
Iterations and Martin’s Axiom

1. Two Step Iterations

We showed in lemma ?? that forcing with
�����

is equivalent to first forcing
with

�
to get M � G � , and then forcing with

�
over M � G � to get M � G ���H � . This,

however, is not the most general case of a two step iteration as in this case we
are assuming

�	�
M . More generally we could have that

�
�
M and

���
M � G � .

Note that this breaks the symmetry between
�

and
�
; we cannot force with

�
first

now. We wish to describe this situation in more detail now; in particular, how
do we describe a two-step iteration as a single forcing over the ground model? To
motivate the definition of the partial order for the two-stage iteration, let

���
τG,

where τ
�

M  . Let p
�

P with p ��� τ is a partial order � . To be precise, τ actually
abbreviates a triple of names � τQ, τ � , τ ��� , but it will be clear from the context what
we mean. We are assuming (without loss of generality) that all our partial orders
have maximal elements. It is easy to see that there is a τ � � M  such that ����� τ �
is a partial order � and ������� τ is a partial-order ����� τ � � τ ��� . [Let A

�
A1  A2

be a maximal antichain of p
�

P such that either p �!� τ is a partial order � (this
defines A1) or p � τ is not a partial-order � . Let τ � �#" τ $ � A1  " ρ $ � A2 where
ρ is a any name such that �%�&� ρ is a partial-order � ]. Thus, there will be no loss
of generality if we require that �'�(� τ is a partial-order � . Also, if q1, q2

���
and

q1 ) q2, there are σ1, σ2

�
dom � τ � such that q1

� � σ1 � G, q2

� � σ2 � G, and there are
p1, p2

�*�
such that p1 �+� σ1

�
τ � , p2 �+� σ2

�
τ � , and p2 �+� σ1 ) Q σ2 � . With this

as motivation we now define two step iteration forcing.

Definition 1.1. Let M be a transitive model of ZF and
���

M a partial order. Let,
Q
�

M  be a name with � P ���
,

Q is a partial-order � . The two-step iteration forcing�.- ,
Q is the partial order in M defined to be the set of all � p, τ � such that p

�
P ,

τ
�

dom � ,Q � , and p ��� τ � ,Q � . The ordering of
�/- ,

Q is defined by � p1, τ1 � ) � p2, τ2 �
iff p1 ) P p2 and p1 �0� τ1 ) τ2 � .

We assume there is a name � Q � dom � ,Q � such that � P ���1� Q is maximal in
,

Q � .
It is easy to see then that ��� P , � Q � is a maximal element of

��- ,
Q.

If G 2 P is M -generic and H 2 ,
QG is a filter on

,
QG in M � G � , we define

G
-
H 2 �*- ,Q by � p, τ � � G

-
H iff p

�
G and τG

�
H . It is easy to see that G

-
H

is a filter:

Exercise 1. Show under the hypotheses above that G
-
H is a filter on

�*- ,
Q.

Conversely, suppose F 2 �3- ,Q is M -generic. Let G
��"

p
�

P : � p, � Q � � F $ . Let

H 2 ,
QG be defined by H

�0"
τG : τ

�
dom � ,Q �54�6 p � P � p, τ � � F $ . We will verify

in the proof of the next theorem that G, H are filters on
�
,
,

QG respectively.

Theorem 1.2. Let M be a transive model of ZF and
��- ,

Q
�

M . If G 2 P is

M -generic and H 2 ,
QG is M � G � generic for

,
QG, then G

-
H is M generic for

�5- ,
Q.

Conversely, if F 2 �7- ,Q is M generic for
��- ,

Q and G
�8"

p
�

P : � p, � Q � � F $ ,
H
�9"

τG : τ
�

dom � ,Q �:4;6 p � P � p, τ � � F $ , then G is M -generic for
�
, H is

M � G � -generic for
,

QG, and M � F � � M � G ��� H � .
1
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Proof. First assume that F 2 ��- ,Q is M -generic and define G, H as above. To
see G is M -generic for

�
, let D 2 P be dense with D

�
M . Then E

�!" � p, τ � ��.- ,
Q : p

�
D $ is dense in

� - ,
Q [given � q, σ � ���.- ,Q, there is a p ) q with q

�
D.

Then � p, τ � ��� - ,Q as p �+� τ � ,Q � and also � p, τ � � E]. Let � p, τ � � E � F . Then
� p, � Q � � F and so p

�
D � G.

We check that H is a filter on Q
� ,

QG. Suppose x, y
�

H . Say x
�

τG, y
�

σG,
where � p, τ � � F , � q, σ � � F . Since F is a filter, let � r, π � ) � p, τ � , � q, σ � with
� r, π � � F . By definition of G, r

�
G. Also r �#� π ) τ � , so πG ) Q τG. Similarly,

πG ) Q σG. Also, πG

�
H by definition of H . Next suppose x

�
H and x ) y. Say

x
�

τG with � p, τ � � F . Let y
�

σG where σ
�

dom � ,Q � . Since τG ) Q σG (and since

G is generic by the above) there is a q
�

G with q � � τ ) σ 4 σ
� ,

Q � . Since F is a
filter, let � r, π � � F with � r, π � ) � p, τ � , � q, � Q � . Then r � � π ) τ � and r � τ ) σ

(as r ) q) so r � π ) σ. So, � r, π � ) � r, σ � . As F is a filter, � r, σ � � F . Thus, by
definition of H , y

�
σG

�
H .

