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1. INTRODUCTION

If- @ is a family of real-valued functions defined on a set X, then there
is a smallest family, B(®), of real-valued functions defined on X which
contains P and which is closed under the process of taking pointwise
limits of sequences from B(®). This family is called the Baire system
generated by @. One method of generating B(®) from @ is by iteration
of the operation of pointwise limits of sequences: Let @y be ¢ and for
each ordinal « > 0, let @, be the family of all pointwise limits of sequences
from Uyeo ©,. Then P, = P, 4 = B(P), where w, is the first un-
countable ordinal. This system was described by René Baire in this
thése, published in 1899 [2].

This paper is meant to be an exposition of some of the main results
concerning this process that have been obtained since then. The second
section concerns itself with some properties of the classes @, , under the
assumption that the family @ forms a lattice. In the third section, a
development of the relationship between the classes @, and Borel type sets
which are inverse image sets of functions in @, is given. That section
concludes with Hausdorfl’s notion of an ordinary function system.
These systems are completely characterized by their inverse image sets
and yield appealing coextensive processes of generating the Baire system
and of generating a certain Borel system (o-algebra) of sets.

The Baire order of a family of functions @ is the first ordinal « such
that @, = @,,, . The Baire order problem for C(X), the space of real-
valued continuous functions on a topological space X, is studied in the
fourth section. Two proofs, due to Lebesgue, are given to show that the
Baire order of C[0, 1] is w, . Later in this section it is shown that the
Baire order of C(X), with X compact and T, , distinguishes those spaces
which contain perfect sets from those which do not (dispersed spaces);
the Baire order of the dispersed spaces being 0 or 1 and the others w, .

In the last section the Baire order of various families of functions
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which satisfy some relaxed continuity condition is investigated. The
paper concludes with a return to the Baire order problem for an arbitrary
complete function system @. It is shown that there is a completely
regular space 8X, an embedding of @ in C(8X) which extends to an
embedding of the family @, in (C(3X)), , for each «.

Because of the vast amount of work in this area, much has been left
unsaid here. The author hopes that the reader will find the references,
although uncomplete, useful. The journal Fundamenta Mathematicae
contains much of the work in this area and the books on set theory and
topology by Hausdorff [15] and Kuratowski [21] contain a wealth of
information. Finally, the reader may find the recent papers of Lorch [26]
and Frolik [11] helpful.

2. LATTICES

In this section, it is assumed that the family @ forms a lattice of real-
valued functions defined on a set X. Consequently, for each ordinal «,
the family @, forms a lattice. In order to describe the families @, in more
detail, let us introduce the following notation. If H is a subfamily of RY,
let USH(LSH) be the family of all pointwise limits of sequences {f,}7.
from H such that for each integer n, f, = f,.1(fa < foro). It follows
that the families US® and LS9 are lattices,

T'he first theorem, due to Sierpinski [45], shows that the family @
can be realized as the intersection of two families obtained from @ by
a twofold process of taking monotone limits.

TueorEM 2.1. A function f belongs to @, if and only if f belongs to both
US(LSD) and LS(USD).

Proof. Suppose fe @, . Let {f,}7_; be a sequence from @ converging
pointwise to f. Let g, be'the limit of the sequence fi, fy v fo, fi v o V fa e -
The function g, belongs to LS®P. For each integer p, let

gw == hm (Vfi+tt7—1)‘
EE )

n-»F

For each p, g, belongs to LS and g, = g,4, = f. Also, it follows that
f=1lim,,»g,. Thus f belongs to US(LS®P). Similarly, f belongs to
LS(US9).
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Conversely, suppose f € US(LS®) N LS(USDP). Let {g,}.1 be a non-
increasing sequence from LS® converging to f, and let {&,}r.; be a
nondecreasing sequence from US® converging to f. For each =, let
{gnp}2-1 be a nondecreasing sequence from @ converging to g, , and
let {#,,}%_, be a nonincreasing sequence from @ converging to /,:

NS S SE T Ef S0

Vi
R AN — &2
Wi
Og1 < o2 S fap S ™ Ks
VI
!
f
H
Vi
hoy Z hgy = hyy = - by
Vi
hoy Z hoy 2 hgy 2 - — by
k4l

.hll g hlg g ].?13 % b g hln ;_-; e hl .

For each pair np, let k,,, = i, A g1, A Zop A *** A £ » and for eachz,
let f, == Vpi Ry, - It will be shown that the sequence { £} of functions
from @ converges to f pointwise. Let x be a member of the set X. First,
it will be shown that the lower limit of {f,(x)}i_; is not less than f(x).

Let a be a number less than f(x). Let w be an integer such that
h(x) > a. Of course, h,,(x) > a, for every integer p. Let r be an
integer such that g,,;, > a, form = 1, 2,..., w, and [ > r,

Thus, if n > 7, then R, (%) = (Ayp A Z1n A B2 A 0 A Lun)(x) > a.
Also, if n > 7 - w, then f,(x) = (Vp_g knp)(®) = kny(%) > a. There-
fore, lim,,_, f(x) = f(x).

Next, it will be shown that the upper limit of {f,(x)}s-, is not more
than f(x). Suppose b > f(x). Let ¢ be an integer such that g (x) < b.
Of course, g,,(x) << b, for every n. Let s be an integer such that
h,.(x) << b, form =1,2,.,¢ and n > s.

Suppose n > 5. If m < ¢, then k(%) < h,,(x) < b, and if m = g,
then %,,(x) < g,,(x) << b. Therefore, fy(x) == (Vo1 knp)(x) < b and
lim,, .., f(%) << f(x). This completes the argument for Theorem 2.1.
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'There is another property that the families @, , « > 0 enjoy. It will
be formulated in the next definition.

DEFINITION. A subfamily H of R* will be said to have the inter-
position property provided that if g e LSH, he USH, and g 2 &, then
there is a function f in H such that g = f = A

Note that if the lattice @ has the interposition property, then the proof
of the second part of Theorem 2.1 becomes very simple: For each p,
let f, be a function from @ such that g, = f), = k,. The sequence
{f,}5.1 converges pointwise to f.

The next theorem yields as a corollary a characterization of those
lattices which have the interposition property.

THEOREM 2.2. Suppose g € LSP, he USD, and g = h. There is a
function f in US® LS such that g = f = h [49].

Proof. Let {g,}=, be a nondecreasing sequence @ converging to
g, and let {,}_; be a nonincreasing sequence from @ converging to A.
Let u, = g;, and for each n, let v, = w,vh, and 1,4 = T, A g,y -
It can be shown that (1) u,, < t4,,1, V41 < @, and v, > u, , for eachn,
and (2) there is a function f which is the pointwise limit of the sequences
fu, )2, and {v,)%_, . Finally, this function f, which is in US® N LS,
is interposed between g and k, g = f = h.

Remark. It should be noted that if the scquences {g,(x)}y-1 and
{h,(x2)}2., are strictly monotone for some x in X, and g(x) > h{x), then
g(x) < f(x) < h(x). Also, sequences {g,}.; can be constructed which
arc strictly monotone for every x, if @ is a linear lattice containing

constants [30].

As an obvious corollary of Theorem 2.2, we have:

CoORrROLLARY 2.2a. The lattice ® has the interposition property: if and
only if US® NLSP = .

Also we obtain:

CoroLLARY 2.2b. The lattices ®,, « >0 have the interposition
property.

Proof. It is enough to show that @, has the interposition property.
If fe US®,, then fe USUSLS®P)). But for any lattice I,
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US(USHY = USH. So fe US(LS®). Similarly, if felLS®,, then
feLS(USP) and by Theorem 2.1, (US@ YN (LSPy) = D, .

It has been demonstr ated that if @ is a lattice of functmns then not
only are the families @, , o« > 0, lattices, but they also have the inter-
position property.

Note that @, is a lattice containing @ having the interposition property
and

CorOLLARY 2.2¢. If H = US® N LS®, then H is the smallest lattice
containing © having the interposition property, and H, = &, .

