
Vκ, Hκ, and HOD

Recall that working in ZF (in fact, ZF � Power) we have previously defined Vα

for all α
�

ON. Recall that Vα consists of all sets of rank � α (remember Vα is a
set). The next lemma shows what axioms of set theory hold in these sets.

Lemma 0.1. Assume ZF. Then for any limit ordinal α � ω, Vα
�

ZF � Replacement.
Assuming ZFC, for any limit ordinal α � ω, Vα

�
ZFC � Replacement.

Proof. The empty set axiom holds in Vα as � � Vα and the statement φ � x �	�
�� y � x is ∆0 so absolute. If x, y
�
Vα then  x, y � in Vα as α is a limit. Since

the statement φ � x, y, z ����� x � z � y � z ��� w � z � w � x � w � y ��� is ∆0, hence
absolute, it follows that Vα

�
pairing. The union axiom is similar. By downwards

absoluteness, foundation holds in any class (since we assuming foundation holds in
V ), so it holds in Vα. Since α � ω, ω

�
Vα. As the statement φ � x ��� “x � ω” is

absolute, Vα
�

infinity. Extensionality holds in Vα as Vα is transitive. If x
�
Vα,

then P � x � � Vα as α is a limit. The statement φ � x, y ����� y � P � x ��� , written out,
is Π1 and hence downwards absolute. Since v

�
φ � x,P � x � , it follows that Vα

�
φ � x,P � x ��� . Hence Vα

�
Power set. To see comprehension, let φ � x1, . . . , xn, y, z �

be a formula and let a1, . . . , an, b
�
Vα. By comprehension in V applied to the

formula φVα � ~x, y, z � (which has the extra parameter Vα in it) there is set w such
that � z � z � w � z

�
b � φVα � ~a, b, z ��� . Since b

�
Vα, we also have w

�
Vα. Hence

Vα
� � w � z � z � w � z

�
b � φ � ~a, b, z ��� , and so Vα

�
Comprehension. Finally,

suppose AC holds in V . Let a
�
Vα. By AC in V , let � be a wellordering of a. Since

� � PPP � a � and α is limit, � � Vα. The statement φ � x, y ��� � y is a wellordering
ofx � is Π1, and since it holds in V it holds in Vα. Thus, Vα

�
AC. �

Thus, in ZF we can prove that there are set models for all of ZF except replace-
ment. More precisely, for any formulas φ of ZF � Replacement, ZF !"� α � α � ω � α
limit # φVα � .
Corollary 0.2. ZF � Replacement $ ZF.

Proof. Replacement clearly does not hold in Vω % 2. Let φ be an instance of replace-
ment so that ZF !&� 
 φ � Vω ' 2 . If ZF � Replacement ! ZF, then there would be
finitely many axioms  ψ1, . . . , ψn � of ZF � Replacement such that  ψ1, . . . , ψn �(! φ.

But, ZF ! ψVω ' 2
1
�*)+)+),� ψVω ' 2

n , and so ZF ! φVω ' 2 , a contradiction. �

In the proof of corollary 0.2 we have implicitly assumed the consistency of ZF,
though we could get by just assuming the consistency of ZF � Replacement.

Exercise 1. Just assuming the consistency of ZF � Replacement, show that ZF � Replacement
$ ZF. (hint: let φ be the instance of replacement which gives the existence of ω ) 2.
If ZF � Replacement $ φ, we’re done, so assume ZF � Replacement ! φ. Now follow
the above prove for this φ.)

Exercise 2. Let ψ1, . . . , ψn � be axioms of ZF. Show that ZF � Replacement -� ψ1, . . . , ψn �($
ZF. (hint: Working in ZF, show that there is a least limit ordinal α � ω such that
Vα
�
ψ1 �*).)+),� ψn. Argue then that there must be a smaller limit ordinal β � α

such that Vβ
�
ψ1 �*)+).)/� ψn.)

We now define another family of sets called the Hκ. If P is any property, we say
set x hereditarily has property P if every element of the transitive closure of x has
property P .
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Definition 0.3. (ZFC) Let κ be an infinite regular cardinal. Hκ is the collection of
sets which hereditarily have size less than κ, that is, every element of the transitive
closure of x has cardinality � κ.

We first give a simple reformulation of the definition.

Lemma 0.4. For all sets x, x
�
Hκ iff � tr cl � x ��� � κ.