We next show H is M � G � generic for
�;� ,

QG. Note that in M � G � , � is a partial
order. Let D 2 � be dense, where D

�
M � G � . Fix σ

�
M  with D

�
σG. Fix

also p0

� �
with p0 ��� σ is dense in

,
Q � . We must show that τG

�
D � H for some

τ
�

dom � ,Q � . Let E
�9" � p, τ � ���%- ,Q : p �9� τ � σ � $ . To see E is dense below

� p0, � Q � in
�%- ,

Q, let � q, ρ � ���%- ,Q with q ) p0. So, q � 6 x � x � σ 4 x ) ρ � .
Thus for some r ) q and π

�
dom � ,Q � we have r �8� π � σ 4 π ) ρ � (you can see

this by taking a generic containing q). Hence � r, π � ����- ,Q and in fact � r, π � � E.
By definition, � r, π � ) � q, ρ � . So E is dense below � p0, � Q � . Since � p0, � Q � � F , it
follows that F � E

���
. Let � p, τ � � E � F . Then p

�
G and also p � τ

�
σ. Hence

τG

�
σG

�
D. Also τG

�
H by definition of H .

We next show that F
�

G
-

H . If � p, τ � � F then � p, � Q � � F and so p
�

G.
By definition of H , τG

�
H . By definition of G

-
H , � p, τ � � G

-
H . Suppose now

� p, τ � � G
-

H . Thus, p
�

G and τG

�
H . By definition of G, � p, � Q � � F . By

definition of H , τG

�
πG where � q, π � � F . Let r

�
G with r � � τ � π � . Thus,

� r, � Q � � F . Since F is a filter, let � s, ρ � � F extend � p, � Q � , � q, π � , and � r, � Q � .
Since s � ρ ) π and s � π

�
τ , s � ρ ) τ . Thus, � s, ρ � ) � p, τ � , and since F is a

filter, it follows that � p, τ � � F .
Finally, it is clear that from F we may define G, and then define H , so M � G ���H � 2

M � F � . Since F
�

G
-
H , from G and H we may define F , so M � F � 2 M � G ��� H � .

Thus, M � F � � M � G � � H � .
This completes one direction of the theorem. For the other direction, assume

now G 2 � is M -generic and H 2 �;� ,
QG is M � G � -generic. Let F

�
G
-
H 2 � - ,Q.

As we showed already, F is a filter on
��- ,

Q. To see it is generic, let D 2 �7- ,Q
be dense, with D

�
M . We must find a � p, τ � � D with p

�
G and τG

�
H . Let

E 2 �	� ,
QG be defined by E

��"
τG : 6 p � G � p, τ � � D $ . Clearly E

�
M � G � . To

see E is dense in
�
, let σG

���
, where σ

�
dom � ,Q � . Let p �&� σ ��� � , p

�
G. Let

A
��"

q ) p : 6 ρ � dom � ,Q �:� � q, ρ � � D 4�� q, ρ � ) � p, σ ��� $ . Easily A is dense below p.

Let q
�

G � A. Let ρ
�

dom � ,Q � be such that � q, ρ � � D and � q, ρ � ) � p, σ � . Since
q
�

G and q � � ρ ) σ � , we have ρG ) σG. By definition of E, ρG

�
E. This shows

E is dense in
�
. Let τG

�
E � H . Then there is a p

�
G such that � p, τ � � D, and

we are done. �
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We next prove an important fact about preservation of κ-c.c. under finite itera-
tions.

Lemma 1.3. Let κ be a regular cardinal. Suppose
�

is κ-c.c., and � P �+�
,

Q is κ-

c.c. � . Then
��- ,

Q is κ-c.c.

Proof. Suppose � pα, τα � , α � κ is an antichain in
�.- ,

Q. If G is generic for
�

and

pα, pβ

�
G, then � τα � G and � τβ � G are incompatible in

,
QG. For if σG extended

them both, then we could get p
�

G with p � σ ) τα and p � σ ) τbeta. Since
G is a filter, we may assume p ) pα, pβ. But then � p, σ � ) � pα, τα � , p ) � pβ , τβ � ,
a contradiction. Since

,
QG is κ-c.c., it follows that

"
α : pα

�
G $ has size � κ. This

shows that D
� "

p
� �

: 6 β � κ p � �
α � pα

� ,
G � α � β̌ � $ is dense in

�
. Let

A 2 � be maximal subject to being an antichain and A 2 D. Since D is dense, A

is a maximal antichain of
�
. For p

�
A, let β � p ��� κ be as in the definition of D.

Since κ is regular and �A ��� κ, γ
�

supp � A β � p ��� κ. This is a contradiction, as we
can take a generic G containing some pα for α � γ (this generic must meet A). �

Lemma 1.3 does not say that the product of κ-c.c. partial orders is κ-c.c. In fact,
it is independent of ZFC whether the product of two c.c.c. partial orders is c.c.c. We
will see below that under Martin’s axiom and � CH, the product of two c.c.c. partial
orders is c.c.c. On the other hand, CH implies that that there are two c.c.c. partial
orders whose product is not c.c.c. Such an example is more easily constructed from
the existence of a Suslin tree. Suppose T is a Suslin tree. We view T as a partial
order by x ) y iff x 	 T y, i.e., by reversing the tree order. Clearly T is still c.c.c.
viewed as a partial order this way. However, the partial order T

�
T is not c.c.c.

