
Introduction to Forcing

The forcing method ia a technique for taking a model of ZF (usually ZFC)
and enlarging it by adding a new object G, called a generic, to produce a bigger
universe V

�
G � . The method gives us enough control over the model V

�
G � that we

can arrange that various statements of interest will be true in V
�
G � , if we choose

the G in the right way.
Before discussing the method itself, we first discuss a logical problem. Since V is,

by definition, the class of all sets, we cannot enlarge it at all. What exactly do we
mean then? This problem is actually not very serious, and can be dealt with in sev-
eral different ways. We mention one way now, and touch on the others later. First,
if we are willing to assume a tiny bit more than ZFC, namely ZFC � CON � ZFC � ,
then the problem disappears altogether. For the theory ZFC � CON � ZFC � proves
that there is a set model M of ZFC. Since M is a set, there is now no reason why
we cannot enlarge it to a bigger model M

�
G � . Since M is a model of ZFC, it is just

as good a starting point as V . We could even (assuming AC in V ) take M to be
countable by theorem ??.

If we are not willing to strengthen ZFC, we can still proceed as follows. We
would like to argue that there is a model of ZFC � φ, say. If not, then ZFC ��� φ,
and so for finitely many of the axioms of ZFC, say, � ψ1, . . . , ψn 	 we would have
� ψ1, . . . , ψn 	 �
� φ. However by the reflection theorem and theorem ?? there is a
countable set M which satisfies � ψ1, . . . , ψn 	 . We may also assume M satisfies as
many additional (but finitely many) axioms of ZFC as we wish, so that any of the
arguments needed for the forcing construction are also true in M . Then we may
do the forcining construction starting from M to produce M

�
G � , and we will have

ψ1, . . . , ψn and φ all holding in M
�
G � (the latter by the forcing construction). This

will contradict the fact that � ψ1, . . . , ψn 	 ��� φ.
The argument of the preceeding paragragh took place in the meta-theory, but it

will be easily formalizable to give the theorem CON � ZFC ��� CON � ZFC � φ � .
In what follows, we usually suppress mentioning these logical points, and just

assume M is a countable transitive model of ZF or ZFC. We now turn to the
forcing method itself.

The basic setup for the forcing method will be a transitive model M of (enough
of) ZF, and a partial order ���� P, ��� in M . Recall a partial order means a
reflexive, transitive, binary relation on a set  . It is sometimes convenient, though
not necessary, to assume the partial order has a largest element, which we denote
by � (we can always adjoin a new maximal element to the partial order, and none
of the arguments below will be effected).

If P is a partial order and p, q � P , we say p and q are compatible, written p ‖ q,
if there is an r � P such that r � p and r � q. Otherwise they are incompatible,
written p � q. If A � P consists of pairwise incompatible elements, we say A is
an antichain. We say D � P is dense if � p � P � q � p � q � D � . We say D � P

is predense if � p � D � q � D � q ‖ p � . This is equivalent to saying the downward
closure � p � P : � q � D p � q 	 of D is dense.

Definition 0.1. A filter G on a partial order  is a G � P satisfying

(1) � p, q � G � p ‖ q � .
(2) � p � G � q � p � q � G � .
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Example 1. Let P � 2 � ω, and define p � q iff p extends q. Then any filter G on P
defines a fG : 2α � � 0, 1 	 for some α � ω. Conversely, any “real” x � 2ω defines a
filter over P . We could also consider the variation where P consists of finite partial
functions from ω to 2. Again, p � q iff p extends q. A filter gives a partial function
from ω to 2, and any x � 2ω again defines a filter on P .

The next definition is a central one in the theory of forcing.

Definition 0.2. Let M be a model of ZF, and  � M a partial order. We say a
filter G over  is M -generic is G � D ��� for all dense D � P with D � M .

Exercise 1. Show that G is M -generic iff G meets all of the predense sets D � P
in M iff G meets all of the maximal antichains A � P in M .

Exercise 2. Show that if A is dense below p, then any generic containing p will
meet A.

A generic G is required to meet all of the dese sets D which lie in M . G itself will,
in all non-triial cases, not be in M itself. By non-trivial we can take the following.

Definition 0.3.  is splitting if � p � P � q � p � r � p � q � r � .
Lemma 0.4. If M is a model of ZF,  � M ,  is separative, and G is M -generic
for  , then G � M .

Proof. Suppose G � M . Consider D ��� p � P : � q � G � p � q � 	 . To see D is dense,
fix p � P . Let q � p, r � p with q � r. Then at least one of q, r must be in D

as otherwise we could extend q, r to q � , r � respectively with q � , r � � G. Since G is a
filter, we could get an s � q � , s � r � , contradicting q � r. So, D is dense, and by
assumption then G � D ��� . This violates G being a filter. �

Can we find generics? The next lemma shows that we can always do this in the
case where M is countable.

Lemma 0.5. Let M be a countable model of ZF, and �� M . Then there is a
M -generic filter G for P .

Proof. Let D0, D1, . . . enumerate the dense subsets of P which lie in M . Using the
denseness of the Dn, define a sequence p0 � p1 � p2 � . . . where pn � Dn. Let
G �
� p � P : � n � p � pn � 	 . G is easily a filter and by constuction meets all of the
Dn. �

We will see the significance of generics shortly. First we describe the constuction
of the model M

�
G � for G a filter on the partial order  � M (we don’t need G to

be generic for this construction). We would like M
�
G � to be the smallest model

containing M and G, in some sense. Every element x of M
�
G � will have a name τ

in M . The filter G will define an evaluation map τ � τG from the names to the
elements of M

�
G � , so every x � M � G � will be of the form x � τG. The names will

live in M (i.e., be a class in M), but since G � M , the evaluation map will not be
deininable in M . First we define the class M 	 of names.

Definition 0.6. Let M be a model of ZF, and  � M a partial order. By
transfinite recursion on ONM we define M 	α as follows: M 	0 � � . For α limit,
M 	α ��
 β � αM 	β . We define τ � Mα � 1 iff τ � Mα or τ is a relation with

dom � τ � � Mα and ran � τ � � P . We let M 	 � 
 α  ONM M 	α .
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Thus a name τ is a set of ordered pairs � σ, p � where σ is a name of smaller rank
and p � P . Note that the construction of the names is exactly like the construction
of the universe of sets itself (i.e., the rank hierarchy) except that the elements of a
set are “tagged” with elements of the partial order P . Intuitively, the tag p tells us
to throw the corresponding element into the set if p � G. We define the evaluation
map as follows.

Definition 0.7. Let M be a model of ZF, and  � M a partial order. Let G � P be
a filter. for τ � M 	 , τG is defined by transfinite recursion on ε by: τG � � σG : � p �
G : � σ, p ��� τ 	 .

We define some canonical names which always evaluate to certain objects.

Definition 0.8. Let M be a model of ZF, and  � M a partial order. By transfinite
recursion in M , define for each x � M the name x̌ by: x̌ � � � y̌, p � : y � x � p � P 	 .
Define the name

�
G by

�
G ��� � p̌, p � : p � P 	 .

For any wellfounded model M of ZF, it is a straightforward induction to show

that for all x � M that x̌G � x. It follows that �
�
G � G � G. Thus, we have canonical

names for all of the sets in M as well as the filter G. Note that the function x �� x̌

is a class function in M . We thus have:

Lemma 0.9. For any wellfounded model M of ZF, partial order  � M and filter
G on  , M � M � G � and G � M � G � .

We would like to say that M
�
G � is the smallest model of ZF containing M and

G, but we don’t know that M
�
G � is a model of ZF. This will not, in fact, be true

for all G, but will be true for the generic G. The forcing theorem will give us the
tools to show this, as well as relating truth in M

�
G � to truth in M in general. First

we prove a few more simple facts about M
�
G � .

Lemma 0.10. M
�
G � is transitive and ONM � G � � ONM .

Proof. If x � M � G � , then x � τG for some τ � M 	 . If y � x, then by definition of
τG we have y � σG for some σ � M 	 (in fact, σ � tr cl � x � ). So, y � M � G � . Since M ,

M
�
G � are transitive, ONM � ON � M and ONM � G � � ON � M � G � . So, to show

ONM � ONM � G � it suffices to show that every x � M � G � has rank less than ONM .

By a straightforward induction on ONM we have that if τ � M 	α , then � τG � � α. �

Since M
�
G � is transitive, it satisfies foundation and extensionality. One can also

show directly that it satisfies pairing and union. For example, if τG, σG � M � G � ,
then ρ � � � τ, � � , � σ, � � 	 is such that ρG � � τG, σG 	 . Note that these fact do
not require G to be generic, they are true for any filter G on  . To show the
other axioms, and to further explore the model M

�
G � however requires the forcing

theorem which relates truth in M
�
G � to truth in M for generic G.

Definition 0.11. By the forcing language we mean all statements of the form
φ � σ1, . . . , σn � where φ � x1, . . . , xn � is a formula in the language of set theory and
σ1, . . . , σn � M 	 .

We now define the forcing relation, which is the central concept in the theory
of forcing. For p �  and φ � σ1, . . . , σn � in the forcing language, we define the
notion p � φ � σ1, . . . , σn � (read p forces φ � σ1, . . . , σn � ). Formally, this is defined
by induction on φ, where for atomic φ it is defined by transfinite recurion in M
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on the maximum of the ranks of the σi. This definition, it is important to note,
takes place entirely inside of M (more precisely, for each formula φ there is a class
function in M from � M 	 � n to  assigning to each � σ1, . . . , σn � � � M 	 � n the set
� p � P : p � φ � σ1, . . . , σn � 	 ).
Definition 0.12. Let M be a transitive model of ZF and  a partial order in M .
For p � P and φ � σ1, . . . , σn � in the forcing language, the relation p � φ � σ1, . . . , σn �
is defined by transfinite recursion through the following cases.

Case 1) φ � � τ1 � τ2 � .
We define p � τ1 � τ2 iff � q : � � σ, r ��� τ2 � q � r � q � � τ1 � σ � � 	 is dense below p.

Case 2) φ � � τ1 � τ2 � .
We define p � τ1 � τ2 iff for all � σ1, q ��� τ1, the set

� r : � r � q � � � σ2, s � � τ2 r � s � r � � σ1 � σ2 � � 	
is dense below p, and likewise for all � σ2, q ��� τ2 the set

� r : � r � q � � � σ1, s � � τ1 r � s � r � � σ1 � σ2 � � 	
is dense below p.

Case 3) φ � α � β.

We define p � α � β iff p � α and p � β.

Case 4) φ � � ψ.

We define p � � ψ iff � � q � p q � ψ.

