R.J. GARDNER AND R. DANIEL MAULDIN*

BIJECTIONS OF R" ONTO ITSELF

ABSTRACT. We characterize affine and continuous maps within the class of bijections of B" onto
itself by the preservation of various geometric or topological figures. A characterization of
similarity maps of Hilbert space is given.

I. INTRODUCTION

Several years ago, one of us (R. D. M.) rediscovered the following curious
theorem: a bijection of R" (n 2 2, here and throughout) onto itself which
maps each circle onto a circle must be an affine map. The result is one of
many which characterizes maps by the preservation of particular classes of
sets. Indeed, the subject is a classical one. We shall not attempt to
disentangle its history here; however, the theorem stated above can be
traced to work of Mobius and Darboux (see [9]), in which the fundamental
theorem of projective geometry plays a central role. -

The fundamental theorem states that a bijection of R” onto itself which
takes each three collinear points onto three collinear points is affine, and so
is itsell a result of the type we are considering. We use it to give a very short
proof of the theorem concerning circle-preserving maps. The proof suggests
the study of bijections of R” which leave invariant geometric or topological
figures, or which change shapes in some specified way, and we present new
results of this sort.

To put these in perspective, here is a sample from the literature. Beckman
and Quarles [4] show that maps taking pairs of points separated by unit
distance onto congruent pairs must be rigid motions. There are various
generalizations of this; see, for example, [12] and [14]. Other papers, such,
as [13] and [17], characterize affine maps as those which map convex sets
onto convex sets. Finally, we mention that certain results in this area are,
surprisingly, of interest to physicists working in relativity theory. The
Tundamental theorem of chronogeometry’ of A. D. Alexandrov (see [2])
says that bijections of R"{n = 3) onto itself which map light-cones onto
light-cones are affine. Copious generalizations and related results may be
found, both in the Russian literature ([3], {11], [16] and many others) and
in Western journals ([5], [6], [15], [18], etc) the two seemingly almost
unaware of each other.

Our short proof mentioned above actually shows that bijections which
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map each circle into a circle are affine. This stronger version is probably not
new, but the relaxation of hypothesis raises interesting questions which
have largely been ignored. (The only exception we know is {7], where it is
shown that Alexandrov’s theorem also holds with ‘onto’ replaced by ‘into’)
For example, we show here that there are no bijections of R” onto itself
which map every quadrilateral into a circle, but there are bijections of R?
onto itself taking each circle into a quadrilateral. In the latter half of this
paper, we also prove and apply some theorems which characterize con-
tinuous bijections and indeed similarity maps of Hilbert space.
We thank W. F. Pfeffer for useful discussions on these questions.

2. RESULTS

THEOREM 1. Let 4 be a class of sets in R" such that every three non-
collinear points are contained in a member of €. Let @ be a class of sets in R"
such that no member of @ contains three collinear points. If f: R" > R” is a
bijection such that for each C & 4, there is some D € 2@ with f(C) < D, then f is
affine. ‘

Proof. Let a, b and ¢ be three collinear points and suppose the points
fMa), £ b) and f*(c) are not collinear. Then there is some Ce ¥
containing them and a De @ such that f{C} < D. But then D contains a, b.
and ¢; a contradiction. By the fundamental theorem of prOJectwe geometry,
f ! is affine, and therefore f is also.

COROLLARY 2. If f:R" = R" is a bijection mapping every circle into a
circle, then f is affine [and therefore, of course, a similarity].

By a similarity we mean an element of the group generated by isometries
and dilations. In [8] (see also [1]) it is shown that one-to-one maps from a
region in R? into R? which sends circles onto circles are restrictions of
Mobius transformations. This gives Corollary 2 for n =2 with into'’
replaced by ‘onto’. Maps defined on spheres in R” sending circles into circles
are constdered in [10]. Although Corollary 2 is not explicitly stated in [10],
it may be deduced from the results given there. The argument given here is
shorter.

Many other corollaries to Theorem ! may be formulated. We shall list
only two. Note that by circles, triangles, etc., we refer to their boundaries
only.

