¢*
is the desired co-Borel code for A*.

Let v be a supercompact measure on @, (R). Let p be the supercompact
measure on g, (P(k)UA) induced by v and some surjection m: R — P(r) UA.6
By coding (S1, Ss) into ¢, we may assume x < QLK)

In the following, for a o € g, (P(k)UA) the tree T7 is defined as T'No and
the assignment p? is defined as: for a terminal element ¢t of T7, p° () = p(t)No.
The code ¢@ = (T, p?) will yield the set B.- by induction as follows:

e if ¢ is a terminal element of 7, let Beo ; be the basic open set O o () in
the space 2¢ x 2°7%_ In the case p?(t) = 0, then we let Beo ; = 2% x 277",

e If Succyo(t) is a singleton of the form {s}, let Beo ; be the complement of
Beo s in the space 2% x 277%,

e If Succyo (t) has more than one element, then let Beo ; be the union of all
sets of the form B.- , where s is in Succye ().

° BCU = BC“,@'
Claim 5.8. For any (z, f) € P(w) x P(k),
(z,f) € A" & V0 (v,fN0o) € Beo.

Proof. The proof is by induction on the ranks of the nodes in T'. If ¢ is a terminal
node of T', it is easy to see that (z, f) € O, iff V0 (z,f N o) € Opoy). Here
note that by fineness, Vio z,f € 0. The case Succr(t) is a singleton {s} is
easy and we leave it to the reader. We verify the case Succr(t) has more than
one element and hence B.; = UsesuccT(t) B.s. If (z, f) € By, then there is
an s € Succr(t) such that (z, f) € B s; since Vj0 s € Succrs(t) by fineness,
by the inductive hypothesis, V},o (z,f N o) € Ber 5. So V0 (z, f N o) € Beo s
Conversely, suppose V), (z,f No) € Beoy. Then for each such o, there is
s7 € Succre (t) such that (z, f N o) € Beo so. By normality of p, there is a fixed
s such that
V5,0 s € Sucers (t) A (, f N 0) € Beo s

This implies s € Succy(t) and (z, f) € B.,; as desired. O

SAecpiff {n~lo]:0€ A} ev.
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Let f C k, then

feAde Iz (x,f) e A"
& dr Vo (z,fN0o) € Beo
& Vodreo (r,fNo) € Be.

The last equality uses the normality of p when restricted to the non-wellordered
part, i.e. the normality of the measure induced by u on g, (P(x)). The proof
of Claim 5.8 also uses the normality of u, but only on the ordinal part.

Claim 5.9. Let j, be the ultrapower embedding induced by u. Letting M, =
L[c)(0)" for each o € o, (P(k)UA) and M =[], M, /uu be the ultraproduct of
the M, ’s by p, then:

(a) Los’s theorem holds for the ultraproduct M.

(b) R C M and M = AD". Therefore, by (a), Vo M, = AD*.
(¢) The ultraproduct M is well-founded.

(d) If f C K then Vo fNo € M,. In particular, V},0 ¢ € M,.

(e) For any f C k, [0 — fNoal, = juf]. In particular, if v C w, then
z=[o— |,

(f) Vio RNM, =RNo.

Proof. Part (a) is a standard argument using the normality of u. The reader
can see for example [ , Lemma 2.4] for a proof. For part (b), let x € R,
then by fineness of u, Vi,0 x € 0. So Vj0 x € M,. Furthermore, z = [0 — ],
by countable completeness of o, so 2 € M. That M = AD™ follows immediately
from the fact that R C M. The proof of part (c) is the same as that of Fact
2.4. Part (d) is clear since for each o, f,0 € M, and M, is a model of ZF. For
part (e), let f C k. For o € K, ju(a) = [0 — a],. Therefore, if a € f, then
by fineness, Vo o € o N f. We have shown j,[f] C [0 = f N o], Suppose
g is such that Vo g(o) € fNo. By normality of y, there is an a such that
Vyo g(o) = a. So [g], = jula) € julf]. If 2 C w, then Vo xNo = x and
since jlw] = w, © = [0 > z],. This completes the proof of (e). To see (f), first
note that RN o C RN M, by part (b) and Los’ theorem. For the converse, it
suffices to see that [0 — o NR], = RY; this is because by part (b), RV = R
and by Los’ theorem, RM = [0 — M, NR],. But this follows from (e). Indeed,
for any z € R, x = [0 = 2], and V},0 x € 0, therefore, z € [0 — o NR],. So
[0 = o NR], = [0+~ M, NR], =R"; by Los’ theorem, V5, RN M, = RN o as
desired.

O

"Llc](o) is the minimal model of ZF containing ON U {c}U{ANo: A€ o}.
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Remark 5.10. We note that part (f) generally cannot be improved for subsets
f of k for k > w. In general, if f C Kk, V0 fNo € My follows from (d), but it
is not true that Vo fNo €o.

For each o € g, (P(k)UX) and f C &, let

o L(c,R) _ M,
H,y=HODXY  and K, ; =HODM: \

Let Qo be the Vopenka algebra for adding a real whose conditions are ODM- (¢, {c'}, fN
o)-00 Borel codes for subsets of R N M,. The following is the key claim.

Claim 5.11. Let f C k.
(i) Vo Hyp = HODLED[f no].
(i) V30 Koy is uniformly definable in Hy y from parameters {o}, f No,c.

(iii) f € Aiff Vio Hoy = “Koy = 3p € Qoy plhg, , Iz (2, fN0) € Ber.”

Proof. Part (i) follows from the proof of Corollary 1.4 and Remark 5.6. For part
(ii), first note that Vo fNo € M, by Claim 5.9. Letting W, ; be the Vopenka

algebra BCG {79/ defined in M,, then by Corollary 4.5,
KU;f = L[WO',f7 c, f N O-]

is definable over L(c,R) uniformly from parameters {c},c, f No. Let X, ; be
a set of ordinals that canonically codes Wy r,c, f No. Then there is a fixed
formula v such that

z=Xo 5 L(c,R) =9z, fNno,{c},c.

1 induces a formula ¢* with the property that: H, ; = ¢*[z, ¢, {c}, fNno]if and
only if z = X, ;. Here letting P, ; = BCZ’E’}’J[O” defined in L(c,R) and R the
symmetric name for the symmetric reals added by P, ¢, then ¥*[z, ¢, {o}, fNo]
is the statement “I Ip_ . L(¢, R) E Y[z, f No, {0}, .

Now we prove (iii). First we note that by (ii), the statement “K,; k=
I € Qoy p kg, , 3o (z,fNo) € Be” is absolute between V and H, ;.
Furthermore, there is a fixed formula ¢ such that H, ; = ¢[o, f No,c] if and
only if Koy = 3p € Qo5 p b, , 37 (z, fN0o) € B.o. Now suppose f € A. Then
Vyodr € o(x, fN0o) € Ber. So for each such o, M, |= “3z € o(z, fNo) € Beo".
Fix such a 0 and let x € o be a witness and g, C Q. be the corresponding
generic adding x over K, r, then K, f[z| = Ko fl9s] = (2, f No) € Beo. By
the forcing theorem, we get that K, s = 3p € Qo5 p IFq, , 3v (z, fNo) € B,
so we have obtained the right hand side of the equivalence. For the converse,
assume

Vo Hop b= “Kop = 3p € Qop plhg, , 3 (z,fNo) € B
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So
Vo KofEIp€ Qo plg,, 3z (z,fNo) € Beo.

For each such o, let p, be the K, j-least condition in Qs such that p, I-q, ,

Jx(z,f N o) € Beo. Let ¢ € Quf g € M, be any generic over K, ; and

Po € g, then K, ¢[g] = Jz(x, f No) € Beo. Since Vo, K, lg] € M, and

RN M, =RnNao, we have that Vj,0 3z € 0 (z, f N o) € Beo. By normality, fix x

such that Vo (z, fNo) € Beo. By Claim 5.8, (=, f) € B, and therefore, f € A.
O

Using Claim 5.11, we produce an oo-Borel code for A by the following cal-
culations. First let Z, be a set of ordinals such that HODf({cc;Df) = L[Z,]. Let
Ko =[0— Ks ¢l Qe = [0 Qo ]y, and Zog = [0 = Z,],. Let W = j, [ k.

feAeVioHypl= Koy l=Ip€Qoyplrg,, 3z (v, fN0o) € Beo”
e Vo LZ,)[fno]l E “Ks 5 FEIp€Qoyplg,, Iz (z,fNo) € Beo?
& L Zoo)[julf] E “Koo b= 3p € Qoo plFq., 3z (2, 4u[f]) € By
& L{Zoo, W[f] | “LIZoo][julf]] F “Koo = 3p € Qoo p oo, 32 (2, julf])

The first two equivalences are from Claim 5.11. The third equivalence follows
from Claim 5.9. The last equivalence follows from the fact that one can easily
compute j,[f] from W and f for any f C k. We note here that by Claim
5.11(ii), there is a fixed formula ¢ such that H, y = ¢lo, f N o, ] if and only if

Koy EIeQoysplrg,, 3z (2, fN0o) € Beo.
O

Lemma 5.7 and the discussion above show that an oco-Borel code S for A
can be found and furthermore, S is OD(u, c), where ¢ is an co-Borel code for
A*.

We now prove the “Furthermore” clause. We first start with the following
key lemma.

Lemma 5.12. Assume ADV. Supposen > 1 and A* C P(k)"* is co-Borel for
some k < O. Suppose ¢ C X is an co-Borel code for A* and u is a supercompact
measure on g, (P(k)UN), then an OD(u,c) oo-Borel code for 37 A* can be
found.

Proof. Without loss of generality, we assume n = 1. Let ¢ = (T, p) be an oco-
Borel code for A* and A = 37" A* As in Lemma 5.7, we may assume T is
coded as a subset of A < ©.

Let u be a supercompact measure on g, (P(x) UA).® Let j = j, be the ul-
trapower embedding associated with p. Let us define the objects My, Hy ¢, Ko ¢
as above.

81f ADg holds, then such a u exists and is unique. The existence (and uniqueness) of u
follows from ADpg by the discussion in Section 2.
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In the following, for a o € g, (P(k) U ) the tree T is defined as T'No and
the assignment p? is defined as: for a terminal element ¢ of T, p?(¢) = p(t)No.
The code ¢? = (T, p°) will yield the set B.- by induction as follows:

e if ¢ is a terminal element of T, let B ; be the basic open set O 0 () in the
space 277" x 297 In the case p?(t) = 0, then we let Bo p = 297 x 2775,

e If Succyo(t) is a singleton of the form {s}, let Beo ; be the complement of
Beo s in the space 2777 x 297%,

o If Succyo () has more than one element, then let B.- ; be the union of all
sets of the form Bgs s where s is in Succys (2).

e B.o = Bca7@.

The following claim mirrors Claim 5.8. The difference is in Claim 5.13, x C &
and as mentioned above, Vjoc z N o € M, but z N o is not necessarily in o.
Fortunately, we do not care whether x N o € o in the following arguments, but
we do use the fact that x No € M,.

Claim 5.13. For any (z, f) € P(k)"*!,
(Jf,f) e A" <:>v:,0- ((EﬂO}fﬂO‘) € Bc" ~ (][ij[f]) € Bj[c}-

Proof. Again, we assume n = 1 here. We prove the first equivalence. The proof
is by induction on the ranks of the nodes in 7" just like in Claim 5.8. If ¢ is a
terminal node of T, it is easy to see that (z, f) € O, iff Vo (zNo,fNo) €
O,o(1)- Here note that by fineness, Vj,0 z, f € 0. The case Sucer(t) is a singleton
{s} is easy and we leave it to the reader. We verify the case Succy(¢) has more
than one element and hence B.; = UsGSuccT(t) B.s. If (z, f) € B.,, then there
is an s € Succr(t) such that (z, f) € B, s; since V},0 s € Sucer-(t) by fineness,
by the inductive hypothesis, Vj,o (zNo, fN0) € Ber 5. SoVyo (xNo, fNo) €
Beo i Conversely, suppose Vy,o (z N o, fN o) € Beoy. Then for each such o,
there is s7 € Succrpo(t) such that (x No, f N o) € Beo so. By normality of p,
there is a fixed s such that

V0 s € Sucera () A(xNo, fN0) € Beo .

This implies s € Succy(t) and (z, f) € B, as desired.
The second equivalence follows from Los’ Theorem and the fact that: [0 —
o fly=jlf],lo = onz], = jlz],[c = o N ], = jlc]. See Claim 5.9. O

Claim 5.14. Let f C k, then
feAeVodreo (xNo, fNo) € Beo.
Proof. Fix f C k. We have the following equivalences.

feAs I (x, f)e A"
& Jz Vo (zNo,fNo) € Beo
S V,odreo(xNo, fNo) € Be.
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The first equivalence is by definition. The second equivalence follows from Claim
5.13. The last equality uses the normality of p when restricted to the non-
wellordered part, i.e. the normality of the measure induced by p on g, (P(k)).
The proof of Claim 5.13 also uses the normality of u, but only on the ordinal
part.

O

For each o and f, let Py ; € Ko,y be the poset isomorphic to the algebra
of OD(c,{o}, f N o)™ subsets of 0" in M, for each n < w and Py°; be the
inverse limit of the P 5 via the canonical projection maps (see Definition 4.5).
Let 6 be the P7°,-symmetric name that whenever G C Col(w, o) is generic over
My, letting g € P2, be the Ko y-generic induced by G, then ¢, = 0 and M, is

the corresponding symmetric extension of K, y. Note that PZ°, is countable in

L(c,R). By the previous claim, we now have the following equivalence:’

(1) feA&Vio Hofle “Koy b= lp, Fpe, “Ix €6 (zN6, fN0) € Ber™”.
To see the equivalence, first suppose f € A. By Claim 5.14,
Vo dze€o M, E“(xNo,fNo) € Beo™.
By the forcing theorem and homogeneity of ]P’gf’f, we have V},o,
Ko lps, IFpee, “3w €6 (zN6, fN0o) € B

But then the right hand side of the equivalence follows from Claim 5.11.
For the converse, assume the right hand side. For each such o, there is a
g € V such that g C P, is generic over K,y and 64 = o, then

Jreo (zNo,fNo) € Beo.

By normality of y, there is an x such that Vo 2 € o A(x N0, fN0o) € Beo. By
Claim 5.14. we get f € A. (1) has been verified.
Now we produce an oco-Borel code for A by similar calculations as before,

using (). First let Z, be a set of ordinals such that HODf({C(;Hf‘) = L[Z,]. Let

Ko =0 — Ko fly, P = [0 — ng’f]u, Coo = [0 — €|y, 600 = [0+ 7]y, and
Zoo =[0— Zs|u. Let W =3, | K.

feAe Vo Hep = “Koy | lp, IFpe,

e

@VZ(T L[ZU][me'] ': “ o,f ': ].]pz?f |FPUOCf
“Iz € 6 (zN 6, fA0) € B

< LZi[f] E “Kw E 1p, IFp
“Jz € 600 (T N Foo, j[f]) € By

& L[Zoo, WI[f] E “LIZ][[f]] F “Ko F 1p. IFp.,
“Ip e Uoo (-Tmo'oo7j[f]) c Bj[c}”””-

9We use the canonical name f Mo for fNo.
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As before, the above calculations show that A is co-Borel and an OD(c, )
oo-Borel code for A can be found. O

We now assume V = L(P(R)) and ADg. As mentioned above, we have a
unique supercompact measure p on @, (X) for any set X that is a surjective
image of R. Lemma 5.12 applied to the unique, hence OD measures p, shows
that the inverse limit mww is well-defined. Let X = P(k) and A C X be
arbitrary. We give an alternative proof that A has an co-Borel code. Let ¢, f
define A where f € 4 for some v < O, i.e. for any = C K,

reAsVE g, fl]

We can construe f as a countable subset of 7. As in the argument of | ,
Corollary 7.20] but now using Lemmata 5.12 and 4.6, we have, letting Z be such
that HOD = L[Z] and gy, € BCw 2 be the generic adding the pair (f,z),

v € A HODlgra] =15t 0, Mo g, HOD(|J P(8)) k= ¢lz, f]
B<©

& LIZ f,al B e, g, Faee e, BOD( P(8)) k= ¢l f]
B<O

The second equivalence, as mentioned before, follows from 4.2. The above easily
yields an OD(f) oco-Borel code for A. In particular, if A is OD, then A has an
OD oo-Borel code. The argument given easily generalizes to show that for any
set of ordinals S, for any xk < ©, if a set A C P(x) is OD(S), then A has an
OD(S) co-Borel code. This completes the proof of the theorem. O

Remark 5.15. Theorem 1.5 shows that mm,w is isomorphic to P, if ADT +
ADr+V = L(P(R)) holds.

Proof of Corollary 1.6. Using wa, one can show as in the proof of Corollary
1.4 that for any set of ordinals S, any x C k for any x < ©, we have

HODs[.’E] = HODS@.

The key points are that the limit mi’,w is well-defined by Theorem 1.5 and

that V' = HODs(U, . P(7)) is a symmetric extension of HODg induced by a
generic H C wa. O

6 Questions

We collect a few questions left open from the above analysis.

Question 6.1. (i) Assume ADT. Suppose p is an arbitrary countably com-
plete measure on some set X. Must Ult(V, u) be well-founded?
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(ii) Assume ADT. Suppose pi is an arbitrary supercompact measure on g, (X)
for some set X. Suppose (M, : o € p,,, (X)) is such that for each o, M, is
a transitive model of ZF~. Must Los’s theorem holds for the ultraproduct

Ho’ M, /p?

(i4i) Does ADT and wy is R-supercompact imply there must be a unique normal,
fine measure on p,, (R)?

Regarding 6.1(i), Solovay | | shows that cof(©) > w + DCg + ~DCp (g
implies there is a countably complete measure p on cof(©) such that Ult(V, i)
is ill-founded. We do not know if a model of AD" satisfying the hypothesis
Solovay’s proof requires can exist. Regarding (iii), by results of Solovay and
Woodin, ADg 4+ DCg implies that there is a unique normal, fine measure on
9w, (R). The minimal model of the theory “AD' and w; is R-supercompact”
also satisfies the uniqueness of such a measure (cf | | and | D). It is
known that the conclusion of (iii) is false in the absence of AD™.

Question 6.2. Does AD' imply ADTH?2

By Theorem 1.5, Question 6.2 has a positive answer if we additionally assume
ADg. We do not know even in L(R), every subset of P(w;) has an co-Borel
code. However, it is known that Question 6.2 has a positive answer in various
AD" +—-ADg models not of the form V' = L(P(R)). For instance, in the model of
the form L(R, i) that satisfies ADT + “u is a normal fine measure on g, (R)”,
for every k < ©, every A C P(k) has an oo-Borel code. Even if AD*™ is not a

consequence of ADT, one can still conjecture.

Conjecture 6.3 (ADT). The ABCD Conjecture holds.
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