More Forcing Constructions

We use forcing to establish the consistency of some combinatorial principles which are of use in many constructions. First we introduce Jensen's diamond principle.

Definition 0.1. \diamond is the statement: there are $A_{\alpha} \subseteq \alpha$ for $\alpha<\omega_{1}$ such that for all $A \subseteq \omega_{1},\left\{\alpha<\omega_{1}: A \cap \alpha=A_{\alpha}\right\}$ is stationary.

Clearly \diamond implies CH as every subset of ω must appear among the A_{α}. This already shows that \diamond is not provable in ZFC. In fact it is known that GCH does not imply \diamond (Jensen). \diamond is thus a powerful strengthening of CH , and is useful in places where CH alone is not sufficient. First we show that we may force to make \diamond true.

Lemma 0.2. Let M be a transitive model of ZFC. Then there is a generic extension $M[G]$ in which \diamond holds.

Proof. Let \mathbb{P} consist of all countable sequences $p=\left\{A_{\beta}\right\}_{\beta<\alpha}$ where $\alpha<\omega_{1}$ and $A_{\beta} \subseteq \beta$. We order \mathbb{P} by extension, so $p \leqslant q$ iff $\operatorname{dom}(p) \geqslant \operatorname{dom}(q)$ and $p \upharpoonright \operatorname{dom}(q)=q$. Let G be M generic for \mathbb{P}. Clearly \mathbb{P} is countably closed, so $\omega_{1}^{M[G]}=\omega_{1}^{M}$. The generic can be identified with a sequence $\left\{A_{\beta}\right\}_{\beta<\omega_{1}}$. We show that this sequence witnesses \diamond in $M[G]$. Fix $A \subseteq \omega_{1}, A \in M[G]$, and a $C \subseteq \omega_{1}, C \in M[G]$ with (C is c.u.b. $)^{M[G]}$. Let $A=\tau_{G}, C=\sigma_{G}$. Let $p_{0} \in G, p_{0} \Vdash(\sigma$ is c.u.b.). Let \dot{G} be the canonical name for the generic. We claim that $p_{0} \Vdash \exists \alpha((\alpha \in \sigma) \wedge(\tau \cap \alpha=\dot{G}(\alpha)))$. Suppose not, and let $p_{1} \leqslant p_{0}, p_{1} \in G$ with $p_{1} \Vdash \forall \alpha \neg((\alpha \in \sigma) \wedge(\tau \cap \alpha=\dot{G}(\alpha)))$. Working in M, we construct a sequence of conditions $q_{0}=p_{1} \geqslant q_{1} \geqslant \ldots$ as follows. Assume q_{n} has been defined. Let $q_{n+1} \leqslant q_{n}$ be such that
(1) $\operatorname{dom}\left(q_{n+1}\right)>\operatorname{dom}\left(q_{n}\right)$ and there is a $\beta_{n} \in\left(\operatorname{dom}\left(q_{n}\right), \operatorname{dom}\left(q_{n+1}\right)\right)$ such that $q_{n+1} \Vdash \check{\beta}_{n} \in \sigma$.
(2) For every $\alpha<\operatorname{dom}\left(q_{n}\right)$, either $q_{n+1} \Vdash \check{\alpha} \in \tau$ or $q_{n+1} \Vdash \check{\alpha} \notin \tau$.

There is no problem getting q_{n+1} as $p_{0} \Vdash(\sigma$ is unbounded $)$ and \mathbb{P} is countably closed. Let $q=\bigcup_{n} q_{n}$. Let $\alpha=\operatorname{dom}(q)=\bigcup_{n} \operatorname{dom}\left(q_{n}\right)$. From (1) and the fact that $p_{0} \Vdash(\sigma$ is closed) it follows that $q \Vdash \check{\alpha} \in \sigma$. From (2), there is a $B \subseteq \alpha, B \in M$, with $q \Vdash \tau \cap \alpha=B$. Let $q^{\prime}=q \cup\{\langle\alpha, B\rangle\}$. Then $q^{\prime} \Vdash((\check{\alpha} \in \sigma) \wedge(\tau \cap \check{\alpha}=\dot{G}(\check{\alpha}))$. This contradicts the definition of p_{1}.

The forcing used in lemma 0.2 is isomorphic to a dense subset of $\operatorname{FN}\left(\omega_{1}, 2, \omega_{1}\right)$ ($\operatorname{FN}\left(\omega_{1}, 2, \omega_{1}\right)$ is isomorphic to $\mathbb{P}=\operatorname{FN}\left(A, 2, \omega_{1}\right)$, where $A=\left\{(\beta, \alpha): \beta<\alpha<\omega_{1}\right\}$. The forcing used in the lemma is a dense subset of \mathbb{P}.) Thus we get:

Corollary 0.3. Let M be a transitive model of $Z F C$ and G be M-generic for $F N\left(\omega_{1}, 2, \omega_{1}\right)^{M}$. Then \diamond holds in $M[G]$.

Exercise 1. Show that if M is a transitive model of ZFC and G is M-generic for $\operatorname{coll}\left(\omega_{1}, \kappa\right)$, for some $\kappa \geqslant \omega_{1}$, then \diamond holds in $M[G]$. [hint: First identify $\operatorname{coll}\left(\omega_{1}, \kappa\right)=\operatorname{FN}\left(\omega_{1}, \kappa, \omega_{1}\right)$ with $\mathbb{P}=\mathrm{FN}\left(A, \kappa, \omega_{1}\right)$ where $A=\left\{(\alpha, \beta): \alpha<\beta<\omega_{1}\right\}$. A generic G for \mathbb{P} induces a $G^{\prime}: \omega_{1}^{2} \rightarrow 2$ by $G^{\prime}(\alpha, \beta)=0$ iff $G(\alpha, \beta)$ is even. Show that G^{\prime} gives a \diamond sequence in $M[G]$.]

We can generalize \diamond to higher cardinals.

Definition 0.4. Let κ be a regular cardinal. Then ∇_{κ} is the statement that there is a sequence $A_{\alpha} \subseteq \alpha, \alpha<\kappa$, such that for all $A \subseteq \kappa,\left\{\alpha<\kappa: A \cap \alpha=A_{\alpha}\right\}$ is stationary.

The proof of lemma 0.2 generalizes to give:
Lemma 0.5. Let M be a transitive model of $Z F C$ and κ a regular cardinal of M. Then there is a generic extension $M[G]$ which preserves all cardinals and cofinalities $\leqslant \kappa$ in which \diamond_{κ} holds.
Proof. Let \mathbb{P} consist of all functions p with $\operatorname{dom}(p)$ an ordinal less than κ, and with $p(\alpha) \subseteq \alpha$ for all $\alpha \in \operatorname{dom}(p)$. Clearly \mathbb{P} is $<\kappa$ closed (since κ is regular), and so \mathbb{P} preserves all cardinalities and cofinalities $\leqslant \kappa$. Let G be M generic for \mathbb{P}. The proof that ∇_{κ} holds in $M[G]$ is essentially identical to the proof of lemma 0.2. Fix $A=\tau_{G} \subseteq \kappa$, and $C=\sigma_{G} \subseteq \omega_{1}$ with $(C \text { is c.u.b. })^{M[G]}$. Let $p_{0} \in G$, $p_{0} \Vdash(\sigma$ is c.u.b. $)$. Suppose $p_{1} \leqslant p_{0}$ with $p_{1} \Vdash \forall \alpha \neg((\alpha \in \sigma) \wedge(\tau \cap \alpha=\dot{G}(\alpha)))$. We construct the sequence $q_{0}=p_{1} \geqslant q_{1} \geqslant q_{2} \geqslant \ldots$ as before. We use now \mathbb{P} being $<\kappa$ closed to get (2). As before, let $q=\bigcup_{n} q_{n}$ and let $q^{\prime}=q \cup\{\langle B, \alpha\rangle\}$ where $\alpha=\operatorname{dom}(q)=\bigcup_{n} \operatorname{dom}\left(q_{n}\right)$ and $B \in M, q \Vdash \tau \cap \check{\alpha}=\check{B}$. This is a contradiction exactly as above.

The forcing of lemma 0.5 is again equivalent to $\operatorname{FN}(\kappa, 2, \kappa)$, thus we have:
Corollary 0.6. Let M be a transitive model of ZFC and κ a regular cardinal of M. Let G be M-generic for $F N(\kappa, 2, \kappa)^{M}$. Then \diamond_{κ} holds in $M[G]$.

There are two natural weakenings of \diamond which turn out to be equivalent to \diamond by a theorem of Kunen. One weakening is to replace "stationary" in the definition of \diamond with "non-empty." The second is to allow countably many sets at each stage $\alpha<\omega_{1}$ to do the guessing. the following theorem gives the equivalence.

Theorem 0.7. (Kunen) The following are equivalent in ZFC.
(1) \diamond
(2) There is a sequence $\left\{\mathcal{A}_{\alpha}\right\}_{\alpha<\omega_{1}}$, where each \mathcal{A}_{α} is a countable collection of subsets of α, such that for every $A \subseteq \omega_{1}$ the set $\left\{\alpha<\omega_{1}: A \cap \alpha \in \mathcal{A}_{\alpha}\right\}$ is stationary.
(3) There is a sequence $\left\{\mathcal{A}_{\alpha}\right\}_{\alpha<\omega_{1}}$, where each \mathcal{A}_{α} is a countable collection of subsets of α, such that for every $A \subseteq \omega_{1}$ the set $\left\{\alpha<\omega_{1}: A \cap \alpha \in \mathcal{A}_{\alpha}\right\}$ is non-empty.

Proof. First we show that (2) implies (1). Let $\pi: \omega \times \omega_{1} \rightarrow \omega_{1}$ be a bijection. Let $D \subseteq \omega_{1}$ be c.u.b. such that for $\alpha \in D, \pi \upharpoonright \omega \times \alpha$ is a bijection between $\omega \times \alpha$ and α. Let $\left\{\mathcal{A}_{\alpha}\right\}_{\alpha<\omega_{1}}=\left\{A_{\alpha}^{n}\right\}_{\alpha<\omega_{1}, n<\omega}$ witness (2). Let $B_{\alpha}^{n, m}=\left\{\beta<\alpha: \pi(m, \beta) \in A_{\alpha}^{n}\right\}$. We show that for some $n \in \omega$ that $\left\{B_{\alpha}^{n, n}\right\}_{\alpha<\omega_{1}}$ is a \diamond sequence. If not, then for each n let $E_{n} \subseteq \omega_{1}$, and C_{n} be c.u.b. witnessing the failure of $B_{\alpha}^{n, n}$ to be a \diamond sequence. Define E to code the E_{n} by: $\alpha \in E$ iff $\pi^{-1}(\alpha)=(k, \beta)$ and $\beta \in E_{k}$. By (2), let $\alpha \in D \cap \bigcap_{n} C_{n}$ such that $E \cap \alpha \in \mathcal{A}_{\alpha}$. Say $E \cap \alpha=A_{\alpha}^{n}$. But then $B_{\alpha}^{n, n}=\left\{\beta<\alpha: \pi(n, \beta) \in A_{\alpha}^{n}\right\}=\{\beta<\alpha: \pi(n, \beta) \in E \cap \alpha\}=E_{n} \cap \alpha$, a contradiction to the definition of E_{n} and $\alpha \in C_{n}$.

We next show (3) implies (2). Let $\left\{\mathcal{A}_{\alpha}\right\}_{\alpha<\omega_{1}}$ be as in (3). Without loss of generality we may assume the \mathcal{A}_{α} are increasing. We define a new sequence $\left\{\mathcal{A}_{\alpha}^{\prime}\right\}_{\alpha<\omega_{1}}$ as follows. We view subsets of ω as coding bounded subsets of ω_{1} in some manner
(e.g., take a bijection between 2^{ω} and $\omega_{1}^{<\omega}$). For successor ordinals let $\mathcal{A}_{\alpha}^{\prime}=\mathcal{A}_{\alpha}$. For α limit let $\mathcal{A}_{\alpha}^{\prime} \supseteq \mathcal{A}_{\alpha}$ be such that:
(i) For all $n \in \omega$ and all $A \in \mathcal{A}_{\alpha+n},\{\beta<\alpha: 2 \cdot \beta \in A\} \in \mathcal{A}_{\alpha}^{\prime}$.
(ii) Suppose $A \in \mathcal{A}_{\alpha}, \beta<\alpha$ is a limit, and $x=\{n \in \omega: \beta+2 n+1 \in A\}$ codes a subset A_{β} of α. Then $A_{\beta} \in \mathcal{A}_{\alpha}^{\prime}$.

To see this works, fix $A \subseteq \omega_{1}$ and a c.u.b. $C \subseteq \omega_{1}$. We may assume C consists of limit ordinals. We must show that for some $\alpha \in C$ that $A \cap \alpha \in \mathcal{A}_{\alpha}^{\prime}$. Define $B \subseteq \omega_{1}$ as follows. For each limit β let $x_{\beta} \subseteq \omega$ code $A \cap N_{C}(\beta)$, where $N_{C}(\beta)$ is the least element of C greater than β. Let $B=\{2 \cdot \gamma: \gamma \in A\} \cup\left\{\beta+2 n+1: \beta\right.$ is limit $\left.\wedge n \in x_{\beta}\right\}$.

By (3), fix now $\alpha<\omega_{1}$ such that $B \cap \alpha \in \mathcal{A}_{\alpha}$. If $\alpha \in C$ then $A \cap \alpha \in \mathcal{A}_{\alpha}^{\prime}$ by (i) (with $n=0$). Let γ be the largest element of C less than α. If $\alpha<\gamma+\omega$, then by (i) we still have $A \cap \gamma \in \mathcal{A}_{\gamma}^{\prime}$. If $\alpha \geqslant \gamma+\omega$, then from (ii) we have that $A \cap \delta \in \mathcal{A}_{\delta}^{\prime}$, where $\delta=N_{C}(\gamma)$.

Thus, in all cases we have an $\alpha \in C$ with $A \cap \alpha \in \mathcal{A}_{\alpha}^{\prime}$.
Another generalization of \diamond is the following.
Definition 0.8. Let κ be a regular cardinal and $S \subseteq \kappa$ stationary. Then \diamond_{κ}^{S} is the statement that there is a sequence $\left\{A_{\alpha}\right\}_{\alpha \in S}$ with $A_{\alpha} \subseteq \alpha$, such that for all $A \subseteq \kappa$, the set $\left\{\alpha \in S: A \cap \alpha=S_{\alpha}\right\}$ is stationary.

Lemma 0.9. Let M be a transitive model of ZFC, and κ a regular cardinal of M. Let $\lambda>\left(2^{<\kappa}\right)^{M}$ be a cardinal of M. Let G be M-generic for $F N(\lambda, 2, \kappa)$. Then in $M[G]$ we have that for every stationary $S \subseteq \kappa, \diamond_{\kappa}^{S}$ holds.

Proof. The forcing $\mathbb{P}=\operatorname{FN}(\lambda, 2, \kappa)$ is $<\kappa$ closed in M, so all cardinalities and cofinalities $\leqslant \kappa$ are preserved. Also, \mathbb{P} is $\left(2^{<\kappa}\right)^{+}$c.c. in M.

First we show that for every $S \in M$ which is stationary in $M[G]$ that \diamond_{κ}^{S} holds in $M[G]$. Fix such an $S \in M$. Since $\lambda \cong \kappa^{2} \oplus \lambda, \operatorname{FN}(\lambda, 2, \kappa) \cong \operatorname{FN}\left(\kappa^{2}, 2, \kappa\right) \times$ $\operatorname{FN}(\lambda, 2, \kappa)$. Let \mathbb{P} be the forcing of lemma 0.5 , that is, conditions p are functions with $\operatorname{dom}(p)<\kappa$ and for all $\alpha \in \operatorname{dom}(p), p(\alpha) \subseteq \alpha$. Since $\mathbb{P} \times \operatorname{FN}(\lambda, 2, \kappa)$ is dense in $\operatorname{FN}\left(\kappa^{2}, 2, \kappa\right) \times \operatorname{FN}(\lambda, 2, \kappa)$, we may view G as a product $G=G_{1} \times G_{2}$ where $G_{1} \subseteq \mathbb{P}, G_{2} \subseteq \operatorname{FN}(\lambda, 2, \kappa)$ (more precisely, $M[G]=M\left[G_{1}\right]\left[G_{2}\right]$ where $\left(G_{1}, G_{2}\right)$ is generic for the product).

Replacing M by $M\left[G_{2}\right]$, it is enough to show that if M is a transitive model of ZFC, κ is regular in M, G is M-generic for \mathbb{P}, and $S \in M$ is stationary in $M[G]$, then $M[G]$ satisfies \diamond_{κ}^{S}. To see this, let $A=\tau_{G} \subseteq \kappa$ and $C=\sigma_{G}$ be c.u.b. in $M[G]$. Suppose $p \Vdash \neg \exists \alpha(\alpha \in \sigma \cap \check{S} \wedge \dot{G}(\alpha)=\tau \cap \alpha)$. In $M[G]$ define

$$
\begin{aligned}
D= & \{\alpha<\kappa: \forall \beta<\alpha \exists \gamma, \delta<\alpha(\gamma>\beta \wedge G \upharpoonright \delta \Vdash(\check{\gamma} \in \sigma) \\
& \wedge(G \upharpoonright \delta \Vdash \check{\beta} \in \tau \vee G \upharpoonright \delta \Vdash \check{\beta} \notin \tau))\} .
\end{aligned}
$$

Easily $M[G]$ satisfies that D is a c.u.b. subset of κ (recall κ is regular in $M[G]$). Since S is stationary in $M[G]$, let $\alpha \in S \cap D$, with $\alpha>\operatorname{dom}(p)$. Let $q=G \upharpoonright \alpha$. Thus, $q \leqslant p$. From $\alpha \in D$ we get that $q \Vdash(\check{\alpha} \in \sigma)$. Also, there is a $B \in M$ such that $q \Vdash \tau \cap \alpha=\check{B}$. Let $q^{\prime}=q \cup\{\langle\alpha, B\rangle\}$. Then $q^{\prime} \leqslant p$ and $q^{\prime} \Vdash(\check{\alpha} \in(\check{S} \cap \sigma) \wedge \dot{G}(\check{\alpha})=$ $\tau \cap \check{\alpha})$, a contradiction.

Returning to the proof of the theorem, suppose now $S \in M[G]$ is stationary in $M[G]$, where G denotes our $\operatorname{FN}(\lambda, 2, \kappa)$ generic. Assume for convenience that λ is regular in M. For any $\rho<\lambda$, we may write $\operatorname{FN}(\lambda, 2, \kappa) \cong \operatorname{FN}(\rho, 2, \lambda) \times \operatorname{FN}(\lambda-$ $\rho, 2, \kappa)$, and view G as a product $G_{\rho}^{-} \times G_{\rho}^{+}$accordingly. It suffices to show that
for some $\rho<\lambda$ that $S \in M\left[G_{\rho}^{-}\right]$. For then we may apply the previous paragraph (using $M\left[G_{\rho}^{-}\right]$as our ground model) to conclude that \diamond_{κ}^{S} holds in $M[G]$. In fact, we show that any $S \subseteq \kappa, S \in M[G]$ lies in some $M\left[G_{\rho}^{-}\right]$. Since $\mathbb{P}=\operatorname{FN}(\lambda, 2, \kappa)$ is λ c.c., there is a nice name for S in M of size $<\lambda$ (using λ regular in M). Let τ be such a nice name, that is, $|\tau|^{M}<\lambda$. Clearly then, $S=\tau_{G}=\tau_{G_{\rho}^{-}}$for large enough ρ (i.e., ρ greater than the domains of all conditions in $\left.\cup^{3}(\tau)\right)$. Thus, $S \in M\left[G_{\rho}^{-}\right]$.

If λ is not regular in M, the argument of the previous paragraph still goes through writing instead $\operatorname{FN}(\lambda, 2, \kappa)=\mathrm{FN}(T, 2, \kappa) \times \operatorname{FN}(\lambda-T, 2, \kappa)$ for some $T \subseteq \lambda$ of size $\leqslant 2^{<\kappa}<\lambda$ (but T may now be cofinal in λ).

1. Suslin's Hypothesis

We say a linear order $(X,<)$ is dense if whenever $x<y$ then there is a $z \in X$ with $x<z<y$. We say $(x,<)$ is without endpoints if there is no least or maximal element of X. We say $(X,<)$ is separable if there is a countable set $D \subseteq X$ such that every non-empty interval (x, y) contains a point of D. We say $(X,<)$ is c.c.c. if there is no uncountable family of pairwise disjoint open sets (equivalently, intervals). The linear order is separable or c.c.c. iff X viewed as a topological space (with the order topology) is separable or c.c.c. We say $(X,<)$ is complete if every non-empty bounded set in X has a least upper bound and a greatest lower bound.

Recall that for topological spaces in general, $2^{\text {nd }}$ countable \Rightarrow separable \Rightarrow c.c.c. A countable product of $2^{\text {nd }}$ countable spaces is second countable, but an ω_{1} product of $\mathbb{R}_{\text {std }}$ is not $2^{\text {nd }}$ countable (or even first countable). $\mathrm{A} \leqslant 2^{\omega}$ length product of separable spaces is separable, but a $\left(2^{\omega}\right)^{+}$product of $\mathbb{R}_{\text {std }}$ is not separable. Finally, an arbitrary product of second countable spaces is c.c.c. (we'll discuss products of c.c.c. more later).

The following lemma is an important but elementary fact from analysis. It is just asserting that \mathbb{R} is the unique completion of \mathbb{Q}. The proof is left to the exercises.

Lemma 1.1. ($\mathbb{R},<_{\text {std }}$) is the unique, up to isomorphism of linear orders, linear order $(X,<)$ satisfying:
(1) $(X,<)$ is dense and without endpoints.
(2) $(X,<)$ is complete.
(3) $(X,<)$ is separable.

Exercise 2. (Cantor) Show that any two countable dense linear orders without endpoints are isomorphic. [hint: Use a "back and forth" argument. Construct $f=\bigcup_{n} f_{n}$ in ω stages, where each f_{n} will be an isomorphism from a subset of the first order of size n to a subset of the second order. At even stages $n=2 m$, arrange that the $m^{\text {th }}$ element of the first order is in the domain of f_{n}. At odd stages $n=2 m+1$, arrange that the $m^{\text {th }}$ element of the second order is in the range of f_{n}.]

Exercise 3. Prove lemma 1.1. [hint: Start with exercise 2. Then extend the f of that exercise to the completions of the countable dense sets, using the fact that both are complete.]

Note that the requirement that $(X,<)$ not have endpoints is rather trivial: if it has them then we can simply remove them without effecting the other properties of lemma 1.1.

A natural question, raised by Suslin, is whether the characterization of the real line, lemma 1.1, continues to hold if we weaken the requirement of separability to that of being c.c.c. The statement that it does is called Suslin's hypothesis, SH.

Definition 1.2. Suslin's hypothesis, $S H$ is the statement that $\left(\mathbb{R},<_{s t d}\right)$ is the unique, up to isomorphism of linear orders, linear order $(X,<)$ which is dense, without endpoints, complete, and c.c.c.

A counterexample to SH is called a Suslin line. That is, a Suslin line is a linear order $(X,<)$ which is dense, without endpoints, complete, and c.c.c., but not separable. Thus, SH is the statement that there are no Suslin lines.

The following lemma says that the existence of a Suslin line is equivalent to the existence of a linear order $(X,<)$ which is c.c.c. but not separable, as the other properties can be easily arranged.

Lemma 1.3. If there is a linear order $(X,<)$ which is c.c.c. but not separable, then there is a Suslin line.

Proof. Let $(X,<)$ be a c.c.c. but not separable linear order. Define an equivalence relation on X by $x \sim y$ iff (x, y) is separable. Each equivalence class $[x]$ is an interval of X. Distinct equivalence classes correspond to disjoint intervals. The classes then inherit an order from X, namely $[x]<[y]$ iff $x<y$ (equivalently, all the points of $[x]$ are less than any point of $[y])$. Let \tilde{X} be the set of equivalence classes with this induced order. We claim that \tilde{X} is dense in itself, and c.c.c. but not separable. Granting this, we can then finish by removing the endpoints of \tilde{X}, if any, then taking the completion. It is easy to check that the completion is still c.c.c. and not separable (see the following exercise). First note that every equivalence class $I=[x]$ is separable. To see this, let $\left(x_{n}, y_{n}\right)$ be a maximal family of parirwise disjoint intervals contained in I (which must be countable as X is c.c.c.). Let D_{n} be dense in $\left(x_{n}, y_{n}\right)$, and let $D=\bigcup_{n} D_{n}$. Then D together with the first and last elements of I (if any) is dense in I.

To see \tilde{X} is dense in itself, suppose $[x]<[y]$. If $([x],[y])=\varnothing$, then $(x, y) \subseteq$ ($[x] \cup[y]$), and thus $D \cup E$ is dense in (x, y) where D is dense in $[x]$ and E is dense in $[Y]$. Thus, $x \sim y$, so $[x]=[y]$, a contradiction.

To see \tilde{X} is not separable, if $\left\{\left[d_{n}\right]\right\}_{n \in \omega}$ were dense in \tilde{X}, then let for each n $D_{n} \subseteq\left[d_{n}\right]$ de dense in $\left[d_{n}\right]$. Then $D=\bigcup_{n} D_{n}$ is dense in X, a contradiction.

To see \tilde{X} is c.c.c., suppose $\left(\left[x_{\alpha}\right],\left[y_{\alpha}\right]\right)$ is an antichain in \tilde{X}. Then $\left(x_{\alpha}, y_{\alpha}\right)$ is an antichain in X, so must be countable.

Exercise 4. Let $(X,<)$ be a linear order. The completion \hat{X} of X can de defined by adding points \hat{x} for all cuts (bounded above, downward closed sets) $S \subseteq X$ which do not have a least upper bound in X. The point \hat{x} is greater than any element of S but less than any element of X which is greater than all the elements of X. Show that X is dense in \hat{X}. Show that if $\hat{x} \in \hat{X}-X$, then X has no largest element below \hat{x}, and X has no least element above \hat{x}. Show that X is separable iff \hat{X} is separable. [if \hat{D} is countable dense in \hat{X}, show that $D \cup E$ is dense in X where $D=\hat{D} \cap X$ and E is chosen so that for all nonempty intervals (\hat{d}_{1}, \hat{d}_{2}) where \hat{d}_{1}, $\hat{d}_{2} \in \hat{D}$ we have $E \cap\left(\hat{d}_{1}, \hat{d}_{2}\right) \neq \varnothing$.] Show that X is c.c.c. iff \hat{X} is c.c.c. [if (\hat{x}, \hat{y}) is a non-empty interval in \hat{X}, show that there are $x, y \in X$ with $\hat{x} \leqslant x<y \leqslant \hat{y}$ and (x, y) non-empty in X.]

Suslin's hypothesis we formulated by Suslin around 1920. It was reformulated in terms of a certain kind of tree, called Suslin trees, by Kurepa in the 30's. As we will see, SH is independent of ZFC, by results from the late 60 's. Jech and Tennenbaum showed the consistency of ZFC $+\neg \mathrm{SH}$, and Solovay and Tennenbaum the consistency of ZFC +SH . Jensen showed that Suslin trees exist in L, that is, \neg SH holds in L (we discuss these points in more detail below).

2. Various Trees

As we mentioned, Kurepa introduced the notion of a Suslin tree, and showed $\neg \mathrm{SH}$ is equivalent to the existence of a Suslin tree. In other words, the existence of a Suslin line is equivalent to the existence of a Suslin tree. We prove this in this section, and introduce a few other types of trees of interest.

Definition 2.1. A tree is a partially ordered (i.e., transitive, irreflexive) $\operatorname{set}\left(T,<_{T}\right)$ with the property that for every $x \in T,\left\{y \in T: y<_{T} x\right\}$ is well-ordered. for $x \in T$ we write $|x|_{T}$ (or just $|x|$ if T is understood) to denote the order-type of $\left\{y \in T: y<_{T} x\right\}$. We call this the rank or height of x in T. The height of T is defined by $|T|=\sup \left\{|x|_{T}+1: x \in T\right\}$. By the α th level of T we mean the set of $x \in T$ of height α. A chain of T is a subset which is linearly ordered by $<_{T}$. A branch b of T means a chain which is closed downwards (i.e., if $x \in b$ and $y<_{T} x$, then $y \in b$). An antichain A of T is a subset of T of pairwise incomparable elements.

We are interested in trees of size κ, for various cardinals κ, which satisfy a certain non-triviality condition:

Definition 2.2. Let $\kappa \in$ CARD. A κ-tree is a tree T of height κ such that all levels of the tree have size $<\kappa$. That is, $\forall \alpha<\kappa\left|\left\{x \in T:|x|_{T}=\alpha\right\}\right|<\kappa$.

We now introduce several particular trees of interest.
Definition 2.3. Let κ be a cardinal. A κ Aronszajn tree is a κ tree with no branch of size κ. An Aronszajn tree refers to an ω_{1} Aronszajn tree.

Requiring more we get the notion of a Suslin tree.
Definition 2.4. Let κ be a cardinal. A κ Suslin tree is a κ tree with no chains of size κ and no antichains of size κ. A Suslin tree refers to an ω_{1} Suslin tree.

In other words, a κ Suslin tree is a κ Aronszajn tree with no antichains of size κ.

Definition 2.5. Let κ be a cardinal. A κ Kurepa tree is a κ tree with $\geqslant \kappa^{+}$many branches of length κ. A Kurepa tree refers to an ω_{1} Kurepa tree.

It is not immediately clear if any of these kinds of trees exist. We will see that Aronszajn trees exist in ZFC, but the existence of Suslin and Kurepa trees is independent of ZFC.

If desired, a κ tree can, with perhaps a fairly trivial modification, be viewed as a subtree of $\left(\kappa^{-}\right)^{\kappa}$, where $\kappa^{-}=\sup \{\lambda \in \mathrm{CARD}: \lambda<\kappa\}$. The modifications required are: we assume the tree has a single root, that is, a single element of height 0 (if not, we add one), and if $x \neq y \in T$ have limit height, then $\left\{z: z<_{T} x\right\} \neq\left\{z: z<_{T} y\right\}$ (this can be arranged by adding extra elements at limit levels, one for each branch of that height, that sit immediately below the old points of that limit height). Given these adjustments, it is now straightforward to define an isomorphism π between
T and a subtree of $\left(\kappa^{-}\right)^{\kappa}$. If $x \in T$ has height α, then $\pi(x)$ will be a sequence with domain α (define $\pi(x)$ by induction on $|x|_{T}$, at limit stages take unions of the $\pi(y)$ for $y<_{T} x$, and at successor steps use the fact that any $x \in T$ has $<\kappa$ many immediate extensions).

Definition 2.6. A tree T is branching if every $x \in T$ has at least two distinct immediate extensions. T is said to be pruned if it has a single root and for every $x \in T$ and every $\alpha<|x|_{T}$ (with $\alpha<|T|$) there is a $y \in T$ of height α with $x<_{T} y$.

In other words, a pruned tree has the property that every element of the tree has arbitrarily high extensions in the tree.

If T is a κ tree and κ is regular, then there is a canonical subtree T^{\prime} of T which is a pruned κ tree. Let T^{\prime} be those $x \in T$ which have κ many extension in T (which implies x has extensions of arbitrary height). It is easy to check that T^{\prime} is downward closed subtree of T, and that it is pruned (except it may have more than one root; in that keep only the part of T^{\prime} above a particular root). [To see it is pruned, take $x \in T^{\prime}$. Let $\alpha>|x|_{T}$. Let $S \subseteq T$ be κ many extensions of x, all of which have height $>\alpha . \kappa$ many elements of S must extend a single $y \in T$ of height α. Then $y \in T^{\prime}$.]

Before investigating these trees, we first make the connection with Suslin's hypothesis.

3. Suslin Trees and Suslin's Hypothesis

The following lemma connects Suslin's hypothesis with Suslin trees.
Lemma 3.1. (ZFC) There is a Suslin line iff there is a Suslin tree.
Proof. Suppose first that $(X,<)$ is a Suslin line. We construct the tree T out of the intervals $I=(x, y)$ in X. Rather than take all intervals (which does not give a tree), we pick the intervals $I_{\alpha}=\left(x_{\alpha}, y_{\alpha}\right)$, for $\alpha<\omega_{1}$, inductively so that they do form a tree. If I_{β} for $\beta<\alpha$ have been defined, let $C=\bigcup_{\beta<\alpha}\left\{x_{\beta}, y_{\beta}\right\}$ be the set of endpoints so far constructed. This set is countable, so it is not dense in X (recall X is not separable). Let I_{α} be a non-empty interval with $I_{\alpha} \cap C=\varnothing$. Continue to define I_{α} for all $\alpha<\omega_{1}$. If $\alpha \neq \beta$, then I_{α} and I_{β} are either disjoint, or one is contained in the other. Let T be the set whose elements are the intervals I_{α} constructed, and define $I<_{T} J$ iff $J \subseteq I .\left(T,<_{T}\right)$ is easily a tree (note that if I_{α} and I_{β} both contain J, and $\alpha<\beta$ then $I_{\alpha} \supseteq I_{\beta}$. Thus the $<_{T}$ predecessors of J are ordered by their indices.). We show that T is a Suslin tree. An uncountable antichain of T would be an uncountable family of intervals of X which are pairwise disjoint, a contradiction since X is c.c.c. (if I, J in T are not disjoint, then one contains the other so they are comparable in T). Suppose there were an uncountable branch, say $J_{0}<_{T} J_{1}<\cdots<J_{\alpha}<\ldots$. If x_{α} denote the left endpoint of J_{α}, then the x_{α} form an ω_{1} increasing sequence from X. Then the intervals $\left(x_{2 \cdot \alpha}, x_{2 \cdot(\alpha+1)}\right)$ are non-empty, pairwise disjoint, a contradiction. Thus, T is a Suslin tree.

Suppose next that T is a Suslin tree, and we construct a Suslin line. Let X be the set of maximal branches of T. We fix an order on T (say by identifying it with ω_{1}) and order the branches of T lexicographically. This defines the linear ordering $(X,<)$. To see it is c.c.c., suppose $\left(x_{\alpha}, y_{\alpha}\right), \alpha<\omega_{1}$ was an ω_{1} sequence of pairwise disjoint non-empty intervals. Let $z_{\alpha} \in\left(x_{\alpha}, y_{\alpha}\right)$. Let β_{0} be the least ordinal $<\left|z_{\alpha}\right|$ such that $x_{\alpha}\left(\beta_{0}\right) \neq z_{\alpha}\left(\beta_{0}\right)$, and let β_{1} be the least ordinal $<\left|z_{\alpha}\right|$
such that $y_{\alpha}\left(\beta_{1}\right) \neq z_{\alpha}\left(\beta_{1}\right)$. Let $\beta=\max \left\{\beta_{0}, \beta_{1}\right\}$. Let $a_{\alpha}=z(\beta) \in T$. Then $\left\{a_{\alpha}\right\}$ is an uncountable antichain in T, a contradiction.

To see $(X,<)$ is not separable, let $A=\left\{b_{b}\right\}$ be a countable subset of X. Choose $\alpha<\omega_{1}$ of height greater than the supremum of the heights of the branches b_{n}. There is some $z \in T$ of height α which has three distinct extensions (in fact, ω_{1} many) in T (as T is an ω_{1} tree). This defines a non-empty interval in X which contains only branches of length $>\alpha$. Hence, this gives a non-empty interval missing A, so A is not dense.

This shows $(X,<)$ is c.c.c. but not separable. From lemma 1.3 this gives a Suslin line. Alternatively, we can modify the tree T directly so that $(X,<)$ as just constructed is dense in itself. To do this, first prune T so that, without loss of generality, every $x \in T$ has extensions to arbitrarily high levels (the pruned subtree is clearly still a Suslin tree). Then consider levels $T_{\alpha_{0}}, T_{\alpha_{1}}, \ldots$ of T such that all points of T of level α_{η} have ω many extensions at level $\alpha_{\eta+1}$. This defines a subtree T^{\prime} of T (the union of the points at some level α_{η}) which is still an ω_{1} tree (and thus still a Suslin tree). The tree T^{\prime} is ω-splitting (i.e., every element has infinitely many immediate extensions). If we order the extensions of any point of T^{\prime} in order type \mathbb{Q}, then X will clearly be dense in itself. We can then take the completion of $(X,<)$ to get a Suslin line.

4. Aronszajn Trees

Recall an Aronszajn tree is an ω_{1} with no ω_{1} branch. The next lemma shows we can construct them in ZFC.

Lemma 4.1. (ZFC) There is an ω_{1} Aronszajn tree.
We'll give two construction of an Aronszajn tree.
first proof. We construct the tree as a subtree of $\mathbb{Q}^{\omega_{1}}$. The $\alpha^{\text {th }}$ level of the tree will consist of increasing sequences $t \in \mathbb{Q}^{\alpha}$ with $\sup (t)$ finite (i.e., $\operatorname{ran}(t)$ is a bounded set of rationals.). We will have $t<_{Y} u$ iff u extends t. We construct the levels of the tree, $T \alpha$ inductively and will also satisfy (*): for any $t \in T_{\alpha}$ and any $\beta>\alpha$ and $q>\sup (t)$, there is a $u \in T_{\beta}$ with $t<_{T} u$ and $\sup (u)<q$.

If T_{α} is defined, we let $T_{\alpha+1}$ consist of all $t^{\wedge} q$ where $q \in Q$ and $q>\sup (t)$. This clearly maintains (*).

Suppose now α is a limit and T_{β} has been defined for all $\beta<\alpha$. For each $t \in T_{<\alpha}=\bigcup_{\beta<\alpha} T_{\beta}$ and each $q>\sup (t)$, choose a sequence of ordinals $|t|_{T}<$ $\alpha_{0}<\alpha_{1}<\ldots$ with $\sup _{n} \alpha_{n}=\alpha$ and choose rationals $\sup (t)<r_{0}<r_{1}<\ldots$ with $\sup _{n} r_{n}<q$. By (*), choose then $t<_{T} t_{0}<_{T} t_{1}<_{T} t_{2}<_{T} \ldots$ where $t_{i} \in T_{\alpha_{i}}$ and $\sup \left(t_{i}\right)<r_{i}$. Put then $u=\cup t_{n}$ in T_{α}. Clearly we have maintained (*), and T_{α} is countable. Thus, T is an ω_{1} tree. It clearly has no ω_{1} branch, since that would give an ω_{1} sequence of distinct rationals.
second proof. We now give a second construction due to Kunen. We will construct a sequence $\left\{s_{\alpha}\right\}_{\alpha<\omega_{1}}$ satisfying:
(1) S_{α} is a one-to-one function from α to ω.
(2) If $\alpha<\beta$ then $s_{\beta} \upharpoonright \alpha$ agrees with s_{α} except on a finite set.
(3) $\omega-\operatorname{ran}\left(s_{\alpha}\right)$ is infinite.

Granting this, we let T be the set of all $s_{\alpha} \upharpoonright \beta$ where $\beta \leqslant \alpha$, that is, all initial segments of all of the s_{α}. We order T again by extension. Clearly T is a tree. T is
an ω_{1} tree from property (2), since there are countably many $s \in \alpha^{\omega}$ which agree with s_{α} up to a finite set. From (1) there are clearly no ω_{1} branches through T.

It remains to construct the s_{α}, which we do by induction. For successor steps, let $s_{\alpha+1}=s_{\alpha}{ }^{\wedge} n$ where $n \notin \operatorname{ran}\left(s_{\alpha}\right)$. Suppose α is a limit, and let $\left\{\alpha_{n}\right\}$ be an increasing sequence with supremum α. Begin with $s_{\alpha_{0}}$. Get $t_{\alpha_{1}}=s_{\alpha_{0}} \cup u$ where u is the result of changing $s_{\alpha_{1}}$ on a finite subset of $\alpha_{1}-\alpha_{0}$ so that $t_{\alpha_{1}}$ is one-to-one. In general, get $t_{\alpha_{n+1}}=t_{\alpha_{n}} \cup u$ where u is the result of changing $s_{\alpha_{n+1}}$ on a finite subset of $\alpha_{n+1}-\alpha_{n}$ so that $t_{\alpha_{n+1}}$ is one-to-one. We can do this from properties (2) and (3). Let $t=\bigcup_{n} t_{\alpha_{n}}$, then t satisfies properties (1) and (2). We can then modify t to get s_{α} by, for example, changing the values at the α_{n}, say by $s_{\alpha}\left(\alpha_{n}\right)=t\left(\alpha_{2 n}\right)$. s_{α} now satisfies (1)-(3).

The second proof modifies to get κ-Aronszajn trees for κ a successor of a regular, assuming GCH.

Lemma 4.2. Let $\kappa=\lambda^{+}$where λ is regular and $2^{<\lambda}=\lambda$. Then there is a κ Aronszajn tree.

Proof. We construct s_{α} for $\alpha<\kappa$ satisfying:
(1) S_{α} is a one-to-one function from α to λ.
(2) If $\alpha<\beta$ then $s_{\beta} \upharpoonright \alpha$ agrees with s_{α} except on a set of size $<\lambda$.
(3) $\operatorname{ran}\left(s_{\alpha}\right)$ is non-stationary in λ.

Granting this, we again let T be the tree os initial segments of the s_{α}. This is a κ tree since for each $\alpha<\kappa$ there are at most $\lambda^{<\lambda}=2^{<\lambda}=\lambda$ many $s \in \lambda^{\alpha}$ which agree with s_{α} except on a set of size $<\lambda$.