To see this, first assume without loss of generality that T is pruned, and then that
T is splitting (by considering the subtree T � of T obtained by restricting to levels
αi, i � ω1, where every element of T at level αi has incompatible extensions at
level αi 
 1). So assume T is splitting. For each x

�
T , let l � x � , r � x � be incompatible

immediate extensions of x in T . Then
" � l � x � , r � x � � $ x � T forms an antichain in T

�
T .

In fact, the next lemma characterizes when a product of κ-c.c. partial orders is
κ-c.c.

Lemma 1.4. Let P , Q be partial orders. Then P
�

Q is κ-c.c. iff P is κ-c.c. and
� P �0� Q̌ is κ-c.c. � .
Proof. One direction is immediate from lemma 1.3. Suppose that � P � � Q̌ is κ-
c.c. � . Let p

�
P and τ

�
MP be such that p �+� � τ : κ̌ � Q̌ � 4 � α � β � κ � τ � α ��

τ � β ��� � . For α � κ let pα ) p and qα

�
Q be such that pα � τ � α � � qα. Let

A
� " � pα, qα � $ α � κ. We show that A is an antichain in P

�
Q. Fix α � β, and

suppose � r, q � ) � pα, qα � , � pβ , qβ � . Then r � τ � α � � qα and r � τ � β � � qβ , and
since r ) p it follows that r � qα � qβ , a contradiction. �

2. Intermediate Extensions

Suppose M is a transitive model of ZFC and M � G � is a generic extension of M .
Let N be a model of ZFC with M 2 N 2 M � G � . We show that we can “factor” the
extension through N , that is, get a two step iteration M 2 M � G1 � 2 M � G1 � � G2 � �
M � G � with M � G1 � � N . Also, if X

�
M � G � and X 2 M (e.g., X is a set of

ordinals), then there is a minimal transitive model M � X � of ZFC containing X ,
and thus we can write M � G � � M � G1 ��� G2 � � M �X ��� G2 � as a two-step iteration.
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First we show the following lemma which shows we can do the factoring in
the case where N

�
M � G1 � where G1 is M -generic for a partial order which is

completely embedded into
�
.

Definition 2.1. Let M be a transitive model of ZFC,
�
,
�

partial orders in M ,
and e :

� � � a complete embedding which lies in M . For G 2 � , let
���

G
� "

q
�

�
:
�
p
�

G � e � p � ‖ q � $ .
Lemma 2.2. Let M be a transitive model of ZFC,

�
,
�

partial orders in M , and
e :
� � �

a complete embedding in M . Let H 2 � be M -generic for
�
. Let

G
�

e � 1 � H � . Then G is M generic for
�
, H 2 ��� G and is M � G � -generic for

���
G.

Also, M � H � � M � G � � H � (here M � G ���H � refers to the extension of M � G � by forcing
with

���
G).

Proof. Since e :
� � �

is complete, G
�

e � 1 � H � is M -generic for
�
. Clearly

H 2 ��� G, since any q
�

H is compatible with e � p � for any p
�

G (since e � p � � H).
We show H is M � G � -generic for

���
G. Let D 2 ��� G, with D

�
M � G � , be dense in���

G. Fix τ
�

M  with D
�

τG. Let p0

�
G, p0 �0� τ is dense in Q̌

� ,
G � . Define

E
��"

q
� �

: 6 p �3� 6 q1

� � �1� p � q̌1

�
τ � 4 � q ) q1 ��4 � q ) e � p ��� � $ .

We claim that E is dense below e � p0 � . To see this, let q1 ) e � p0 � . Let p1

���
be

a reduction of q1. Then p1 � � q1

����� ,
G � [For let G � be generic for

�
containing

p1. Let p2

�
G � , and we show e � p2 � ‖ q1. Let p3

�
G with p3 ) p1, p2. Then

e � p3 � ) e � p2 � , and e � p3 � ‖ q1 since p1 is a reduction of q1 and p3 ) p1. Thus,
e � p2 � ‖ q1.] Since e � p1 � ‖ q1, e � p1 � ‖ e � p0 � , and thus p1 ‖ p0 (as e is complete). So

we may assume p1 ) p0. Also, p1 �&� τ is dense in
��� ,

G � . Thus we can get p2, q2

with p2 � � q̌2

�
τ 2 Q̌

� ,
G � and q2 ) q1. Since p2 �9� q̌2

�
Q̌
� ,
G � it follows that

e � p2 � ‖ q2. Let q ) e � p2 � , q2. Then q
�

E.
Let now q

�
E � H . Let p

�3�
and q1

� �
witness q

�
E. Since q ) e � p � , e � p � � H

and thus p
�

G. Also, q1

�
H . Since p

�
G and p � � q̌1

�
τ � , we have q1

�
D. So,

q1

�
H � D. This shows H is M � G � -generic for

���
G.

Finally, M � H � � M � G ���H � is immediate since G
�

M � H � . �

We now state precisely our theorem on intermediate extensions.

