Exercise set 4 Math 6010 12 October 2004

1) Show that the decoding of Borel codes is Δ_1^1 on the Π_1^1 set on which it makes sense. That is, letting BC be the set of all Borel codes, and for $c \in BC$ letting A_c be the Borel set coded by c, and finally letting

$$R = \{(x, c) | c \in BC \land x \in A_c\}$$

show that there are Σ_1^1 and Π_1^1 sets R_{Σ} and R_{Π} (respectively), both subsets of $\omega^{\omega} \times \omega^{\omega}$, such that

$$R_{\Sigma} \cap (\omega^{\omega} \times BC) = R_{\Pi} \cap (\omega^{\omega} \times BC) = R$$

(Remark: actually R_{Σ} is Σ_1^1 lightface; mutatis mutandis for R_{Π})

First hint: First work on R_{Σ} . It will be enough to show that there is a continuous map $c \mapsto T_c$ from ω^{ω} to $(\omega \times \omega)^{<\omega}$ such that, whenever $c \in BC$, T_c is a tree and $A_c = p[T_c]$. Figure out why this is enough, and how to get the map.

Second hint: To get R_{Π} , figure out how to get from a Borel code c to a Borel code for the *complement* of A_c . Now you have a Σ_1^1 way of decoding the complement, which should turn into a Π_1^1 way of decoding A_c . Fill in the details.

2) Show that the decoding from the previous problem *cannot* be Borel, even on the Π_1^1 set on which it makes sense. I.e. show that there is no Borel $R_B \subseteq \omega^{\widetilde{\omega}} \times \omega^{\omega}$ such that $R = R_B \cap (\omega^{\omega} \times BC)$. Exercise set 4 Math 6010 12 October 2004

3) Suppose I and II play natural numbers as usual, and let $x = \langle x_0, x_1, \cdots \rangle$ be I's play and $y = \langle y_0, y_1, \cdots \rangle$ be II's. Each player is trying to play a larger countable ordinal than the other. If both players play countable ordinals (i.e. if both X and y are in WO), then the player who plays the larger ordinal wins. Further conditions:

- *II* wins ties (i.e. if the players play *equal* countable ordinals, then *II* wins).
- If one player succeeds in playing a countable ordinal (i.e. his play is an element of *WO*) and the other one doesn't, then the player who plays a countable ordinal, wins.
- If neither player plays a countable ordinal, then I wins.

Problems:

- a) Show that, *if* the game is determined, then I wins. Hint: Fix a strategy τ for II, and show that I can beat it. Two cases: either for every play by I, τ gives a countable ordinal as II's play, or else not. In the second case, how can I win? In the first case, how can I win? At some point you need to use Σ_1^1 -boundedness.
- b) Forget the determinacy hypothesis, and just show directly that I has a winning strategy. Hint: if II fails to produce a wellordering of ω then he loses in any case, so I's strategy may assume that II's play will be a wellordering. Thus he can try to produce a longer one, say an isomorphic copy of II's ordering plus some more stuff put on the end. Fill in the details.
- c) Suppose we make the game harder for I, by choosing an arbitrary increasing function $f: \omega_1 \to \omega_1$ and demanding of I not just that he play a larger ordinal than II's (assuming II plays an ordinal) but that I play an ordinal larger than f of II's ordinal. The other rules remain the same.
 - (a) Is it ever possible for *II* to have a winning strategy?
 - (b) Can you find conditions on f that will allow you to show directly (for games involving f satisfying those conditions) that I has a winning strategy, as before?