
Absoluteness and Definability

1. Formulas and Absoluteness

Recall that if M is a set and E is a binary relation on M , and φ
�
x1, . . . , xn � is

a formula in the language of set theory and a1, . . . , an � M , then in our discussion
of first order logic we have defined the notion of

�
M,E ��� φ

�
a1, . . . , an � . Suppose

now M is a set or class and E is a set or class binary relation on M . Given such
an M and E we define a formula φ � M,E � , with parameters, in the language of set
theory which expresses the statement that

�
M,E ��� φ � a1, . . . , an � . We call φ � M,E �

the relativization of φ to
�
M,E � .

Definition 1.1. Let M,E be classes, and φ a formula in the language of set theory.
We define φ � M,E � by induction on φ through the following cases.

(1)
�
x � y � � M,E �	� �

xEy � .
(2)

�
x 
 y � � M,E ��� �

x 
 y � .
(3)

��
x ψ � � M,E ��� �

x � M �
ψ � M,E � � .

(4)
���
ψ � � M,E �	� ���

ψ � M,E � � .
If E is the ε relation, or if E is understood, we simply write φM .

Note that the relativization of � xψ is implicitly defined to be � x � M ψM .
Note that if M and E are sets, then φ � M,E � will be a formula with parameters;
it will have M and E as parameters. If however M and E are pure classes (i.e.,

given by formulas), then φ � M,E � will also be a formula in the language of set theory
(i.e., without parameters). The following fact is an immediate consequence of the
definitions, it is more or less just expresses the definition of

�
M,E ��� φ.

Fact 1.2. For all sets M,E, formulas φ
�
x1, . . . , xn � , and a1, . . . , an � M , φ � M,E ����

M,E ��� φ
�
~a � .

If M,E are classes, we may take φ � M,E � as our definition of “
�
M,E ��� φ

�
~a � .”

As we will be changing the universe of sets by enlarging or shrinking it, the
following definition becomes important.

Definition 1.3. Let φ
�
x1, . . . , xn � be a formula in the language of set theory. Let

M � N be sets or classes. Let E � N � N be a set or class, and let E � �
E � �

M � M � . We say φ is absolute between M and N if for all a1, . . . , an � M we

have φ � M,E ��� � a1, . . . , an � � φ � N,E � � a1, . . . , an � .
A common case is when E is the ε relation on N , in which case E � is also just

the ε relation on M . In this case we simply say φ is absolute between M and
N . Intuitively, we are saying that the truth of the statement φ

�
a1, . . . , an � doesn’t

depend on whether we evaluate the statement in M or in N .

Exercise 1. Let N � ω and M be the odd natural numbers. Let E be the ε

relation on N . Let ψ be the sentence
�
x � y �

y � x � , which asserts the existence of
an emptyset. Does ψN hold? Does ψM hold? Let φ

�
x � � �

y
�
y � x � . Is φ absolute

between M and N?

In order to investigate which formulas are absolute between which sets or classes,
we first introduce the following hierarchy of formulas in the language of set theory,
similar in spirit to the hierarchy introduced earlier for formulas in the language of
number theory.
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Definition 1.4. A formula in the language of set theory is ∆0 if it is in the smallest
collection satisfying the following.

(1) All atomic formulas
�
xi � xj � , � xi 
 xj � are ∆0.

(2) If φ, ψ � ∆0, then so are
�
φ, φ � ψ, φ � ψ.

(3) If φ
�
x1, . . . , xn, y ��� ∆0, then so are ψ

�
x1, . . . , xn � � �

y � xi φ
�
x1, . . . , xn, y �

and ψ
�
x1, . . . , xn � � � y � xi φ

�
x1, . . . , xn, y �

A formula is said to be Σn if it is logically equivalent to a formula of the form�
x1 . . .

�
xn φ where φ � Πn � 1, and said to be Πn if it is equivalent to one of the

form � x1 . . .
�
xn φ where φ � Σn � 1.

Lemma 1.5. Let
�
M,E � � � �

N,E � , where M,N,E are sets or classes. Assume
that whenever a � M , b � N and bEa, then b � M . Then any ∆0 formula is absolute
between

�
M,E � � and

�
N,E � .

Proof. By induction on the formula φ. If φ is atomic, this is almost trivial since
E � � E � �

M � M � . The inductive step for the Boolean connectives is trivial.

Suppose φ
�
x � � �

y � x ψ
�
x, y � . Let a � M . If φ � M,E � � � a � then there is a b � M

with bE � a (and hence bEa) such that ψ � M,E ��� � a, b � . By induction, ψ � N,E � � a, b � and
hence φ � N,E � � a � . Suppose now φ � N,E � � a � . Then there is a b � N with bEa such that
ψ � N,E � � a, b � . By hypothesis, b � M , and also bE � a. By induction (using b � M) we

also have ψ � M,E � � � a, b � . Hence we have φ � M,E ��� � a � . �

In the case where E � � , then the hypotheses above are satisfied ifM is transitive.
Thus we have:

Corollary 1.6. If M � N are sets or classes and M is transitive, then any ∆0 is
absolute between M and N .

As exercise 1 shows, the hypothesis of transitivity is necessary for the absolute-
ness of ∆0 formulas.

The following exercise generalizes lemma 1.5 a little.

Exercise 2. Under the hypotheses of lemma 1.5, show that the set of formulas
which are absolute between M and N are closed under the Boolean connectives
and bounded set quantification, that is, if φ

�
~x, y � is absolute then so is ψ

�
~x � � �

y �
xi φ

�
~x, y � .

The next lemma shows that we have upwards absoluteness for Σ1 formulas, and
downward absoluteness for Π1 formulas.

Lemma 1.7. Let
�
M,E � � � �

N,E � satisfy the hypothesis of lemma 1.5. Then

if φ
�
x � � Σ1 and φ � M,E ��� � a � , then φ � N,E � � a � . If φ

�
x � � Π1 and φ � N,E � � a � then

φ � M,E ��� � a � .
Proof. Suppose for example φ

�
x � � � y ψ � x, y � where ψ � ∆0. Let a � M and

suppose φ � N,E � � a � . Thus for all b � N we have ψ � N,E � � a, b � . In particular, for all

b � M we have ψ � N,E � � a, b � . For each b � M we have ψ � M,E ��� � a, b � from lemma 1.5.

Hence, φ � M,E � � � a � . �

Corollary 1.8. If M � N are sets or classes and M is transitive, then Σ1 formulas
are upwards absolute between M and N , and Π1 are downwards absolute.
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If Γ is a set of sentences in the language of set theory (e.g., Γ � ZFC), we say
a formula φ is Γ provably ∆1 if there are Σ1 and Π1 formulas ψ1, ψ2 respectively
such that Γ

� � x1, . . . xn

�
φ
�
~x � � ψ1

�
~x � � ψ2

�
~x ��� .

From lemma 1.7 the following is immediate.

Lemma 1.9. Suppose
�
M,E � � � �

N,E � satisfy the hypothesis of lemma 1.5, and
φ is Γ provably ∆1. Suppose

�
M,E � � � Γ and

�
N,E � � Γ. Then φ is absolute

between
�
M,E � � and

�
N,E � .

Corollary 1.10. Let M � N be sets or classes with M transitive. Suppose φ is Γ
provably ∆1 and M,N � Γ. Then φ is absolute between M and N .

Exercise 3. Let M � �
ω, � � and N � �

ω � 1, � � . Find a Σ1 formula which is not
downwards absolute between M and N .

