Exercise set 2

Math 6010
17 September 2004

1) Let X be a Polish space, and let $A \subseteq X$ be given. Fix a particular enumeration $\left\{\mathcal{V}_{i} \mid i \in \omega\right\}$ of the basic open neighborhoods of $X . I$ and $I I$ play the following game: before the first round, set the variable U, which will always represent an open subset of X, to be all of X. Now at each round, I names two basic open neighborhoods \mathcal{V} and \mathcal{V}^{\prime}, subject to the following conditions:

- \mathcal{V} and \mathcal{V}^{\prime} are disjoint.
- \mathcal{V} and \mathcal{V}^{\prime} are both subsets of U.
- The diameters of \mathcal{V} and \mathcal{V}^{\prime} are both at most half the diameter of U.
- The topological closures of \mathcal{V} and \mathcal{V}^{\prime} are both contained in U.

The above constitutes I 's play for the round. Then $I I$ plays by selecting either \mathcal{V} or \mathcal{V}^{\prime}, which then becomes U for the next round.

In the end, take the intersection of all the basic open neighborhoods selected by $I I$ from the choices offered by I; assuming I has followed all the rules, this intersection will be a singleton; call it $\{x\} . I$ wins if and only if

- He has obeyed the rules at each step, and
- $x \in A$.

So finally we get to the problems:
a) Suppose A is countable. Who wins? Find a winning strategy for that player.
b) (Stop supposing A is countable.) Suppose I has a winning strategy. What can you say about the set A ?
c) (Stop supposing I has a winning strategy.) Suppose $I I$ has a winning strategy, call it τ - that is, τ is a function from the set of positions in the game to the set of $I I$'s possible choices. Here a position is the entire history of the game up to some finite stage - all the offers made by I and all the choices made by $I I$.
Now, given $x \in X$ and p a position with I about to move, say that x is rejected by τ at position p if and only if two things happen:

- x is an element of the open set U, after playing up to position p (that is, x is an element of the last open neighborhood accepted by $I I$)
- but, if I 's next move is two basic open neighborhoods, one of which contains x, then τ will tell $I I$ to pick the neighborhood not containing x.

Prove the following:

- For any $x \in A, x$ is rejected by τ at some position
- For any position p, there is at most one x rejected by τ at p