Theorem 2.3. Let M be a transitive model of ZFC,
�%�

M a partial order, and
let G 2 � be M -generic for

�
. Then if N is a transitive model of ZFC with

M 2 N 2 M � G � , then there is a two stage iteration partial order
�

1

- ,�
2 in M and

an M -generic G1

-
G2 for

�
1

- ,�
2 such that N

�
M � G1 � and M � G � � M � G1 ��� G2 � .

Also, if X
�

M � G � and X 2 M , then there is a smallest transitive model N of ZFC
containing M and X, and thus we have M 2 M � X � � M � G1 � 2 M � G1 ��� G2 � �
M � G � for some two stage forcing

�
1

- ,�
2 and generic G1

-
G2.

Remark 2.4. We need the hypothesis that X 2 M ; the result is not true for
arbitrary X

�
M � G � .

First consider the case where M 2 M � G � , where G is M -generic for
�

and
X
�

M � G � , X 2 ON. Let B be the completion of
�
, so B is a complete Boolean

algebra and M � G � � M � G � � where G � is M -generic for B. Thus, we may assume
that

�
is a complete Boolean algebra. Fix a τ

�
MB with X

�
τG. For α �

η
.�

sup � X � , define bα

�
Jα̌
�

τK. Let A 2 B be the complete subalgebra of B
generated by the bα. By this we mean A is the smallest subalgbra of B containing
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the bα and closed under the � and � operations of B (this easily exists). Let
H
�

G � A. The identity (inclusion) map i : A � B is a complete embedding,
and thus i � 1 � G � � G � A

�
H is M generic for A. In particular, M � H � is a

model of ZFC. We show that M �H � � M �X � . First, X
�

M �H � , since α
�

X iff
bα

�
G iff bα

�
H (since bα

�
A). Next we show any transitive model N of ZFC

which contains X must contain H , and this finishes. Now, the subalgebra A can
be constructed as follows. Let A0

��"
JbαK $ . At limit stages let Aβ

���
γ � β Aγ . At

successor steps, let Aβ 
 1

�
Aβ  "�� a : a

�
Aβ $  " � E : E 2 Aβ $ (here � refers

to the supremum operation of B; we continue this construction until Aβ

�
Aβ 
 1).

We show by induction on β that G � Aβ lies in N (more precisely, we are actually
giving a definition by transfinite recursion in N of the function γ � G � Aγ). For
β
�

0 we have JbαK
�

G iff α
�

X . Since X
�

N , this shows G � A0

�
N . For β

limit the inductive step is trivial. At successor steps we have
�

a
�

G iff a � G, and
� E

�
G iff G � E

� �
(recall that since B is a complete Boolean algebra, G is a

a generic ultrafilter on B). This gives a definition by transfinite recursion in N of
the function γ � G � Aγ , and shows in particular that G � Aγ

�
N for all γ. For

γ large enough this gives G � A
�

N . Thus, M �H � � M � X � . The same argument
just given also works if X 2 M (with X

�
M � G � ).

We next show that if N is any model of ZFC with M 2 N 2 M � G � then
N
�

M �H � for some generic extension M �H � of M . Let S
�
P � B � � N

�
PN � B � .

For any X
�

N , there is a set of ordinals A � X � � N which “codes” X in that X

lies in any transitive model of ZF containing A � X � . In particular, A � S � � N . By
the previous paragraph, M � A � S �1� exists and M � A � S � � � M �H � for some generic
extension M � H � of M . Fix now X

�
N . Let A � X � be the complete subalgebra of

B constucted above so that M � A � X � � � M � A � X � � G � (this actually depends on
the choice of name for A � X � , but this doesn’t matter). Since M � A � X � � 2 N , we
have A � X � � G

�
N . Thus, A � X � � G

�
S. This show X

�
M � S � � M � H � . Thus,

N 2 M � H � and so N
�

M �H � .
We have shown that if N is a model of ZFC with M 2 N 2 M � G � then N

�
M � H � is a generic extension of M , and if X

�
M � G � , X 2 M , then M � X � exists

and M �X � � M � H � is a generic extension. In both cases H is an M -generic for a
complete Boolean algebra which a complete subalgebra of B (where G is M generic
for B). Lemma 2.2 now finishes the proof of theorem 2.3.

3. General Iterations

We now extend the discussion from two step iterations to iterations of general
length. Definition 1.1 shows how to unravel a two-step iteration into a partial
order in the ground model. We will use the same definition for successor steps
in the general definition. That is, an iteration

�
α 
 1 of successor length will be

(isomorphic to) a partial order of the form
�

α

- ,
Qα where

�
α is an α length iteration

and
,

Qα

�
M is a

�
α name with � α �0�

,
Qα is a partial order � . There will actually be

a slight “notational” isomorphism involved. For example, an element of a three step
iteration would, by definition 1.1 iterated twice, be an element of the form � � x, y � , z � ,
whereas in our official definition we will take the elements to be sequences of length
3 (i.e., functions with domain 3).

The main question is what to do at limit ordinals, and there are a variety of
possibilities, all of which are useful in different arguments. Following Kunen we
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consider fairly general possibilites by allowing the “supports” of the conditions to
lie in a general ideal on α. The precise definition follows.

