Exercise set 4
Math 6010
12 October 2004

1) Show that the decoding of Borel codes is ${\underset{\sim}{\sim}}_{1}^{1}$ on the ${\underset{\sim}{1}}_{1}^{1}$ set on which it makes sense. That is, letting $B C$ be the set of all Borel codes, and for $c \in B C$ letting A_{c} be the Borel set coded by c, and finally letting

$$
R=\left\{(x, c) \mid c \in B C \wedge x \in A_{c}\right\}
$$

show that there are $\underset{\sim}{\boldsymbol{\Sigma}}{ }_{1}^{1}$ and $\underset{\sim}{\boldsymbol{\Pi}}{ }_{1}^{1}$ sets R_{Σ} and R_{Π} (respectively), both subsets of $\omega^{\omega} \times \omega^{\omega}$, such that

$$
R_{\Sigma} \cap\left(\omega^{\omega} \times B C\right)=R_{\Pi} \cap\left(\omega^{\omega} \times B C\right)=R
$$

(Remark: actually R_{Σ} is Σ_{1}^{1} lightface; mutatis mutandis for R_{Π})
First hint: First work on R_{Σ}. It will be enough to show that there is a continuous map $c \mapsto T_{c}$ from ω^{ω} to $(\omega \times \omega)^{<\omega}$ such that, whenever $c \in B C$, T_{c} is a tree and $A_{c}=p\left[T_{c}\right]$. Figure out why this is enough, and how to get the map.

Second hint: To get R_{Π}, figure out how to get from a Borel code c to a Borel code for the complement of A_{c}. Now you have a ${\underset{\sim}{~}}_{1}^{1}$ way of decoding the complement, which should turn into a ${\underset{\sim}{\Pi}}_{1}^{1}$ way of decoding A_{c}. Fill in the details.
2) Show that the decoding from the previous problem cannot be Borel, even on the $\boldsymbol{\Pi}_{1}^{1}$ set on which it makes sense. I.e. show that there is no Borel $R_{B} \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $R=R_{B} \cap\left(\omega^{\omega} \times B C\right)$.

Exercise set 4

Math 6010
12 October 2004
3) Suppose I and $I I$ play natural numbers as usual, and let $x=\left\langle x_{0}, x_{1}, \cdots\right\rangle$ be I 's play and $y=\left\langle y_{0}, y_{1}, \cdots\right\rangle$ be $I F$'s. Each player is trying to play a larger countable ordinal than the other. If both players play countable ordinals (i.e. if both X and y are in $W O$), then the player who plays the larger ordinal wins. Further conditions:

- $I I$ wins ties (i.e. if the players play equal countable ordinals, then $I I$ wins).
- If one player succeeds in playing a countable ordinal (i.e. his play is an element of $W O$) and the other one doesn't, then the player who plays a countable ordinal, wins.
- If neither player plays a countable ordinal, then I wins.

Problems:
a) Show that, if the game is determined, then I wins. Hint: Fix a strategy τ for $I I$, and show that I can beat it. Two cases: either for every play by I, τ gives a countable ordinal as $I F$ s play, or else not. In the second case, how can I win? In the first case, how can I win? At some point you need to use $\underset{\sim}{\underset{\sim}{2}}{ }_{1}^{1}$-boundedness.
b) Forget the determinacy hypothesis, and just show directly that I has a winning strategy. Hint: if $I I$ fails to produce a wellordering of ω then he loses in any case, so I 's strategy may assume that $I I$'s play will be a wellordering. Thus he can try to produce a longer one, say an isomorphic copy of IF's ordering plus some more stuff put on the end. Fill in the details.
c) Suppose we make the game harder for I, by choosing an arbitrary increasing function $f: \omega_{1} \rightarrow \omega_{1}$ and demanding of I not just that he play a larger ordinal than $I F$'s (assuming $I I$ plays an ordinal) but that I play an ordinal larger than f of $I F$ s ordinal. The other rules remain the same.
(a) Is it ever possible for $I I$ to have a winning strategy?
(b) Can you find conditions on f that will allow you to show directly (for games involving f satisfying those conditions) that I has a winning strategy, as before?