Proof. Clearly if � tr cl � x ��� � κ then x
�
Hκ. Suppose now x

�
Hκ. Recall cln � x �

is defined by: cl0 � x ��� x, cln � 1 � x ��� cln � x � - � - cln � x ��� . If we assume inductively
that � cln � x ��� � κ, then cln � 1 � x � is a � κ union of sets each of which has size � κ
by definition of Hκ. Since κ is regular, it follows that � cln � 1 � x ��� � κ. Finally,
tr cl � x � ��� n cln � x � and using the regularity of κ again we have � tr cl � x ��� � κ. �

The definition of Hκ shows it is a class, but we now show that is in fact a set.

Lemma 0.5. For all infinite regular cardinals κ, Hκ � Vκ.

Proof. Suppose x � Vκ, so � x �	� κ. We know from lemma ?? that for every α �
� x � ,
there is a y

�
tr cl � x � such that � y � � α. This clearly forces � tr cl � x ����� κ, so

x � Hκ. �

One could give another proof of lemma 0.5 as follows. Let x
�
Hκ. Using

AC, let λ � κ be the cardinality of tr cl � x � , and let f : λ #  x � - tr cl � x � be
a bijection. Define the relation E on λ by αEβ iff f � α � � f � β � . Thus, � λ,E �
“codes” the set  x �(- tr cl � x � . Clearly λ,E

�
Vκ. Let π be the collapse map for

� λ,E � . We show by induction on E that for all α
�
λ that π � α � � Vκ. We have

π � α ���  π � β � : β � λ � βEα � . By induction, each π � β � in the above expression is
in Vκ, so π � α � � Vκ. Since κ is regular and λ � κ, π � α � � Vγ for some γ � κ, and
hence π � α � � Vγ � 1 � Vκ. In particular, x

�
Vκ.

Note that if x � Hκ, then to show x
�
Hκ it is enough to show that � x � � κ.

Also, since each ordinal is transitive, clearly Hκ � ON � κ.
The next lemma shows that ZFC � Power holds in the Hκ.

Lemma 0.6. (ZFC) For every axiom φ of ZFC � Power, ZFC !"� κ � κ regular #
φHκ � .
Proof. We work in ZFC. Let κ be an infinite regular cardinal. We show that all
the axioms of ZFC except power hold in Hκ. Note for the following arguments that
by definition Hκ is transitive. Foundation holds in Hκ as it holds in any set or
class. Clearly, � � Hκ, and by absoluteness then Hκ satisfies the emptyset axiom.
If x, y

�
Hκ, then �  x, y �� � ω � κ, so  x, y � � Hκ. By absoluteness, Hκ satisfies

the pairing axiom. If x
�
Hκ then - x � tr cl � x � , so tr cl � - x � � tr cl � x � , ansd so

� tr cl � - � x � ������� tr cl � x ��� � κ. Thus, - � x � � Hκ. By absoluteness, Hκ satisfies the
union axiom. Since κ � ω, ω

�
Hκ as we noted above. By absoluteness, Hκ satisfies

the infinity axiom. Since Hκ is transitive, it satisfies extensionality (if x � y are in
Hκ, then there is a z

�
x, say, with z � y. By transitivity, z

�
Hκ).

To show comprehension, let φ � x1, . . . , xn, y, z � be a formula, and let a1, . . . , an, w
�

Hκ. We must show that � v � Hκ � y � Hκ � y � v � � y � w � φHκ � ~a, y, w � ��� . By
comprehension in V applied to the formula φHκ � ~x, y, z � , there is a v

�
V such

that � y � y � v � � y � w � φHκ � ~a, y, w ����� . In particular, � y � Hκ � y � v �
� y � w � φHκ � ~a, y, w ��� � . Thus, it suffices to observe that v

�
Hκ, which follows as

v � w
�
Hκ (any subset of an element of Hκ is in Hκ).
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To show replacement, let φ � x1, . . . , xn, y, z, w � be a formula, a1, . . . , an, A
�
Hκ,

and assume � � y � A � z φ � ~a, y, z, A ��� Hκ . Thus, � y � A � z � Hκ φHκ � ~a, y, z, A � .
Applying replacement in V to the formula � φHκ � z � Hκ � , there is a set B such
that � y � A � z � B � � Hκ φ

Hκ � ~a, y, z, A � . By AC, there is a B � � B with �B � � � �A �
such that � y � A � z � B � � � Hκ φHκ � ~a, y, z, A � . Since B � � Hκ and �B � � � κ, we
have B � � Hκ. Thus, � � B � y � A � z � B φ � ~a, y, z, A ��� Hκ .