We construct the s_{α} by induction as before. Successor steps are trivial. Suppose α is a limit ordinal. We assume $\operatorname{cof}(\alpha)=\lambda$, as the other case is easier. Fix $\left\{\alpha_{i}\right\}_{i<\lambda}$ increasing, continuous, and cofinal in α. We construct sequence $t_{\alpha_{i}} \in \lambda^{\alpha_{i}}$ by induction on i as before. For $i<\lambda$ a limit we take unions. Properties (1) and (2) are immediate, and (3) follows since $\mathrm{a}<\lambda$ intersection of sets c.u.b. in λ is c.u.b. in λ. We let $t_{\alpha_{i+1}}=t_{\alpha_{i}} \cup u$, where $u=s_{\alpha_{i+1}} \upharpoonright\left(\alpha_{i+1}-\alpha_{i}\right)$, except we change the values on $<\lambda$ many points of $\left(\alpha_{i+1}-\alpha_{i}\right)$ to get $t_{\alpha_{i+1}}$ one-to-one. Using (2) and (3) and the trivial fact that every c.u.b. subset of λ has size λ, there is no problem defining $t_{\alpha_{i+1}}$ (we redefine $s_{\alpha_{i+1}} \upharpoonright\left(\alpha_{i+1}-\alpha_{i}\right)$ on a set of size $<\lambda$ to have values in a c.u.b. set which $\operatorname{ran}\left(t_{\alpha_{i}}\right)$ misses). We still clearly have that each $\operatorname{ran}\left(t_{\alpha_{i}}\right)$ misses a c.u.b. subset of λ, say C_{i}.

Let $t=\bigcup_{i<\lambda} t_{\alpha_{i+1}}$. t then satisfies (1) and (2), and we must adjust it to get s_{α} also satisfying (3). Let $\left\{\beta_{i}\right\}_{i<\lambda}$ be an increasing, continuous sequence with $\beta_{i} \in \bigcap_{j<i} C_{j}$. Define s_{α} to be t, except t takes value β_{i} we define s_{α} to take value β_{i+1}. Clearly s_{α} then satisfies (3) (since $\left\{\beta_{i}\right\}_{i \in \operatorname{Limit}}$ is c.u.b.). s_{α} still satisfies (2) since the modification of t to s_{α} changes $<\lambda$ many values of $t \uparrow \alpha_{i}$ for any $i<\lambda$ (since $\operatorname{ran}\left(t \uparrow \alpha_{i}\right)$ doesn't contain any β_{j} for $j>i$).

If we don't assume CH , then there may or may not be ω_{2} Aronszajn trees (Mitchell). For κ strongly inaccessible, there is a κ Aronszajn tree iff κ is weakly compact, a mild large cardinal axiom (the existence of weakly compact cardinals is consistent with $V=L$). On the other hand, Jensen showed that in L, there is a κ Suslin, hence a κ Aronszajn, tree for all regular κ which are not weakly compact.

5. Suslin Trees

Unlike Aronszajn trees, we cannot construct a Suslin tree in ZFC. We first show that \diamond implies the existence of a Suslin tree.

Theorem 5.1. \diamond implies that there is a Suslin tree.
Proof. Fix a \diamond sequence $\left\{A_{\alpha}\right\}_{\alpha<\omega_{1}}$. We construct the levels of the tree $T_{\alpha}=\{x \in$ $\left.t:|x|_{T} \leqslant \alpha\right\}$ by induction. We will have that $T \subseteq \omega_{1}$. We will also maintain that every $x \in T$ has extensions to all higher levels. Let T_{0} consist of just the ordinal 0 . Given T_{α}, let $T_{\alpha+1}$ be defined by extending every $x \in T_{\alpha}$ to ω many immediate extensions in $T_{\alpha+1}$. Suppose now α is limit. Let $T_{<\alpha}=\bigcup_{\beta<\alpha} T_{\beta}$ be the part of the tree so far constructed. If A_{α} is not a maximal antichain in $T_{<\alpha}$, then define T_{α} by picking for every $x \in T_{<\alpha}$ a branch b_{x} of $T_{<\alpha}$ of length α containing x, and extending this branch to a point in T_{α}. Suppose now that A_{α} is a maximal antichain of $T_{<\alpha}$. We define T_{α} to "seal-off" this antichain, that it, prevent it from growing further. For each $x \in T_{<\alpha}$, let b_{x} be a branch of $T_{<\alpha}$ of length α which contains x and some element of A_{α}. We can do this since every x is comparable with an element of A_{α}. T_{α} is defined by extending each such b_{x} to a point of T_{α}.

Let $T=\bigcup_{\alpha<\omega_{1}} T_{\alpha}$. Clearly T is a pruned ω_{1} tree. Suppose $A \subset \omega_{1}$ is a maximal antichain of T. Let $C \subseteq \omega_{1}$ be c.u.b. such that for $\alpha \in C, T_{<\alpha} \subseteq \alpha$ and $A \cap \alpha$ is a maximal antichain of $T_{<\alpha}$. From \diamond, let $\alpha \in C$ be such that $A \cap \alpha=A_{\alpha}$. Then at stage α in the construction we defined T_{α} so that all elements of height α extend an element of A_{α}. This shows that $A \cap \alpha$ is a maximal antichain of T, so $A=A \cap \alpha$, and thus A is countable.

Corollary 5.2. It is consistent with ZFC that there is a Suslin line.
Constructing κ-Suslin trees for higher regular (non weakly compact) cardinals requires more that ∇_{κ}. However, it is easier to force directly the existence of these trees. In fact, this was the original argument of Jech and Tennenbaum. To get a Suslin tree we can force with either countable trees (Jech) or finite trees (Tennenbaum). We sketch both proofs. The first proof works for all regular cardinals as well.

For the first proof (κ now a regular cardinal of M), let the partial order \mathbb{P} consist of pruned trees $T,|T|, \kappa$, of height $\alpha+1$ for some $\alpha<\kappa$ (i.e., for any $x \in T$ has an extension to the highest level α of T). For convenience we also require T to be splitting, and we assume also $T \subseteq \kappa$, that is, the elements of T are ordinals less than κ. We define $T_{1} \leqslant T_{2}$ iff $\left|T_{1}\right| \geqslant\left|T_{2}\right|$ and $T_{1} \uparrow\left|T_{2}\right|=T_{2}$ (here $T \upharpoonright \beta$ denotes the elements of T of height $<\beta$ in T). Thus, T_{1} must extend T_{2} "vertically."
\mathbb{P} is countably closed, but not in general $<\kappa$ closed (the problem is with the pruned condition; an increasing union of conditions of length ω_{1} may fail to be extendible to a condition as there may be no branches cofinal in the union). However, \mathbb{P} is $<\kappa$ distributive, which is enough to get that \mathbb{P} preserves all cofinalities and cardinalities $\leqslant \kappa$. To see this, let $\left\{D_{\eta}\right\}_{\eta<\rho}, \rho<\kappa$, be a $<\kappa$ collection of dense sets in \mathbb{P}. We define conditions p_{η} of height $\alpha_{\eta}+1$ inductively. We will have $p_{0} \geqslant p_{1} \geqslant \ldots$. As we define p_{η} we will also define for each $x \in p_{\eta}$ a function f_{x} which gives a brach of p_{η} containing x of height $\alpha_{\eta}+1$. If $x \in p_{\eta_{1}} \geqslant p_{\eta_{2}}$, then we will have that the f_{x} functions are compatible. At successor steps, if p_{η} is defined we let $p_{\eta+1} \in D_{\eta+1}$ be any extension of p_{η} of some successor height $\alpha_{\eta+1}+1>\alpha_{\eta}+1$, and extend all of the f_{x} function for $x \in p_{\eta}$ as well as define the f_{x} functions for $x \in p_{\eta+1}-p_{\eta}$.

There is no problem doing this as $p_{\eta+1}$ extends p_{η} and is pruned. For η limit, let $\beta=\sup \left\{\alpha_{i}: i<\eta\right\}$. Let $T=\bigcup_{i<\eta} p_{i}$. Our branch functions define for each $x \in T$ a branch f_{x} of T of height β. Let $T^{\prime} \leqslant T$ have height $\beta+1$ and obtained by extending each branch f_{x} to level $\beta+1$ of T^{\prime}. T^{\prime} is now a condition in \mathbb{P}. Let $p_{\eta} \in D_{\eta}$ extend T^{\prime}, and extend the branch fuctions of T^{\prime} appropriately. Continuing, we define a condition p_{ρ} which extends conditons in all of the D_{η}. Thus, $\bigcap_{\eta<\rho} D_{\eta}$ is dense, so \mathbb{P} is $<\kappa$ distributive.

Let G be M generic for \mathbb{P}, where M is a transitive model of ZFC. We may identify G with a pruned κ tree (G has height κ since any condition T can be extended to a condition T^{\prime} of height $\alpha+1$ for any $|T| \leqslant \alpha+1<\kappa$).

We claim that G is a κ-Suslin tree. Suppose $\tau \in M^{\mathbb{P}}$ and $T_{0} \Vdash(\tau$ is a maximal antichain of \dot{G}). Let $D \subseteq P$ be those conditions T such that for some $A \subseteq T$ we have
(1) A is a maximal antichain of T.
(2) $\sup \{|a|: a \in A\}<|T|$ (i.e., there is a level of T such that all elements of A are below that level).
(3) $T \Vdash(\check{A} \subseteq \tau)$.

We claim that D is dense below T_{0}. For let $T \leqslant T_{0}$. As \mathbb{P} is $<\kappa$ distributive, we may get $T_{1} \leqslant T$ such that for all $x \in T_{0}$, there is a $a \in T_{1}$ such that x is compatible with a and $T_{1} \Vdash(a \in \tau)$. In general, define $T_{n+1} \leqslant T_{n}$ so that for all $x \in T_{n}$, there is a $a \in T_{n+1}$ such that x is compatible with a and $T_{n+1} \Vdash(a \in \tau)$. Let $T=\bigcup_{n} T_{n}$. Then there is a maximal antichain A of such that $T \Vdash(A \subseteq \tau)$. Extend T to T^{\prime} of height $|T|+1$ as follows. For each $x \in T$, let b_{x} be a branch of T containing x and an element of A, with b_{x} of height $|T|$. For each $x \in T$, put a point in T^{\prime} which extends all the elements of b_{x} (i.e., extend the branch b_{x}). This defines T^{\prime}, and we have $T^{\prime} \in D$. Thus, D is dense in \mathbb{P}. Let $T \in G \cap D$. Let $A \subseteq T$ witness $T \in D$. We must have $A=\tau_{G}$, since if $T^{\prime} \leqslant T$ and $x \in T^{\prime}-T$, then x is above some element of A. Thus, $\tau_{G}=A$ has size $<\kappa$ in $M[G]$. This shows G is a Suslin tree.

Corollary 5.3. Let M be a transitive model of $Z F C$ and κ a regular cardinal of M. Then there is a κ-distributive forcing (hence preserves all cofinalities and cardinalites $\leqslant \kappa$) such that in $M[G]$ there is a κ-Suslin tree.

The second proof uses finite trees. \mathbb{P} now consists of finite trees $T \subseteq \omega_{1}$ satisfying: if $\alpha<_{T} \beta$ then $\alpha<\beta$. We define $T_{1} \leqslant T_{2}$ iff $<_{T_{1}} \upharpoonright\left(T_{2} \times T_{2}\right)=<_{T_{2}}$. We again identify a generic G with a tree G on ω_{1} (to see it is a tree, note that if $\alpha \in G$ then the $<_{G}$ predecessors of α are $<_{G}$ ordered in their usual order as ordinals, hence the $<_{G}$ predecessors are well-ordered).

First we show that \mathbb{P} is c.c.c. If $\left\{T_{\alpha}\right\}_{\alpha<\omega_{1}}$ were an antichain, then by the Δ system lemma we may assume that each T_{α} consists of a root R and a set $A_{\alpha}=\left\{a_{\alpha}^{1}, \ldots, a_{\alpha}^{n}\right\}$ (of some fixed size n), where the A_{α} are pairwise disjoint. We may further assume that the T_{α} orderings on the root R are all the same. Further, we may assume that for $r \in R, r<_{T_{\alpha}} a_{\alpha}^{k}$ iff $r<_{T_{\beta}} a_{\beta}^{k}$ for all α, β. We may also assume that $a_{\alpha}^{k}<_{T_{\alpha}} a_{\alpha}^{l}$ iff $a_{\beta}^{k}<_{T_{\beta}} a_{\beta}^{l}$ for all $k, l \leqslant n$ and all α, β. Thus, T_{α} and T_{β} look the same except for the values of the ordinals in A_{α}, A_{β}. However it is now easy to get a common extension of any two of the T_{α} (e.g., the union of T_{α} and T_{β} is now a condition).

We show that G has no uncountable antichain (from which it also follows that G is an ω_{1} tree (for another argument, see the exercise below). Suppose $T \Vdash(\tau$ is an uncountable antichain of \dot{G}). Get an ω_{1} sequence T_{α} of conditions extending
T and ordinals $\eta_{\alpha} \in T_{\alpha}$ with $T_{\alpha} \Vdash\left(\check{\eta}_{\alpha} \in \tau\right)$, and the η_{α} are distinct. Thin the T_{α} to a Δ system as above, $T_{\alpha}=R \cup A_{\alpha}$. It is easy to see that for any $\alpha \neq \beta$ we can get a common extension of T_{α} and T_{β} in which η_{α} is comparable with η_{β}, a contradiction.

Corollary 5.4. The existence of a Suslin tree is consistent with $Z F C+\neg C H$. In particular, the existence of a Suslin tree does not imply \diamond.

6. Kurepa Trees

Recall a Kurepa tree is an ω_{1} tree with at least ω_{2} branches of length ω_{1}. We can give an easy reformulation of this which does not mention trees.
Lemma 6.1. There is a Kurepa tree iff there is a family \mathcal{F} of subsets of ω_{1} satisfying:
(1) $|\mathcal{F}| \geqslant \omega_{2}$.
(2) $\forall \alpha<\omega_{1}|\{A \cap \alpha: A \in \mathcal{F}\}| \leqslant \omega$.

We call a family \mathcal{F} as in lemma 6.1 a Kurepa family.
Proof. Assume first that T is a Kurepa tree. Without loss of generality we may assume $T \subseteq \omega_{1}$ and if $\alpha<_{T} \beta$ then $\alpha<\beta$. Then $\mathcal{F}=$ the set of ω_{1} branches through T is a Kurepa family (note that ib b is a branch through T, then $b \cap \alpha$ is determined by the $\alpha^{\text {th }}$ level of b).

Conversely, assume \mathcal{F} is a Kurepa family. Let T be the subtree of $2^{<\omega_{1}}$ consisting of all initial segments of characteristic functions of $A \in \mathcal{F}$. Easily T is a Kurepa tree (note that the element of T of height α correspond to the elements $A \cap \alpha$ for $A \in \mathcal{F})$.

Just as \diamond implies the existence of a Suslin tree, there is a combinatorial principle \diamond^{+}which implies the existence of a Kurepa tree. \diamond^{+}implies \diamond, however the existence of a Kurepa tree does not imply the existence of a Suslin tree. Although we show here the consistency of the existence of Kurepa tree directly by forcing, we state the principle \diamond^{+}. We note also that \diamond^{+}, like \diamond holds in L.
Definition 6.2. \diamond^{+}is the statement that there is a sequence $\left\{\mathcal{A}_{\alpha}\right\}_{\alpha<\omega_{1}}$, where each \mathcal{A}_{α} is a countable family of subsets of α, such that for all $A \subseteq \omega_{1}$, there is a c.u.b. $C \subseteq \omega_{1}$ such that for all $\alpha \in C$ we have $A \cap \alpha \in \mathcal{A}_{\alpha}$ and $C \cap \alpha \in \mathcal{A}_{\alpha}$.

In view of theorem 0.7 , it is clear that \diamond^{+}implies \diamond.
Theorem 6.3. Let M be a transitive model of $Z F C+C H$. Then there is a countably closed $\mathbb{P} \in M$ such that if G is M-generic for \mathbb{P} then $M[G]$ satisfies that there is Kurepa tree.

Proof. \mathbb{P} consists of pairs (T, f) where T is a pruned countable subtree of $2^{<\omega_{1}}$ of height $\alpha<\omega_{1}$, and f is a function with domain a countable subset of ω_{2} such that for $\alpha \in \operatorname{dom}(f), f(\alpha)$ is a branch through T. We say $\left(T_{1}, f_{1}\right) \leqslant\left(T_{2}, f_{2}\right)$ if $T_{1} \uparrow\left|T_{2}\right|=T_{2}$ (i.e., T_{1} extends T_{2} vertically), $\operatorname{dom}\left(f_{2}\right) \subseteq \operatorname{dom}\left(f_{1}\right)$, and for all $\alpha \in \operatorname{dom}\left(f_{2}\right), f_{1}(\alpha)$ extends $f_{2}(\alpha)$ (i.e., f_{1} extends all of the branches of f_{2}, and may give new ones as well).

Clearly \mathbb{P} is countably closed. Let T be the tree produced by the generic, and F the function produced (in the obvious manner). Thus, F is a map from ω_{2}^{M} to the length ω_{1} branches of T (note: $\omega_{1}^{M}=\omega_{1}^{M[G]}$). It is easy to see that for a generic
G, the resulting function F will also be one-to-one (we may extend any (T, f) with $\alpha, \beta \in \operatorname{dom}(f)$ to a $\left(T^{\prime}, f^{\prime}\right)$ where $\left.f^{\prime}(\alpha) \neq f^{\prime}(\beta)\right)$. Thus, in $M[G]$ the ω_{1} tree T has $\geqslant \omega_{2}^{M}$ branches of length ω_{1}. We show finally that \mathbb{P} is ω_{2}-c.c. in M, which shows that $\omega_{2}^{M}=\omega_{2}^{M[G]}$ and completes the proof.

Suppose $\left\{\left(T_{\alpha}, f_{\alpha}\right)\right\}_{\alpha<\omega_{2}}$ were an antichain of \mathbb{P}. We may assume that all of the trees have the same height $\beta<\omega_{1}$. By CH in M, there are $2^{\beta}=\omega_{1}$ many trees of height β, so we may assume that all of the T_{α} are equal to a fixed tree T_{0}. Again using CH, we may thin the antichain so the $\operatorname{dom}\left(f_{\alpha}\right)$ form a Δ system on ω_{2}, say $\operatorname{dom}\left(f_{\alpha}\right)=R \cup A_{\alpha}$ where the A_{α} are pairwise disjoint. We may assume that that the f_{α} all agree on the root R, as there are only $\omega_{1}^{\omega}=2^{\omega}=\omega_{1}$ many choices for $f \upharpoonright R$. At this point, any two members of the antichain are compatible, a contradiction.

7. A Model in which there are no Kurepa Trees

Starting with a model M of ZFC+ there is an inaccessible cardinal, we produce a generic extension $M[G]$ in which there are no Kurepa trees. The inaccessible cardinal is necessary since if M satisfies ZFC+ there are no Kurepa trees then ω_{2}^{M} is inaccessible in L [Work in M. If ω_{2} is not inaccessible in L, then $\omega_{2}=\left(\omega_{2}\right)^{L[A]}$ for some $A \subseteq \omega_{1}$. However \diamond^{+}holds in any $L[A]$ for $A \subseteq \omega_{1}$. Thus there is a Kurepa tree in $L[A]$, and this remains a Kurepa tree in $L[A]$ as $\omega_{2}=\left(\omega_{2}\right)^{L[A]}$.]

To motivate the forcing, note that if T is a Kurepa tree, then T will remain a Kurepa tree in any larger model unless ω_{2} is collapsed in the larger model. Conversely, collapsing ω_{2} by a countably closed forcing will kill the Kurepa trees of the ground model (by lemma 7.3), but may introduce new Kurepa trees, so it will be necessary to collapse the new ω_{2}, etc. This suggests we collape to ω_{1} all the ordinals below some large cardinal.

Definition 7.1. Let κ be a regular cardinal. The Silver collapse of κ to ω_{2} is the forcing \mathbb{P} consisting of functions with domain a countable subset of $\{(\alpha, \beta): \alpha<$ $\left.\kappa \wedge \beta<\omega_{1}\right\}$ and $f(\alpha, \beta)<\alpha$ for all $(\alpha, \beta) \in \operatorname{dom}(f)$.

It is clear that if g is generic for \mathbb{P}, then $\left(|\kappa| \leqslant \omega_{2}\right)^{M[G]}$, as in $M[G]$ all ordinals $\alpha<\kappa$ are onto images of ω_{1}. It is also clear that \mathbb{P} is countably closed, so ω_{1} is preserved in forcing with \mathbb{P}.

Lemma 7.2. Let κ be a strongly inaccessible cardinal of M. Then \mathbb{P} is κ-c.c. Thus, κ is a cardinal of $M[G]$, and hence $\kappa=\omega_{2}^{M[G]}$.

Proof. Suppose $\left\{p_{\alpha}\right\}_{\alpha<\kappa}$ were an antichain of size κ. Let $d_{\alpha}=\operatorname{dom}\left(p_{\alpha}\right)$. We can view d_{α} as a countable subset of κ. We use the Δ-system argument. We may assume all the d_{α} has order-type $\tau<\omega_{1}$. Let $\eta(\beta)=\sup \left\{d_{\alpha}(\beta): \alpha<\kappa\right\}$. There must be a least $\beta_{0}<\tau$ such that $\eta\left(\beta_{0}\right)=\kappa$ [otherwise there is an $\eta<\kappa$ such that $d_{\alpha} \subseteq \eta$ for all $\alpha<\kappa$. Using κ strongly inaccessible this gives $<\kappa$ many possibilities for the p_{α}.] We may then thin the $\left\{p_{\alpha}\right\}$ sequence so the d_{α} form a Δ-system with root $R \in \kappa^{\tau}$. There are $<\kappa$ many possibilities for $p_{\alpha} \upharpoonright R$, using again the inaccessibilty of κ. So we may assume $p_{\alpha} \backslash R$ is constant, and this gives a contradiction to the p_{α} being an antichain.

Lemma 7.3. Let \mathbb{P} be a countably closed forcing in M. If $T \in M$ is an ω_{1} tree of M, then any branch of T in $M[G]$ lies in M.

Proof. Suppose $\tau \in M^{\mathbb{P}}$ and $p \Vdash(\tau$ is a branch of $\check{T} \wedge \tau \notin M)$. We define conditions p_{s} for $s \in 2^{<\omega}$ and also $x_{s} \in T$. Let $p_{\varnothing}=p$ and x_{0} be the root of T. Given p_{s} and x_{s}, let $p_{s\urcorner 0}$ and $p_{s \neg 1}$ extend p_{s} and $x_{s \curvearrowright 0}, x_{s\urcorner 1}$ be two extensions of x_{s} in T which are incompatible in T, and with $p_{s^{\wedge i}} \Vdash x_{s^{\wedge} i} \in \tau$. We can do this as otherwise p_{s} determines the branch τ_{G}. Let $\alpha<\omega_{1}$ be greater than the heights of all the x_{s} in T. For each $r \in 2^{\omega}$, let p_{r} extend all of the p_{s} for s an initial segment of r, and (extending p_{r} if necessary), let $x_{r} \in T$ have height α with $p_{r} \Vdash \check{x}_{r} \in \check{T}$ (we can do this as p forces that τ has elements of all heights $\alpha<\omega_{1}$, as otherwise some $q \leqslant p$ would determine τ_{G}.) We clearly have that the $\left\{x_{r}\right\}$ are distinct elements of T of height α, contradicting T being an ω_{1} tree.

Theorem 7.4. Let M be a transitive model of $Z F C$ and κ an inaccessible cardinal of M. Let $\mathbb{P} \in M$ be the Silver collapse of κ to ω_{2} as defined in M. Then if G is M-generic for $\mathbb{P}, M[G]$ satisfies that there are no Kurepa trees.
Proof. Suppose $T=\tau_{G} \in M[G]$ and (T is a Kurepa tree) ${ }^{M[G]}$. We may assume $T \subseteq \omega_{1}^{M[G]}=\omega_{1}^{M}$. Let σ be a nice name for T, that is $\tau_{G}=\sigma_{G}$ and σ is of the form $\bigcup_{\alpha<\omega_{1}}\{\check{\alpha}\} \times A_{\alpha}$ where A_{α} is an antichain of \mathbb{P}. From lemma 7.2 it follows that $|\sigma|<\kappa$. For any $\lambda<\kappa$ we may write $\mathbb{P}=\mathbb{P} \leqslant \lambda \times \mathbb{P}^{>\lambda}$ where $\mathbb{P} \leqslant \lambda$ consists of those $p \in \mathbb{P}$ whose domain consists only of pairs (α, β) where $\alpha \leqslant \lambda$, and $\mathbb{P}^{>\lambda}$ those p whose domain consists only of pairs (α, β) with $\alpha>\lambda$. Let $\lambda<\kappa$ be large enough so that $\operatorname{tr} \operatorname{cl}(\sigma) \cap \mathrm{ON} \subseteq \lambda$. Write $G=G^{\leqslant \lambda} \times G^{>\lambda}$. Then $T=\sigma_{G}=\sigma_{G \leqslant \lambda} \in M\left[G^{\leqslant \lambda}\right]$. From lemma 7.3 there are at most $\left(2^{\omega_{1}}\right)^{M\left[G^{\leqslant \lambda}\right]}$ many branches of T in $M[G]$. Since κ is inaccessible, a simple name counting argument shows that $\rho=\left(2^{\omega_{1}}\right)^{M\left[G G^{\leqslant \lambda}\right]}<\kappa$. However, ρ has cardinality ω_{1} in $M[G]$, as forcing with $\mathbb{P}^{>\lambda}$ clearly collapses ρ to cardinality ω_{1}. thus T has $\leqslant \omega_{1}$ many branches in $M[G]$.