Definition 3.1. Let M be a transitive model of ZF, α an ordinal of M , and
I 2 P � α � an ideal on α (possibly improper, that is, I

�
P � α � ) which lies in M . An

α stage iterated forcing is a pair of sequences in M of the form � � β � β � α, � ,Qβ � β � α.

Each
�

β will be a partial order in M (with a maximal element �  β
), and

,
Qβ is a�

β name with �  β
�+� ,Qβ is a partial order with maximal element ���Qβ

� . Each
�

β

will consist of p
� � ργ � γ � β which are sequences of length β. The

�
β satisfy the

following inductive conditions.

(1)
�

0 is a partial order in M .

(2) p
� � ργ � γ � β 
 1

�3�
β 
 1 iff p

�
β
� �

β , ρβ

�
dom � ,Qβ � , and p

�
β �  β

� ρβ

� ,
Qβ � .

If p � � � ρ �γ � γ � β 
 1

� �
β 
 1 then p ) p � iff p

�
β )  β

p � � β and p �  β
� ρβ ) ρ �β � .

(3) For β limit, p
� � ργ � γ � β

���
β iff

�
γ � β p

�
γ
���

γ and the support of p is
in I, where the support of p is defined by supp � p � �#" γ � β : ργ

� � �Qγ
$ .

For p, p � �3� β , we have p ) p � iff �
γ � β � p � γ ) p � � γ �

We define �  β
to be the sequence ��� �Qγ

� γ � β.

The final α stage iteration
�

α is determined from the sequence of
�

β and
,

Qβ

for β � γ. We will thus frequently abbreviate the above definition by writing it as
� � β,

,
Qβ � β � α.

Definition 3.2. We say an iteration is of finite support if I is the ideal of finite sets,
of countable support if I is the ideal of countable sets (in M), and of full support if
I
�
P � α � .

Note that by properly choosing I it is possible to mix the various types of
iterations. For example, we might have an iteration of length ω � 3 where we alternate
finite and full supports. then I would be the ideal on ω � 3 of sets A such that A � ω

and A � � ω � 2, ω � 3 � are finite.
The next definition gives a natural embedding eβγ from

�
β to

�
γ when β ) γ )

α, and the following lemma shows this is a well-defined complete embedding. Thus,
a generic Gα for the α length iteration

�
α induces generics Gβ for all β � α.

Definition 3.3. Let � � β,
,

Qβ � β � α be an α length iteration in a transitive model M

of ZF. Define, in M , for β ) γ ) α the map eβγ :
�

β � � γ by eβγ � p � � q where
q
�
β
�

p and for β ) η � γ, q � η � � � �Qη
.

Lemma 3.4. Let � � β,
,

Qβ � β � α

�
M be an α length iteration. Then for any β )

γ ) α, the map eβγ is a well-defined one-to-one map from
�

β to
�

γ which is a
complete embedding.

Proof. Fix β � γ ) α (if β
�

γ the result is trivial). Let p
� � ρη � η � β

�	�
β,

and let q
�

eβγ � p � . Clearly q
�;�

γ since for any η � γ, q
�
η �9� � �Qη

� ,
Qη � (as

�  η
��� � �Qη

� ,
Qη � ). Clearly eβγ is one-to-one.

We check that eβγ is complete. It is trivial to check that if p ) p � then
eβγ � p � ) eβγ � p � � . Suppose now p �  β

p � , and we show eβγ � p � �  γ
eβγ � p � � . If

q ) eβγ � p � , eβγ � p � � , then q
�
β ) p, p � , so p ‖ p � . Thus, p � p � iff eβγ � p � � eβγ � p � � .

Suppose now q
� � ρη � η � γ

� �
γ . Let p

�
q
�
β
� �

β . We show that p is a reduction
of q for eβγ . Suppose p � � � ρ �η � η � β ) p. We must show that eβγ � p � � ‖ q. Define
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r by r
�
β
�

p � and r
� � γ � β � � q

� � γ � β � . Clearly r
�
β
� �

β . Since q
� �

γ , a
straightforward induction on η

� � γ � β � shows that r
�
η
� �

η and r
�
η ) q

�
η (for

example, for the successor step: since q
�
η �0� ρη

� ,
Qη � and r

�
η ) q

�
η by induction,

r
�
η �9� ρη

� ,
Qη � . Thus, r

� � η � 1 � �;� η 
 1 and trivially r
� � η � 1 � ) q

� � η � 1 � ).
Also, r ) eβγ � p � � since r

�
β
�

p � � β and for η 	 β, r
�
η � � ρη ) � �Qη

� . Thus,

r ) eβγ � p � , q. �

If � � β ,
,

Qβ � β � α

�
M is an α length iterated forcing, and G is M -generic for�

α, then for β ) α we will write G � β for the generic for
�

β induced by G (so
G
�

G � α). We also write G � β for G � β 
 1. We can also define for β � α the generic

Gβ 2 �
,

Qβ � G � β
. This is defined by Gβ

� "
p � β � G � β

: p
�

G � β $ . Now,
�

β 
 1 is

isomorphic to
�

β

- ,
Qβ. Under this isomorphism, G � β corresponds to G � β

-
Gβ [To

be explicit, the isomorphism π :
�

β 
 1 � � β

- ,
Qβ is given by π � p � � � π � β, π � β � � .]