COROLLARY 3. If f: R" = R" is a bijection mapping each circle into the
boundary of a strictly convex body, then f is affine.
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COROLLARY 4. There are no bijections f: R" -+ R" mapping triangles into
circles, or each square into the boundary of some strictly convex body.

As we mentioned in the Introduction, for n > 3, each bijection of R”
preserving light-cones (comes given by Z/Z! (x;— &) =(x, ~ a,)?, for
some {a,,...,a,)) is affine. For n=2, this is not true. The map
fix,¥) = ((x + y¥ — {x = ), (x + »)* + {x — 3)) preserves light-cones in R?
(see [15, Example 2.5]).

EXAMPLE 5. Let & be the class of squares in R* whose sides are at 45° to
the coordinates axes. Then there is a non-affine bijection of ®? which maps
each E€ & onto some E' € &. (It is easy to see that the non-affine map f does
this; note that f is continuous, however.)

Theorem 1 and its corollaries say nothing about bijections taking circles
onto or into triangles, squares, etc., since the latter cannot serve for class 9.
Theorem 6 and Example 7 address this question.

THEOREM 6. Let f: R" — R" be a bijection which maps each circle onto the
boundary of some convex body {of any dimension). Then f is affine.

Proof. As in Theorem 1, we assume there are three collinear points, a, b
and ¢, such that f™!(a), f~*{b) and f~'{c) are not collinear. If C is a circle
containing the latter points, then f(C) is the boundary of some convex body,
and each of 4, b and c lie on a line segment in f{C). Let ! be the line through
a, b and ¢ and let de I\ f{C).

Suppose that f~'(d) does not belong to the line through f~'(a) and
S71(b). Then there is a circle D through ™" (a), f7'(b) and /™' (d). Thus,
f(D} is the boundary of some convex body containing @ and b. But, C~ D
contains only two points, whereas f{C)n f(D) contains the line segment
[a,b], which is impossible.

Therefore, f ~!(d) belongs to the line through f ~'(a) and f ~}(b). However,
exactly the same argument shows that /™' (d) belongs to the line through
f™'(a) and 7' (c). Since these two lines intersect only at f~'(a), we have a
contradiction, which allows us to deduce that [ is affine as in Theorem 1.

EXAMPLE 7. For n > 2, there is a bijection f: 8" — R" which maps each
circle into the union of some two line segments.

Proof. Let I be any fixed line segment in R” and f a bijection from R”
onto R” such that f{/) = R"N\L Note that such a bijection cannot be
continuous. If C is a circle that does not meet [, then f(C) = I. Otherwise, C
meets | in either one or two points whose images under fare in R"\/, Let m
be a line segment containing these points. Then f(C) c mu L.

-y
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EXAMPLE 8. For n > 2, there is a bijection f: R" — R" which maps each
circle into a quadrilateral.

Proof. The argument given for Example 7 actually shows that for each
circle C, the image of C is a subset of a line segment together with two
points not on this segment. Of course any such set in R" with n> 2 js 3
subset of a quadrilateral

Note that in Example 7 two line segments cannot be replaced by one,
since circles can mtersect each other in two points.

Example 7 raises the question of whether a bijection of R" can ‘straighten
out’ circles, for example, by mapping each circle onto a finite union of line
segments. We cannot answer this (see, however, Corollary 12), but prove
instead the following weaker result using the continuum hypothesis, CH.

EXAMPLE 9 (CH). For n 2 3, there is a bijection f: R" — R", which maps
each circle onto a curve consisting of countably many line segments.

Proof. Well order all circles in R" as {C,: x < ¢ = @, } and-all points in R
as {x,.a <@, }.

We define a bijection f inductively. Let f be any bijection mapping C,
onto a polygon §, which contains the point x;.

Suppose < @,, and we have extended f so that it bijectively maps each
C,, « < f§ onto a curve S, consisting of countably many line segments.

Let «; be the least ordinal such thatx, ¢\, .,S,. Also, let X =\, ;4
(Csn C) and Y = f(X). To complete the induction we construct a curve
S, consisting of countably many line segments, containing the point x,,
and such that U,z (S;nS,) = Y.

Order the countable set Yu {x, } as {y,:n < w}. We are finished if we
can find inductively a polygonal arc P, connecting y, and y, ., such that

Pn a {(u:z(BSz) U(Umcan)] = {ynvyn+ 1}‘ ,,

The set (\J, ;S v (\J,.,.P,) is contained in a set £ which is a countable
union of lines. We can choose a hyperplane H containing y, and y,,,, but
not containing any line in E, except possibly the line [ joining y, and y,.,-
Now, (En H)\[is a countable set, so we can choose in H lines [, and ls1s
different from [, and coataining y, and y,,, respectively, which do not meet
this countable set. Let [ n1I, ., = {a}. Then the polygonal arc P, can be
taken to be the one consisting of the two line segments {y,,a] and

l:ahyn‘)* 1 ]'
Our conclusion in several theorems above was that the bijection f was

affine. We now seek characterizations of continuous bijections. There are of
course plenty of non-affine bijections taking each circle onto a simple closed
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curve; for example, f(z) = |z|z (z complex) in R?. This leads naturally to the
next theorem.

THEOREM 10. Let f be a bijection of R* onto itself which maps each circle
onto a simple closed curve. Then f is continuous.

Proof. We first prove that if C is a circle, then cither f(int{C)) = int(f(C))
or f{int{C)) = ext(f(C)). For, if this is not true, there are points x, y in int{C)
with f{x)e int{ f(C)) and f{¥) € ext{ f(C)). Then there is a circle C’ through x
and y with C'<int(C). But f(C’) is a simple closed curve and
FICYnf(C) # @, which contradicts bijectivity.

Suppose that C, is a circle with center x, and radius r, such that
‘ fint(C,)) = ext(f(C,)). For each n> 1, let C, be the circle with center
x, and radius nr. Notice that for each n= 1, f(C,. ) cint(f(C,)). Let
ze M, imt(f(C,)). Obviously, z, is not in the range of f, which is a contradiction.
Therefore, for each circle C, f(int{C)) = int{ f(C)).

Let {x,) be a sequence of points with x, — x, such that f(x,) - f(x). There
is a circle C with center x such that x, € int(C) for each n. Consequently,
fix,)e int(f{C)} for each n, so there is a subsequence of (f{x,)) which
converges. Without loss of generality, we can assume there is a point y # x
such that f(x,) —f{y). Let D be a circle separating y from x. Clearly, it is
impossible that f(int(D)) = int( f(D)).

We now apply Theorem 10 to obtain a negative result on ‘straightening
circles” (Corollary 12).

THEOREM 11. Let f be a bijection of R* onto itself such that the image of
each circle is a piecewise smooth simple closed curve. If Cy and C, are disjoint
circles except for a common point of tangency x,, then there are two rays I
and |, emanating from f(xo) which form common tangent rays to f(C,) and
JCy) | £

Proof. By Theorem 10, f is continuous. Without loss of generality, we can
assume X, = f{x,) and fis orientation-preserving. We give the argument for
C, and C, being tangent externally.

Let C be the circle with center on the line, L, passing through the centers
of C, and C, and such that C passes through the points yo of Cgn L and 3,
of Cy,~ L with yo # X, ¥y # Xo- Let z be one of the points of intersection of
C with the common tangent line to C, and C, at x,. Suppose y,, z, ¥, lie in
‘that order clockwise on C. For each point y on the circular arc ygzy, let C,
be the circle with diameter xo y. For each y, let CJ and C be the two
semicircular arcs of C, which lie on the right and left of [xq, ¥], respectively,
looking out from x,. ,
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For each y, since f(C,) is piecewise smooth, there are two line segments
I;, 1, containing x, as an endpoint, such that I is the tangent line to f(C)
at xo and [} is the tangent line to f(C,) at x,. For each y, let g~ (»), g (3)
be the points of C such that I, [ lie on the lines through xo and g7(y),
g* () respectively.

If y is between y, and y, on yozy,, the arcs C, C), C;, emanate in that
order clockwise from x,. Thus, g7(¥) < g7 (yo) < g (y,) in the clockwise
order on C. It is clear by continuity that as y converges to yy, g7 (y)

converges to g~ (y,;)- Thus, g*(yo) =g (1} Similarly, g {yo) = g™ (»,).

COROLLARY 12. A bijection f: R* -» R? cannot map each circle onto a
polygon.

Proof. Let the circles Cq, C,; be as’in Theorem 11. The polygons f(C,),
fIC,) have I, as a common tangent ray, and so each meet I; in a line
segment. Thus f(Co) N f(C,) is infinite; a contradiction.

We do not know if Corollary 12 remains true in higher dimensions.
However, the next example shows that Theorem 10 is false for n 3.

EXAMPLE 13. A bijection of R> onto itself which maps each circle
continuously onto a simple closed curve, but which is not continuous.

First, let us fix a function g: ®* — R such that

(i) g is continuous everywhere except at (0, 0).

(i1) 1imx, y)~0.0nt=.p)eng(%, ¥} = O for all curves D which are either ellipses
or straight lines.

To see that such a function exists, let E = {{x,):0 < x, 0 <y <x*} and
let g be any function such that

(a) glx,y) =0for (x,») € E;
(b) glx,y) =1 for 0 < x and y = x*/2,
{c) g is continuous on E.

Now (i) is obvious, so we need only check (if). This is clear f D is a
straight line, and also if D is an ellipse, unless D is contained in {y:1 = 0}
and is tangent to the x-axis at (0,0). In the latter case D has the equation

y = bl = /1= x%/a’]
near (0,0). Now,

x? 3x*/1 = x'/at

Hm T = hm — E= O
0 b1 — 1 —x%a’], -0 bx/a*

by I'Hopital’s rule, so for small x, D lies outside F, and this proves {ii}-
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To get the example, define f:R® — R> by f(x,5,2) = (x,y,2z + g(x, y)).
Clearly fis a bijection which 1s continuous everywhere except on the z-axis.

We claim that f is continuous on every circle C. This is clear unless C
meets the z-axis. If C contains (0,0, z,), then

hm  flxy,2)= 10,0,z + lim g(x3) = (0,0,z),
(x,y,2) +{0.0,z,) {x.¥) -(0 0}
(x,p.ovel {x.y)eDd

where D is the projection of C onto the xy-plane and where we have used
property (ii) of g.

In view of Example 13, we state a theorem which characterizes contmuous
bijections in higher dimensions.

THEOREM 14. Let f: R" — R" be a bijection which maps each simple closed
curve onto a compact set. Then f is continuous.

Proof. Let {x,) be a convergent sequence of points, x, — x say. Then we
can find a simple arc I with one endpoint at x such that x, €I for each n.
Let (S,) be a sequence of simple closed curves, each containing a subarc of I
with one endpoint at x, such that M, S, = {x}.

For each n, K, = f(S,) is a compact set, with f(x)e K, and f{x, )¢ K, for
sufficiently large m. Suppose that f{x,} - f{x). Then there is a subsequence
(x,,) of (x,} such that f{x, )~y # flx) as m — co. Since K is compact,
ye K, for each n. Thereforef Yy)eS, for each n, and f~'(y) # x, which
contradicts M, S, = {x}.

COROLLARY 15. Bijections f: R* —~ R" which map simple closed curves
onto simple closed curves, or arcs onto arcs, are continuous.

Finally, we briefly examine the situation in Hilbert spaces. In the finite
dimensional spaces a bijection taking circles to ellipses is affine and
continuous by Corollary 3.

EXAMPLE 16. Let H be an infinite dimensional Hilbert space. There is a
(linear) bijection, f, of H such that the image of each ellipse is an ellipse and
yet f 1s not continuous.

Let H be an infinite dimensional Hilbert space and let f be a linear
bijection of H which is not continuous. (For such an f one could take a
maximal linearly independent subset, M, of H and let / be the bijection
induced by some permutation © of M such that n fails to be continuous at
some point of M) If E is an ellipse, then E lies in a two-dimensional
subspace of H. But, fis afﬁne on each finite dimensional subspace of H. So,
AE) is an ellipse.
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However, if f preserves circles, the situation is different. Qur proof ig
based on a resuit of Carathéodory [8].

LEMMA 17. Let f be an injection of R* into R such that f maps circles 1o
circles. Either f(R*} is a plane and fis a similarity map or f(R?)is a punctured
sphere and f is an element of the inversive group.

THEOREM 18. Let f be a bijection of a Hilbert space H such that the image
of a circle is a circle. Then f is a similarity map.

Proof. By composing f with a translation, we can assume f 0)=0. We
will first show f maps planes to planes. Suppose @ and b are linearly
independent. Let U be the circle determined by 0, a, and b. Then f{U ) lies in
the two-dimensional span of f(a) and flb). Let us assume there is a point
ce sp{a, b} such that f(c) € sp{f(a), f(b)} and ¢ is not on the line determined
by a and b. Let V be the circle passing through a, b and ¢. Then JV) lies in
the span of f{a), f(b) and f(c). Now, if d€ sp{a, b}, d # a, b, there is a circle W
passing through d and intersecting each of U and V in two points. Thus,
fld)e sp{f(a)./1b),f(c)}. It follows that sp{a,b} is mapped into a three-
dimensional subspace. By Lemma 17, f{sp{a,b}) = S\ {n}, where S is a
sphere and ne S. Let f(z} = n. Let X be the circle passing through a, b and z.
Then f(X) < 8. Since X msp{a,b} = {a,b}, f(X) can meet S in only three
points. This contradiction establishes that f maps planes to planes.

Now, by composing f with a similarity of H, we may assume that f({0) =0
and there are linearly independent points a, b such that f lspta.py Maps the unit
circle onto itself in this two-dimensional space. So, fis an isometry on this
plane. '

Next notice that if x ¢ sp{a, b}, then fisp{a, b,x}) = sp{a, b, f(x)}. This
follows from the fact that if zesp{a, b, x} and = ¢ sp{a, b}, then there is a
circle T such that xe T, ze T and T contains two points of sp{a, b}.
Thus f(z)e f(T) and f(T) contains three points in sp{a,b, f(x)}. So,
fliz)e sp{a,b,f(x)}. Now, by induction it follows that f maps subspaces of
dimension n onto subspaces of dimension n.

Finally, let x and y be points of H and consider E = sp{a, b, x, y}. There is
an isometry of H which maps E onto spi{a,b,f(x),f{3)} and which is an
isometry of sp{a, b} onto itself. Thus, by composing f with some isometry
of H, we can assume that f maps E onto itself and f1,,,,, is an isometry. But
by Corollary 2, f{;is a similarity. Since f must expand the unit sphere of E
by some constant ¢, we see that ¢ = | and f'is an isometry of E. This implies
that the modified fis an isometry of H and therefore our original map is a
similarity. -



BIJECTIONS OF R* ONTO ITSELF 331

We remark that, in [15], the fundamental theorem of chronogeometry is

generalized to a Hilbert space setting.

10.

11.

12

13.

ProBLEMS

Are there bijections f of R" which map each circle onto a finite union of
line segments? Or even polygonal arcs?

Is CH necessary for Example 9 to hold? Does such an example exist for
n = 2 (even with CH)?

Let f be a bijection of R’ onto itself which maps polygons onto
polygons. Is f piecewise affine on every bounded set?

Let f be a bijection of R? onto itself taking polygons with n sides onto
polygons with n sides. Must f be affine?

Let f be a bijection of R* onto itself which takes each circle into a plane.
Must [ be affine?

Is there a bijection of R? onto itself taking each circle into a tnangle (or
into a square)?

Is there a measurable bijection of R? onto itself taking each circle into a
quadrilateral?
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