Case 5) φ � σ1, . . . , σn � � � xψ � σ1, . . . , σn, x � .
We define p � � xψ � σ1, . . . , σn, x � iff � q : � τ � M 	 q � ψ � σ1, . . . , σn, τ � 	 is dense
below p.

The motivation for the definition is our desire to control truth in M
�
G � . We

would like to have that p � φ � σ1, . . . , σn � iff for every generic G containing p we
have M

�
G � �

φ � � σ1 � G, . . . , � σn � G � . In other words, for every statement in the
forcing language, the truth of the statement, view as a function on the set of
generics, is continuous. The reader will note the analogy with a basic theorem in
analysis. Namely, every reasonable (say, Borel) function f : � � � 0, 1 	 (or even
f : � � � ) is continuous when resticted to a certain comeager set. The generics
serve the role as the comeager set, for all truth functions for all statements in the
forcing language simultaneously.

The motivation for the definitions in the various specific cases should now be
fairly clear if we keep in mind the definition of a generic. For example, in Case 1
above, we are really asserting that any generic G which contains p will contain
a q � p such that for some � σ, r � � τ2 with q � r (hence σG ��� τ2 � G) we have
q � τ1 � σ (which by induction should mean that � τ1 � G � σG). We have used here
exercise 2.

Lemma 0.13. If p � φ and q � p, then q � φ. Conversely, if � q : q � φ 	 is dense
below p, then p � φ.
Proof. Suppose p � φ and q � p. If φ is atomic or existential, the definition of
p � φ is that a certain set A is dense below p, and the definition of A does not
involve p. Trivially, A is dense below q as well, so q � φ. The conjuction case
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follows immediately by induction. The negation case is trivial as if � � s � p � s � ψ �
then � � s � q � s � ψ � .

Suppose next that � q : q � φ 	 is dense below p. The atomic and existential cases
follow from the fact that if � q : A is dense below q 	 is dense below p, then A is
dense below p. The conjuction case again follows immediately by induction. For
the negation case φ � � ψ, our assumption is that � q : � � r � q � r � ψ � 	 is dense
below p. Now, if q � p, then q � ψ, as otherwise from the first paragraph we would
have that any extension of q forces ψ, contradicting our assumption. Hence, by
definition p � � ψ. �

Corollary 0.14. If p � φ, then for some q � p, q ��� φ. In particular, for any φ,
� p : � p � φ ��� � p ��� φ � 	 is dense.

Proof. If the conclusion fails, then � r : r � φ 	 is dense below p. From lemma 0.13
it follows that p � φ. �

Exercise 3. Show that p ��� � φ iff p � φ. (hint: unravel the definition of p � � � φ
and use the second part of lemma 0.13).

Lemma 0.15. If G is a generic filter and p, q � G, then � r � G � r � p � r � q � .
Proof. Let D ��� r : � r � p ��� � r � q ��� � r � p � r � q � 	 . Easily D is dense (if t � P
then either t � p or there is a u � t with u � p. Either u � q or there is a v � u
with v � q, and also v � u � p). Let r � G � D. Since G is a filter, we cannot have
r � p or r � q, so r � p and r � q. �

We now state precisely and prove the forcing theorem. For the theorem to make
sense, we need to know that generic filters exist, and so we will now require the
model M to be countable.

Theorem 0.16 (Forcing Theorem). Let M be a countable, transitive model of ZF
and  � M a partial order.

(1) For any p � P and σ1, . . . , σn � M 	 , p � φ � σ1, . . . , σn � iff for all generic G
containing p, φ � � σ1 � G, . . . , � σn � G � M � G � .

(2) For any generic G, and σ1, . . . , σn � M 	 , φ � � σ1 � G, . . . , � σn � G � M � G � iff � p �
G p � φ � σ1, . . . , σn � .

Proof. We first show that (2) implies (1). Assume first that p � φ, and let G be

a generic containing p. If � � φ � M � G � , then by (2) there would be a q � P such that
q ��� φ. Since G is a filter, p ‖ q, and from lemma 0.13 we may assume q � p. Also
by lemma 0.13, q � φ. This contradicts the definition of q ��� φ. Assume next that
for all generic G containing p that φM � G � . If p � φ, then by corollary 0.14 there
would be a q � p such that q � � φ. Let G be a generic filter containing q. From
(2), � � φ � M � G � , which contradicts our assumption.

We turn our attention to (2). We prove this by induction on φ, and when
φ � � τ1 � τ2 � by induction on the maximum rank of τ1, τ2. We consider cases as
in the definition of the forcing relation.

Case 1) φ � � τ1 � τ2 � .
First assume p � φ. By definition, D � � q : � � σ, r � � τ2 � q � r � q � � τ1 � σ � � 	 is
dense below p. Since G is generic, � q � G � D � q � p � . Let � σ, r � � τ2 be such that
q � r and q � � τ1 � σ � . By the equality case (proven next) we may assume that
� τ1 � G � σG. Since r � G, σG � � τ2 � G by definition of � τ2 � G. Thus, � τ1 � G � � τ2 � G.



6

Next assume that G is generic and φM � G � , that is, � τ1 � G � � τ2 � G. Let � σ, q � � τ2
be such that q � G and � τ1 � G � σG. By the equality case, let r � G be such that
r � � τ1 � σ � . From lemma 0.15, let p � G with p � q, r. Then p � τ1 � τ2 since
for any s � p we have � σ, q � � τ2, s � p � q, and s � � τ1 � σ � since s � r. Thus,
the set required to be dense below p in the definition of p � τ1 � τ2 is actually all
s � p.