From theorem 1.2 we have that Gβ is M � G � β � generic for � ,Qβ � G � β
.

Finite and countable support iterations are frequently used, and we consider
some of the properties preserved under such iterations. First we show that κ-c.c.
is preserved under finite support iterations.

Lemma 3.5. Suppose κ is a regular cardinal of M , and � � β,
,

Qβ � β � α is an α length

iteration using finite supports. Suppose for each β � α that �  β
��� ,Qβ is κ̌ c.c. � .

Then
�

α is κ-c.c. in M .

Proof. We show by induction on β ) α that
�

β is κ-c.c. in M . If
�

β is κ-c.c., then�
β 
 1 is κ-c.c. (in M) from lemma 1.3. Suppose now β is limit, and is least such

that
�

β is not κ-c.c. Let
"
pη $ η � κ be an antichain of

�
β . Let sη

�
supp � pη � . Thus,

sη 2 β is finite. We may assume the sη form a ∆-system (note that if β � κ this is
trivial) with root r 2 β. Let γ � β with γ � sup � r � . We claim that that pη

�
γ form

an antichain in
�

γ , a contradiction. To see this, let p
� � ρξ � ξ � β and q

� � σξ � ξ � β

be two elements of the antichain
"
pη $ η � κ. Suppose p

�
γ and q

�
γ were compatible,

say r ) p
�
γ, q
�
γ. Define r � by

r � � ξ � �


















r � ξ � if ξ � γ

� �Qξ
if ξ 	 γ 4 ξ � � supp � p �  supp � q ���

p � ξ � if ξ 	 γ 4 ξ
�

supp � p � � supp � q �
q � ξ � if ξ 	 γ 4 ξ

�
supp � q � � supp � p �

Since r ) p
�
γ, q
�
γ, a straightforward induction on ξ shows that r � � ξ �	� ξ and

r � � ξ ) p
�
ξ, q
�
ξ. Thus, r � ) p, q, a contradiction. �

Corollary 3.6. A finite support iteration of c.c.c. forcings is c.c.c.

We now consider iterations with countable support. We would like to show that a
countable support iteration of countably closed forcings (i.e., �  β

� ,
Qβ is countably

close � ) is countable closed, however, that is not true in complete generality. It is

true, however, if we choose the names
,

Qβ for the partial orders in a reasonable
manner which, we will see, imposes no loss of generality.

Definition 3.7. Let M be a transitive model of ZF,
�

be a partial order, and
π
�

M  . We say π is full if π
�

dom � π � �%" �  $ and for all p
�7�

and τ
�

M  , if
p �0� τ � π � then there is a σ

�
dom � π � such that p �0� τ � σ � .
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If �  �(� π is a partial order � , then we say π is ω-full is whenever p
�%�

, σn

�
dom � π � and p �#� σn

�
π 4 σn 
 1 ) σn � for all n, then there is a σ

�
dom � π � such

that p ��� σ ) σn � for all n.

The next lemma shows that there is no loss of generality is using full names for
sets.

Lemma 3.8. Let M be a transitive model of ZFC and π
�

M  . Assume �  ��� π
�

� � . Then there is a full name π � such that �  �0� π
�

π � � .
Proof. Let π � be the set of all ���  , σ � where σ

�
P � �.� dom2 � π ��� and �  � � σ

�
π � ,

where x
�

dom2 � π � iff 6 τ � dom � π � � x � dom � τ ��� . Clearly π � � M  and is of the
desired form. It is also clear that �*�0� π � 2 π � [for any generic G, π �G 2 πG since if
x
�

π �G, then x
�

σG for some σ such that �*�0� σ � π � ]. To show � �0� π 2 π � � and
to show fullness it suffices to show that for any p

� �
and ρ

�
M  , if p �0� ρ � π � then

for some σ
�

dom � π � � we have p �&� ρ � σ � . Let p, ρ be as above, so p �&� ρ � π � .
Let A 2 � be maximal subject to being an antichain and for all q

�
A either q ) p

and for some πq

�
dom � π � , q �!� ρ � πq � or q � p and for some πq

�
dom � π � we

have q � � πq

�
π � . Clearly A is a maximal antichain of

�
. For each q

�
A we will

define a name π̃q , and then we will take σ to be the union of all the π̃q . Fix q
�

A

and the corresponding πq

�
dom � π � . Let π̃q

� " � r, u � : 6 � s, u � � πq � r ) q, s � $ . Let
σ
� �

q � A π̃q . We must show that � �0� σ � π � and p ��� σ � ρ � . First, since A is an

antichain, for any q
�

A we have q �0� σ � π̃q � . We also have q ��� π̃q

�
πq � [Let G

be generic containing q. If x
� � π̃q � G, then x

�
uG for some � r, u � � π̃G, r

�
G, with

say r ) s and � s, u � � πq . Thus x
�

uG

� � πq � G. If x
� � πq � G, then x

�
uG for some

� s, u � � πq , where s
�

G. Let r ) q, s. Then � r, u � � π̃q . Hence x
�

uG

� � π̃q � G.]
So, q �0� σ � πq � . Since A is a maximal antichain, this gives �*��� σ � π � .

