Dr. Michael Oliver

1) Suppose Alice and Bob play the following game:

The rules are: Alice and Bob must play natural numbers. Bob wins if $n>m$ and $2^{n}-1$ is prime; otherwise, Alice wins.
a) Write a sentence of quantified first-order logic that is true (interpreted with the natural numbers as the universe of discourse) if and only if Bob has a winning strategy for the game.
b) Explain what the above sentence "says", in English.
2) Let $Q(x, y)$ denote " $x+y=0$ ". What are the truth values of the sentences $\exists y \forall x Q(x, y)$ and $\forall x \exists y Q(x, y)$
a) interpreted with the universe of discourse equal to \mathbb{R} ?
b) interpreted with the universe of discourse equal to \mathbb{N} ?
3) Let A, B, and C be sets (and that they are all subsets of some fixed universal set). Show that $\overline{A \cup(B \cap C)}=(\bar{C} \cup \bar{B}) \cap \bar{A}$.
4) Consider the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(n)=2\left\lfloor\frac{n}{2}\right\rfloor$.
a) Is f one-to-one (injective)?
b) Is f onto (surjective)?

Be sure to explain your answers.
5) Show that $\Sigma_{j=0}^{n} j^{3}$ is $\Theta\left(n^{4}\right)$. (Hint: You need to show two things - that it's $O\left(n^{4}\right)$, and that it's $\Omega\left(n^{4}\right)$.) (Second hint: It should not be necessary to find an explicit formula for $\left.\Sigma_{j=0}^{n} j^{3}\right)$.
6) Suppose $f(x)$ is $O(h(x))$, and $g(x)$ is $\Omega(k(x))$, and suppose that $\forall x(k(x)>0)$. Prove or refute:

$$
\frac{f(x)}{g(x)} \text { is } O\left(\frac{h(x)}{k(x)}\right)
$$

7) Describe an algorithm that, given a finite sequence of integers, returns the smallest integer in the sequence.
8) Determine the worst-case time complexity of the algorithm above.

Practice for $1^{\text {st }}$ Midterm
9) The Fibonacci sequence F_{n} is defined as follows:

$$
F_{n}= \begin{cases}0, & \text { if } n=0 \\ 1, & \text { if } n=1 \\ F_{n-2}+F_{n-1}, & \text { if } n>1\end{cases}
$$

a) Compute F_{0} through F_{11}. Hint: if this takes more than thirty seconds, you've missed something.
b) Can you find a pattern to which Fibonacci numbers are odd and which are even? For example, could it be that, for every $k, F_{4 k}, F_{4 k+1}$, and $F_{4 k+3}$ are all even, but $F_{4 k+2}$ is odd? Hint: no, that's not the answer, but it looks something like that.
c) Prove the conjecture you made above, by induction.