Proof. As before, USH = US® and LSH = LS®. From these
facts it follows that H has the interposition property. Moreover,
US(LSH) = US(LS®) and LS(USH) = LS(US®). Employing Theo-
rem 2.1, onc has @, = H, .

Thus, in the study of the families @,, « - 0, there is no loss in
assuming that the original lattice @ has the interposition property.

3. BoreL Sers anp OrRDINARY FUNCTION SYSTEMS

Throughout this section it is assumed that @ is a linear (vector)
lattice containing the constant functions. Under this assumption, the
families D, , « > 0, have a rich algebraic structure. These families form
uniformly closed algebras containing the constant functions which are
also closed under inversion [Theorem 3.1]. Such families were termed
complete ordinary function systems by Hausdorff and were thoroughly
investigated by him [15]. Some of his principal results are that such
systems are in exact correspondence with a certain family of sets [Corol-
lary 3.2a] and that the Baire systemn generated by such a family is co-
extensive with a certain Borel system or o-algebra of sets [Theorem 3. 5]
The presentatmn given here strengthens these results of Hausdorff in
that in [15], it is assumed that the family @ forms an ordmary system
(see Definition), whereas here it is only assumed that @ is a vector
lattice containing the constant functions.

TueoreMm 3.1.  The family @, is an algebra and lattice containing the
constant functions which is closed under both uniform limits and inversion.

Proof. Since @ is a vector lattice containing the constant functions,
it is clear that &, is a linear lattice containing the constant functions.
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Suppose that for each p, | g,(x) — f(x){ < 1;p, for each x in X and
gp €Dy, Let b, = Ap1 (g, - (1:p)). It follows that {£,}7_; is a non-
increasing sequence from @, converging pointwise to f. Thus, f s in
US®, . Similarly, fis in LS®, . Since @, has the interposition property,
f €@, . Therefore, @, is closed under uniform limits.

In order to show that @, is an algebra, we show that if fe @, , then
f2e®, . First, it is easy to see that @, == (D,);, where D, is the space
of all uniform limits of sequences from @. If f € @, , then f is the pointwise
limit of a sequence {f,}¥_y of bounded functions from @. Since the
bounded functions in @, form an algebra [30}, f,* €@, and thus
fre @), = .

If f is a nonnegative function in @, , then there is a sequence {f,}7
of positive bounded functions in @, each bounded away from 0, con-
verging pointwise to f. Since @, is an algebra and is closed under uniform
limits, we have 1/f, € @, [30], for each n. Hence, 1,;fe(®,), = P;.
If fis an arbitrary function in @, , then | f2e @, and 1jf = f- 1if? € D, .
Thus, @, is closed under inversion.

We now give some definitions made by Hausdorff [15].

DrriniTioN. The statement that (7 is on ordinary funtion system
means that (7 is both a vector lattice and algebra containing the constant
functions and 7 is closed under inversion. An ordinary function system
is said to be complete if it is also closed under uniform limits.

Of course, a complete ordinary function system is an algebra con-
taining the constant functions which is closed under both uniform limits
and inversion. These systems have been the object of some recent
studies of Hager [16].

We can restate Theorem 3.1 as:

Tueorem 3.1, If D is a vector lattice conlaining the constant functions,
then D, is a complete ordinary function system. "

We shall now develop two descriptions of the smallest complete
ordinary function system containing ®. This development will be needed
in the sequel.

Let O(®) be the family of all inverse images of right open rays by
functions in @ : O(®P) = {fYa, ©): fe P, ac R}, and let F(P) be the
family of all inverse images of right closed rays: F(P) = {f*[a, 20):
fe®,ac R}). Let O (P) be the family of all countable unions of
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sets in O(P). Let Z(P) be the family of all zero sets of functions in @.
We will need the following technicalities:

Remark 3.1. A set K is in F(®) if and only if K == f~(O), for some
nonnegative function f in ®. In other words, Z(®), the family of zero
sets of functions in @, is F(D).

~ Remark 3.2. The family O(®) is the memberwise complement of
the family F(®) and F(®) and O(P) are closed under finite unions and
intersections; i.e., F(®) and O(P) are sublattices of P(X), the power set
of X. Of course, @ and X are in F(P).

Remark 3.3. The family Fy(®)O,(P)) contains @ and X and is a
sublattice of P(X) which is closed under countable intersections (unions),
1.e., Fy(0,) is a 8(o)-sublattice of P(X).

Remark 3.4. If fis in @, then f~Y(U) € O,(P) for every open set U
and f~YK) e Fi(®) for every closed set K.

Remark 3.5. Suppose FF == i F,, , where Fy, = f71(0) and f, € &,
for each n. Then F = f~Y0), where f = Sp_; 2" f, | A 1). Thus,
if F € Fy(®), then there is a nonnegative function f, which is the uniform
limit of a sequence from @, such that F = f-(0}.

It follows from these remarks that if @ is closed under uniform limits,
then Z(®) = F(®) = Fy(P), and if f € P, then f~(K)e Z(P), for each
closed set K. However, even if @ is closed under uniform limits, there
may yet be functions f such that the inverse image of each closed number
set is in the §-lattice, Z(®D), but the function f is not in @. An easy
example of this may be seen by letting @ be the family of bounded
real-valued functions on the unit interval, and let f be any unbounded
function on the interval,

In view of the previous remarks, we find that if @ is a complete
ordinary function system, then F(®) = Z(®P) is a d-sublattice of P(X)
containing @ and X. Also, we have the following converse of this:

TueoreMm 3.2. Let M4 be a S-sublattice of P(X) containing @& and
X, and let D) be the family of all real-valued functions f defined on X
such that f~YK) e M, for every closed number set K. Then P(M} 15 a
complete ordinary function system [15].

Proof. Of course, the constant functions belong to @(.#) and a
function f € @(4) if and only if f~[a, ) € A and f~a, w0} € CH, for

every number @, where C.# denotes the family of complements of sets
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in .. Using this fact it is not difficult to show that the family @(.%) is
an ordinary function system. In order to show that ®(.#) is complete,
let us show that @(.#) has the interposition property. If {f, 7., is a
nondecreasing sequence from @(.#) converging to f, then f~(a, wv) =
Unei fi}a, ) and f~Ya, o) e C#, for every a. Consequently, if
fe USO(#)Y N LSP(4), then f e P(#). Finally, notice that if f is the
uniform limit of a sequence from @(.#), then f is in both US®(.#} and
LSO(A). Therefore, (#) is a complete ordinary function system,

THEOREM 3.3. Let @ be a vector lattice containing constants, and let @
be the family of all functions f such that f (K) e F{(P), for every closed
number set K. Then @ is the smallest complete ordinary function system

containing @ [15].

Proof. Since Fy(®) is a 8-lattice of P(X) containing @ and A, it
follows from Theorem 3.2 that & is a complete ordinary function system
containing P. Let G be a complete ordinary function system containing
@, and let ¢ be a function in @ such that (X) < [0, 1].

If @ < b, then the sets ¢~ (-0, a] and ¢~'[b, ) are in F(P) and
it follows from Remark 3.5 that there are nonnegative functions v, and
v, which are the uniform limits of sequences from @ such that
@~ ~—00, a] = o7}(0) and ¢7[b, o) == vz'(0). Thus, v, (v, 4 2,) is a
function in G such that

() 0 0) = g (—oo, al, v (1) = p7[h00)  and  e(X)C[0,1]

For each positive integer #, let v,,, be a function in G such that (*)
holds where @ = (m — 1)/n and b = (mjn), m == 1,2,..,n, and let
v, = ljn Yo 1 Uy, - It follows that | v, — ¢ | < 1;n, uniformly over X
and g is in G. From this it follows that if f is a bounded function in &,
then f1s in G.

If f is an arbitrary function in @, then ¢ = /(1 -+ | f]} is a bounded
function in @ and 1s in G. Thus, f = ¢/(1 — | ¢ |) is in G. This com-
pletes the argument that @ is the complete ordinary function system
generated by @.

Obviously we have:
CoroLiary 3.3a. If @ is a complete ordinary function system, then

fisin @ if and only if f~Y(K)e Z(P) = F(P), for every closed number
set K.
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T'his corollary implies that the notion of a 3-sublattice of P(X) con-
taining @ and X is finer than the notion of a topology of closed sets on X,
at least as far as complete ordinary function systems are concerned.
This is meant in the sense that complete ordinary function systems @
defined on X are distinguished by their families of zero sets, Z(P) = F(P).
This is in contrast to the fact that there are two complete ordinary func-
tion systems on the interval [0, 1] which generate the same weak topology
on [0, 1]. For example, let @ be the family RI%H, and let ¢ be the family
of all functions on [0, 1] which are continuous except for a countable set
in the usual topology. This phenomenon is considered again in the last
part of Section 5.

Theorem 3.3 describes the completion @ in terms of inverse image
sets. The next theorem gives an explicit construction of the completion
from @. The next two lemmas will be needed.

LevMa 3.4a. If F e F(D), then & e USP.

Proof. Let F = f~1(0), where f is a nonnegative function in @,
where @, is the space of all uniform limits of sequences from @. Let
h=1—(fA1). Then & is a function from @, such that A7'(]) == F
and A(X) C [0, 1]. Since the bounded functions in @, form an algebra
[30], it follows that for each », &" is in D, and &, = lim A”. Therefore,
£ USD, . But it is easily verified that US®, = US®.

LemMA 3.4b.  In order that f € US®, it is necessary and sufficient that
(1) there be a function h in P such that h = f and (2) f[a, o) e Fy(P),
Jor every number a.

Proof. The necessity is clear from the argument given in Theorem
3.2. For the sufficiency, first suppose 0 = f.

Let {r,}p.1 be a sequence of all the nonpositive rational numbers.
Let F,, = f[r,, o), and let b, = —7r,&p + 7, - From Lemma }.4a,
h,e USD. Let g, = Apet By s 7= 1,2,3,.... Then g, e USP and
f = lim,, g, . Thus, fe US(US®P) = USD.

Now suppose e ® and 2 = f. Then 0 > f — & and it follows that
for each number a, (f — k)" — 0, a) € O(®P). Therefore, f — he USP
and hence f = (f — k) + he USP.

TueoreM 3.4. Let @ be a linear lattice containing the constant functions,
then (1) every bounded function in D belong to (USDP) N (LSD) and
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(2)fe B ifand only if f = f;'fa , where fy and f, belong to (USP) N (LSP).
Compare [15], [16], and [30].

Proof. If f is a bounded function in @, then by Theorem 3.3
f1[a, ©) € F(®), for every number a, and by Lemma 3.4b, f e US®.
Also, f~Y—o0, a] € Fy(®), for every number a. Therefore, —fe USP
and f € (USP) N (LSD). .

If f is an unbounded function in @, then f, = f(I ~ [f]) and
f, = 1—|f,| are bounded functions in @ and f,f, = f. Finally,
observe that (US®) N (LS®) C .

This completes the development given here of the complete ordinary
function system generated by a linear lattice containing the constants
* and it connections with inverse image sets. We would like to remark at
this point on the relationship between the families @, and (USP) N (LSP)
and its dependence on the structure of @. As has been mentioned, if @
is a vector lattice containing constants, then @, C (US®) N (LSP). But
it may be that this inclusion is proper even if @ has the additional
properties of being an algebra and closed under uniform limits. For
example, if @ is the family of all uniformly continuous functions on 2
dense subset D of the open interval (0, 1), then @ has the properties
mentioned and yet (US®) N (LSP) is the space of all bounded continuous
functions on D. On the other hand, if ® has the algebraic structure of
an ordinary function system, then a bounded function f is in @, if and
only if fis in (US®) N (LSP). An argument for this can be obtained
from the argument of ‘Theorem 3.3 and Lemma 3.4b.

"I'he final theorems of this section allow us to establish some connec-
tions between the Baire classes generated by @ and the Borel classes
generated by Z(®P). In Theorem 3.5, several nccessary and sufficient
conditions are given in order that a function be in P, .

THEOREM 3.5. Let @ be a linear lattice containing the constant functions.
The following statements are equivalent:

(1) fed,

(2) feLS(USP) v US(LSP);

(3) fe((USP) N (LSD));

(4) Fe(®y

(5) f-NF) is the intersection of countably many sets from 0,(P),
for each closed set F [30];

(6) f is the uniform limit of a sequence of functions each of which is
the difference of two functions in USP [S1].
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Proof. 1t follows from Theorem 2.1 that the first two statements are
equivalent. It follows from Corollary 2.2¢ that the first three statements
are equivalent.

Iffe(QT))1 , then f is the pointwise limit of a sequence of bounded
functions in @. But by Theorem 3.4, every bounded functions in @ is
in US® " LS®. It follows that the first four statements are equivalent.

If fe US(LSP) and {f,}i, is a nonmcreasmg sequence from LSP
converging to f, then the set f~}(—co0, a) is Uni fil(— oo, a — (1/n)]
and thus is the union of countably many sets in I,(P).

If fe ®,, then it follows that for each set O, f~Y(0) is the union of
countably many sets in Fy(®). Thus, if fe @, , then f~*(F) is the inter-
section of countably many sets from O,(®). This shows that the first .
statement implies the fifth.

Suppose that for each closed set F, fNF)e(O,(P))s. Let ¢ =
FO+1fD=0 -+ 1 TD))of; oW (F)e(0,(P))s , for every closed set F.

Let {r,}2_, be a countable dense subset of (—1, 1), and let

g0, 7,) = U:1 Fon s
where each F,, € Fy(D).

Let g,, = (1 —7,) &+, , for each pa1r of mtegers Py n. From
Lemma 3.4b, we have gﬂp e LS® and gy = /\,,ml Aj1 g is in LSO, for
each n. It follows that {g,}%_, is a nonincreasing sequence from LSP
converging to ¢. T'herefore, ¢ € US(LS®P). Similarly, ¢ € LS(USP) and
¢ € @, . Since @, is a complete ordinary function system, f = ¢f(1 ~ | ¢ |}
is in @, . The first five statements are equivalent.

Since @, is complete, the sixth statement implies the first,

Finally, suppose {(fotpeq is a sequence of bounded functions from @
converging to f. For each p, let g, = \/L_lprml and A, == Nt foopet -
For each p, g, = ¢, b1 = by, g,€LSP, and k e USP. The
sequences {g,}7.; and {#,}5_, converge pointwise to f. .

For each p, let R, = {x: g,(x) — h,(x) < ¢}, and let Ry = @. The
sets R, € Fy(D) and & e USP. Let fy == 0 and for each p,

p i (fn = fua v 0)

Re=d
and

=3 (h=faa nO)
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For each p, s, is a nonnegative bounded function in @. It follows that
Sp + €r, 1810 USP, for ea(?h pair p, q. Let {k,}%_; be a sequence of bounded
functions in @ decreasing to & . As noted before, s, * &k, € P, and

5 - &n € US®, = US®.

Let
h=Y spép — 2 Spfr, >
pa=l p=1
and let

@ o
ko= z rng,,"" z f-p'fR,,_ﬂl .

Py Pzl

Thus, % -+ k is the difference of two functions in U/S®. We have X =
Uers R,, and if x € R, — R,,, then |f(x) — (b + R))} =
| F(x) — fo(x)] < e. This completes the proof of Theorem 3.5.

From Remark 3.5, we have:

COROLLARY 3.5. If @ is closed under uniform limits, then f € @, if and
only if f-Y(F) € OD), for every closed set F.

We are now in a position to give a development of the Baire classes
generated by the family of functions @ together with the classes en-
countered in a development of the Borel system or o-algebra of sets
generated by F(@). The developments will be in exact correspondence.

Let @, = D, and for each ordinal «, let @, be the space of all pointwise
limits from @,_, , if « is not a limit ordinal, and let @, be the complete
ordinary function system generated by the ordinary function system
Uy<x @, , if o is a limit ordinal. Note that according to Theorem 3.5,
if o is a limit ordinal, then @, ., = (P,); = (Uyca Po)1 -

Note. 'The development described here differs slightly from the one
given earlier. The description given here will be used throughout the
remainder of the paper.

The families @, can be connected with the o-algebra or Borel system
of sets generated by Z(®P).

We now describe the o-algebra generated by a family F of subsets of X.

Let F, be the family of all countable intersections of members of F
together with X and @, and let O, be the family of all complements of
sets in F, . For each ordinal « > 0, let F, be the family of all countable
intersections of sets from |J,., O, and let O, be the family of all com-
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plements of sets in F, . The family O, = F, is the o-algebra or Borel
system of sets generated by the family F.

In particular, if F == F(®), then in consequence of the theorems
already established, we have:

THEOREM 3.6. If a > 0, then f is in the family @, if and only if
fNK)eF,, for each closed set K. This condition also holds for « = 0,
if @ is a complete ordinary function system.

The functions in @, — (J, . @, are said to be of exactly class o
The sets in A, == F, N O, are said to be ambiguous sets of class, a and
the sets in EA, = A, — {J, <. 4, are said to be of exactly ambiguous
class a.

Of course, @, = P, 1, and F, = 0,, = A, . The Baire order of
a family @ is the first ordinal « such that @, = @,,, . Note that the
Baire order of a family @ is the first ordinal « such that F, = O, . One
of the central problems in the Baire process is the determination of the
Baire order of a given family. .

As a final remark in this section, note that if @ is a complete ordinary
function system, then the bounded function in @ forms a real Banach
algebra under the uniform norm. A representation of the dual, @%,
of this space has been obtained by A. D. Alexandroff [1].

DrrFiniTion.  Let ba(X, X) be the space of all real-valued bounded
additive set functions defined on Z, the o-algechra generated by F(9P)
under the variation norm. A function p € ba(X, 2 is said to be regular
if for each set 4 in the algebra generated by F(®P) and for each € > 0,
there is a set FF e F(®) and set G € O(P) such that F C A4 C G and the
variation of u over G — F, var(u, G — F), is less than e. Let rba(X, X)
be the subspace of a (X, Z) consisting of all regular set functions.

TuroREM. Suppose @ is a complete ordinary function system and
Te®* Then there is only one set function p€rba(X,X) such that
(t) T(f) = [ f dp, for every bounded function f in @. Moveover, | T| =
| o || and @* and vba(S, Z) are isometrically isomorphic by the mapping
defined by (1). |

Note that this theorem includes the representation of the dual of
C(X, R) where X is a topological space and C(X, K) is the space of all
bounded real-valued continuous functions on X under the uniform norm.
Also, this theorem may be applied to give the more well-known repre-
sentation theorems [9].
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4. 'Tue Bare Orprr OF Sraces C(X)

Let X be a topological space, and let C == C(X) be the family of all
real-valued continuous functions on X. In this section the Baire order
~of C(X) 1s determined for those X which are compact Hausdorff spaces
or which are complete metric spaces which contain a dense-in-itself set.

By a Baire function on X is meant a function in ', . By a Baire qct
in X is meant a set in the o-algebra generated by the famlly Z( X} of all
zero sets of functions in C(X). By a Borel set on X is meant a set in the
o-algebra generated by the closed subsets of X. Of course, if X is perfectly
normal, then the Borel sets and Baire sets coincide.

Let @ be a linear lattice containing constants, and let @,* be the dual
of the normed linear space consisting of all bounded functions in @
under the uniform norm. The first theorem of this section, due to the
author, gives sufficient conditions on @,* in order that the Baire order
of @ be no more than 1.

Turorem 4.1.  Suppose that for each T € @,*, there is a countable
subset {x,}%_s of X and a sequence {a,}%_, from I, such that

L=

() T(f) = ) anf(x.)

-
for every bounded function f in ®. Then the Baire order of @ is no more
than 1.

Proof. lLet fe®, == (d,),, and let ¢ be a closed and scparable
subalgebra of the Banach space of bounded functions in @, such that
felly, and let @7 contain constants. Let X be the decomposition of X
obtained by identifying the stationary sets of (7. Let 7 be the Banach
algebra defined on X obtained from (¥ by the natural correspondence.
Of course, f is constant on these stationary sets of (7 and the corre-
sponding function f belongs to 7,

The Banach algebra &Z separates points of X. Consequently, there is a
compact Hausdorff space S and a 1-] function = from X onto a dense
subset of S such that the transformation: f > fo 7= for each fe C(95)
is an isomorphism of C(S) and ¢Z, as lattices and algebras, and is an
isometry [9, p. 274].

Since (7 is separable, C(S) is separable and therefore S is a compact
metric space. Since each functional on 7 has the form (*), each functional
on C(5}) has the same form. Therefore, .S is countable.

Let f be any extension of f to all of S. But the Baire order of C(S)
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for S countable, compact metric is no more than | and every real-valued
funcFion on S i§ in C; [30]. Let {g,}_; be a sequence from C(S) con-
verging pointwise to 7. The sequence {f, = g, o7 '}71 converges
pointwise to f and it follows that the Baire order of @ is no more than 1.

CororLARY 4.1 [Meyer, 33]. If S is a dispersed compact Hausdorff
space, then the Baire order of C(S)is 0, if Sis finite, and 15 1,if S is not finite.

This corollary follows directly from the preceding theorem and the
fact that for dispersed compact T, spaces, C*(S) = [,(S), which was
first proved by W. Rudin. See [38].

The next theorems show that the Baire order of C = C[0, 1] 1s w, .
The arguments proceed by constructing “‘universal” functions and then
applying a Cantor type argument on the diagonal.

TreoreM 4.2 [Lebesgue, 251, For each « <. wy, there is a Baire
function U, on [0, 1] x [0, 1] such that if f € C, and f[0, 1] C [0, 1], then
there is a number x such that U(x, v) = f(¥), for every y in [0, 1].

Proof. Let {f, )2, be a countable dense subset of the positive part
of the unit ball of C[0, 1]. Let

r fn Yh if o = Ifﬂ‘,
Vol ) = 0,( ) if otnerwise.
It is easy to show that U, is a function in Baire’s class 1 on the unit
square.

Let & = (b, hy, hy,...) be a continuous function from [0, 1] onto
I*o, the Hilbert cube.

Let Uy(x,y) = Iim,_., Uyh,(x), ¥). It follows that for each =,
Uy(h,(x), ¥) is a function in Baire’s class 1 on the unit square and U,
is a Baire function on the unit square. If f is a function in Baire’s class 1
on the interval [0, 1] and f([0, 1]) C [0, 1], then there is a subsequence
{fo,Jp—1 converging pointwise to f.

Let x be a number in [0, 1] such that A(x) == {l/m,}5... TFhen
Uy(x, ) = f(y), for every y in [0, 1].

Suppose « is a countable ordinal, & > I, and for each ordinal y, y <C«,
a function U, having the prescribed properties has been designated.

If « is not a limit ordinal, let U (x, y) == im,,.., U,_4(k,(x), ¥). Again,
it follows that U, is a Baire function on the unit square. If fe C, and
F([0, 1]) C {0, 1], then there is a sequence {x,};.; from [0, 1] such that
f(») = lim, ., U, 4(x,,y). Let x be a number in [0, 1] such that
h(x) = {ay}e s . It follows Uy, y) = f(3), for each y in [0, 1].
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If « is a limit ordinal, let {y,}%_; be an increasing sequence of ordinals
converging to «, and let Uyx, y) = Iim,,, U, (h,(x),y). If fe C, and
F(0, 17) € [0, 1], then there is a sequence {f,}>_; such that for each n,
fo€C, , f0, 1D C]0, 1), and {f,}7.. converges pointwise to f.
et x be a number such that U, (h,(x), y) = f.(¥) for each n and for
each y in [0, 1]. Thus, U, are the prescribed properties for the ordinal a.
This completes the argument for Theorem 4.2,

The functions U, are said to be universal functions with respect to the
positive part of the unit ball of C, . There is no universal function with
respect to the positive part of the unit ball of C[0, 1] which is a continuous
function on the unit square. In the argument for the next theorem, it
will become apparent that there is no universal function with respect
to the positive part of the unit ball of C,,j1 which is a Baire function on
the unit square. Also, see [18].

THEOREM 4.3 [Lebesgue). The Baire order of C[0, 1] is w, .

Proof. Suppose the Baire order of C[0, 1]1s o, @ < w, . Let U, bea
universal function as described in Theorem 4.2 which is a Baire function
on the unit square. Let g(x) = I — U(x, x), x in [0, l]. Then g is a
Baire function on the unit interval. et f be the pointwise limit of the
sequence {gM2.; . Then fe C, and f([0, I]) C [0, 1]. Therefore, there
is some x such that U,(x, y) == f( y) for every y in [0, 1]. In particular,
f(x) = Ugfx, x). But, if Ux, x) == 0, thenf(x) == 1, and if U, (x,x) >0,
then f(x) == 0. This is a contradiction and the Baire order of C[0, 1] 1s
w; . The following theorem is also due essentially to Lebesgue [21]. This
particular formulation of the theorem has had some recent applications {4]

Recall from Scction 3 that if G 1s a family of subsets of X, then the
Borel system by G may be constructed as follows: Let G be the family
of all countable unions of sets in G together with @ and X, and let
F, be the family of all complements of sets in G,. For each o > 0,
let , be the family of all countable intersections of sets from {J,.., G, ,
and let G, be the family of all complements of sets in F,. Then F,, =
G,, is the Borel system or o-algebra generated by the family G. The
Borel order of a family G is the first ordinal « such that F, == &, . Some
special universal functions are now described in

Tueorem 4.4. Let G be a countable family of subsets of .17, the space
of all irrational numbers between O and 1. If the Borel system generated
by G includes all the Borel subsets of A7, then the Borel order of G is w, .
Compare [21, p. 368].
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Again, the proof is a diagonal type argument applied to universal
functions for the generated Borel classes.

Proof. Tor each Ze A", let (Z,,Z,,Z;,...) be the sequence of
integers appearing in the continued fraction expansion of Z. This
defines a reversible transformation from .4~ onto the set of all sequences
of positive integers. Let

TV = (Zy, s 2 rond)
AR (Zz v Zg s Lag ’)

Z% == (Zgn..] ,Z

3,2nw~1 ¥ Zﬁ,gn-l )‘--)

for each n. This defines a homeomorphism between .47 and 4. Also,
note that if f is a continuous function from .4” into 4", then the functions
f,, from .4 into the space of positive integers are continuous, where
F2) = (FA2), A Z), F(Z),0): |

Let O,, O,, O,,... be a sequence of all the members of G together
with @ and X,

Let UyZ) == Upy O, , for each Z e A", Clearly, U, is a universal
function for the class G,; U, is a function from .4 onto G .

Let f be a continuous function from 4" into .#". We have

4, = 7 2 UI) = (2:22 ) O

fue=]l

Ap = \J{Z2: Ze O 2}

=]

For each n, we have

{2:Z€0,n} = U {Jui O Oy},
{=1
where [, == {Z: f,(Z) == i}. Since each f, is continuous, [, is open and
therefore the set A, belongs to G, .
Suppose 0 <C « < w, and for each ordinaly, 0 <y < «, a universal
function U, from 4 onto the class G, has been given such that if f is
a continuous function from .4 into 4", then the set

Ay ={Z: Zec U,f(Z) G, .
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If « is a positive integer n, let

v AZ) = ﬂ(ﬂb (/m,,)

0 \p==l

If @ 2 wy, let {y,}.1 be a sequence of all ordinals less than «, and let

o
rZ)y = () U, (%),
=1
for each Ze ..
Clearly, V', is a universal function for the class I, . Let f be a continuous
function from 4" into .47, It will be shown that the set

= {Z: Ze V(f(Z € G, .

The argument for o << w, is similar.

We have
B, = {Z: Ze V(f(2)) == (7: Z& () U (F(Z)");

By = () (Z: Ze U, (J(2))

Pam],

But for each p, the function Z — (f(Z))e is a continuous function
from A" into .A". So, B, e G, .

Let U(Z) = X — V (2), for Z & 4", It follows that U, is a universal
function for the class G, such that if f is a continuous functlon from 4
into A7, then 4, = {Z: Ze . (f(Z)}e G, .

Finally, suppose the Borel order of G is o, a < ;. Let I, ==
{Z2: Ze U D)}

Since G, =F, = G, , X — 1, eG,, and there is some Z such that
UfZ) = X —1,. But this is a contradiction and the Borel order of G
is w, . This completes the argument for Theorem 4.3.

Since the Baire order of C[0, 1] is no less than the Baire order of
C[A4"], we have

CoroLiLARY 4.4, The Baire order of C{0, 1] is w, .

In order to show that the Baire order of C(X) is w,, where X is a
compact Hausdorff space which is not dispersed, we will employ the
fact that perfect mappings between subsets of complete and separable
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metric spaces preserve the classes EZ(FCZ,), o = w, . Recall that if X
is a topological space, then Z, == Z(X) is the family of all zero sets of
real-valued continuous functions defined on X and EZ(ECZ,) is the
family of all those sets which are exactly of class Z,(CZ,) in the iterative
process described previously.

Let R be the space of real numbers provided with the usual topology.
The following lemmas and Theorem 4.5 are due to A. D. Taimanov [48].

Lemma 4.5a. Suppose ¢ is a lower semicontinuous function defined on
a closed number set K and I' is the graph of ¢. If A € CZ(R?), then the
projection of the set A N I' onto the x-axis is of class CZ, (R) if o is finite,
and of class CZ(R) if & 2 wy . If A€ Z(R?), then the projection of the
set A N I onto the x-axis is of class Z,,(R) tf o is finite and o > 0, and
of class Z(R) if « = w, .

Proof. Let B = II,(ANT). The proof proceeds by transitive
induction.

Case 1. Tirst, let 4 be open. For each xe B, let 4, = {r;,r,] X
(ry,7,] (where the », (i = 1,2, 3,4) are rational numbers) contain
(%, p(x)), and let 4, C 4. Also, let 7, be the projection of 4, N I' onto
the x axis.

Ve={tiry <t <rpandry < g(t) <7y}

From the lower semicontinuity of ¢ it follows that each sct I/, is the
intersection of an open and closed set. Thus, each set V' is an F, set and
the set B, being the union of the countable family V., 1s an F, set.
If A CZy(R?), then B e CZ(R).

Now, let 4 e Z(R?). Thus 4 = (Yn.q 4,, where each 4, is open.
Then B = IT(ANT) = ooy (A, T) and B is an F,, set. If
AeZ,, then Be Z,.

Case 2. First suppose A 1s compact. Let 4 = oy U, , where U,
is compact and for each n, U,,, C U, and U, is open. Let {f,}2_, be
a nondecreasing sequence of continuous functions converging to ¢.

For each n, let O, = {x: (x, f{(x)) € U, , for some s 2> n}. For each

o«

n, O, is an open set and B = (,.; O, . If 4 is compact, then B is a G,
set.

Now, let 4eCZ,. Thus 4 = (,_; 4, , where, for each n, 4, is
compact. Then B = [[ (AN T} = Ui IT(A, N T')and B is a Gy, set.
If AeCZ,, then Be CZ,.
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Case 3. Suppose n is a positive integer, the lemma holds for each
a <L nand de Z,,H

Let 4 = ﬂpwl »» with A,eCZ,. Then B = I[I(ANT)=
ﬂp=1 (14, I}). By assumptxon I(A4,nnMeCZ,.,. Thus, if
AeZ, ., then Be Z, .

The remaining cases are proven in a similar fashion.

Lemma 4.5b.  Suppose ¢ is a lower semicontinuous function defined on
a closed subset K of a Hilbert cube H and I' is the graph of @. Then the
conclusions of Lemma 4.5a still hold with H substituted for R*.

A proof of this lemma follows the proof of the preceding lemma
exactly.

LemMA 4.5c.  Suppose f is a perfect map from a subset A of I == {0, 1]
onto a subset B of a Hilbert cube H.If Ae CZ, , then Be CZ,,y,if a > 1
and o is finite, and Be CZ,, if « = w,. If A€ Z,, then BE?ails if
o > 0 and ais finite, and Be Z, , if « = w, .

Proof. Let L denote the graph of the mapping f in H X I' L =
{(F(»)3):yed}

Since the sets CZ,, « > I, and the sets Z,, a > 0, are intrinsic
invariants [21, p. 432] and the set L is homeomorphic to 4, we need
only consider the projection ¢ of L onto H. The closure Lof Lisa
compact set to which i can be extended. Let ¢* denote the mapping of
the set L onto the set B.

The set L decomposes into the union of sets y*~Yx), where x € B.
Suppose there is some x€B such that $*-'(x) "L s & and
*4(x) N (L —L) # . Let (5,9) 4*~4x) 0 (L — L), and et (£(5,), 5.)
be a sequence from L converging to the point (x, ). It follows thatx € B
and since f is perfect, x is a limit point of the infinite set Lf(yn)}n 1
Thus, the set M = {3,}%_, is closed in 4, but the set f(M) is not closed
in B. This is a contradiction.

So, for each point x € B, let (x, p(x)) be the lowest point of L on thc sct
{x} % I. The function ¢ is a lower semicontinuous function defined on
the closed subset B of a Hilbert cube /. Let I" be the graph of ¢ in
H x I. The projection of the set L » I" onto /1 is B and this lemma
follows from the preceding lemma.

TurOREM 4.5. Suppose A is a subset of a complete separable metric
space S, B is a subset of a complete separable metric space Sy, and f is a
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perfect map from A onto B.If Ae CZ, , then Be CZ .,y ,1f | <o <l ay,
and Be CZ,, if a Zwy. If AecZ,, then BeZ,,, tf 0 <o <y,
and Be Z,,if o« 2 wy.

Proof. We may assume that 4 lies in a Hilbert cube H and B lies in
a Hilbert cube H,. Let 8 be a continuous function from the interval
[0, 1] onto H. The composition f o 8 is a perfect mapping of §-'(4) onto
B and the theorem follows from the preceding lemma.

Let EZ, = Z, — U, Zy and let ECZ, = CZ, — J,.. CZ,, for
each « > 0. The next theorem is due to I. A. Vainstein [52].

TuroreMm 4.6. Suppose A is a subset of a complete separable metric
space S, B is a subset of a complete separable metric space S, , and f is a
perfect map of A onto B. If A € EZ,(S) (ECZ(S)) with o >> 2, then the

class of the set B is not lowered.

Proof. Let A lie in a Hilbert cube H, and let B lie in a Hilbert cube
H, . Let I" be the graph of the mapping fin H x H,, and let ¢ be the
natural projection of I' onto the closure of B in H, , B.

Suppose A4 € EZ,(S). Since I" is homeomorphic to 4 and the classes
Z(CZ,)y > 1 are intrinsic invariants, I'e EZ(T).

Suppose B € Z,(S)) (CZ,(Sy)), | <y << « Then Be Z(BY(CZ,/(B)),
1 <~y < a, and since ¢~ preserves unions, intersections, and com-
plements, we have —(B) € Z(I)(CZ/I)).

We will show that ~%(B) == I" and through this contradiction prove
the theorem:. ‘

Suppose (x, y) ey (BYyn I — I'. Since f~(y) is compact in 4,
(x, v) is not a limit point of f~I(y) x {y}. It follows that there is an
infinite subset M = {x,}® , of 4 — f~Yy) such that {x,,f(x,)}a
converges to (x, y). Of course, x€ 4 and the set M is closed in A.
However, the set f{(M) = { 3,12, is not closed in B and this contradicts
the fact that the mapping f is closed.

By combining Theorem 4.6 and Theorem 4.5, we have:

COROLLARY 4.6. Suppose f is a perfect map of a subset A of a complete
separable metric space S onto a subset B of a complete separable metric
space S; . Then f preserves the classes Z(CZ,) if « = w, and does not
change the class by more than 1 if 2 < o < wy .

The next theorem is due to J. E. Jayne [17] and M. M. Choban [6].
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TuroreM 4.7. Suppose X is a compact Hausdorff space and contains
a perfect set. Then the Baire order of X is wy .

Proof. Let f be a continuous function from X onto the interval [0, 1]
[38]. Let « be an infinite countable ordinal, and let 3/ be a Borel subset
of [0, 1] belonging to the family EZ[0, 1]. It follows that 4 = f~1(}M)
belongs to EZ (X), for some y < «. It will be shown thaty = «.

Suppose y << a. Let K = {g77(0)}7., be a countable collection of
zero sets such that 4 belongs to the family K,, where for each n,
£.(X) C [0, 1]

Let g(x) = (g:1(x), go(x), g5(x),...) for each x in X. The space ¥ = g(X)
is a compact metric space, gl(g7; (0))) = g,;'(0) for each k; and
g g(A4)) = A. (Note that if % is a map from a set X to a set ¥, then
the family W of all sets B such that A~Y(A(B)) == B is a g-algebra).

Let (x) = ( f(x), g(x)), for each x in X. The space H = (X} C
[0,1] x Y is a compact metric space. For each n, ((/g2:(0))) =
gH0), o A)) = A and {(A)e EZ(H). Let I1 b(, the restriction to
H of the natural projection of [0, 1] x ¥ onto {0, l] “hen TI(H(A)) = M
and ITI7YII(J(A))) = ¢{A). This implies that I is a perfect map. This
contradicts the fact that perfect maps in complete and separable metric
spaces preserve the classes £Z, , « = o, [Theorems 4.5 and 4.6].

CoroLLARY 4.7. Suppose X is a complete metric space which contains
a dense-tn-itself set. Then the Baire order of C(X) 15 w, .

This follows from the facts that such a space contains a compact
perfect set P and that every Baire function on P has an extension to a
Baire function on X. Compare with [10].

Notice that if X and Y are compact, T, spaces, then the Baire order
of C(X x Y) is the maximum of the order of C(X) and the order of
C(Y). This naturally leads to the following:

Question. s it true that the Baire order of C{(X » Y} is the maximum
of the order of C(X) and C(Y), where X and } are compktdv regular
spaces ?

In closing this section, the author would like to point out that many
topological spaces may be characterized by relationships among the
lower (upper) semicontinuous functions and the families C = C(X),
USC, and LSC. Some of the characterizations follows.

Turorem 4.8 (Tong [49]). In order that X be normal, it is necessary
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and sufficient if f is upper semicontinuous and g ts lower semicontinuous and
f << g, then there is a continuous function h such that f < h < g.

TueoreM 4.9 (Tong [49]). In order that X be perfectly normal, it is
necessary and sufficient that if f is upper semicontinuous, then f belongs to
USC.

TrroreM 4.10 (Dowker [8]). Inorder that X be normal and countably
paracompact, it is necessary and sufficient that if f is upper semicontinuous,
g is lower semicontinuous, and f < g, then there is a continuous function h
such that f << h < g.

‘The author notes:
TuroreM 4.11. In order that X be completely regular, it is necessary

and sufficient that if f is a bounded upper semicontinuous function, then
for each x in X,

/(¥ = glbg(x): g > f and g C(X)}.

Also, we have:

TaEorEM 4.12 (Ross and Stromberg [43]). A compact Baire set F
in a topological space X is the zero-set of some continuous function.

From Theorem 4.12, can be easily derived:

TueoreM 4.13. A compact, T, space is perfectly normal if and only if
every Baire set is a Borel set.

Theorem 4.13 leads to the following:

Question. Ts it true that the order of the Borel subsets of a completely
regular T, space X is the order of the Baire subsets of X ? In particular,
what if X is compact?

There seems to be very little informatjon on this problem. For some
interesting examples see [53].

Finally, we have:
TueorEM 4.14 (Frolik [12]). A space X is Lindelof if and only of

the family of Baire sets is the smallest countably additive and countably
multiplicative collection M of sets such that X locally belongs to 4.
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A space X locally belongs to a collection 4 of subsets of X if each point
of X has arbitrarily small neighborhoods 1n .4 .

5. SPECIAL Spraces AND DBaire EMBEDDINGS OF FUNCTION SYSTEMS

In this section the Baire order of various families is obtained and some
examples are given. The paper concludes with an embedding of an
arbitrary complete ordinary function system @, defined on a set X
in the space C = C(6X), where 8X 1s a “‘topological extension” of X
which extends to give an embedding of @, in C, . From this a sufficient
condition in order that the Baire order of @ be w, is derived [Theorem

5.10].

DeriNiTION. If X is a topological space, let IW(X) be the family
of all real-valued functions f defined on X for which there is a first-
category subset P of X such that the partial function f{ X — P is
continuous (such a function f is said to have the Baire property in the
wide sense [21]).

Lemma 5.1 [Baire, 2]. If f is a function of Baire's class |, then the
set of points of discontinuity of f is of the first category.

Proof. 'The set D of points of discontinuity of f satisfies the formula:
D = Up (f1(F,)) — fYF,)), where the sets {F, ] ; form a countable
base for the closed number sets.

Since f is of Baire’s class 1, f~(F,) is a G; set. Thus, F-1(F,) - f 4F,)
is an F, set and 1s also a boundary set. Therefore, for each »,
FHE) — f~F,) is of the first category, and the set D is of the first
category.

THEOREM 5.1.  The family, W(X), of all functions having the Baire
property in the wide sense is closed under pointwise limits, '

Proof. Let {f,}.1 be a sequence from W(X) converging pointwise
to a function f. For each n, let P, be a first-category set such that
fu | X — P, is continuous. Let P, == Un s P, , Py is of the first category,
and for each n, f,, | X — P, is continuous. Let P; be the set of points of
discontinuity of /| X — P, . The set P, 1s of the first category in X' — P,
and hence in X. Therefore, P = P, P, is of the first category and
/| X — P 1s continuous.
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DrrnitioN.  If X is a topological space, let R(X) be the family of all
real-valued functions f defined on X such that for every closed set I,
the partial function f | F has the Baire property in the wide sense (such
a function is said to have the Baire property in the restricted sense [21]).

CoRrOLLARY 5.1. The family, R(X), of functions having the Baire
property in the restricted sense is closed under pointwise limits.

Remarks. Tt is always true that C(X) C R(X) € W(X), and since the
last two families are closed under pointwise limits, C,, C R(X) C W(X).
Every Baire function has the Baire property in the restricted sense and
hence in the wide sense. For a wide variety of spaces, the inclusions
given above are proper [21]. It should be remarked that the family, 4(X),
of A-functions on X is also closed under pointwise limits and C‘m1 C A(X)
C R(X) [21, pp. 95 and 512].

In the case of metric spaces, the family W(X) has a particularly clear
realization as the following theorem of Kuratowski [22] shows:

TurorEM 5.2. If X is a metric space, then a function [ is in the family
W(X) if and only if the pointwise limit of a sequence of functions each
continuous except for a first-category set.

Proof. Let fe W(X), and let {F,}7.. be an increasing sequence of
closed nowhere-dense subsets of X such that the partial function
f| X — D is continuous, where D= Ui F, . Let Fy= g.

For each x & D, let k(x) be the integer such that x el — w1 -
If {x,}2_; is a sequence from D converging to a point x of X — D, then
{k(x, }';;1 — 00,

For each x € D, let o(x) be a point of X — D such that p(x, p(x)) <
p{x, X — D) -+ 1/k(x). For eachx € X — D, let p(x) = x. The mapping
 from X onto X — D is continuous at each point of X — D.

Let g be the composition of f with ¢, f o . The function g is continuous
at each point of X — D.

_ {f(x),xeX =D
6 = ooy v >

The function g is continuous at each point of X' — D.
For each n, let
i f(‘x)! lf .‘EEF,.,,,
fol) = gg(x), if xekF,.
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The functions f,, are continuous at cach point of X' — [ and the sequence
{f.}2 4 converges pointwise to f.

Drrinirion.  If X is a topological space, let M(X) be the family of all
functions f such that the set of points of discontinuity of f is a first-
category set.

A restatement of the preceding theorem gives:

TreoreM 5.2. If X is a metric space, W(X) = M,(x) and the Baire
order of M(X) is at most |.

The following example is due to Sterpinski [47};

ExampLE 5.1. If ®; = 2%, then there is a number set X such that
the Baire order of C(X) is 2.

Proof. Let X be a Lusin set; X is a set of cardinality ¢ such that
every set of the first category in X is countable.

If fe M(X), then f is continuous except for a countable set and it
follows that fe Cy(X). Thus, W(X) = M,(X) == Cy(X) and the Baire
order of X is no more than 2.

Let D be a countable dense subset of .X. The characteristic function
¢, of D has the Baire property in the wide sense. Therefore, £, € Cy(X).
However, since £, is not continuous at any point, &, ¢ C(X). Thus,
the Baire order of C(X) is 2.

This example is due to Szpilrajn [47].

ExampLE 5.2. If 8, = 2%, then therc is an uncountable number
set X such that the Baire order of C(X)1s 1.

Proof. Suppose R, = 2%. Let X be an uncountable number set
whose intersection w1th each set of Lebesgue measure 0 is countable.

Suppose M is a Borel set with respect to X. Then M = BN X,
where B is a Borel subsct of the space of all real numbers. Smcc Bis
Lebesgue measurable, B can be expressed as the union of an F, set K
and a set N of Lebesgue measure 0. Thus,

M = (Kn X)U (VN X).

But, N n X being a countable set is an F, set in X. Therefore every
Borel subset of X is a F, set. It follows that the order of C(X) s I.
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"There has been some work done on the Baire system generated by
the family of functions on a space X which are continuous except for
a negligible set [24, 31, 32, 44, 50]. Recently, the author has shown
that the Baire order of all function which are continuous except for a set
of Lebesgue measure zero is w; .

The author does not know the answer to the following question:
For each countable ordinal «, is there a metric space X or a completely
regular space X such that the Baire order of C(X) is a?

Let @ be a complete ordinary function system on a set X, and let X
be given the weak topology generated by @. Let U® be the family of
all functions f for which there is a subfamily 4 of @ such that for each x
in X, -

f{x) = glb{g(x): g e 45

Let L@ be the family of ali f such that —f e U®. Of course, (U®) N (LP) C
C(X), and it can be shown that each bounded function in C(X) is in
(UD) N (LP). The author notes the following: :

Turorem 5.3. A function f on X is in C(X) if and only if f = filfs,
where f, and f, are tn (UDP) N (LD).

If @ = (UD) " (LP), then the Baire order problem for @ is the same
as the Baire order problem for C(X). However, this is not usually the
case. The following lemmas will be used to construct a topological
extension, 8.X, of X by adding ideal points to X and obtaining a space
of continuous functions on 8X which has the same Baire order as @. It
will be assumed that the family @ separates points of X. This is no
restriction for our considerations, since if @ does not separate points of X,
we may consider the stationary sets of @ as our points and obtain a
function system which has the same structure as @.

The construction of the space 8X follows the construction of the space
eX given in Gilman and Yerison [13] and the lemmas are stated here for
completeness.

DeriNiTion.  The statement that & is a Z(@)-filter means & ¢ Z(P)
such that (1) if Z,, Z,e &, then Z; N Zy,e F, Q) if Zye &, Ze 4y,
and Z e Z(P), then Z e F, and (3) oo ¢ F. ¥ is a Z(D)-ultrafilter mean
% is a maximal Z(P)-filter.

Lemma 5.4a. If 4, and A, ave disjoint zero sets, then there is a zero
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set Z, and a zero set Z,, Z| disjoint from A, , Z, disjoint from A, such '
that Zl | Zz = X.

Levmma 5.4b. Let & be a Z(P)-filter. In order that F be maximal,
it is necessary and sufficient that if a zero set Z meets every member of F,
then Ze & .If x€ X, then U, = {Z: x € Z} is an ultrafilter.

Levmva S5.4c. Let U be a Z(D)-ultrafilter. Then £, O Z,€ U if and
only if either Z, or Z, belongs to % and Z, " Zy € U if and only of Z, and
Zy belongs to %.

- Lemva 5.4d. If %, and U, are distinct ultrafilters, then there are
disjoint zero sets A, and A, such that A, € WU, and Ay € U, .

Let BX be the set of all Z(®)-ultrafilters. For each Ze Z(P), let
Z == {U: U e BX and Z e U}.

LemMa 54e. IfZ,, Z,e Z(D), then Z, U Zy = Z, U Zyand Z, N Z, =
VASAVAR
It follows from Lemma 5.4¢ that the family {Z: Z € Z(®)} is a closed

base for a topology on 8X. Let BX be given this topology. Let ¢ be the
mapping of X into BX defined by ¢{x) = %, v e X.

Turorem 5.4. If Z e Z(D), then cly o(Z) = Z. In particular, ¢(X)
ts dense in BX and BX is a compact Hausdorff space.

Let f be a function from X into a compact Hausdorf space Y such
that for each closed set F of Y, f~Y(I) e Z(®). For each % e p(X), let
FHU) = {F == FCY: f~YF)e %}

LEMMA 5.5. f#(U) is a filter of closed subsets of ¥ such that if
FyOF,efAU), then FLe fHU) or Fy e f ().

THEOREM 5.5. For each % € BX, there is exactly one point p of Y
such that p meets every set in f #(U).

For each % € BX, let f(%) be the point p of ¥ described in Theorem
5.5.

TuEOREM 5.6, For each x € X, f(%,) = f(x) and f is a continuous
Sfunction from BX to Y. In particular, if f is a bounded function in D, then f
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has a continuous extension to B.X and the bounded functions in @ are mapped

onto C(BX). Compare [14].

Of course, if X is a completely regular T, space and @ = C(X),
then BX is the Stone~Cech compactification of X.

Let 8X be the subspace of BX consisting of all real Z(®)-ultrafilters
with the relative topology. An ultrafilter % is real means that if Z,, € %,
for each n, then (Y., Z,, € %. We have that (X) is a dense subset of 8.X.

Suppose f € @. Consider f as a mapping from X into R*, the one-point
compactification of R. Suppose % € 86X and the limit of the filter f*(%)
is 0. Let {F,}?.; be a monotonic sequence from f#%) whose inter-
section is 0. Let Z == (V,_y f ~HF,). Since # € 3X, Ze ¥ and Z +* @.
But, if & € Z, then f(x) = oo. This contradiction proves:

TueoreM 5.7. Each function in @ has a unique extension to a continuous
function in C(8X). Thus, every complete ordinary function system may be
realized as a space of continuous functions on a completely regular T space.

Again, if X is a completely regular T, space and @ = C(X), then
8.X is vX, the Hewitt real compactification of X.

Remarks. Some necessary and sufficient conditions for @ to be
mapped onto C(8X) are given in [17]. However, the author does not
know of any clear characterization of the systems @ which are mapped
onto C(8X). For a study of this problem see }16].

The following theorem was essentially proven by Jayne [18].

TueoreMm 5.8,  Each function in @, has a unique extension to a function
in B, and the mapping f — f takes ®, onto D, .

Proof. Theorem 5.7 proves that this theorem holds for o = 0.
Note that if Z = f~1(0), for some fe &, then the set Z intersects X.
A set S is said to be a W-analytic set with respect to a subfamily W of
P(X)if :

]

S e U (n F(ZI,Zz ..... Zn))!

ze A" A\l

where F(; ...,z y € W, for each finite sequence (Z; ..., Z,) of positive
integers, and .#" is the space of all irrational members between 0 and 1.
The family of all W-analytic sets is closed under countable unions and
intersections [15].

Since each set in CZy(P) is the union of countably many sets in
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Z(®), it follows that each set in Cw;((ﬁ) is a Z(d)-analytic set. Since each
Z(®)-analytic set intersects X, each set in Z(,,1(<f)) intersects X.

The proof of the theorem now proceeds by transfinite induction.

Suppose f € P, and {f,}7.; is a sequence from @ converging to f. Let
{f}2_, be the sequence of their extensions to 8.X, and let = be a point
of 8X. For each n, let Z, = {x: f,(x) == f.(2)}. Let 7 == Yo 2, -
Of course, z € Z and the set Z intersects X. Let x € Z N X. It follows
that the sequence { f,(2)}2_; converges to f(v) and the function f has an
extension to a function f in the family &, .

Suppose f and / are two extensions of f to @, . The set D = {ar f(x) #
h(x)} is a Zﬂ,l((ﬁ) set which does not intersect X. This contradiction
proves the theorem for the ordinal 1. Also, if the theorem holds for a
countable ordinal «, this argument may be employed to prove the
theorem for the ordinal « +4- 1.

Suppose « is a limit ordinal and the theorem holds for every y < .
Let fe ®@. Then f = f,'f,, where f; and f, belong to both US(U,, ?,)
and LS(Uy< D,). Let {g,}*, be a nondecreasing sequence from
Uy<a @, converging to f, , and let {, }7.., be a nonincreasing sequence from
U, <« D, converging to f; . It follows that the sequence {¢,}; is non-
decreasing on 8X and converges to a function g in LS(U, <, 9,). Similarly,
the sequence {£,1%_, is nonincreasing on 8X and converges to a function
hin US(Uy<. D,). Also, # = kand f, has a unique extension to a function
f; which is in both LS(U, <. @,). The theorem follows.

CoroLLarY 5.8. If X is a completely regular T, space, then each
function in C,(vX) has a unique extension to a function in C,(vX).

Remark, The fact that the real compactification of a completely
regular space preserves to Baire classes was proven by Paul Meyer in 1961
(unpublished).

Theorem 5.8 leads to the following:

Question. For each ordinal «, what are nccessary and sufficient

conditions on @ in order that @, be mapped onto C,(8X)? For some
initial studies into this problem, see [16] and [{2].

Turorem 5.9. If K is a compact subset of 3.X, then every bounded Baire
Sfunction defined on the space K has an extension to a bounded function in Cf’mi.

Proof. l.ct 07 be the family of all restrictions of bounded functions
in @, to K. [t follows from the Stonce-Weierstrauss Theorem that (7 is

C(K).
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Let G be the family of all bounded Baire functions defined on K which
have extensions to bounded functions in @, w, - Let g be a bounded
function in G, and let {g, 1%, be a sequence from G converging to g
such that for each #, |l g, || < | gll. For each #, let f,, be an extension of
g, to &, such that || f, || < | g, -

Let B hm,,wm f» and let k = lim, . f, - By Theorem 2.2, there is
a function / in @, _such that & <{ I <C & "The function lis a bounded
extension of g to a "function in ?,, . It follows that G is the family of all
bounded Baire functions defined on K.

From the theorems of the preceding section and Theorem 5.9, we have:

TueoreMm 5.10. If the space 8X contains a compact perfect set, then
the Batre order of the complete ordinary function system D is w, .

CoroOLLARY 5.10a. Let X be a completely regular T, space. If the
Hewitt real compactification of X contains a compact perfect set, then the
Baire order of C(x) ts w; .
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