In the discussion that follows, we will drop the extra generality of the relation E
and assume that the relations are always the ε relation on the sets (or classes) M
and N . The results are all valid in the extra generality by the same proofs [if M
is a set, we could also argue that a more general E relation can always be viewed
as the “real” ε relation, provided the structures

�
M,E � � , � N,E � satisfy whatever

axioms of ZFC we require of the models
�
M, ε � , � N, ε � . If M is a class, however,

this runs into a little problem as we are not necessarily assuming M is a class inside
of the model

�
N,E � .]

Note that for all the absoluteness results stated above, the hypotheses are all of
the form M � N and M is transitive.

We frequently wish to speak of the absoluteness of relations and functions as
well. If R is a set or class relation, then when we speak of the absoluteness of R
we are really referring to the absoluteness of some implicitly understood formula
defining the relation R. If R is a class, then R is officially a formula by definition.
When R is a set relation, we will still be implicitly referring to an underlying
defining formula. Suppose now f is a set or class function (say for simplicity a
unary function). Again, we will implicitly have a formula φ

�
x, y � in mind which

defines the relation f
�
x � � y. When we say f is absolute between M and N we then

mean two things: first, the relation φ is absolute between M and N and second,
both M and N satisfy the statement � x �

!y φ
�
x, y � . That is, both M,N satisfy

that φ defines a function in addition to φ being absolute.
The following lemma simplifies some computations.

Lemma 1.11. A composition of absolute relations and functions is absolute. That
is, if R

�
x1, . . . , xn � , f � x1, . . . , xn � , and gi

�
y1, . . . , ym � , 1 � i � n, are absolute

between two models, then so are R
�
g1
�
~y � , . . . , gn

�
~y � � and f

�
g1
�
~y � , . . . , gn

�
~y � � . (Recall

that R, f , and the gi are officially regarded as formulas in this context.)

Proof. If M � N , and ~y � M , then gM
1

�
~y � � gN

1

�
~y � � z1 � M , . . . , gM

n

�
~y � �

gN
n

�
~y � � zn � M . Also, by assumption RM

�
z1, . . . , zn � iff RN

�
z1, . . . , zn � and the

result follows. �

Exercise 4. Suppose Γ proves that g1, . . . , gn are functions, and R, f , and the gi

are Γ provably ∆1. Show that R
�
g1
�
~y � , . . . , gn

�
~y � � and f

�
g1
�
~y � , . . . , gn

�
~y � � are also

Γ provably ∆1.

We now catalog some of the simple set-theoretic relations and functions which
are absolute in view of lemmas 1.5 1.7. It is of some interest to keep track of how
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much of ZFC we need to get the absoluteness, so first we consider what we can
prove absolute just in ZF � Power � Replacement.

Lemma 1.12. Let M � N be sets or classes with M transitive, and assume M,N

are models of ZF � Power � Replacement. Then the following are absolute between
M and N .

a.) x � y b.) x � y c.) x � y

d.)
�
x, y � e.) � x, y � f.) x � y

g.) x � y h.) � x i.) � x
j.) S

�
x � � x � � x � k.) x is transitive l.) x is an ordered pair

m.) R is a relation. n.) dom
�
R � o.) ran

�
R �

p.) R is a function q.) R is a one-to-one function r.) y � R
�
x �

s.) 0 t.) 1 u.) 2 etc.

Proof. All of these functions and relations are provably ∆0 from ZF � Power � Replacement,
hence are absolute. We consider a few examples from the above list.

Consider (d), the function
�
x, y ��� �

x, y � . Let φ
�
x, y, z � � �

x � z � y � z � � w �
z
�
w 
 x � w 
 y ��� . Clearly φ � ∆0 and defines the graph of this function. The

pairing axiom, comprehension and extensionality axioms imply that φ is the graph
of a total function.

For (e), the function
�
x, y ��� � x, y � consider φ

�
x, y, z � � � �

u � z �
v � z � � w �

z
�
w 
 u � w 
 v � � “u � �

x � ” � “v � �
x, y � ” � � , where for “u � �

x, y � ” we use the
∆0 formula of (d). So, φ is ∆0 and again ZF � Power � Replacement proves φ is the
graph of a function.

For (l), x is an ordered pair, use the formula φ
�
x � � � �

u � x �
y � u �

z � u �
x �

� y, z � � � . For (m) use φ
�
R � � � � x � R “x is an ordered pair” � . �

Exercise 5. Show (n), that is, the function R � dom
�
R � is provably ∆0 from

ZF � Power � Replacement (you may take the function to be 0 if R is not a relation).

For the function
�
x, y �	� x � y we can use the formula φ

�
x, y, z � � �� � u � x � v �

y
�
w � z w � � x, y � � �

� � w � z �
u � x

�
v � y w � � x, y � � � . Substituting for

w � � x, y � we see that φ � ∆0. However, to prove that φ is the graph of a total
function seems to need either replacement or power set (for power set use the fact
that x � y � PP � x � y � and comprehension).

The absoluteness results of lemma 1.12 did not actually use that M,N satisfy
foundation. The next result on the absoluteness of the ordinals does.

Lemma 1.13. If M � N are models of ZF � Power � Replacement and M is tran-
sitive, then ON is absolute between M and N . That is, if x � M then

�
x is an

ordinal � M � �
x is an ordinal � N .

Proof. Let

φ
�
x � � ��

x is linearly ordered by ε � �
�
x is transitive � �� � � y � x � z � x �

y � z � y 
 z � z � y �
� � y � x � z � x �

y � z � ���
y 
 z � z � y �

� � y � x � z � x � w � x �
y � z � z � w � y � w � � � y � x � z � y �

z � x � �
Clearly φ is ∆0 and so absolute between M and N . Suppose now x � M and

�
x

is an ordinal � M . Then φM
�
x � and so φN

�
x � . Since N satisfies foundation, the ε

relation is also wellfounded on x. Thus,
�
x is an ordinal � N . The other direction is

similar. �
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Exercise 6. Let R be the relation defined by R
�
n,m � � �

n,m � ω � � � n,m � � 1 is
prime, where � n,m � � 2n

�
13m
�

1 is the standard coding function. Show that R is
absolute between models M � N of ZF � Power � Replacement, with M transitive.
If R provably ∆0?

The point of the previous proof is that the wellfoundedness condition in the
definition of an ordinal is gotten for “free” as the models satisfy foundation. For
general relations, note that

φ
�
A,R � � �

R is a wellfounded relation on A �� � x � �
x � A � x ��� ��� �

y � x � z � x ��� � z, y � � R � �
is Π1. Thus for general M � N with M transitive we have that wellfoundedness is
downwards absolute. In general, it may fail to be upwards absolute. A very basic
and important result, however, says that if M,N satisfy enough of ZF, in particular
enough of replacement, then wellfoundedness is also upwards absolute between M

and N .

Theorem 1.14. Suppose M � N satisfy ZF � Power and M is transitive. Then
wellfoundedness is absolute between M and N . That is, if

�
A,R �	� M , then

�
R is

a wellfounded relation on A � M � �
R is a wellfounded relation on A � N .

Proof. Suppose A, R are in M , and
�
R is a wellfounded relation on A � M (we already

know wellfoundedness is downwards absolute). Since M satisfies ZF � Power, the
transfinite recursion theorem holds in M , and thus in M there is a ranking function
f : A � M � ONM which we recall is defined recursively by

f
�
x � � sup

�
f
�
y � � 1: � y, x � � R.

Since M is transitive, f is defined on all of A. At any rate, if

φ
�
A,R, f � � � f is a function � �

�
dom

�
f � � A � �

� � x � A f
�
x ��� ON �

� � x � A � y � A � � x, y � � R � f
�
x � � f � y � �

then φ is provably ∆0 in ZF � Power � Replacement and so is absolute between
M and N . Since φ

�
A,R, f � M for our particular A, R, and f , it follows that

φ
�
A,R, f � N . Thus, N has a ranking function on

�
A,R � and so

�
R is a wellfounded

relation on A � N . �

Note that the above argument in fact shows that ψ
�
A,R � � �

R is a wellfounded
relation on A � is provably ∆1 from ZF � Power, since in this theory it is provably
equivalent to

�
f φ

�
A,R, f � .

Theorem 1.14 used the fact that the ranking function, defined by transfinite re-
cursion, is absolute between transitive models of ZF � Power. Many other functions
of interest are also defined by transfinite recursions, and we would like to know
that they are absolute as well. The next theorem says that this is in fact the case,
provided that the function giving the recursive definition is absolute.

Theorem 1.15. Let M � N be sets or classes which satisfy ZF � Power, with M

transitive. Let A,R be classes which are absolute between M and N and R is well-
founded on A � N . Assume also that

�
R is set-like on A � M ,

�
R is set-like on A � N , and

for any x � AM that pred
�
x,R � N � M . Finally, assume F is a class function which

is absolute between M and N and M,N both satisfy that � x � A � y � !z F � x, y � � z.
Then the class function G defined in the proof of the transfinite recursion theorem



6

is absolute between M and N and in both M,N satisfies the recursive definition
G
�
x � � F

�
x,G � pred � x,R � � .

Proof. Note that R is wellfounded on A � M by an easy downwards absoluteness
argument (any non-empty subset of AM in M is also a non-empty subset of AN in
N). Since both M,N satisfy ZF � Power, the transfinite recursion theorem inM and
N shows that in both classes G is a function defined on A and satisfies the recursive
definition. It remains to show that for any x � AM that GM

�
x � � GN

�
x � . If not,

let x � AM be RM minimal such that GM
�
x � � GN

�
x � . Since pred

�
x,R � M �

pred
�
x,R � N , by minimality of x we have GM � pred

�
x,R � M � GN � pred

�
x,R � N .

Since F is absolute between M and N and both GM , GN satisfy the recursive
definition, it now follows that GM

�
x � � GN

�
x � . �

All of the absoluteness theorems for M � N require that M be transitive.
The next result shows that transitivity is, in some sense, not too restrictive an
assumption.

Theorem 1.16. Let E be a wellfounded relation on the set M , and suppose
�
M,E �

satisfies the axiom of extensionality ( � x, y �
x � y � � z �

z � x � z � y � � ). Then
there is an isomorphism π :

�
M,E �	� �

N, � � for some transitive set N .

Proof. Define π by transfinite recursion by π
�
x � � �

π
�
y � : y � M � yEx � . Let

N � �
π
�
x � : x � m � . N is transitive since if u � v � N , then v � π

�
x � � �

π
�
y � : y �

M � yEx � for some x � M , and hence u � π
�
y � for some y � M , so u � N .

If xEy are in M , then by definition π
�
x � � π � y � , so π preserves the E relation.

Finally, π is one-to-one. To see this, suppose x � y are in M and π
�
x � � π

�
y � .

We may assume x, y are chosen to minimize max
���
x
�
E,

�
y
�
E � . since M satisfies

extensionality, there is a z � M such that (without loss of generality) z � x and
z � y. Clearly π

�
z �	� π � x � . If π

�
z ��� π � y � , there there would be a w � y such that

π
�
z � � π

�
w � . Necessarily w � z. Since max

���
z
�
E,

�
w
�
A ��� max

���
x
�
E,

�
y
�
E � , we have

a contradiction. �

The map π in theorem 1.16 is called the Mostowski collapse.

Exercise 7. Show that if A � ON and π :
�
A, � �	� �

α, � � is the collapse, then α is
an ordinal. Furthermore, α � o.t.

�
A,E � , and for x � A, π

�
x � � the rank of x in A.

Exercise 8. Show that if
�
M, � � � �

N, � � and M is transitive, then the collapse of
N is the identity on M .

2. Skolem Functions

In the previous section we consider absoluteness results of a general nature; they
held for all M � N with M transitive. We now consider how to construct subsets
(or classes) inside a given M which will absolute for given formulas. The idea is
simply to close under existential witness functions.

Let M be a set or class, and φ � φ
�
x1, . . . , xn � be an existential formula, say

φ � �
yψ

�
~x, y � . A skolem function sφ corresponding to φ is a set or class function

sφ : Mn � M such that for all a1, . . . , an � M , if
�
y � M ψ

�
~x, y � , then ψ

�
~x, sφ

�
~x � � .

Note that if M is a class, the statement that sφ is a skolem function for M is
expressible by a legitimate formula of set theory. To deal with some problems con-
cerning the axiom of choice, we also consider the notion of a weak skolem function.
This is a set or class function sφ : Mn � P

�
M � such that for all a1, . . . , an � M ,
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if
�
y � M ψ

�
~x, y � , then

�
y � sφ

�
~x � ψ � ~x, y � . If A � M , we say A is closed under

the skolem function sφ (or weak skolem function) if whenever a1, . . . , an � A, then
sφ

�
~a ��� A � (or � y � sφ

�
~a � � y � A � respectively). With a slight abuse, we consider

skolem function to also be weak skolem functions.
The next lemma shows that closure under existential witnesses is enough to

guarantee absoluteness. Note that transitivity is not being assumed.

Lemma 2.1. Let M be a set or class, and A � M a set or class. Let φ
�
x1, . . . , xn �

be a formula in the language of set theory (which we assume is written using only
existential quantifiers, i.e., replace � by

� � �
). Let φ1, . . . , φk denote the subfor-

mulas of φ which are existential, say φi

�
~x, ~y � � �

z ψ
�
~x, ~y, z � . Assume that for all i

we have: ��� � � ~a � A � �
z � M ψM

i

�
~a, z � � �

z � A ψM
i

�
~a, z � � .

Then φ is absolute between A and M .

Proof. We prove by induction on the length of the formula that all subformulas of
φ are absolute between A and M . Let α

�
~x, ~y � be a subformula of φ. If α � �

β

or α � �
β � γ � , the result follows immediately by induction. So assume α � φi

��
z ψi

�
~x, ~y, z � is existential. Fix ~a � A. If αM

�
~a � then

�
z � M ψM

i

�
~a, z � and by

��� �
then

�
z � A ψM

i

�
~a, z � . By induction we then have

�
z � A ψA

i

�
~a, z � , so αA

�
~a � . The

other direction follows similarly, without using
��� � . �

Corollary 2.2. Let A � M be sets or classes, and φ a formula in the language
of set theory. If A is closed under skolem functions, or weak skolem functions, sφi

corresponding to the existential subformulas of φ, then φ is absolute between A and
M .

It is important to note that for any finite list of formulas φ1, . . . , φn, there are
only finitely many skolem functions that A needs to be closed under to guarantee
the absoluteness of the φi between A and M .

The next lemma shows that for any set M and existential formula φ, a skolem
function sφ for M exists assuming ZFC, and if M is a class then a weak skolem
function exists (without assuming choice).

Lemma 2.3. Assuming ZFC, for any set M and existential formula φ, a skolem
function sφ for M exists. Assuming ZF, for any class M and existential formula
φ, a weak skolem function sφ for M exists.

Proof. Let φ
�
x1, . . . , xn � � �

y ψ
�
~x, y � be an existential formula. If M is a set, let

�
be a wellorder of M . Define sφ

�
~a � � the

�
least y � M such that ψ

�
~a, y � is one

exists, otherwise set sφ

�
~a � � a0 for some fixed a0 � M . By comprehension sφ exists

as a set. Suppose now M is a class. Let sφ

�
~a � � M � Vα, where α is least so that�

y � M � Vα

�
φ
�
~a, y � � , if

�
y � M φ

�
~a, y � , and otherwise set φ

�
~a � � a0. It is easy to

check that sφ is a class. �

As a corollary we obtain the following theorem.

Theorem 2.4. (ZF)(Reflection Theorem) Let φ1, . . . , φn be finitely many formulas
in the language of set theory. Then there is an α � ON such that all of the φi are
absolute between Vα and V .
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Proof. Let ψ1, . . . , ψm be the existential subformulas of the φi, and let s1, . . . , sm

be the corresponding weak skolem functions for V . Starting with α0
� 0, we define

an increasing sequence of ordinals αi, for i � ω. Let

αi
�

1
� sup

�
s �i � ~a � : i � m � ~a � Vαi

� � �
αi � 1 � ,

where s �i � ~a � � least β � ON such that si

�
~α � � Vβ . Let α � supi αi. Note that the

map αi � αi
�

1 exists by a legitimate application of replacement, since all of the
sj are classes. Clearly Vα is closed under the weak skolem functions, and so all of
the φj are absolute between Vα and V . �

As a corollary we get that ZF or stronger theories are not finitely axiomatizable.

Corollary 2.5. Let T be a consistent theory in the language of set theory extending
ZF. Then T is not finitely axiomatizable. That is, there does not exist a finite set
φ1, . . . , φn � T such that

�
φ1, . . . , φn � �

ψ for all ψ � T .

Proof. Suppose to the contrary that
�
φ1, . . . , φn � �

T . Since T
�
φi for each i, by

the reflection theorem T
� �

α
�
φVα

1
������� � φVα

n � . Working from T , let α � ON be the

least ordinal such that φVα

1
������� � φVα

n . Now, the reflection theorem for φ1, . . . , φn

is a theorem of ZF, and as such uses only finitely many of the axioms of ZF in its
proof. By assumption, for each of these axioms ψ we also have ψV

α . But then we

may apply the reflection theorem within Vα to get that
�
β � α

�
φ

Vβ

1
������� � φ

Vβ
n �

(note that
�
Vβ � Vα � Vβ by absoluteness of rank; we assume the ψ’s contain enough

formulas so that rank is absolute between Vα and V ). This violates the minimality
of α. �

In the above theorems we considered a finite list of formulas φ1, . . . , φn. One
must be a bit careful when considering an infinite set of formulas (for example, all
of ZFC). First, to even precisely state any results in this case, we must formalize
the syntax so that we can discuss all of the formulas at once. This is not a problem,
we did this when discussing Gödel’s theorem. The exact formalization of the syntax
is not important, let us just assume we have a bijection n � θn between ω and the
formulas in the language of set theory. We assume the bijection is reasonable in
that simple syntactical operations on the formulas correspond to recursive functions
on ω, and the code of any subformula of φ is smaller than the code of φ. The basic
problem is that the “relation”

�
n, x � iff θn

�
x � is not a legitimate class. That is,

there is no single formula which defines definability in V for all formulas. To see
this, suppose there were such a formula ψ

�
n, x � , that is, for all formulas θ � θn,

ZFC
�
ψ
�
n, x � � θ

�
x � . As in the proof of theorem 2.4, we construct a sequence

αi � ON such that

� n � ω � ~x � Vαi

� �
y ψ

�
n, � ~x, y � �	� �

y � Vαi � 1ψ
�
n, � ~x, y � � � .

Let again α � supi αi. Then χ
�
α � , where

χ
�
α � � � n � ~x � Vα

� �
y ψ

�
n, � ~x, y � � � �

y � Vαα
ψ
�
n, � ~x, y � ��� .