Finally, to see AC holds in Hκ, let a
�
Hκ. By AC in V , let � be a wellordering

of a. Since � � a
�
a, � � � � κ. Easily � � Hκ, as every ordered pair

�
x, y � is in

Hκ if x, y
�
Hκ. So, � � Hκ, and hence � � Hκ. By downwarda absoluteness, � � is

a wellordering � Hκ . �

Corollary 0.7. ZFC � Power $ Power.

Proof. Similar to the proof of corollary 0.2, using now the fact that ZFC ! � 
 Power � Hω1 .
�

Lemmas 0.1, 0.6 are stated and proved in the metatheory, however me may
formalize their statements and proofs within ZFC. Lemma 0.6, for example, then
becomes the statement ZF !"� α � n � � α � ω limit � θ � n � # ρ � n, Vα ��� � where θ is the
formula which represents the relationR � n � � n codes an axiom of ZF � Replacement.
[The only thing slightly problematic in the formalizations is where we consider the
relativizations φVκ , φHκ . But lemma ?? gives us a formula ρ which expresses the
formalizations of these notions, e.g., the formalization of � θn � Vκ is the statement
ρ � n, Vκ � .]

Here ρ is the set satisfaction formula of lemma ??. Likewise, lemma 0.6 when for-
mailzed becomes the statement ZFC ! � κ � n ��� κ an uncountable regular cardinal � �
θ ��� n � # ρ � n,Hκ � ��� , where now θ � representsR � � n � � n codes an axiom of ZF � Power.

The completeness theorem of first order logic may also be formailzed within
ZFC (or ZF for countable theories, which we consider here). It then becomes the
statement that ZF ! � T � ω � CON � T ��� � M � n � T ρ � n,M � � . Using this, we
may reformulate the formalzed lemmas 0.1, 0.6 as consistency results as follows.

Corollary 0.8. ZFC ! CON � ZFC � Replacement � .
Corollary 0.9. ZFC ! CON � ZFC � Power � .

From Gödel’s theorem, we know that ZFC $ CON � ZFC � , but these corollaries
show that if we weaken ZFC a bit, we can prove its formal consistency within ZFC.

We showed that Hκ � Vκ for all infinite regular κ. When does equality hold?
Now Vκ � Hκ iff � α � κ � Vα

�
Hκ � (since if Vα

�
Hκ then any subset of Vα is in

Hκ). Since each Vα is transitive, this is then equivalent to � α � κ � � Vα �/� κ � . By
definition of the i function, � Vω � α � � i � α � . So, Vκ � Hκ iff � α � κ i � α � � κ.
Now i � α � � α, so i � α � 1 � � 2 � α � for all α. Thus, for Vκ to equal Hκ we must have
� λ � κ 2λ � κ. Since κ is assumed regular, we must then have that κ is strongly
inaccessible. Conversely, if κ is strongly inaccessible, the following exercise shows
this condition is satisfied.

Exercise 3. Show that if κ is strongly inaccessible then � α � κ � i � α � � κ � .
We thus have:

Fact 0.10. For all infinite regular cardinals κ, Hκ � Vκ iff κ is strongly inaccessible.

Corollary 0.11. ZFC $ � κ � κ is strongly inaccessible � .
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Proof. If ZFC ! � κ � κ is strongly inaccessible � , then from the formalized lem-
mas 0.6, 0.1 we would have ZFC ! � κ � n � θ � n � # ρ � n,Hκ ��� where θ represents
R � n � � θn

�
ZFC, and ρ again is the set satisfaction formula. By the formal-

ized completeness theorem, this would give ZFC ! CON � ZFC � , a contradiction to
Gödel’s theorem. �

Note that the proof of corollary 0.11 actually showed the following.

Corollary 0.12. ZFC � � κ � κ is strongly inaccessible � ! CON � ZFC � .
We sometimes state corollary 0.12 by saying that ZFC � � κ � κ is strongly inaccessible �

has a greater consistency strength that ZFC.

Exercise 4. Show corollary 0.11 without using Gödel’s theorem. [Hint: Suppose
ZFC ! � κ � κ is strongly inaccessible � , and let ψ1, . . . , ψn be a finite fragment of
ZFC such that  ψ1, . . . , ψn �(! � κ � κ is strongly inaccessible � . Working in ZFC, let
κ be the least strongly inaccessible cardinal. Use lemmas 0.6, 0.1 and an absolute-
ness argument to show that there is a strongly inaccessible λ � κ.]
Vκ and Hκ are sets which we showed satisfy certain fragments of ZFC. We now

consider a certain class, HOD, which we show (assuming ZFC) satisfies all of ZFC.
In fact, HOD will be a transitive class containing all of the ordinals, a so-called
inner model of ZFC.

We would like to say a set x is ordinal-definable if there is a formula φ � x1, . . . , xn, y �
and ordinals α1, . . . , αn such that x is the unique set x such that φ � α1, . . . , αn, y � .
We would then define HOD to be the sets which are hereditarily ordinal defin-
able. The problem with this is that this definition, at least the way it is stated,
is not a legitimate formula of set theory, i.e., doesn’t really seem to define a
class. The problem, as we mentioned before, is that we cannot define formual
satisfaction over classes, only over sets. However, the reflection theorem pro-
vides a way to circumvent this logical problem. For any formula φ and ordinals
α1, . . . , αn, the reflection theorem says that there is a β � max  α1, . . . , αn � such
that � y � Vβ � φ � ~α, y � Vβ � φ � ~α, y ��� . Thus, there should be no loss of generality in
interpreting our formulas in the Vβ . This suggests the following definition.

Definition 0.13. OD is the class defined by:

x
�

OD � � β � ON � α1, . . . , αn � β � n � ω � y � Vβ ��� y � x � � ρ � n, �
~α, y � , Vβ ���

where ρ is the formula for set satisfaction from lemma ??. Also,

x
�

HOD � � y � tr cl � x ��� y � OD � .
Note that the quantification over α1, . . . , αn should really be expressed as a

quantification over sets z � �
α1, . . . , αn � coding the sequence.

Our remarks above concerning the reflection theorem now easily give the follow-
ing.

Lemma 0.14. Let φ � x1, . . . , xn, y � be a formula of set theory. Then

ZF ! � α1, . . . , αn
�

ON � x � � y � y � x � φ � ~α, y � � # y
�

OD � .
By definition HOD is transitive, and it trivially contains all of the ordinals. The

next theorem shows that working in ZF we can show that HOD satisfies ZFC. We
will need th following ordring on the finite sequences of ordinals.
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Definition 0.15. The Gödel ordering � G on ON � ω is defined by:�
α1, . . . , αn ��� G

�
β1, . . . , βm � � max  α1, . . . , αn �(� max  β1, . . . , βm �

� � max  α1, . . . , αn �(� max  β1, . . . , βm �(� n � m �
� � max  α1, . . . , αn �(� max  β1, . . . , βm �(� n � m � ~α � lex

~β � ,
where � lex denotes lexicographic order.

The following lemma is clear from the definition.

Lemma 0.16. The Gödel ordering is a class wellordering of ON � ω, all of whose
initial segments are sets.

Theorem 0.17. For all axioms φ of ZFC, ZF ! φHOD.

Proof. Foundation holds in HOD, as it holds in any class with the ε relation. Exten-
sionality holds as HOD is transitive. Consider pairing. Let x, y

�
HOD. Fix n

�
ω,

α1, . . . , αn
�

ON, and β1

�
ON such that � z � Vβ � � z � x ��� ρ � n, �

~α, y � , Vβ � ,and
similarly let m, γ1, . . . , γk, β2 witness y

�
HOD. Then,

z
�  x, y � � � w � w � Vβ1

� ρ � n, �
~α, z � , w ��� � � w � w � Vβ2

� ρ � m, �
~γ, z � , w ���

The righthand is a formula in set theory with ordinal parameters n, m, ~α, ~γ, β1,
β2. Thus,  x, y � � OD. Since  x, y � � HOD, we have  x, y � � HOD.

Infinity holds in HOD by absoluteness, since ω
�

HOD (HOD contains all the
ordinals).

Consider the union axiom. Let x
�

HOD, and fix witnesses n, ~α, β. Then

z
� - x � � w � y � w � Vβ � y � w � ρ � n,

�
~α, y � , w � � � u � y � z � u ��� .