Next we show p � � ρ � σ � . For any q
�

A with q ) p we have q � � σ � πq � as
above. But also, q �&� ρ � πq � by definition of A and πq . So, q �8� ρ � σ � for all
q
�

A with q ) p. Thus, p �0� ρ � σ � . �

The previous lemma shows that there is no loss generality in using full names for
non-empty sets, in particular for the partial orders in an iterated forcing. The next
lemma shows that if we do this, and if the partial orders are forced to be countably
closed, then ω fullness condition is satisfied.

Lemma 3.9. Suppose M is a transitive model of ZFC,
� �

M , π
�

M  is a full
name for a non-empty set and �  ��� π is a countably closed partial order � . Then
π is ω-full for

�
.

Proof. Let p
���

and suppose p � � σn 
 1 ) σn � for all n. We follow the argument
of the previous lemma. Let A 2 � be maximal subject to being an antichain and
for all q

�
A either q ) p and there is a πq

�
dom � π � such that q � � � n πq ) σn � , or

q � p and for some πq

�
dom � π � we have q � � πq

�
π � . Using the fact that � � � π

is countably closed � it follows that A is a maximal antichain of
�
. For each q

�
A

we construct π̃q as in the previous lemma, and then let σ
� �

q � A π̃q as before.

Exactly as before, for q
�

A, q � � σ � πq � , and thus �;� � σ � π � . Also, for all
q
�

A with q ) p we have q �+� � n πq ) σn � . Thus, p �+� � n σ ) σn � . By fullness,
since p �8� σ � π � , we have that for some σ � � dom � π � that p �&� σ � σ � � . Hence,
p �0� � n σ � ) σn � . �
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Thus, in iterating countably closed forcings, there is no harm in assuming the ω

fullness condition is satisfied. This next theorem shows that for countable support
iterations, this is enough to guarantee the iteration is countably closed.

Theorem 3.10. Let M be a transitive model of ZFC, and � � β,
,

Qβ � β � α

�
M is an

α length iteration with countable supports. Suppose for each β � α that �  β
��� ,Qβ

is countably closed � , and that
,

Qβ is ω-full for
�

β. Then
�

α is countably closed.

Proof. Work in M , and suppose pn
� � ρn

β � �%� α are such that pn 
 1 ) pn for all

n
�

ω. We define p
� � ρβ � � � α with p ) pn for all n. Let Sn

�
supp � pn � ,

and S
� �

n Sn. So, S 2 α is countable. We define ρβ by induction on β. Let
ρ0

���
0 extend all of the ρn

0 , which we can do as
�

0 is countably closed. If β � α

is limit, let p
�
β
� �

γ � β p
�
γ. Assume now p

�
β is defined and p

�
β ) pn

�
β for all

n. If β � S, let ρβ

� � �Qβ
. Clearly in this case p

� � β � 1 � ) pn
� � β � 1 � for all n.

Suppose now β
�

S. For each n we have pn 
 1
�
β ) pn

�
β and pn 
 1

�
β �!� ρn 
 1

β )
ρn

β � . So, p
�
β � �

n � ρn 
 1

β ) ρn
β � . By ω-fullness there is a ρβ

�
dom � ,Qβ � such

that p
�
β � �

n � ρβ ) ρn
β � . This defines ρβ

�
p � β � , and thus p

� � β � 1 � . Clearly

p
� � β � 1 � ) pn

� � β � 1 � for all n. This defines p. By construction supp � p � 2 S, so
p
�3�

α. Also, p ) pn for all n. �

4. Martin’s Axiom

We introduce Martin’s axioms and use an iteration of finite support c.c.c. forcings
to show it is consistent (with � CH).

Definition 4.1. Let κ be an infinite cardinal. MA � κ � is the statement: if
�

is a
c.c.c. partial order and

"
Dα $ α � κ is a κ size family of dense subsets of

�
, then there

is a filter G 2 � such that G � Dα
� �

for all α � κ. MA is the statement that�
κ � 2ω MA � κ � .
The following simple lemma is important for the proof.

Lemma 4.2. MA � κ � is equivalent to the statement that for any c.c.c. partial order��� � κ, ) � on κ, and any collection
"
Dα $ α � κ of dense subsets of

�
, there is a filter

G 2 κ meeting all of the Dα.

Proof. Let
� � � Q, ) Q � be a c.c.c. partial order. Let P 2 Q with �P � � κ and P

sufficiently closed. Specifically, we require:

(1) For all p
�

P and all α � κ, there is a q
�

Dα with q ) p.
(2) If p, q

�
P are compatible in

�
, then for some r

�
P we have r ) p, q.

Let
��� � P, )  � where ) 

� )�� � � P � P � . Let Eα

�
Dα
� P for α � κ. Thus, Eα

is dense in
�
. Note that

�
is still c.c.c. by 2 (an antichain of

�
is also an antichain

of
�
). Suppose G 2 P and G � Eα

� �
for all α � κ. Let H 2 Q be the filter on�

generated by G (i.e., H
�+"

q
�

Q : 6 r � G � r ) q � $ ). Then H � Dα
� �

for all
α � κ. �

The following technical lemma will also be used.