Case 2) φ � � τ1 � τ2 � .
First assume p � τ1 � τ2. It suffices by symmetry to show that � τ1 � G � � τ2 � G.
Let x � � τ1 � G, say x ��� σ1 � G where � σ1, q � � τ1 and q � G. By definition, the
set D � � r : � r � q � � � σ2, s � � τ2 r � s � r ��� σ1 � σ2 � � 	 is dense below p.
D � ��� r � p : � r � q ��� � r � q � r � D � 	 . Then D � is easily dense below p (if t � p
then either t � q or we can extend t to a u � t with u � q. since u � p, we can get
v � u with v � D. Then v � t and v � D � .) Let r � G � D � . We cannot have r � q
as q � G. So, r � q and r � D. By definition of D we now have a � σ2, s ��� τ2 with
r � s and r ��� σ1 � σ2 � . By induction, � σ1 � G � � σ2 � G. Since r � G and r � s,
� σ2 � G � � τ2 � G. Hence, x ��� σ1 � G � � σ2 � G � � τ2 � G.

Next assume that φM � G � , that is, � τ1 � G � � τ2 � G. Let

D � � p : � p � τ1 � τ2 � �
� � σ1, q1 � � τ1 � p � q1 � � r � p � � σ2, q2 ��� τ2 � � r � q2 � r � σ1 � σ2 � � 	 .

We first claim that D is dense. To see this, let p � P . If p � τ1 � τ2, then
p � D. Otherwise, for some � σ1, q1 � � τ1 the set A � � s : � s � q1

� � � σ2, q2 � �
τ2 � s � q2 � s � σ1 � σ2 � � 	 is not dense below p. Let p � � p be such that
� s � p � s � A. Thus, for all s � p � we have s � q1 (so in particular p � � q1), and
� � � σ2, q2 � � τ2 � s � q2 � s � σ1 � σ2 � � . Thus, p � � D. This shows D is dense.
Let p � G � D. If p � τ1 � τ2, we are done, so suppose the second disjunct in
the definition of D holds. Let � σ1, q1 � with p � q1 be as in the second disjunct.
Since p � G, � σ1 � G � � τ1 � G � � τ2 � G. So, let � σ2, q2 � � τ2 be such that q2 � G and
� σ1 � G � � σ2 � G. By induction, let q � G be such that q � σ1 � σ2. Let r � p, q, q2.
Then r violates the definition of p � D.

Case 3) φ � α � β.

If p � φ, then by definition p � α and p � β. By induction, αM � G � and βM � G � , and
so φM � G � . Conversely, if φM � G � , then αM � G � and βM � G � . By induction, � p � G p � α
and � q � G q � β. Let r � G with r � p, q. Then r � α, r � β, and so r � φ.

Case 4) φ � � ψ.

Assume first p � φ. If ψM � G � then by induction � q � G � q � ψ � . Let r � p, q.
Then r ��� ψ and r � ψ, a contradiction to the definition of r ��� ψ. Thus, φM � G � .
Next assume phiM � G � . Let D � � p : � p � ψ � � � p � � ψ � 	 . Then D is dense, so let
p � G � D. If p � � ψ we are done, so assume p � ψ. By induction, ψM � G � which
contradicts φM � G � .

Case 5) φ � ~σ � � � x ψ � ~σ, x � .
First assume p � φ and G is generic containing p. By definition D � � q : � τ �

M 	 � q � ψ � ~σ, τ � 	 is dense below p. Let q � G � D with q � p. Let τ � M 	
witness q � D, so q � ψ � ~σ, τ � . By induction, ψ � � σ1 � G, . . . , � σn � G, τG � M � G � . Thus,

φ � � σ1 � G, . . . , � σn � G � M � G � .
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Next assume that g is generic and φ � � σ1 � G, . . . , � σn � G � M � G � . Let τ � M 	 be such
that ψ � � σ1 � G, . . . , � σn � G � , τG � M � G � . By induction, � p � G p � ψ � σ1, . . . , σn, τ � .
Trivially then D � � q : � τ � M 	 � q � ψ � ~σ, τ � 	 is dense below p (it contains all
q � p), and so p � φ � σ1, . . . , σn � . �

This completes the proof of the forcing theorem.
We next show that if M satisfies ZF or ZFC, then so does M

�
G � . Although

we are mainly interested in what additional properties we can arrange to hold in
M
�
G � , the proof will give us some practice in using the forcing theorem.

Theorem 0.17. Let M be a transitive model of ZF (or ZFC), and  � M a partial
order. Suppose G is M -generic for  . Then M

�
G � satisfies ZF (or ZFC).

Proof. We have already checked that M
�
G � is transitive and satisfies foundation,

extensionality and pairing. Union is also easy to check directly as if x � τG � M � G � ,
let σ � � � ρ, � � : � π � M 	 � p, q � P � � π, p ��� τ � � ρ, q ��� π � 	 . Clearly � x � σG. As
M � M � G � , and ω � M , ω � M � G � and by absoluteness M

�
G � satifies the infinity

axiom.
To verify Power Set, let x � τG � M � G � . Let ρ � � � σ, � � : dom � σ � � dom � τ � 	 .

Clearly ρ is a set in M and ρ � M 	 . We claim that P � x � M � G � � ρG, which suffices.
To see this, let y � x, y � M � G � . Say, y � µG. Let σ � � � π, p � : π � dom � τ � � p �
� π � µ � 	 . Clearly � σ, � � � ρ and so σG � ρG. We claim that σG � µG. If z � σG,
then z � πG where � π, p ��� σ and p � G. Since p � � π � µ � (from the definition of
σ) we have z � πG � µG by the forcing theorem. If z � µG, then since µG � x we
have z � πG for some � π, p ��� τ . By the forcing theorem, there is a q � G such that
q � π � µ, and hence � π, q ��� σ and so z � σG.

To verify Comprehension, let φ � x1, . . . , xn, y, z � be a formula and a1 � � σ1 � G,
. . . , an � � σn � G, b � τG � M � G � . We must show that

� z � b : φM � G � � a1, . . . , an, b, z � 	 � M � G � .
Let ρ � � � π, p � : � π � dom τ � � � p � φ � σ1, . . . , σn, τ, π � � π � τ � 	 . We show that
ρG works. If z � ρG, then z � πG where p � G and p � φ � σ1, . . . , σn, τ, π � and
p � π � τ . Thus, φM � G � � a1, . . . , an, b, z � and z � πG � τG � b. Conversely, suppose
z � b and φM � G � � a1, . . . , an, b, z � . Then z � πG for some π � dom � τ � . By the forcing
theorem, there is a p � G such that p � φ � σ1, . . . , σn, τ, π � � π � τ . Then � π, p � � ρ,
and so z � πG � ρG.

To verify Replacement, let φ � x1 . . . , xn, y, z, w � be a formula and a1 � � σ1 � G,
. . . , an � � σn � G, A � τG � M � G � . Assume that

� z � A � w � M � G � φM � G � � a1, . . . , an, A, z, w � .
By replacement in M there is a set of names S � M such that for all π �
dom � τ � and all p � P , if � µ � M 	 � p � φ � σ1, . . . , σn, τ, π, µ � � , then � µ � S � p �
φ � σ1, . . . , σn, τ, π, µ � � . Let ρ � � � µ, � � : µ � S 	 . We show that ρG verifies this in-
stance of replacement in M

�
G � . For suppose z � A, say z � πG where π � dom � τ � ,

and suppose � w � M � G � φM � G � � a1, . . . , an, A, z, w � . Fix such a w � µG. By the
forcing theorem, there is a p � G such that p � φ � σ1, . . . , σn, τ, π, µ � . From the
definition of S it follows that for some µ � S that p � φ � σ1, . . . , σn, τ, π, µ � . Fix
such a µ. Then µG � ρG and by the forcing theorem φM � G � � a1, . . . , an, A, z, µG � .

We have now verified ZF in M
�
G � . Suppose finally that AC holds in M , and we

check it holds in M
�
G � as well. Let x � τG � M � G � . Let f : α � dom � τ � , f � M be
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a bijection, where α � ONM . In M
�
G � define F with domain α by F � β ��� f � β � G.

Then x � ran � F � , which suffices to show that x can be wellordered in M
�
G � (recall

M
�
G � already satisfies ZF). �

Exercise 4. Show that if M is a transitive model of ZF,  � M is a partial order,
and G � P is a filter (not necessarily generic), then M

�
G � � � x � f � α � α �

ON � f : α
onto
� � x � .

1. Forcing and Complete Boolean Algebras

The forcing theorem holds for arbitrary partial orders, but it is an interesting
fact that there is no loss of generality (assuming our models M are models of ZF) in
considering only partial orders which are complete Boolean algebras (where p � q
recall means p � qc � 0). Although most of the time we deal directly with a partial
order, there are times when this point of view is useful. Given a partial order
 � � P, ��� , we will associate to it a complete Boolean algebra BP which we will
call the completion of  . This construction is just a slight generalization of the
construction of the completion of a Boolean algebra, but we give the construction
from scratch.

For p � P , let Np �
� q � P : q � p 	 . The idea of the construction is to identify
every set D � Np which is dense below p with all of Np. One way to make this
precise is as follows. Define a topology τ , on P by taking as a base sets of the form
Np. Recall B � P � X � is a base for a topology on a set X iff whenever U, V � B
and x � U � V , then there is a W � B such that x � W � U � V . This condition is
satisfied here since in fact if r � Np

� Nq then Nr � Np
� Nq (by transitivity). So,

A � P is τ -open iff A is downwards closed, that is, � p � A � q � p � q � A � . Note
that Np is the smallest open set containing p. Recall a set U in a topological space
is regular open if U � int cl � U � . Thus, an open set is regular open iff it contains
any neighborhood in which it is dense. Recall also that for any set A � X that
int cl � A � is regular open. [One direction, namely U � int cl � U � holds for any open
set. For the other direction note that int cl � int cl � A � � � int cl cl � A � � int cl � A � .] It
is easy to see that the intersection of two regular open sets is regular open.

Exercise 5. Show directly that an open U � P is regular open iff whenever U is
dense below a p � P , then p � U .

Definition 1.1. Let  � � P, ��� be a partial order. Then BP is the collection of
all regular open subsets of P with the following operations: U � V � int cl � U � V � ,
U � V � U � V , � U � int � P � U � . Also, define 0B � � and 1B � P (note: we use
here � U for the Boolean complement operation to avoid confusion.)

Lemma 1.2. For any partial order  , BP is a complete Boolean algebra. Moreover,
the map π : P � B defined by π � p ��� int cl � Np � satisfies the following:

(1) If p � q then π � p ��� π � q � .
(2) p � q iff π � p � � π � q � .
(3) π

�  is dense in B.

Proof. In fact, for any topological space X the regular open sets form a com-
plete Boolean algegra (with the same operations defined above). Checking this is
straightforward but tedious. The commutative, identity, and 0 � 1 laws are trivial
to check. For any open set U , U � int � X � U � is dense, and so U � � � U � � 1.
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Since � U � � X � U � , we have U � � � U � � 0. This checks the negation laws.
The associative law for � is trivial. To check the associative law for addition, let
U, V,W be regular open. Since addition is commutative, it is enough to check that
U � � V � W � �
� U � V � � W . Since V � W � � U � V � � W , V � W � int cl � V � W � �
int cl � � U � V � � W � � � U � V � � W since � U � V � � W is regular open. Thus,
U � � V � W ��� � U � V � � W , and again U � � V � W ��� int cl � � U � V � � W � �
� U � V � � W , and we are done.

To verify the distributive law U � � V � W � � U � V � U � W , first note that
U � V � U � W � U � � V � W � , and since the latter is regular open we have U � V � U � W �
int cl � U � V � U � W � � U � � V � W � . For the other direction, let x � U � � V � W � . Let O
be a neighborhood in which V � W is dense. Since U is open, we may assumeO � U .
But then U � V � U � W is dense in O, and so x � int cl � U � V � U � W � � U � V � U � W .

To verify the distributive law U � � V � W � � � U � V � � � U � W � , first note that
U � � V � W � � � U � V � � � U � W � , and since the latter is regular open we have
U � � V � W � � � U � V � � � U � W � . For the other direction, let x � � U � V � � � U � W � .
Let O1 be a neighborhood of x in which U � V is dense, and O2 a neighborhood of
x in which U � W is dense. Let O � O1

� O2. We show that U � � V � W � is dense
in O, which suffices. Let O3 � O be open. If O3

� U ��� , we are done. Otherwise,
V and W are each dense in O3. Since V,W are regular open, O3 � V � W and we
are done.

For U a regular open set we claim that � � � U � � U . Clearly U � � � � U � .
For the other direction, let x � � � � U � . Then there is a neighborhood O of x
such that O � � � U � � � . This means every neighborhood of every point in O

intersects U , that is, U is dense in O. Since U is regular open, O � U , so x � U .
From this it follows that we need only check one of de Morgan’s laws. We check

� � U � V � � � � U ��� � � V � . Since U c � � U � V � c, int � U c � � int � � U � V � c � . So,
� U � � � U � V � . Likewise, � V � � � U � V � , and so � � U � � � � V � � � � U � V � . Since
the latter is regular open, � � U � � � � V � � � � U � V � . Let x � � � U � V � . Let O be
a neighborhood of x missing U � V . We claim that � � U � � � � V � is dense in O,
which suffices. Let O1 � O be open. If � U misses O1, then U is dense in O1, and
hence O1 � U as U is regular open. Likewise, if � V also misses O1 then O1 � V
and so O1 � U � V , a contradiction.

We have now shown that that the regular open sets in any topological space
form a Boolean algebra. To see they form a complete Boolean algebra, it suffices to
show that if � Uα 	 are regular open, then there is a least upper bound for the Uα.
Let U � int cl � 
 α Uα � , so U is regular open. Clearly Uα � U for each α. For U, V
regular open it is easy to check that U � V (i.e., U � � � V ��� 0) iff U � V . So if W
is regular open and Uα � W for all α, then Uα � W for each α, so 
 α Uα � W .
Then U � int cl � 
 α Uα � � int cl � W � � W . Thus U � W . This shows U is the least
upper bound of the Uα.

Finally, we verify π satisfies (1)-(3). If p � q then Np � Nq so int cl � Np � �
int cl � Nq � . Hence π � p ��� π � q � . If p ‖ q, then (1) implies that π � p � ‖ π � q � . Suppose
p � q but π � p � ‖ π � q � , that is, π � p � � π � q � � 0. Let r � int cl � Np � � int cl � Nq � . Thus,
Nr � cl � Np � and Nr � cl � Nq � . The first says that r can be extended to a s � r,
s � Np, and the second says that we may extend s to a t � s, t � Nq . Then t � p, q,
a contradiction. �

The map π of lemma 1.2 is not necessarily one-to-one, but it is under a very mild
condition on P which is always satisfied in practice. Namely, suppose whenever
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p
�
q then � r � p � r � q � . Then if p

�
q, say p

�
q, and we let r � p, r � q, then

r � Np but r � int cl � Nq � . Sometimes the word separative is used to denote this
condition.

We next show that forcing with  is equivalent to forcing with its completion
BP . The proof of this does not use the fact that BP is a complete Boolean algebra,
just properties (1)-(3) above. We abstract these properties into a definition.

Definition 1.3. Let  , � be partial orders. We say π : P � Q is a dense embedding
if:

(1) If p � q then π � p � � π � q � .
(2) p � q iff π � p � � π � q � .
(3) π

�  is dense in � .

Lemma 1.4. Let  , � be partial orders in a transitive model M of ZF. Let π : P �
Q be a dense embedding, π � M . Then:

(1) If H � Q is M -generic for � , then G
.� π � 1 � H � is M -generic for  .

(2) If G � P is M -generic for  , then H
.� � q � Q : � p � G � π � p � � q � 	 is

M -generic for Q.

In either case, M
�
G � � M �H � .

Proof. Suppose H � Q is generic for � . Then G is easily closed upwards. Also, if
p, q � G, then π � p � ‖ π � q � as they both lie in H . From (2) it follows that p ‖ q,

hence G is a filter. To see it is generic, let D � P be dense. Let E � π �

D. Then
E is dense in Q from (3) [If p � Q, let q � p be in the range of π, say q � π � t � .
As D is dense, let u � t, u � D. Then π � u ��� E, π � u � � π � t � � p using (1).] Let
p � H � E. Say p � π � t � , where t � D. Then t � G � D.

Suppose next that G � P is M -generic for P . Define H � Q as above. H is
upwards closed by definition, and it is easy to check it is a filter using (1). To see
it is generic, let E � Q be dense. Let D � � p � P : � q � E � π � p � � q � 	 . To see D
is dense, let p � P . Since E is dense, let q � E, q � π � p � . By (3), let r � q with
r � ran � π � , say r � π � t � . Since π � t � � r � π � p � , by (2) we have p ‖ t. Let u � p,
u � t. By (1), π � u ��� π � p � , π � u ��� π � t � � q. As q � E, this shows u � D, so D is
dense. Let now p � G � D. Since p � D, let q � π � p � with q � E. Then q � H � E
and we are done.

To see that M
�
G � � M � H � , simply note that in M

�
G � we may define H since

π � M , so M
�
H � � M � G � . Likewise M

�
G � � M �H � . �

Thus, there is no difference between forcing with a partial order  and forcing
with its completion BP , which is a complete Boolean algebra.

If π : P � Q is a dense embedding, then lemma 1.4 says that generics for P
and Q correspond; they are essentially the same thing. If we relax condition (3) of
definition 1.3, then Q may be much larger than P , and we do not expect generics
for P to give generics for Q. However, we can still get that generics for Q give P
generics if we replace (3) by a suitable condition. This is the concept of a complete
embedding, defined next.

Definition 1.5. Let  , � be partial orders. We say π : P � Q is a complete
embedding if it satisfies the following.

(1) If p � q then π � p � � π � q � .
(2) p � q iff π � p � � π � q � .
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(3) For every q � Q there is a p � P such that � r � p � π � r � ‖ q � .
To motivate (3), note that if π : P � Q, and whenever H � Q is M -generic for

Q, then P
.� π � 1 � H � is also generic for P , then we must have (3). Otherwise, for

some q � Q, � p � P : π � p � � q 	 is dense in P . Let H be generic for Q with q � H .
If G � π � 1 � H � is also generic, then � p � G � D. But then q, π � p � � H and are
incompatible, a contradiction.

The definition of complete embedding in more natural when P , Q are complete
Boolean algebras. In this case, π : P � Q is a complete embedding iff π is a ono-
to-one homomorphisms of Boolean algebras (i.e., π preserves the Boolean algebra
operations) which is complete, that is, it preserves arbitrary sups and infs: for
� pα 	 � P , π � sup � � pα 	 � � � sup � � π � pα � 	 � . To see this, suppose P,Q are complete
Boolean algebras and (1)-(3) hold. Let � pα 	 � P and p � sup � � pα 	 � . By (1),
π � p � � π � pα � for all α, so π � p ��� sup � � π � pα � 	 � . Suppose q � π � p � � sup � � π � pα � 	 ���
neq0Q. By (3), let r � P be such that � s � r � π � s � ‖ q � . In particular π � r � ‖ q,
so π � r � ‖ π � p � . By (2), r ‖ p. Let s � p, r. We claim that s � pα for each
α, a contradiction (since then p � s is an upper bound for the pα). To see this,
suppose s ‖ pα, say t � s, t � pα. Then π � t � � π � pα � and since t � r, π � t � ‖ q, a
contradiction to the definition of q. This show (1)-(3) imply that π preserves sups.
A similar argument shows that π preserves arbitrary infs (exercise ??). Since for
any Boolean algebra p � q � sup � p, q 	 and p � q � inf � p, q 	 it follows that π preserves
� and � . To see π preserves Boolean complements, note that π � p � � π � � p � � 0 by
(2). If π � � p � � � π � p � , then q

.� � � π � p � � π � � p � � � 0Q. Let r � P be as in (3) for q.
Without loss of generality suppose r ‖ p, and let s � r, p. Then by (1) π � s ��� π � p � ,
and by definition of r, π � s � ‖ q. This contradicts the definition of q. It is immediate
from (1) that π � 0P � � 0Q and π � 1P � � 1Q. Finally, π is one-to-one, for suppose
p �� q but π � p � � π � q � . Without loss of generality assume r

.� p � q
�

0P . Then
r � q but π � r � ‖ π � q � , contradicting (2).

Conversely, suppose P , Q are complete Boolean algebras and π : P � Q is a
one-to-one homomorphism which is complete (i.e., preserves arbitrary sups and
infs). Properties (1) and (2) are immediate as π is a homomorphism. To see (3),
fix q � Q. Let p � inf � r � P : π � r � � q 	 . Suppose s � p. Since p � s � p, we must
have π � p � s ��� q. As π � p � � π � s � � π � p � s � , we have π � s � ‖ q.
Exercise 6. Show that if π : P � Q satisies (1)-(3) where P , Q are complete
Boolean albebras, then π preserves arbitrary infimums.

Theorem 1.6. Let  , � be partial orders in a transitive model M of ZF. Let
π : P � Q, π � M , be a complete embedding. If H � Q is M -generic for Q, then
G � π � 1 � H � is M -generic for P . Furthermore, M

�
G � � M �H � .

Proof. Let H � Q be M -generic for Q, and let G � π � 1 � H � . Let D � P be dense.

Now π
�

D is not necessarily dense in Q, but E � � q : � p � D � q � π � p � � � � p �
D � q � π � p � � 	 is dense in Q. Let q � H � E. We cannot have � p � D � q � π � p � � , for
if so, let p � P be as in (3) for q. Let r � D, r � p. Then π � r � ‖ q, a contradiction.
So, � p � D � q � π � p � � . Thus, π � p � � H , so p � G.

Since π � M , working in M
�
H � we may clearly define G, so G � M � H � . Thus,

M
�
G � � M � H � . �

If we deal with partial orders which are complete Boolean algebras (which we can
do without loss of generality by lemma ??), then the definition of forcing simplifies
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considerably. This is because if A � Np � � q : q � p 	 is dense below p, then
sup � A � � p. Also, if q � φ for all q � A, then sup � A � � φ. Thus, the various
dense sets that appear in the general definition will “collapse” when dealing with
complete Boolean algebras. We make this more precise in the following definition.

Definition 1.7. LetM be a transitive model of ZF and B � M with � B is a complete
Boolean algebra � M . For φ � τ1, . . . , τn � a statement in the forcing language, we define
its Boolean value JφK by induction on φ (and for the equality case by induction on the
ranks of the names) as follows. (note: we use � , � for supremums and infimums).

(1) Jτ1 � τ2K � ��� σ,p �  τ2
� p � Jτ1 � σK � .

(2) Jτ1 � τ2K � � σ  dom � τ1 � � � Jσ � τ1K � Jσ � τ2 � � � σ  dom � τ2 � � � Jσ � τ2K � Jσ �
τ1 � K.

(3) Jφ � ψK � JφK � JψK.
(4) J � φK � � JφK.
(5) J � x φ � ~τ , x � K � � σ  MB Jφ � ~τ , σ � K.

When B is a complete Boolean algebra, the notion of generic filter can be re-
formulated and simplified a bit as well. First note that a generic filter on B is
necessarily an ultrafilter, that is, for any p � B, either p � G or � p � B. This
follows from the fact that � q � B : q � p � q � � � p � 	 is dense in B. Also, if p, q � B
then p � q � B. This follows since � r : � r � p � q � � � r � p � 0 � � � r � q � 0 � 	 is dense.
Thus, when dealing with complete Boolean algebras we speak of generic ultrafil-
ters on B. We can reformulate the density condition in the definition of generic as
follows.

Lemma 1.8. Let M be a transitive model of ZF and B � M with � B is a complete
Boolean algebra � M . Then G is an M -generic filter on B iff G is an ultrafilter on B
which respects supremums and infimums from M . That is, if S � B, then � S � G
iff � p � S � p � G � and � S � G iff � p � G � p � G � .

Proof. We have already seen that if G � B is a generic filter on B then it is an
ultrafilter. If S � B, then D � � p � B � : p � � S � 0 � � � � s � S p � s � 	 is dense. If
� S � G, and if we let p � G � D, then we have p � s for some s � S. Thus s � G
as well. The proof that G respects infimums is similar.

Finally, if G respects supremums and infimums, then in particular whenever
D � B is dense, that is � D � 1B, we must have p � G for some p � D. So, G is
generic. �

The connection between the forcing relation and Boolean values is given in the
next lemma.

Lemma 1.9. Let M be a transitive model of ZF, B � M , and � B is a complete
Boolean algebra � M . Then for any statement φ in the forcing language, p � φ iff
p � JφK.
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Proof. The proof by induction on φ is straightforward, we consider just one case
here, say φ ��� τ1 � τ2 � . Now

p � JφK � �
� σ,q �  τ2 �

� q � Jτ1 � σK �
� � r � p : � � σ, q ��� τ2 r � q � Jτ1 � σK 	 is dense below p� � r � p : � � σ, q ��� τ2 r � q � r � Jτ1 � σK 	 is dense below p� � r � p : � � σ, q ��� τ2 r � q � r � τ1 � σ 	 is dense below p.� p � � τ1 � τ2 �

The first equivalence is the fact that p � � S iff � q � p : � s � S � q � s � 	 is dense
below p. The next to last eqivalence is by induction, and the last equivalence is the
definition of p � � τ1 � τ2 � . �

An alternative possibility when considering forcing with complete Boolean al-
gebras is that we introduce definition 1.7, and then define the forcing relation by
p � φ iff p � JφK. This has the advantage that the definition of forcing is somewhat
simpler and more natural. Of course, in this approach one must now prove the
forcing theorem directly: for all generic ultrafilters G on B, φM � G � iff JφK � G. The
proof is essentially the same as before. For example, consider the case φ � � τ1 � τ2 � .
Suppose first JφK � � � σ,q �  τ2 � � q � Jτ1 � σK � � G. From lemma 1.8 it follows that

for some � σ, q � � τ2 � � τ2 that q � Jτ1 � σK � G. Thus, q � G and Jτ1 � σK � G.
By induction, � τ1 � G � σG. Since q � G, σG � � τ2 � , and we are done. For the
other direction, suppose � τ1 � G � � τ2 � G. Fix � σ, q � � τ2 such that q � G and
� τ1 � G � σG. By induction, Jτ1 � σK � G. Since G is a filter, q � Jτ1 � σK � G. Thus,
� � σ,q �  τ2 � � q � Jτ1 � σK � � G.