Again, the righthand side is a formula with ordinal parameters n, ~α, β, and so
- x � OD. Since - x � tr cl � x � � HOD, this shows - x � HOD. By absoluteness,
HOD satisfies the union axiom.

To show comprehension, let φ � x1, . . . , xn, y, z � be a formula, and a1, . . . , an, A
�

HOD. We must show that B
�

HOD, where

B �  z � A : φHOD � a1, . . . , an, A, z � � .
Note that B exists in V by comprehension in V . Then,

x � B � � z � z � B � � u1, . . . un
� v � u1 � a1 �*)+)+),� un � an � v � A

� φHOD � u1, . . . , un, v, z � ��� ,
where in place of “u1 � a1” we use a formula with only ordinal parameters (the
witnesses for a1

�
HOD) and likewise for the other ai and A. This shows B

�
OD, and since B � HOD we have B

�
HOD. Clearly, � � z � z � B � z

�
A �

φ � a1, . . . , an, A, z ��� � HOD, and so HOD satisfies comprehension.
To show power set, let x

�
HOD. Let α

�
ON be large enough so that P � x � � Vα.

Note that Vα
�

OD (it is definable from α). Since HOD is a class, y � Vα � HOD
�

OD as well, and so y
�

HOD. Clearly � � z � z � x # z
�
y � HOD, so HOD satisfies

power set.
To show replacement, let φ � x1, . . . , xn, y, z, w � be a formula, a1, . . . , an, A

�
HOD, and assume � � y � A � z φ � ~a, y, z, A ��� HOD. Let α

�
ON be such that

� y � A � z � Vα φ � ~a, y, z, A � � HOD. As Vα
�

OD, B � Vα � HOD
�

HOD. Then
� � y � A � z � B φ � ~a, y, z, A ��� HOD.
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Finally, to show AC holds in HOD, let x
�

HOD. Every y
�
x is in HOD and

has a witness sequence n, ~α, β. To compare two elements y, z of x, we take the � G

least witnesses for y and z, and compare them in the � G ordering. In more detail,
define a wellordering of x by:

y � z � y
�
x � z � x � � n � ω � �

~α � � ON � ω � β1

�
ON

� m � ω � �
~γ � � ON � ω � β2

�
ON

� � u � u � y � � w � w � Vβ1
� ρ � n, �

~α, u � , w � ���
� � �

n � , ~α � , β �
1 ��� G

�
n, ~α, β1 � 
 � u � u � y � � w � w � Vβ

�

1
� ρ � n � , �

~α � , u � , w �������
� � � u � u � z � � w � w � Vβ2

� ρ � m, �
~γ, u � , w ��� �

� � �
m � , ~γ � , β �

2 ��� G

�
m,~γ, β2 � 
 � u � u � z � � w � w � Vβ

�

2
� ρ � m � , �

~γ � , u � , w ��� ���
� �
n, ~α, β1 ��� G

�
m,~γ, β2 �

Here for “y
�
x” we substitute an appropriate formula with only ordinal parameters,

and likewise for z
�
x.

Easily � is a wellordering, and the above formula shows � � OD. Since � �
HOD, we have � � HOD, and by downwards absoluteness ��� is a wellordering of
x � HOD. �

Corollary 0.18. If ZF is consistent, then so is ZFC.

Proof. Suppose ZF is consistent, but ZFC is not. Then ZF ! 
 AC. Let ψ1, . . . , ψn

be finitely many axioms of ZF such that  ψ1, . . . , ψn �(! 
 AC. From theorem 0.17,

ZF ! ψHOD
1 �")+).) � ψHOD

n . Hence, ZF ! � 
 AC � HOD. But, ZF ! ACHOD from
theorem 0.17, a contraction to the consistency of ZF. �

Thus, the axiom of choice cannot introduce a contradiction into mathematics,
unless one was already present. This is a significant statement in view of the many
“pathological” sets that may be constructed with AC. For eaxample, with AC a
standard construction gives a non-measurable set of reals, and it can be shown that
AC is necessary for the construction (more on this later).

Finally, we note that although corollary 0.18 was proved in the meta-theory, the
argument is readily formalized, which gives the following version of the corollary.

Corollary 0.19. CON � ZF � ! CON � ZFC � .
Thus, the theories ZF and ZFC have the same consistency strength.


