Exercise set 6

Math 6010
16 November 2004

The so-called coin flipping measure (call it ν) on 2^{ω} (i.e. ω-sequences of zeroes and ones) has the following properties:
a) ν is a measure on 2^{ω} (in the ordinary, real-analysis sense).
b) For every Borel set $A \subseteq 2^{\omega}, A$ is in the domain of ν, and $0 \leq \nu(A) \leq 1$.
c) Suppose, for $n<\omega$ and $x \in 2^{\omega}$, we define $\operatorname{flip}_{n}(x)$ to be the sequence of zeroes and ones identical to x, except that the $n^{\text {th }}$ bit is flipped (0 becomes 1, vice versa), and for $A \subseteq 2^{\omega}$, $\operatorname{flip}_{n}(A)=\left\{\operatorname{fli}_{n}(x) \mid x \in A\right\}$. Then, for every Borel A and every $n, \nu\left(\operatorname{flip}_{n}(A)\right)=\nu(A)$.

Intuitively, if we flip a coin ω times and count each occurrence of heads as a 1 and each tails as a 0 , then $\nu(A)$ is the probability that the sequence will wind up in A.

1) Come up with an actual definition for coin-flipping measure and see what you can find out about its properties. Can you find a way to view (c) above as a kind of translation invariance, the way Lebesgue measure is invariant under adding a constant to every element of a set of reals?
2) Define an equivalence relation E_{0} on 2^{ω} by

$$
x E_{0} y \Longleftrightarrow(\exists n)(\forall m>n) x(m)=y(m)
$$

That is, x and y are E_{0}-equivalent just in case they differ in only finitely many places. Suppose $D \subseteq 2^{\omega}$ contains exactly one element of each $E_{0}{ }^{-}$ equivalence class. What can you say about D, with regard to the coinflipping measure?
3) How many equivalence classes $[x]_{E_{0}}$ are there $\left(x \in 2^{\omega}\right)$? Should there be an injection $f: 2^{\omega} / E_{0} \rightarrow 2^{\omega}$? (By $2^{\omega} / E_{0}$ we mean $\left\{[x]_{E_{0}} \mid x \in 2^{\omega}\right\}$. By $[x]_{E_{0}}$ we mean $\left\{y \mid y E_{0} x\right\}$.)
4) Is it possible for an injection f as above to have a lift to a continuous function $g: 2^{\omega} \rightarrow 2^{\omega}$? I.e. can there be a continous such g such that, for every $x, g(x)=f\left([x]_{E_{0}}\right)$? Hint: Given a basic open neighborhood in 2^{ω}, what do you know about the preimage of that neighborhood under g ? Must it be measurable, by coin-flipping measure? If so, can it have a measure other than 0 or 1 ? Where can you go with that?