Lemma 4.3. Let M be a transitive model of ZF,
�
,
�

partial orders in M , and
e :
� � � a complete embedding in M . Let H 2 Q and G

�
e � 1 � H � . For σ

�
M 

we define e � � σ � � M � inductively by e � � σ � � " � e � � ρ � , e � p � � : � ρ, p � � σ $ . Then for all
σ
�

M  we have σG

� � e �1� σ ��� H .
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Proof. By induction on σ. We have

e � � σ ��� H � " e � � ρ � H : 6�� ρ, p � � σ � e � p � � H � $��"
ρG : 6�� ρ, p � � σ � e � p � � H � $��"
ρG : 6�� ρ, p � � σ � p � G � $�

σG

�

We are now ready to show the consistency of Martin’s axiom.

Theorem 4.4. Let M be a transitive model of ZFC and κ a regular cardinal of
M with � 2 � κ

�
κ � M . Then there is a c.c.c. partial order

���
M such that if G is

M -generic for
�

then M � G � satisfies MA � 2ω
�

κ. In particular (since
�

preserves
cardinals), CON � ZFC � � CON � ZFC � MA � � CH � .
Proof. We construct

�
as a κ length iteration of c.c.c. forcings with finite support.

It will then follow from lemma 3.5 that
�

is c.c.c.. Thus
�

will preserve all cardinals
and cofinalities. In particular, κ will be a regular cardinal of M � G � . Each stage

�
α

(for α � κ) of the iteration will have size � κ in M . The idea is to arrange so that
the iteration eventually forces with all possible

�
α names for c.c.c. partial orders

on some λ � κ, for all α � κ.
Fix in M a bijection b : κ � κ

�
κ with b � 1 increasing in each argument (so if

b � α � � � β, γ � then β, γ ) α). As we define
�

β (for β � κ) we simultaneously fix an

enumeration
" ,
Q

γ
β $ γ � κ of the the

�
α nice names for a partial order on some λγ � κ,

that is, nice names such that such that

�  β
�0� ,Qγ

β is a c.c.c. partial order � .
Assuming inductively that � � β ��� κ and

�
β is c.c.c., we can do this as there at most

� λ � κ � � � α � ω � λ � κ many such names (this cardinality computed in M ; we are also
implicitly using AC in M).

We now give the inductive definition of the
,

Qα, and hence of the iteration (again,
the iteration will be of finite support). Suppose for β ) α that

�
β is defined, is c.c.c.

in M , and � � β � � κ. Let b � α � � � β, γ � . Let
,

Qα

�
e �βα �

,
Q

γ
β � , where eβα :

�
β � � α

is the canonical embedding and e �βα is as in lemma 4.3. From lemma 4.3 we have

that �  α
� � ,Qα is c.c.c. � . Clearly

�
α 
 1 satisfies our inductive hypotheses (note

that in M we have �
,

Qα � ) λγ � � � β ��� κ). The inductive hypotheses are satisfied at
limit α from lemma 3.5 (which show

�
α is c.c.c.), and the finite support condition

(which gives that � � α � � � β � α �
�

β ��� κ by induction, as κ is regular).
Let G be M -generic for

�!� �
κ. We claim that if λ � κ and x 2 λ with

x
�

M � G � , then for some α � κ we have x
�

M � G � α � . To see this, let σ
�

M 
be a nice name for x. Clearly � σ � � κ. As κ is regular, there is an α � κ and a
σ � � M  α such that e �ακ � σ � � � σ. From lemma 4.3 we have that x

�
σG

� � σ � � G � α
.

So x
�

M � G � α � .
In particular, every x

�
P � ω � � M � G � lies in some M � G � α � . Thus there are

at most � α � κ � � � α � ω � ω � κ (this computation done in M) many reals in M � G � .
Thus, � 2ω ) κ � M �

G � . Since cofinally often we force with the Cohen partial order,

we clearly have � 2ω 	 κ � M �
G � . Hence � 2ω � κ � M �

G � .
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To show M � G � satisfies MA, it is enough to consider by lemma 4.2 a partial
order in M � G � of the form R

� � λ, ) R � , where λ � κ. Fix dense sets
"
Dδ $ δ � µ

where µ � κ.
From the claim above, fix β � κ such that R

�
M � G � β � and

"
Dδ $ δ � µ

�
M � G � β � .

Let σ
�

M  β be a nice
�

β name for R. We may assume that �  β
��� σ is a c.c.c.

partial order � [Let p
�3�

β , p � � σ is a c.c.c. partial order � . Let A 2 � β be a maxiaml
antichain containing p. Fix a partial order T in M . Let πp

�
σ, and for q

�
A,

q
�

p let πq

�
Ť . From A and the πq we construct a name σ � as in lemma 3.8 such

that p �!� σ � � σ � and �  β �!� σ � is a c.c.c. partial order � . We may assume then

that σ � is a nice name.] Let γ � κ be such that σ � � ,
Q

γ
β, and let α be such that

b � α � � � β, γ � . Then
,

Qα

�
e �βα � σ � � . From lemma 4.3 we have � ,Qα � G � α

�
σG � β

�
R.

From theorem 1.2, M � G � α � contains an M � G � α � -generic for R. This generic meets
all the dense sets Dδ, δ � µ, since they lie in M � G � β � 2 M � G � α � . Thus in M � G �
there is a filter meeting all of the dense sets Dδ. �


