
More Forcing Constructions

We use forcing to establish the consistency of some combinatorial principles
which are of use in many constructions. First we introduce Jensen’s diamond
principle.

Definition 0.1. ♦ is the statement: there are Aα
�

α for α � ω1 such that for all
A
�

ω1, � α � ω1 : A � α � Aα � is stationary.

Clearly ♦ implies CH as every subset of ω must appear among the Aα. This
already shows that ♦ is not provable in ZFC. In fact it is known that GCH does
not imply ♦ (Jensen). ♦ is thus a powerful strengthening of CH, and is useful in
places where CH alone is not sufficient. First we show that we may force to make
♦ true.

Lemma 0.2. Let M be a transitive model of ZFC. Then there is a generic extension
M � G � in which ♦ holds.

Proof. Let � consist of all countable sequences p �	� Aβ � β 
 α where α � ω1 and
Aβ
�

β. We order � by extension, so p � q iff dom � p �� dom � q  and p � dom � q �� q.

Let G be M generic for � . Clearly � is countably closed, so ω
M �G �
1

� ωM
1 . The

generic can be identified with a sequence � Aβ � β 
 ω1
. We show that this sequence

witnesses ♦ in M � G � . Fix A
�

ω1, A � M � G � , and a C
�

ω1, C � M � G � with � C
is c.u.b.  M �G � . Let A � τG, C � σG. Let p0 � G, p0 � � σ is c.u.b.  . Let �G be the

canonical name for the generic. We claim that p0 ��� α ��� α � σ ���� τ � α ���G � α �� .
Suppose not, and let p1 � p0, p1 � G with p1 ��� α  !��� α � σ ��"� τ � α �#�G � α �� .
Working in M , we construct a sequence of conditions q0 � p1 � q1 � . . . as follows.
Assume qn has been defined. Let qn $ 1 � qn be such that

(1) dom � qn $ 1 &% dom � qn  and there is a βn �'� dom � qn  , dom � qn $ 1 � such that
qn $ 1 � β̌n � σ.

(2) For every α � dom � qn  , either qn $ 1 � α̌ � τ or qn $ 1 � α̌ ( τ .

There is no problem getting qn $ 1 as p0 � � σ is unbounded  and � is countably
closed. Let q �*) n qn. Let α � dom � q ��*) n dom � qn  . From (1) and the fact that
p0 � � σ is closed  it follows that q � α̌ � σ. From (2), there is a B

�
α, B � M ,

with q � τ � α � B. Let q +,� q -.��/ α, B 0 � . Then q + � ��� α̌ � σ ��1� τ � α̌ �2�G � α̌ � .
This contradicts the definition of p1. �

The forcing used in lemma 0.2 is isomorphic to a dense subset of FN � ω1, 2, ω1 
(FN � ω1, 2, ω1  is isomorphic to �3� FN � A, 2, ω1  , where A �4�5� β, α  : β � α � ω1 � .
The forcing used in the lemma is a dense subset of � .) Thus we get:

Corollary 0.3. Let M be a transitive model of ZFC and G be M -generic for
FN � ω1, 2, ω1  M . Then ♦ holds in M � G � .
Exercise 1. Show that if M is a transitive model of ZFC and G is M -generic
for coll � ω1, κ  , for some κ � ω1, then ♦ holds in M � G � . [hint: First identify
coll � ω1, κ &� FN � ω1, κ, ω1  with �3� FN � A, κ, ω1  where A �4�5� α, β  : α � β � ω1 � .
A generic G for � induces a G + : ω2

1 6 2 by G +7� α, β 8� 0 iff G � α, β  is even. Show
that G + gives a ♦ sequence in M � G � .]

We can generalize ♦ to higher cardinals.
1
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Definition 0.4. Let κ be a regular cardinal. Then ♦κ is the statement that there
is a sequence Aα

�
α, α � κ, such that for all A

�
κ, � α � κ : A � α � Aα � is

stationary.

The proof of lemma 0.2 generalizes to give:

Lemma 0.5. Let M be a transitive model of ZFC and κ a regular cardinal of M .
Then there is a generic extension M � G � which preserves all cardinals and cofinalities
� κ in which ♦κ holds.

Proof. Let � consist of all functions p with dom � p  an ordinal less than κ, and
with p � α  � α for all α � dom � p  . Clearly � is � κ closed (since κ is regular),
and so � preserves all cardinalities and cofinalities � κ. Let G be M generic
for � . The proof that ♦κ holds in M � G � is essentially identical to the proof of

lemma 0.2. Fix A � τG
�

κ, and C � σG
�

ω1 with � C is c.u.b.  M � G � . Let p0 � G,

p0 � � σ is c.u.b.  . Suppose p1 � p0 with p1 � � α  !��� α � σ 8�.� τ � α � �G � α �� .
We construct the sequence q0 � p1 � q1 � q2 � . . . as before. We use now � being
� κ closed to get (2). As before, let q � ) n qn and let q + � q - ��/ B, α 0 � where

α � dom � q !� ) n dom � qn  and B � M , q � τ � α̌ � B̌. This is a contradiction
exactly as above. �

The forcing of lemma 0.5 is again equivalent to FN � κ, 2, κ  , thus we have:

Corollary 0.6. Let M be a transitive model of ZFC and κ a regular cardinal of
M . Let G be M -generic for FN � κ, 2, κ  M . Then ♦κ holds in M � G � .

There are two natural weakenings of ♦ which turn out to be equivalent to ♦ by
a theorem of Kunen. One weakening is to replace “stationary” in the definition
of ♦ with “non-empty.” The second is to allow countably many sets at each stage
α � ω1 to do the guessing. the following theorem gives the equivalence.

Theorem 0.7. (Kunen) The following are equivalent in ZFC.

(1) ♦

(2) There is a sequence � Aα � α 
 ω1
, where each Aα is a countable collection of

subsets of α, such that for every A
�

ω1 the set � α � ω1 : A � α � Aα � is
stationary.

(3) There is a sequence � Aα � α 
 ω1
, where each Aα is a countable collection of

subsets of α, such that for every A
�

ω1 the set � α � ω1 : A � α � Aα � is
non-empty.

Proof. First we show that (2) implies (1). Let π : ω
�

ω1 6 ω1 be a bijection. Let
D
�

ω1 be c.u.b. such that for α � D, π � ω �
α is a bijection between ω

�
α and α.

Let � Aα � α 
 ω1
� � An

α � α 
 ω1,n 
 ω witness (2). Let Bn,m
α � � β � α : π � m, β  � An

α � .
We show that for some n � ω that � Bn,n

α � α 
 ω1
is a ♦ sequence. If not, then for

each n let En
�

ω1, and Cn be c.u.b. witnessing the failure of Bn,n
α to be a ♦

sequence. Define E to code the En by: α � E iff π � 1 � α  � � k, β  and β � Ek.
By (2), let α � D � �

n Cn such that E � α � Aα. Say E � α � An
α. But

then Bn,n
α � � β � α : π � n, β  � An

α � � � β � α : π � n, β  � E � α � � En � α, a
contradiction to the definition of En and α � Cn.

We next show (3) implies (2). Let � Aα � α 
 ω1
be as in (3). Without loss of gen-

erality we may assume the Aα are increasing. We define a new sequence � A +α � α 
 ω1

as follows. We view subsets of ω as coding bounded subsets of ω1 in some manner
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(e.g., take a bijection between 2ω and ω 
 ω
1

). For successor ordinals let A +α � Aα.
For α limit let A +α � Aα be such that:

(i) For all n � ω and all A � Aα $ n, � β � α : 2 � β � A � � A +α.
(ii) Suppose A � Aα, β � α is a limit, and x �4� n � ω : β � 2n � 1 � A � codes a

subset Aβ of α. Then Aβ � A +α.
To see this works, fix A

�
ω1 and a c.u.b. C

�
ω1. We may assume C consists of

limit ordinals. We must show that for some α � C that A � α � A +α. Define B
�

ω1

as follows. For each limit β let xβ
�

ω code A � NC � β  , where NC � β  is the least
element of C greater than β. Let B �4� 2 � γ : γ � A � - � β � 2n � 1: β is limit � n � xβ � .

By (3), fix now α � ω1 such that B � α � Aα. If α � C then A � α � A +α by (i)
(with n � 0). Let γ be the largest element of C less than α. If α � γ � ω, then by
(i) we still have A � γ � A +γ . If α � γ � ω, then from (ii) we have that A � δ � A +δ,
where δ � NC � γ  .

Thus, in all cases we have an α � C with A � α � A +α. �

Another generalization of ♦ is the following.

Definition 0.8. Let κ be a regular cardinal and S
�

κ stationary. Then ♦S
κ is the

statement that there is a sequence � Aα � α � S with Aα
�

α, such that for all A
�

κ,
the set � α � S : A � α � Sα � is stationary.

Lemma 0.9. Let M be a transitive model of ZFC, and κ a regular cardinal of M .
Let λ % � 2 
 κ  M be a cardinal of M . Let G be M -generic for FN � λ, 2, κ  . Then in
M � G � we have that for every stationary S

�
κ, ♦S

κ holds.

Proof. The forcing � � FN � λ, 2, κ  is � κ closed in M , so all cardinalities and
cofinalities � κ are preserved. Also, � is � 2 
 κ  $ c.c. in M .

First we show that for every S � M which is stationary in M � G � that ♦S
κ holds

in M � G � . Fix such an S � M . Since λ � κ2 � λ, FN � λ, 2, κ �� FN � κ2, 2, κ  �

FN � λ, 2, κ  . Let � be the forcing of lemma 0.5, that is, conditions p are functions
with dom � p 8� κ and for all α � dom � p  , p � α  � α. Since � � FN � λ, 2, κ  is dense
in FN � κ2, 2, κ  � FN � λ, 2, κ  , we may view G as a product G � G1

�
G2 where

G1

� � , G2

�
FN � λ, 2, κ  (more precisely, M � G � � M � G1 � � G2 � where � G1, G2  is

generic for the product).
Replacing M by M � G2 � , it is enough to show that if M is a transitive model of

ZFC, κ is regular in M , G is M -generic for � , and S � M is stationary in M � G � ,
then M � G � satisfies ♦S

κ . To see this, let A � τG
�

κ and C � σG be c.u.b. in M � G � .
Suppose p �  � α � α � σ � Š � �G � α �� τ � α  . In M � G � define

D � � α � κ : � β � α � γ, δ � α � γ % β � G � δ � � γ̌ � σ 
� � G � δ � β̌ � τ � G � δ � β̌ ( τ � � .

Easily M � G � satisfies that D is a c.u.b. subset of κ (recall κ is regular in M � G � ).
Since S is stationary in M � G � , let α � S � D, with α % dom � p  . Let q � G � α.
Thus, q � p. From α � D we get that q � � α̌ � σ  . Also, there is a B � M such that

q � τ � α � B̌. Let q + � q -���/ α, B 0 � . Then q + � p and q + � � α̌ �'� Š � σ  � �G � α̌ ��
τ � α̌  , a contradiction.

Returning to the proof of the theorem, suppose now S � M � G � is stationary in
M � G � , where G denotes our FN � λ, 2, κ  generic. Assume for convenience that λ is
regular in M . For any ρ � λ, we may write FN � λ, 2, κ �� FN � ρ, 2, λ  � FN � λ 	
ρ, 2, κ  , and view G as a product G �ρ

�
G $ρ accordingly. It suffices to show that
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for some ρ � λ that S � M � G �ρ � . For then we may apply the previous paragraph

(using M � G �ρ � as our ground model) to conclude that ♦S
κ holds in M � G � . In fact,

we show that any S
�

κ, S � M � G � lies in some M � G �ρ � . Since �1� FN � λ, 2, κ  is
λ c.c., there is a nice name for S in M of size � λ (using λ regular in M). Let τ be
such a nice name, that is, � τ � M � λ. Clearly then, S � τG � τG �ρ for large enough

ρ (i.e., ρ greater than the domains of all conditions in - 3 � τ  ). Thus, S � M � G �ρ � .
If λ is not regular in M , the argument of the previous paragraph still goes

through writing instead FN � λ, 2, κ �� FN � T, 2, κ  � FN � λ 	 T, 2, κ  for some T
�

λ

of size � 2 
 κ � λ (but T may now be cofinal in λ). �

1. Suslin’s Hypothesis

We say a linear order � X, �  is dense if whenever x � y then there is a z � X

with x � z � y. We say � x, �  is without endpoints if there is no least or maximal
element of X . We say � X, �  is separable if there is a countable set D

�
X such

that every non-empty interval � x, y  contains a point of D. We say � X, �  is c.c.c. if
there is no uncountable family of pairwise disjoint open sets (equivalently, intervals).
The linear order is separable or c.c.c. iff X viewed as a topological space (with the
order topology) is separable or c.c.c. We say � X, �  is complete if every non-empty
bounded set in X has a least upper bound and a greatest lower bound.

Recall that for topological spaces in general, 2nd countable � separable � c.c.c.
A countable product of 2nd countable spaces is second countable, but an ω1 product
of � std is not 2nd countable (or even first countable). A � 2ω length product of
separable spaces is separable, but a � 2ω  $ product of � std is not separable. Finally,
an arbitrary product of second countable spaces is c.c.c. (we’ll discuss products of
c.c.c. more later).

The following lemma is an important but elementary fact from analysis. It is just
asserting that � is the unique completion of � . The proof is left to the exercises.

Lemma 1.1. ��� , � std  is the unique, up to isomorphism of linear orders, linear
order � X, �  satisfying:

(1) � X, �  is dense and without endpoints.
(2) � X, �  is complete.
(3) � X, �  is separable.

Exercise 2. (Cantor) Show that any two countable dense linear orders without
endpoints are isomorphic. [hint: Use a “back and forth” argument. Construct
f � ) n fn in ω stages, where each fn will be an isomorphism from a subset of
the first order of size n to a subset of the second order. At even stages n � 2m,
arrange that the mth element of the first order is in the domain of fn. At odd
stages n � 2m � 1, arrange that the mth element of the second order is in the range
of fn.]

Exercise 3. Prove lemma 1.1. [hint: Start with exercise 2. Then extend the f

of that exercise to the completions of the countable dense sets, using the fact that
both are complete.]

Note that the requirement that � X, �  not have endpoints is rather trivial: if it
has them then we can simply remove them without effecting the other properties
of lemma 1.1.



5

A natural question, raised by Suslin, is whether the characterization of the real
line, lemma 1.1, continues to hold if we weaken the requirement of separability to
that of being c.c.c. The statement that it does is called Suslin’s hypothesis, SH.

Definition 1.2. Suslin’s hypothesis, SH is the statement that � � , � std  is the
unique, up to isomorphism of linear orders, linear order � X, �  which is dense,
without endpoints, complete, and c.c.c.

A counterexample to SH is called a Suslin line. That is, a Suslin line is a
linear order � X, �  which is dense, without endpoints, complete, and c.c.c., but not
separable. Thus, SH is the statement that there are no Suslin lines.

The following lemma says that the existence of a Suslin line is equivalent to the
existence of a linear order � X, �  which is c.c.c. but not separable, as the other
properties can be easily arranged.

Lemma 1.3. If there is a linear order � X, �  which is c.c.c. but not separable, then
there is a Suslin line.

Proof. Let � X, �  be a c.c.c. but not separable linear order. Define an equivalence
relation on X by x � y iff � x, y  is separable. Each equivalence class � x � is an
interval of X . Distinct equivalence classes correspond to disjoint intervals. The
classes then inherit an order from X , namely � x � � � y � iff x � y (equivalently, all

the points of � x � are less than any point of � y � ). Let X̃ be the set of equivalence

classes with this induced order. We claim that X̃ is dense in itself, and c.c.c. but
not separable. Granting this, we can then finish by removing the endpoints of X̃, if
any, then taking the completion. It is easy to check that the completion is still c.c.c.
and not separable (see the following exercise). First note that every equivalence
class I � � x � is separable. To see this, let � xn, yn  be a maximal family of parirwise
disjoint intervals contained in I (which must be countable as X is c.c.c.). Let Dn

be dense in � xn, yn  , and let D ��) n Dn. Then D together with the first and last
elements of I (if any) is dense in I .

To see X̃ is dense in itself, suppose � x �!� � y � . If ��� x � , � y �� � �
, then � x, y  �

� � x � - � y �� , and thus D - E is dense in � x, y  where D is dense in � x � and E is dense
in � Y � . Thus, x � y, so � x �&� � y � , a contradiction.

To see X̃ is not separable, if � � dn � � n � ω were dense in X̃, then let for each n

Dn
� � dn � de dense in � dn � . Then D � ) n Dn is dense in X , a contradiction.

To see X̃ is c.c.c., suppose ��� xα � , � yα �� is an antichain in X̃ . Then � xα, yα  is an
antichain in X , so must be countable. �

Exercise 4. Let � X, �  be a linear order. The completion X̂ of X can de defined
by adding points x̂ for all cuts (bounded above, downward closed sets) S

�
X which

do not have a least upper bound in X . The point x̂ is greater than any element
of S but less than any element of X which is greater than all the elements of X .
Show that X is dense in X̂ . Show that if x̂ � X̂ 	 X , then X has no largest element
below x̂, and X has no least element above x̂. Show that X is separable iff X̂ is
separable. [if D̂ is countable dense in X̂ , show that D - E is dense in X where

D � D̂ � X and E is chosen so that for all nonempty intervals � d̂1, d̂2  where d̂1,

d̂2 � D̂ we have E �.� d̂1, d̂2 �� � .] Show that X is c.c.c. iff X̂ is c.c.c. [if � x̂, ŷ  is

a non-empty interval in X̂, show that there are x, y � X with x̂ � x � y � ŷ and
� x, y  non-empty in X .]
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Suslin’s hypothesis we formulated by Suslin around 1920. It was reformulated
in terms of a certain kind of tree, called Suslin trees, by Kurepa in the 30’s. As
we will see, SH is independent of ZFC, by results from the late 60’s. Jech and
Tennenbaum showed the consistency of ZFC �3 SH, and Solovay and Tennenbaum
the consistency of ZFC � SH. Jensen showed that Suslin trees exist in L, that is,
 SH holds in L (we discuss these points in more detail below).

2. Various Trees

As we mentioned, Kurepa introduced the notion of a Suslin tree, and showed
 SH is equivalent to the existence of a Suslin tree. In other words, the existence
of a Suslin line is equivalent to the existence of a Suslin tree. We prove this in this
section, and introduce a few other types of trees of interest.

Definition 2.1. A tree is a partially ordered (i.e., transitive, irreflexive) set � T, � T 
with the property that for every x � T , � y � T : y � T x � is well-ordered. for
x � T we write � x � T (or just � x � if T is understood) to denote the order-type of
� y � T : y � T x � . We call this the rank or height of x in T . The height of T is
defined by � T � � sup � � x � T � 1: x � T � . By the αth level of T we mean the set of
x � T of height α. A chain of T is a subset which is linearly ordered by � T . A
branch b of T means a chain which is closed downwards (i.e., if x � b and y � T x,
then y � b). An antichain A of T is a subset of T of pairwise incomparable elements.

We are interested in trees of size κ, for various cardinals κ, which satisfy a certain
non-triviality condition:

Definition 2.2. Let κ � CARD. A κ-tree is a tree T of height κ such that all
levels of the tree have size � κ. That is, � α � κ � � x � T : � x � T � α � � � κ.

We now introduce several particular trees of interest.

Definition 2.3. Let κ be a cardinal. A κ Aronszajn tree is a κ tree with no branch
of size κ. An Aronszajn tree refers to an ω1 Aronszajn tree.

Requiring more we get the notion of a Suslin tree.

Definition 2.4. Let κ be a cardinal. A κ Suslin tree is a κ tree with no chains of
size κ and no antichains of size κ. A Suslin tree refers to an ω1 Suslin tree.

In other words, a κ Suslin tree is a κ Aronszajn tree with no antichains of size
κ.

Definition 2.5. Let κ be a cardinal. A κ Kurepa tree is a κ tree with � κ $ many
branches of length κ. A Kurepa tree refers to an ω1 Kurepa tree.

It is not immediately clear if any of these kinds of trees exist. We will see
that Aronszajn trees exist in ZFC, but the existence of Suslin and Kurepa trees is
independent of ZFC.

If desired, a κ tree can, with perhaps a fairly trivial modification, be viewed as a
subtree of � κ �  κ, where κ � � sup � λ � CARD: λ � κ � . The modifications required
are: we assume the tree has a single root, that is, a single element of height 0 (if not,
we add one), and if x � y � T have limit height, then � z : z � T x � � � z : z � T y �
(this can be arranged by adding extra elements at limit levels, one for each branch
of that height, that sit immediately below the old points of that limit height). Given
these adjustments, it is now straightforward to define an isomorphism π between
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T and a subtree of � κ �  κ. If x � T has height α, then π � x  will be a sequence
with domain α (define π � x  by induction on � x � T , at limit stages take unions of the
π � y  for y � T x, and at successor steps use the fact that any x � T has � κ many
immediate extensions).

Definition 2.6. A tree T is branching if every x � T has at least two distinct
immediate extensions. T is said to be pruned if it has a single root and for every
x � T and every α � � x � T (with α � � T �  there is a y � T of height α with x � T y.

In other words, a pruned tree has the property that every element of the tree
has arbitrarily high extensions in the tree.

If T is a κ tree and κ is regular, then there is a canonical subtree T + of T which
is a pruned κ tree. Let T + be those x � T which have κ many extension in T

(which implies x has extensions of arbitrary height). It is easy to check that T +
is downward closed subtree of T , and that it is pruned (except it may have more
than one root; in that keep only the part of T + above a particular root). [To see it
is pruned, take x � T + . Let α % � x � T . Let S

�
T be κ many extensions of x, all of

which have height % α. κ many elements of S must extend a single y � T of height
α. Then y � T + .]

Before investigating these trees, we first make the connection with Suslin’s hy-
pothesis.

3. Suslin Trees and Suslin’s Hypothesis

The following lemma connects Suslin’s hypothesis with Suslin trees.

Lemma 3.1. (ZFC) There is a Suslin line iff there is a Suslin tree.

Proof. Suppose first that � X, �  is a Suslin line. We construct the tree T out of
the intervals I � � x, y  in X . Rather than take all intervals (which does not give a
tree), we pick the intervals Iα � � xα, yα  , for α � ω1, inductively so that they do
form a tree. If Iβ for β � α have been defined, let C � ) β 
 α � xβ , yβ � be the set of

endpoints so far constructed. This set is countable, so it is not dense in X (recall
X is not separable). Let Iα be a non-empty interval with Iα � C � � . Continue
to define Iα for all α � ω1. If α � β, then Iα and Iβ are either disjoint, or one
is contained in the other. Let T be the set whose elements are the intervals Iα

constructed, and define I � T J iff J
�

I . � T, � T  is easily a tree (note that if Iα

and Iβ both contain J , and α � β then Iα � Iβ . Thus the � T predecessors of J

are ordered by their indices.). We show that T is a Suslin tree. An uncountable
antichain of T would be an uncountable family of intervals of X which are pairwise
disjoint, a contradiction since X is c.c.c. (if I , J in T are not disjoint, then one
contains the other so they are comparable in T ). Suppose there were an uncountable
branch, say J0 � T J1 � � � � � Jα � . . . . If xα denote the left endpoint of Jα, then
the xα form an ω1 increasing sequence from X . Then the intervals � x2 � α, x2 �

�
α $ 1 �

are non-empty, pairwise disjoint, a contradiction. Thus, T is a Suslin tree.
Suppose next that T is a Suslin tree, and we construct a Suslin line. Let X

be the set of maximal branches of T . We fix an order on T (say by identifying
it with ω1) and order the branches of T lexicographically. This defines the linear
ordering � X, �  . To see it is c.c.c., suppose � xα, yα  , α � ω1 was an ω1 sequence
of pairwise disjoint non-empty intervals. Let zα � � xα, yα  . Let β0 be the least
ordinal � � zα � such that xα � β0  � zα � β0  , and let β1 be the least ordinal � � zα �
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such that yα � β1  � zα � β1  . Let β � max � β0, β1 � . Let aα � z � β  � T . Then � aα � is
an uncountable antichain in T , a contradiction.

To see � X, �  is not separable, let A � � bb � be a countable subset of X . Choose
α � ω1 of height greater than the supremum of the heights of the branches bn. There
is some z � T of height α which has three distinct extensions (in fact, ω1 many) in
T (as T is an ω1 tree). This defines a non-empty interval in X which contains only
branches of length % α. Hence, this gives a non-empty interval missing A, so A is
not dense.

This shows � X, �  is c.c.c. but not separable. From lemma 1.3 this gives a
Suslin line. Alternatively, we can modify the tree T directly so that � X, �  as just
constructed is dense in itself. To do this, first prune T so that, without loss of
generality, every x � T has extensions to arbitrarily high levels (the pruned subtree
is clearly still a Suslin tree). Then consider levels Tα0

, Tα1
, . . . of T such that all

points of T of level αη have ω many extensions at level αη $ 1. This defines a subtree
T + of T (the union of the points at some level αη) which is still an ω1 tree (and
thus still a Suslin tree). The tree T + is ω-splitting (i.e., every element has infinitely
many immediate extensions). If we order the extensions of any point of T + in order
type � , then X will clearly be dense in itself. We can then take the completion of
� X, �  to get a Suslin line. �

4. Aronszajn Trees

Recall an Aronszajn tree is an ω1 with no ω1 branch. The next lemma shows we
can construct them in ZFC.

Lemma 4.1. (ZFC) There is an ω1 Aronszajn tree.

We’ll give two construction of an Aronszajn tree.

first proof. We construct the tree as a subtree of � ω1 . The αth level of the tree will
consist of increasing sequences t � � α with sup � t  finite (i.e., ran � t  is a bounded
set of rationals.). We will have t � Y u iff u extends t. We construct the levels of
the tree, Tα inductively and will also satisfy ���  : for any t � Tα and any β % α and
q % sup � t  , there is a u � Tβ with t � T u and sup � u &� q.

If Tα is defined , we let Tα $ 1 consist of all taq where q � Q and q % sup � t  . This
clearly maintains ���  .

Suppose now α is a limit and Tβ has been defined for all β � α. For each
t � T 
 α � ) β 
 α Tβ and each q % sup � t  , choose a sequence of ordinals � t � T �
α0 � α1 � . . . with supn αn � α and choose rationals sup � t  � r0 � r1 � . . . with
supn rn � q. By ���  , choose then t � T t0 � T t1 � T t2 � T . . . where ti � Tαi

and
sup � ti  � ri. Put then u �	- tn in Tα. Clearly we have maintained ���  , and Tα

is countable. Thus, T is an ω1 tree. It clearly has no ω1 branch, since that would
give an ω1 sequence of distinct rationals. �

second proof. We now give a second construction due to Kunen. We will construct
a sequence � sα � α 
 ω1

satisfying:

(1) Sα is a one-to-one function from α to ω.
(2) If α � β then sβ � α agrees with sα except on a finite set.
(3) ω 	 ran � sα  is infinite.

Granting this, we let T be the set of all sα � β where β � α, that is, all initial
segments of all of the sα. We order T again by extension. Clearly T is a tree. T is
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an ω1 tree from property (2), since there are countably many s � αω which agree
with sα up to a finite set. From (1) there are clearly no ω1 branches through T .

It remains to construct the sα, which we do by induction. For successor steps,
let sα $ 1 � sα

an where n ( ran � sα  . Suppose α is a limit, and let � αn � be an
increasing sequence with supremum α. Begin with sα0

. Get tα1
� sα0

- u where u

is the result of changing sα1
on a finite subset of α1 	 α0 so that tα1

is one-to-one.
In general, get tαn � 1

� tαn
- u where u is the result of changing sαn � 1

on a finite
subset of αn $ 1 	 αn so that tαn � 1

is one-to-one. We can do this from properties (2)
and (3). Let t � ) n tαn

, then t satisfies properties (1) and (2). We can then modify
t to get sα by, for example, changing the values at the αn, say by sα � αn  � t � α2n  .
sα now satisfies (1)-(3). �

The second proof modifies to get κ-Aronszajn trees for κ a successor of a regular,
assuming GCH.

Lemma 4.2. Let κ � λ $ where λ is regular and 2 
 λ � λ. Then there is a κ

Aronszajn tree.

Proof. We construct sα for α � κ satisfying:

(1) Sα is a one-to-one function from α to λ.
(2) If α � β then sβ � α agrees with sα except on a set of size � λ.
(3) ran � sα  is non-stationary in λ.

Granting this, we again let T be the tree os initial segments of the sα. This is a
κ tree since for each α � κ there are at most λ 
 λ � 2 
 λ � λ many s � λα which
agree with sα except on a set of size � λ.

We construct the sα by induction as before. Successor steps are trivial. Suppose
α is a limit ordinal. We assume cof � α  � λ, as the other case is easier. Fix
� αi � i 
 λ increasing, continuous, and cofinal in α. We construct sequence tαi

� λαi

by induction on i as before. For i � λ a limit we take unions. Properties (1) and
(2) are immediate, and (3) follows since a � λ intersection of sets c.u.b. in λ is
c.u.b. in λ. We let tαi � 1

� tαi
- u, where u � sαi � 1

� � αi $ 1 	 αi  , except we change
the values on � λ many points of � αi $ 1 	 αi  to get tαi � 1

one-to-one. Using (2) and
(3) and the trivial fact that every c.u.b. subset of λ has size λ, there is no problem
defining tαi � 1

(we redefine sαi � 1
� � αi $ 1 	 αi  on a set of size � λ to have values in

a c.u.b. set which ran � tαi
 misses). We still clearly have that each ran � tαi

 misses
a c.u.b. subset of λ, say Ci.

Let t � ) i 
 λ tαi � 1
. t then satisfies (1) and (2), and we must adjust it to get

sα also satisfying (3). Let � βi � i 
 λ be an increasing, continuous sequence with
βi � �

j 
 i Cj . Define sα to be t, except t takes value βi we define sα to take value

βi $ 1. Clearly sα then satisfies (3) (since � βi � i � Limit is c.u.b.). sα still satisfies (2)
since the modification of t to sα changes � λ many values of t � αi for any i � λ

(since ran � t � αi  doesn’t contain any βj for j % i). �

If we don’t assume CH, then there may or may not be ω2 Aronszajn trees
(Mitchell). For κ strongly inaccessible, there is a κ Aronszajn tree iff κ is weakly
compact, a mild large cardinal axiom (the existence of weakly compact cardinals is
consistent with V � L). On the other hand, Jensen showed that in L, there is a κ

Suslin, hence a κ Aronszajn, tree for all regular κ which are not weakly compact.
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5. Suslin Trees

Unlike Aronszajn trees, we cannot construct a Suslin tree in ZFC. We first show
that ♦ implies the existence of a Suslin tree.

Theorem 5.1. ♦ implies that there is a Suslin tree.

Proof. Fix a ♦ sequence � Aα � α 
 ω1
. We construct the levels of the tree Tα � � x �

t : � x � T � α � by induction. We will have that T
�

ω1. We will also maintain that
every x � T has extensions to all higher levels. Let T0 consist of just the ordinal
0. Given Tα, let Tα $ 1 be defined by extending every x � Tα to ω many immediate
extensions in Tα $ 1. Suppose now α is limit. Let T 
 α � ) β 
 α Tβ be the part of
the tree so far constructed. If Aα is not a maximal antichain in T 
 α, then define
Tα by picking for every x � T 
 α a branch bx of T 
 α of length α containing x,
and extending this branch to a point in Tα. Suppose now that Aα is a maximal
antichain of T 
 α. We define Tα to “seal-off” this antichain, that it, prevent it from
growing further. For each x � T 
 α, let bx be a branch of T 
 α of length α which
contains x and some element of Aα. We can do this since every x is comparable
with an element of Aα. Tα is defined by extending each such bx to a point of Tα.

Let T � ) α 
 ω1
Tα. Clearly T is a pruned ω1 tree. Suppose A � ω1 is a maximal

antichain of T . Let C
�

ω1 be c.u.b. such that for α � C, T 
 α
�

α and A � α is a
maximal antichain of T 
 α. From ♦, let α � C be such that A � α � Aα. Then at
stage α in the construction we defined Tα so that all elements of height α extend an
element of Aα. This shows that A � α is a maximal antichain of T , so A � A � α,
and thus A is countable. �

Corollary 5.2. It is consistent with ZFC that there is a Suslin line.

Constructing κ-Suslin trees for higher regular (non weakly compact) cardinals
requires more that ♦κ. However, it is easier to force directly the existence of these
trees. In fact, this was the original argument of Jech and Tennenbaum. To get a
Suslin tree we can force with either countable trees (Jech) or finite trees (Tennen-
baum). We sketch both proofs. The first proof works for all regular cardinals as
well.

For the first proof (κ now a regular cardinal of M), let the partial order � consist
of pruned trees T , � T � , κ, of height α � 1 for some α � κ (i.e., for any x � T has
an extension to the highest level α of T ). For convenience we also require T to be
splitting, and we assume also T

�
κ, that is, the elements of T are ordinals less

than κ. We define T1 � T2 iff � T1 � � � T2 � and T1 � � T2 � � T2 (here T � β denotes the
elements of T of height � β in T ). Thus, T1 must extend T2 “vertically.”
� is countably closed, but not in general � κ closed (the problem is with the

pruned condition; an increasing union of conditions of length ω1 may fail to be ex-
tendible to a condition as there may be no branches cofinal in the union). However,
� is � κ distributive, which is enough to get that � preserves all cofinalities and car-
dinalities � κ. To see this, let � Dη � η 
 ρ, ρ � κ, be a � κ collection of dense sets in
� . We define conditions pη of height αη � 1 inductively. We will have p0 � p1 � . . . .
As we define pη we will also define for each x � pη a function fx which gives a brach
of pη containing x of height αη � 1. If x � pη1

� pη2
, then we will have that the fx

functions are compatible. At successor steps, if pη is defined we let pη $ 1 � Dη $ 1
be any extension of pη of some successor height αη $ 1 � 1 % αη � 1, and extend all
of the fx function for x � pη as well as define the fx functions for x � pη $ 1 	 pη.
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There is no problem doing this as pη $ 1 extends pη and is pruned. For η limit, let
β � sup � αi : i � η � . Let T � ) i 
 η pi. Our branch functions define for each x � T a

branch fx of T of height β. Let T + � T have height β � 1 and obtained by extending
each branch fx to level β � 1 of T + . T + is now a condition in � . Let pη � Dη extend
T + , and extend the branch fuctions of T + appropriately. Continuing, we define a
condition pρ which extends conditons in all of the Dη. Thus,

�
η 
 ρ Dη is dense, so

� is � κ distributive.
Let G be M generic for � , where M is a transitive model of ZFC. We may

identify G with a pruned κ tree (G has height κ since any condition T can be
extended to a condition T + of height α � 1 for any � T � � α � 1 � κ).

We claim that G is a κ-Suslin tree. Suppose τ � M
�

and T0 � � τ is a maximal

antichain of �G  . Let D
�

P be those conditions T such that for some A
�

T we
have

(1) A is a maximal antichain of T .
(2) sup � � a � : a � A � � � T � (i.e., there is a level of T such that all elements of A

are below that level).
(3) T � � Ǎ � τ  .

We claim that D is dense below T0. For let T � T0. As � is � κ distributive, we
may get T1 � T such that for all x � T0, there is a a � T1 such that x is compatible
with a and T1 � � a � τ  . In general, define Tn $ 1 � Tn so that for all x � Tn, there
is a a � Tn $ 1 such that x is compatible with a and Tn $ 1 � � a � τ  . Let T � ) n Tn.
Then there is a maximal antichain A of such that T � � A � τ  . Extend T to T + of
height � T � � 1 as follows. For each x � T , let bx be a branch of T containing x and
an element of A, with bx of height � T � . For each x � T , put a point in T + which
extends all the elements of bx (i.e., extend the branch bx). This defines T + , and we
have T + � D. Thus, D is dense in � . Let T � G � D. Let A

�
T witness T � D. We

must have A � τG, since if T + � T and x � T + 	 T , then x is above some element
of A. Thus, τG � A has size � κ in M � G � . This shows G is a Suslin tree.

Corollary 5.3. Let M be a transitive model of ZFC and κ a regular cardinal
of M . Then there is a κ-distributive forcing (hence preserves all cofinalities and
cardinalites � κ) such that in M � G � there is a κ-Suslin tree.

The second proof uses finite trees. � now consists of finite trees T
�

ω1 satisfying:
if α � T β then α � β. We define T1 � T2 iff � T1

� � T2
�

T2  � � T2
. We again

identify a generic G with a tree G on ω1 (to see it is a tree, note that if α � G then
the � G predecessors of α are � G ordered in their usual order as ordinals, hence the
� G predecessors are well-ordered).

First we show that � is c.c.c. If � Tα � α 
 ω1
were an antichain, then by the ∆ system

lemma we may assume that each Tα consists of a root R and a set Aα � � a1
α, . . . , an

α �
(of some fixed size n), where the Aα are pairwise disjoint. We may further assume
that the Tα orderings on the root R are all the same. Further, we may assume that
for r � R, r � Tα

ak
α iff r � Tβ

ak
β for all α, β. We may also assume that ak

α � Tα
al

α

iff ak
β � Tβ

al
β for all k, l � n and all α, β. Thus, Tα and Tβ look the same except

for the values of the ordinals in Aα, Aβ . However it is now easy to get a common
extension of any two of the Tα (e.g., the union of Tα and Tβ is now a condition).

We show that G has no uncountable antichain (from which it also follows that
G is an ω1 tree (for another argument, see the exercise below). Suppose T � � τ
is an uncountable antichain of �G  . Get an ω1 sequence Tα of conditions extending
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T and ordinals ηα � Tα with Tα � � η̌α � τ  , and the ηα are distinct. Thin the Tα

to a ∆ system as above, Tα � R - Aα. It is easy to see that for any α � β we
can get a common extension of Tα and Tβ in which ηα is comparable with ηβ , a
contradiction.

Corollary 5.4. The existence of a Suslin tree is consistent with ZFC �� CH. In
particular, the existence of a Suslin tree does not imply ♦.

6. Kurepa Trees

Recall a Kurepa tree is an ω1 tree with at least ω2 branches of length ω1. We
can give an easy reformulation of this which does not mention trees.

Lemma 6.1. There is a Kurepa tree iff there is a family F of subsets of ω1 satis-
fying:

(1) �F � � ω2.
(2) � α � ω1 � � A � α : A � F � � � ω.

We call a family F as in lemma 6.1 a Kurepa family.

Proof. Assume first that T is a Kurepa tree. Without loss of generality we may
assume T

�
ω1 and if α � T β then α � β. Then F � the set of ω1 branches

through T is a Kurepa family (note that ib b is a branch through T , then b � α is
determined by the αth level of b).

Conversely, assume F is a Kurepa family. Let T be the subtree of 2 
 ω1 consisting
of all initial segments of characteristic functions of A � F . Easily T is a Kurepa
tree (note that the element of T of height α correspond to the elements A � α for
A � F). �

Just as ♦ implies the existence of a Suslin tree, there is a combinatorial princi-
ple ♦ $ which implies the existence of a Kurepa tree. ♦ $ implies ♦, however the
existence of a Kurepa tree does not imply the existence of a Suslin tree. Although
we show here the consistency of the existence of Kurepa tree directly by forcing,
we state the principle ♦ $ . We note also that ♦ $ , like ♦ holds in L.

Definition 6.2. ♦ $ is the statement that there is a sequence � Aα � α 
 ω1
, where

each Aα is a countable family of subsets of α, such that for all A
�

ω1, there is a
c.u.b. C

�
ω1 such that for all α � C we have A � α � Aα and C � α � Aα.

In view of theorem 0.7, it is clear that ♦ $ implies ♦.

Theorem 6.3. Let M be a transitive model of ZFC � CH. Then there is a countably
closed � � M such that if G is M -generic for � then M � G � satisfies that there is
Kurepa tree.

Proof. � consists of pairs � T, f  where T is a pruned countable subtree of 2 
 ω1

of height α � ω1, and f is a function with domain a countable subset of ω2 such
that for α � dom � f  , f � α  is a branch through T . We say � T1, f1 �� � T2, f2 
if T1 � � T2 � � T2 (i.e., T1 extends T2 vertically), dom � f2  � dom � f1  , and for all
α � dom � f2  , f1 � α  extends f2 � α  (i.e., f1 extends all of the branches of f2, and
may give new ones as well).

Clearly � is countably closed. Let T be the tree produced by the generic, and F

the function produced (in the obvious manner). Thus, F is a map from ωM
2

to the

length ω1 branches of T (note: ωM
1 � ω

M �G �
1

). It is easy to see that for a generic
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G, the resulting function F will also be one-to-one (we may extend any � T, f  with
α, β � dom � f  to a � T + , f +  where f + � α  � f +7� β  ). Thus, in M � G � the ω1 tree T has
� ωM

2
branches of length ω1. We show finally that � is ω2-c.c. in M , which shows

that ωM
2
� ω

M �G �
2

and completes the proof.
Suppose � � Tα, fα  � α 
 ω2

were an antichain of � . We may assume that all of the
trees have the same height β � ω1. By CH in M , there are 2β � ω1 many trees
of height β, so we may assume that all of the Tα are equal to a fixed tree T0.
Again using CH, we may thin the antichain so the dom � fα  form a ∆ system on
ω2, say dom � fα  � R - Aα where the Aα are pairwise disjoint. We may assume
that that the fα all agree on the root R, as there are only ωω

1 � 2ω � ω1 many
choices for f � R. At this point, any two members of the antichain are compatible,
a contradiction. �

7. A Model in which there are no Kurepa Trees

Starting with a model M of ZFC � there is an inaccessible cardinal, we produce
a generic extension M � G � in which there are no Kurepa trees. The inaccessible
cardinal is necessary since if M satisfies ZFC � there are no Kurepa trees then ωM

2

is inaccessible in L [Work in M . If ω2 is not inaccessible in L, then ω2 � � ω2  L � A �
for some A

�
ω1. However ♦ $ holds in any L � A � for A

�
ω1. Thus there is a

Kurepa tree in L � A � , and this remains a Kurepa tree in L � A � as ω2 � � ω2  L � A � .]
To motivate the forcing, note that if T is a Kurepa tree, then T will remain a

Kurepa tree in any larger model unless ω2 is collapsed in the larger model. Con-
versely, collapsing ω2 by a countably closed forcing will kill the Kurepa trees of the
ground model (by lemma 7.3), but may introduce new Kurepa trees, so it will be
necessary to collapse the new ω2, etc. This suggests we collape to ω1 all the ordinals
below some large cardinal.

Definition 7.1. Let κ be a regular cardinal. The Silver collapse of κ to ω2 is the
forcing � consisting of functions with domain a countable subset of �5� α, β  : α �
κ � β � ω1 � and f � α, β �� α for all � α, β  � dom � f  .

It is clear that if g is generic for � , then � � κ � � ω2  M �G � , as in M � G � all ordinals
α � κ are onto images of ω1. It is also clear that � is countably closed, so ω1 is
preserved in forcing with � .
Lemma 7.2. Let κ be a strongly inaccessible cardinal of M . Then � is κ-c.c. Thus,

κ is a cardinal of M � G � , and hence κ � ω
M � G �
2

.

Proof. Suppose � pα � α 
 κ were an antichain of size κ. Let dα � dom � pα  . We can
view dα as a countable subset of κ. We use the ∆-system argument. We may assume
all the dα has order-type τ � ω1. Let η � β  � sup � dα � β  : α � κ � . There must be
a least β0 � τ such that η � β0  � κ [otherwise there is an η � κ such that dα

�
η

for all α � κ. Using κ strongly inaccessible this gives � κ many possibilities for
the pα.] We may then thin the � pα � sequence so the dα form a ∆-system with root
R � κτ . There are � κ many possibilities for pα � R, using again the inaccessibilty
of κ. So we may assume pα � R is constant, and this gives a contradiction to the pα

being an antichain. �

Lemma 7.3. Let � be a countably closed forcing in M . If T � M is an ω1 tree of
M , then any branch of T in M � G � lies in M .
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Proof. Suppose τ � M
�

and p � � τ is a branch of Ť � τ ( M  . We define conditions
ps for s � 2 
 ω and also xs � T . Let p � � p and x0 be the root of T . Given ps and
xs, let psa0 and psa1 extend ps and xsa0, xsa1 be two extensions of xs in T which
are incompatible in T , and with psai � xsai � τ . We can do this as otherwise ps

determines the branch τG. Let α � ω1 be greater than the heights of all the xs in
T . For each r � 2ω, let pr extend all of the ps for s an initial segment of r, and
(extending pr if necessary), let xr � T have height α with pr � x̌r � Ť (we can do
this as p forces that τ has elements of all heights α � ω1, as otherwise some q � p

would determine τG.) We clearly have that the � xr � are distinct elements of T of
height α, contradicting T being an ω1 tree. �

Theorem 7.4. Let M be a transitive model of ZFC and κ an inaccessible cardinal
of M . Let ��� M be the Silver collapse of κ to ω2 as defined in M . Then if G is
M -generic for � , M � G � satisfies that there are no Kurepa trees.

Proof. Suppose T � τG � M � G � and � T is a Kurepa tree  M �G � . We may assume

T
�

ω
M �G �
1

� ωM
1 . Let σ be a nice name for T , that is τG � σG and σ is of the

form ) α 
 ω1
� α̌ � �

Aα where Aα is an antichain of � . From lemma 7.2 it follows

that � σ � � κ. For any λ � κ we may write �"� ��� λ � ��� λ where ��� λ consists of
those p � � whose domain consists only of pairs � α, β  where α � λ, and ��� λ those
p whose domain consists only of pairs � α, β  with α % λ. Let λ � κ be large enough
so that tr cl � σ  � ON

�
λ. Write G � G � λ �

G � λ. Then T � σG � σG � λ � M � G � λ � .
From lemma 7.3 there are at most � 2ω1  M � G � λ � many branches of T in M � G � . Since

κ is inaccessible, a simple name counting argument shows that ρ � � 2ω1  M �G � λ � � κ.
However, ρ has cardinality ω1 in M � G � , as forcing with ��� λ clearly collapses ρ to
cardinality ω1. thus T has � ω1 many branches in M � G � . �


