Exercise set 5 Math 6010 9 November 2004

1) Show that, for any cardinal κ , $\operatorname{cof}(2^{\kappa}) > \kappa$.

2) Show that if λ is a limit ordinal such that $cof(\lambda) > \aleph_0$, then the club filter on λ is $cof(\lambda)$ -complete.

3) Let λ be a cardinal on which there is an \aleph_1 -complete nonprincipal ultrafilter \mathcal{U} . Let κ be the "completeness" of \mathcal{U} —that is, κ is least such that there is a size- κ collection $\{A_{\alpha} | \alpha < \kappa\}$, where each $A_{\alpha} \in \mathcal{U}$, but $\bigcap_{\alpha < \kappa} A_{\alpha} \notin \mathcal{U}$.

- a) Show that there is a size- κ collection $\{B_{\alpha} | \alpha < \kappa\}$ such that each $B_{\alpha} \notin \mathcal{U}$, but $\bigcup_{\alpha < \kappa} B_{\alpha} \in \mathcal{U}$.
- b) Show that the B_{α} above may be taken to be pairwise disjoint.
- c) Define $\mathcal{V} \subseteq \mathcal{P}(\kappa)$ as follows: Given $A \subseteq \kappa$,

$$A \in \mathcal{V} \iff \bigcup_{\alpha \in A} B_{\alpha} \in \mathcal{U}$$

- Is \mathcal{V} a filter on κ ?
- Is it nonprincipal?
- Is it an ultrafilter?
- What is its completeness?