So, ZF
� �

α χ
�
α � . Since each existential formula φ

�
~x � is equivalent to one of

the form φ
�
~x � � �

y θn

� � ~x, y � � , if follows from lemma 2.1 that for each formula
θ
�
~x � in the language of set theory that ZF

� � ~a � Vα

�
θ
�
~x � � θVα

�
~x � � . Let β

be the least ordinal ordinal so that χ
�
β � holds. Let ψ1, . . . , ψl be enough of ZF

so that
�
ψ1, . . . , ψl � � �

αχ
�
α � . Since ZF

�
ψ

Vβ

j for j � 1, . . . , l, it follows that

ZF
� � �

α χ
�
α � � Vβ . So, ZF

� �
α � β χ

�
α � , a contradiction.
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If M is a set, however, it is an important fact that we can “define definability”
over the set M . More precisely, we have the following lemma.

Lemma 2.6. There is a formula ρ
�
n, x,M � in the language of set theory such that

for all sets M and n � ω, ZF
� �

θn

�
~x � � M � ρ

�
n, � ~x � ,M � .

Thus, roughly speaking, ρ
�
n, x,M � asserts that the nth formula holds in M

at
�
x1, . . . , xm � , where x � � x1, . . . , xm � . For n � ω, let r

�
n � be such that all

of the variables in θn occur among x1, . . . , xr � n � . Let s
�
n � be such that θn

�
θn

�
x1, . . . , xs � n � � .

Proof. Let

ρ
�
n, x,M � � �

f
�
f is a function � dom

�
f � � n � 1 �

� i � n
� �
θi
� �

xk � xl � ��� � z �
z � f � i � � z � M r � n � � z

�
k ��� z � l � � �

� � i � n
� �
θi
� �

xk 
 xl � � � � z �
z � f � i � � z � M r � n � � z

�
k � � z

�
l � � �

� � i, j � n
� �
θi
� � �

θj � �	� � z �
z � f � i � � z � M r � n � � z � f � j � � �

� � i, j, k � n
� �
θi
� �

θi � θj ��� � z �
z � f � i � � z � f � j � � z � f � j � � �

� � i, j � n
� �
θi
� � �

xkθj � ��� � z �
z � f � i � � z � M r � n � ��

u � f � j � � � l � k �
z
�
l � � u

�
l � � � � ��

z � f � n � � z � s � n � � x ���
The formula ρ is written out in enough detail so that one can see it is a le-
gitimate formula in the language of set theory. In any model of ZF (in fact,
ZF � Power � Replacement), one can easily see that for any n � ω and any set M ,
there is a function f as in the formula ρ. Also, a straightforward induction on m

shows that for any m � n and any function f as in the statement ρ, if m codes a
formula then f

�
m � � �

z � M r � n � : θm

�
z � � � where z � is obtained by restricting z to

the free variables of θm. In particular, f
�
n � � �

z � M r � n � : θn

�
z � s � n � � � . �

As a consequence of this, we can define (working in ZFC) skolem functions for a
set M for all existential formulas simultaneously.

Lemma 2.7. (ZFC) For all sets M there is a sequence of functions sn, for each
n such that θn

� �
y ψn

�
~x, y � is an existential formula, such that sn is a skolem

function for θn for M .

Proof. Let ρ
�
n, x,M � be the formula of lemma 2.6. Fix a wellordering

�
of M .

Define �
sn

�
~x � � y � � �

θn is of the form
�
y θm

�
~x, y � � ρ

�
m, � ~x, y � ,M � �

� z �
y
���
ρ
�
m, � ~x, z � ,M � � � .

�

From this, we immediately get the following absoluteness result.

Theorem 2.8. (ZFC) Let A � M be sets. Then there is a set B with A � B � M

with
�
B
� � �

A
�
and such that all formulas φ are absolute between B and M . That

is, B
�
M , i.e., B is an elementary substructure of M .

Proof. Let sn be skolem functions for M . Let B be the closure of A under the sn

(i.e., B ���
nBn where B0

� A and Bn
�

1
���

m Sm

�
Bn � ). From lemma 2.1, B is

an elementary substructure of M . �


