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RANDOM RECURSIVE CONSTRUCTIONS:
ASYMPTOTIC GEOMETRIC AND TOPOLOGICAL PROPERTIES

R. DANIEL MAULDIN! AND S. C. WILLIAMS

ABSTRACT. We study some notions of “random recursive constructions” in
Euclidean m-space which lead almost surely to a particular type of topological
object; e.g., Cantor set, Sierpiriski curve or Menger curve. We demonstrate
that associated with each such construction is a “universal” number o« such
that almost surely the random object has Hausdorff dimension «. This number
is the expected value of the sum of some ratios which in the deterministic case
yields Moran’s formula.

We introduce the notion of a “random recursive construction” and prove several
basic facts about such constructions. We give specific examples which lead to
random Cantor sets, Sierpifiski curves or Menger universal curves. It is perhaps
best to begin with a specific example of such a construction. To this end, let us
make some notation. Let N be the set of positive integers and R the real numbers.
If S is a set, let S* be the set of all finite sequences of elements of S including
&, the empty sequence. If o = (ay,...,a,) and 8 = (b,...,bn) are elements
of S, then |a| = n, the length of o, and a * 8 = (a1,...,an,b1,...,bm). Now,
consider the following construction of a Cantor subset of [0,1], the unit interval.
(Of coursé, by a Cantor set we mean a compact, perfect, 0-dimensional metric
space.) Set Jg = [0,1] and, by recursion, if J, = [a,b], for o € {0,1}*, then set
Jox0 = [a,a+ z(b—a)] and Jy.1 = [a+y(b — a), b], where the point (z,y) is chosen
from the triangular region A = {(s,t) | 0 < s <t < 1} according to the uniform
distribution. It follows from the results given in this paper that with probability

one, the set
k-0 U &
n loc{0,1}"

is a Cantor set and the Hausdorff dimension of K, dimg(K), is (v/17 — 3)/2.

The paper is organized into four sections. In §1, we define the notion of a
random construction and prove a few basic facts concerning such a construction.
We demonstrate that with each construction there is a number « such that with
probability one the object constructed has Hausdorff dimension < «. In this section,
we relate our results to some deterministic results of P. A. P. Moran [15].

In §2 (Theorem 2.1), we show that certain commonly occurring constructions
have finite moments of all orders. This result is necessary for our proof that with
probability one the Hausdorff dimension is c.
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326 R. D. MAULDIN AND S. C. WILLIAMS

In §3, we construct a random measure associated with the construction. For
each object K, generated by the construction there corresponds a Borel measure
v, supported on K, such that if 3 < a and E is a set with finite § — m measure,
then v,,(E) = 0. More accurately, in Theorem 3.6, we show that there is a sequence
of measures v, ,, supported by K, such that if 3 < o and B—m(E) < oo, then there
is some ng with vy no(K,) > 0 and v, »,(E) = 0. This, of course, implies that
dimg (K,,) = a. Our methods involve a probabilistic mixture of some deterministic
results of Moran and of Rogers and Taylor [15, 16]. We remark that there is
at least one major unsolved problem in this context. The problem is that we do
not have conditions under which one can be guaranteed that with probability one,
a—m(K,) > 0, although this seems to be the case with many constructions. We
comment on this at the end of §3. By o — m(E), we mean the measure of E with
respect to the Hausdorff measure defined by the function h(z) = z.

In the fourth and last section, we give a number of specific examples of construc-
tions which we hope illustrate some of the possibilities. We give several examples
of random Cantor subsets of [0,1]. In Example 4.6, we construct random Cantor
subsets of [0,1] x [0, 1] with Hausdorff dimension 1. In Example 4.7 we generate
random Sierpiniski curves. In Example 4.8 we generate random locally connected
nonplanar continua. We are unable at this time to show that they are Menger
curves. In Example 4.9 we modify the construction to generate random Menger
curves.

Our construction and the results we prove have features in common with sev-
eral other processes of current interest, and we believe our methods may be useful
in their development. For example, our construction incorporates two features
common to the theses of Mandelbrot [11, 12]. It certainly maintains a degree of
randomness and yet at the same time preserves some properties of self-similarity.
Perhaps even closer to the heart of the matter is the definition of fractal geom-
etry and a fractal given by Cannon [4]. A random construction codifies certain
geometric-algorithmic processes which by their nature exhibit some random behav-
ior. The examples given in the last section indicate what one can say about the
asymptotic geometric or topological shape of particular constructions. Falconer
gives a more complete listing of recent references and a development of some of the
central general issues [7]. Related topics are treated by Zahle [19].

1. Random constructions and the ®-function. Our general model is as
follows: We fix a Euclidean space R™ and a nonempty compact subset J of R™.
We further require that J is the closure of its interior in R™. We assume we have
a probability space ({1, X, P) and are given a family of random subsets of R™,

J={J,|aeN*=GN"},
n=0

satisfying three properties.

(1) Jp(w) = J for almost all w € Q. For every 0 € N* and for almost all w, if
Jo(w) is nonempty, then J,(w) is geometrically similar to J.

(2) For almost every w and for every o € N*, Jou1(w), Jox2(w), Jox3(w), ... is
a sequence of nonoverlapping subsets of J,(w). (A and B nonoverlapping means
intANint B =3.)
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(3) The random vectors 7, = (Tyu1, Tou2,--.), 0 € N*, are i.i.d., where Ty.n(w)
equals the ratio of the diameter of Jy.n(w) to the diameter of J,(w) if J,(w) is
nonempty. (For convenience, let Tx(w) = diameter of J.)

We shall call such a system J a construction. Qur constructions require only a
“stochastic ratio self-similarity”. We now define the random set K by

o0
(1.1) Kw=) U Jw.
n=1o0€N"
Our interest centers on the asymptotic properties of this random set K.
For convenience, let 0° = 0. Then ) ° (w) counts the number of nonempty
Josp(w), if J5(w) is itself nonempty.

p=1 o*p

THEOREM 1.1. Suppose E(Z°° TO) > 1. Then, with positive probability,
K 1s nonempty. Moreover, given that K s nonempty, then almost surely K has
Hausdorff dimension o, where a is the least 3 > 0 such that E(3.>° , TP) < 1.

n=1-"n

We shall establish this theorem by proving several simpler theorems. But first
we shall show that « is well defined, relate our results to some results of P. A. P.
Moran [15], and motivate the hypothesis E(} oo, T?) > 1.

Let A denote m-dimensional Lebesgue measure and define ®: [0, c0) — [0, o0] by

(12) () = <ZT") <Z )

where o can be any member of N*. Now, using the monotone convergence theo-
rem and the fact T; € [0, 1] for each 7, we see that ® is nonincreasing and right
continuous. We have

(1.3) > Aint(Jy)) < A(int(J))
n=1
and by the scaling property of A,
(1.4) AMint(Jn)) = T A(int(J)).
Thus,
(1.5) YT <1 as
n=1

Therefore, ®(m) < 1. From these facts it follows that « is well defined. (An
example with & = m is given in Example 4.5.)

Concerning the calculation of «, note if ®(y) < oo, then ® is continuous on
[y, +00) and if, in addition, ®(0) > 1, then ® is strictly decreasing on [y, 00). Thus,
if ®(0) > 1 and ®(B) = 1, then B = «. However, as Example 4.5 shows, in the
general case, ®(a) may be less than 1.

An interesting special case of our construction occurs on a n-ary tree; i.e., for
some fixed n € N, our construction is

oo
J={J,|oce{l,2,...,n}* = U{1,2,...,n}j ,

Jj=1
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or what is essentially the same in our construction using N*, we have Y oo ; TP < n
a.s. In this case, ® is a finite valued continuous function, and if further ®(0) > 1,
then ®(3) = 1 has a solution, and so trivially ®(c) = 1. This will be used later.

As a further special case, if 74 is distributed as point mass at (t1,t2,...,tn,0,0,
0,...), where t,t2,...,t, > 0, Theorem 1.1 implies K has Hausdorff dimension «
where o satisfies the equation t§ +t§ + - - +t& = 1. This result was proved by P.
A. P. Moran in [15]. In this sense, « = min{8 > 0 | E(T? + T§ +---) < 1} and
E(T¢+Tg +--+) =1, in the special case when @ is continuous, are generalizations
of Moran’s equation.

For each 0 € N*, we define the random variable [, by

lo|

(1.8) l, = diameter(J, H Tyin,

where |o]| is the length of the finite sequence o and o|n is the sequence obtained by
restricting o to its first n terms. (0|0 = & = empty sequence.) For each n € N,
we let 7, denote the o-algebra o — ({Ty: || < n}) = 0 — ({ry:|n| < n}). For each
n €N and 3 >0, Sgp, is the random variable

(1.7) Spm = Z 8.

oceEN™
We note the useful fact concerning conditional expectations:
(18) . E(Sp.nt11%) = ®(8)Ssn,

where 0o -0 = 0. In order to derive (1.8), we use (1.7) and (1.6) to obtain the
formula

(1.9) Sptr= Y 18 [Z Bl -

oceENn

We obtain (1.8) by taking conditional expectations on both sides of (1.9), noting
that I8 is %,-measurable for || < n and noting

B(S ) -5(572,) o0

since 7, is independent of %, for n = |o].

Now, we shall motivate the hypothesis ®(0) > 1.

Clearly, So., counts the number of nonempty J, for ¢ € N™. In fact, {Son}nx,
is a classical Galton-Watson branching process, in case P(}_ T < 00) =1 (see 1,
pp. 7-8]). Further, ®(0) is the mean number of offspring of a s1ngle parent in the
branching process. It is well known that if ®(0) < 1, then either {Sp,}3>; is a
process bound for extinction (Sp,, — 0 asn — 0o a.s.) or it is trivial (So,» = 1 a.s.,
for each n). Thus, if ®(0) < 1, either K = & a.s. or K is a point a.s. or K = J a.s.
On the other hand, if ®(0) > 1, a slight generalization of the well-known result is
S =lim Sy, exists a.s. and S € {0,000} a.s.

If ®(0) > 1, then P(S = o0) > 0. It is clear from what we have said that the
only interesting case is ®(0) > 1. This will be assumed throughout the remainder
of the paper but often stated for emphasis.
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THEOREM 1.2. Suppose ®(0) > 1. Then for almost all w,
(1.10) “S(w) = o0 if and only if K(w) # D"

PROOF. Clearly, if S(w) # oo, then almost surely S(w) = 0. Thus, there is some
n € N such that So,n(w) = 0. This means K(w) € Uyenn Jo(w) =D

For the converse we consider two cases: Case A: P(3 2, TO < 0o0) = 1 and
Case B: P(3_72 , TO = 00) > 0.

Case A. Since P(3_72, Ty < o0) = 1, then a.s., for each n, U,enn Jo(w) is a
finite union of compact sets and thus is itself compact. Therefore, if S(w) = oo,
then ,2; Uyenn Jo(w) # O, by the intersection property of a nested sequence of
nonempty compact sets.

Case B. Suppose P(} ;2 T? = 0o0) = § > 0. We claim that for any o, the
following statement is true for almost all w:

(1.11) “If 302 1 T2, . (w) = 0o, then there exists k € N

such that T, *k(w) =1 and En_l 0 kam (W) = 007

To see this, let A be the event Y oo | TO, = oo, By the event Vn < k, if
T9,, = 1 then 772, T2, .. < co and Boo be the event Vn € N, if T2,,, = 1, then

o*n

ZJ 2 T, . < 0o. Let H consist of all finite subsets of N and G, be the random
set {n < k|T?S,, = 1}. Thus,

P(ANBy) < P(ANBy) = Y P(AN By and D = Gy)

DeH
S T < 0| |
J=1
and, by independence,

= E P(A and D = Gi)(1 - §)*#P,
DeH

where #FE denotes the cardinality of E. Thus,

=Y P|AD=Gi, VneD
DeH

P(ANBy) < iP(A and #Gj =1)(1 - 6)".

=1
Fix p € N. Then

P
P(ANBy) <Y _ P(Aand #Gi =1) + (1 - 8P+ P(A and #Gy, > p+1)
=1
or,

P(ANBy) < P(A and #Gi < p) + (1 - 6)PL.
Letting k — oo, we obtain
P(ANBy) < (1-6)PHL,
Now, letting p — oo, we find P(AN Bo) = 0 or P(By|A) = 0. This yields (1.11).
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From (1.11), it is easy to see that the following statement is true almost surely:

(1.12)  “If J,(w) # @ and > oy TO,n(w) = 00, then there exists a se-
quence of natural numbers ky, ko, k3, . . whlch depend on w, so that
Jonkywkgn-nk, (W) 7 @ for each t. Thus, & # (oo Ja*kl*...*kt (w) €
K(w)”.

Thus, we only need to establish that

(1.13) P(EUGN* |:J(, # & and ZTS*N :oo} |S=oo) =1,

n=1

in order to complete the proof in Case B.

Let A be the event (Vo € N*[J, # @ — Y oo T2, < 0]). For each k, let

A(k) denote the event (Vo € N*¥[J, £ — Y 22, Tgm < 00]). Then, concerning
indicator functions, we have 14 < 14(,) and E’(lA(n)|.7) (1 — §)So~. Now,
E(14|%,) — 14 asn — co. But, also, E(14]|7,) < (1-6)%~ — (1-6)S asn — oo
almost surely. Therefore, for almost all w, if S(w) = oo, then w ¢ A. Q.E.D.

To begin the demonstration of Theorem 1.1, we know, according to (1.5), ®(m) <
1. Thus, if ®(0) > 1, E(Sm+1,n) = (diam(J ))m+1(<I>(m+1) )and E(} o> 1 Smt1,n)
= (dia.m(J))m+1/(1 — ®(m + 1)) < +oo. This implies Y, cnn I — 0 a.s. So,
supyenn It — 0 a.s. Therefore,

(1.14) - if ®0)>1, supl, =0 as.
cEN™

THEOREM 1.3. Suppose ®(0) > 1. Then almost surely the Hausdorff dimen-
ston of K is < a.

PROOF. Since ®(a) < 1, by (1.8), {Sa,n}32; is a positive supermartingale and
thus converges to some real random variable X. For each o € N*, there exists a
random m-sphere M, so that J, C M, and the radius of M, is ;. According to
(1.14), sup,enn lo — 0 as n — oo. So,

(1.15) a—m(K)< lim ) (diam(M,))* < 2°X < oo,

n—00
oc€EN™

where a — m is the a-dimension Hausdorff measure. Q.E.D.

REMARK. If ®(a) = 1, then {Syn}5>; is a martingale.

We will now begin consideration towards showing the Hausdorff dimension of K
is almost surely > . First, some involved calculations concerning moments seem
necessary.

2. The moments of X.

THEOREM 2.1. Suppose ®(0) > 1, ko € N and E((3 o, T2)*) < co. Then
{(Sa,n, F0) ¥, s LP-bounded for all p € [1,ko]. Consequently, X =limy So,n has
a finite moment of order ko.

It is sufficient to establish the following lemma.
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LEMMA 2.2. For every k € [1,ko], {E(SE )}, €1 and for any v > o and
any z € (0,1], {[E(S5 )" }pz, € 1.

PROOF. For each p,n € N, let S, denote
E(Sk. ) < (diam(J))"*p"*. Consider

k
(2.1) E(Sz,?c;%n+l|£l)=E ( Z (Z o*J))
}n

oe{l,...,p

oe{l,...,p}" l; For any ke (Oa OO),

Thus, if & is also an integer,

(22) B(Shyni1 | 5= Y wamHm;Sf?,

Fi{1,... k}—A =1
where A = {1,...,p}", 2, = [} for each 0 € A, mp; = E[(XF_,T.)]
and r;(f) = #{A € ker(f)|#A = 5} with ker(f) = {f~1(z)|s € A}. Notice that
H§=1 m'i) depends only on ker(f), the partition of {1,...,k} induced by f. So,

PY:J

for each partition 7, let my,~ » denote this number. Thus,

(2.3) (Sz]f,»y,n+1|?;z) = Z Moy, 7k
TEP

where P is the set of all partitions and kr = ., 5y=r e,z #(:)- Our notation is
consistent with that given by Doubilet [6]. So, according to [6 Theorem 2, equation
13], we have

(24) E( D375 n+1|? Z Mp;~y,m Z T, U)SU;
TEP o>
interchanging order of summation,
(2.5) = E S0 Z (T, 0) Mo,
oEP <o

where the M6bius function u, the order < and the s,’s are as given in [6].
In our particular case,

k
(2.6) se = [ S5

Pijvm)
7=1
where 6(5) = #{A € o|#(A) = 7}. Now, set B = {n:{1,...,k} — Z4| E;?:ljn(j)
=k}, and

(2.7) Cpivm = Z Z )0 )My,

g€P n<o
6=n
We have
(28) ( p'yn+1|?)_ch7nHS;"(72n

nEB
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Taking expectations, and using the triangle inequality we find

(2.9) »,n+1 Z |cpiym | B (H S:,gjw), ) :

nEeB

Let m,; = E((> 2 1 Ty ) If v > o and j € [0, ko], then m. ; < 00 and mp;y,; —
ma,; asp — oo for 7 =1,..., k. Thus, cpy,n — €y, (Where ¢, is defined similarly

to Cpiym)- But, Sj. . converges upward to S7 , as p — oco. Taking limits in (2.9)

as p — 0o, we find

(2.10) E(S n+l) Z |cy,n|E [H Sﬂy(JrZ} .

neB

Let ¢ denote the unique element of B such that £(1) = k. We calculate c.,¢. Note
there is only one ¢ € P such that 6 = &, namely the discrete partition. Also, if
7 < g, then m = 0. So, according to (2.7) cy,¢ = u(o,0)m,, = (2(7))*. We can
rewrite (2.10) as

(2.11) E(SE 01) SOFESE,) + S leynlE Hs;z(’i :
e
n

From this we derive by backwards recursion,

(212) ( 'yn+1) < Q( )k(n+1)l'7k + E |C’Y7I|E¢(7)k(n g [H S;,'y(,])} .

neB 7=1
n#€

Easily, E(S],) = ®(y)"lg implies Lemma 2.2 for k¥ = 1 since ®(a) < 1 and
®(v) € (0, 1) if v > a. As another special case, let £ = 2. Then B has only two
elements (2,0) and (0,1). Thus,

n
(2.13) E(S2 1) <13 [‘I’(’Y)z("“) + ey, 0,0 E‘D(’Y)Z("_t)‘b(%)t} :
t=0

In particular,

E(Sez,n+1) < lga [1 + |Ca,(0,1) | E ¢(2a)t:|
(2.14) t=0

<o (14 Jeaon]

since ®(2a) < 1 (because ®(0) > 1). Actually, from (2.7) we have

oo
Co,(0,1) = Var (Z T,‘j‘) .

n=1
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If ¥ > o, then ®(y) € (0,1) and ®(2v) € (0,1). Using the fact if a,b > 0, then
(@ +b)* <a®+ b for any z € [0, 1], we find

(2.15)
(e o) o0 o0 n
DB < D0 80 + ey ol Y D @) B(2)
n=0 n=0 n=0t=0
1 1 1
< 22y z .
87 [ + ool g e <

If1 <k <2, and 2z € (0,1], then [E(SF,))* < [E(Sy.)]* + [E(S2,)]*. Thus
Lemma 2.2 is true for k € [1, 2].

Suppose Lemma 2.2 is true for k € [1,k — 1], where k < ko and k is an integer.
If n € B with n # &, then (1) < k— 2 and E] 1m(7) £ k—1. Thus there
are nonnegative reals ry,...,7t, depending on 7, so that n(y)/k —1 < r; <1
and E?zl r; = 1. Let p(n,5) = 1/r;. Then for each n € B with n # ¢,
Y8_11/p(n,5) = 1, p(n,5)n(s) < k — 1, and if n(j) # 0, then n(j)p(n,5) > 1,
ie., p(n,7)n(5) € [1,k — 1] if n(y) # 0. By Holder’s inequality,

k
(2.16) E (H s;z‘f,i) < T1 1872,
Jj=1 Jj=1
Substituting into (2.12), we find for z € (0, 1]

(217) [E(SE,))" < (™™g + > leyl* E<I> *k(n=1-1) H 1711z 0.9
nEB
n#¢

Let W, ; = {||S;’,$Jt)|| (m.5)120- 1 n(5) = 0, then obviously W, ; € I°°. If 5(5) > 0,
then W, ; € I°° by the induction hypothesis and 7(5)p(n,s) € [1, k — 1]. But, since
n # &, there is some j > 2 so that n(j) > 1 which implies W,, ; € [! since 7y > a if

~ > a and j > 2. Thus if 4 > «, then

(2.18) {H ISl p(n,j)} el

t=0
Obviously, using ®(a) < 1,

(219)  sup((E(S5,)F) 15 + 3 [eanl (ZH I3 ,,m,,-)) <oo.

nEeB t=0j5=1
n#&

If v > o, then ®(v) € (0,1). Using this fact, summing both sides of (2.17), making
a change of variables and an obvious approximation, we obtain

OIP
Iz zZt OH 1”",”(,')
(2.20) Z[E 0 ”Y"k+,,eEB|M| ]_q)(.yj)sz Pnd) < o0
n#€
Since for any r € [k — 1,k] and 2z € (0, 1],
(2.21) [B(S5.)17 < [E(S50)7 + (S W)

we have extended Lemma 2.2 to [1,k]. This completes the induction. Q.E.D.
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3. The random construction measure. We shall now define, for almost all
w, a bounded countably additive measure v, on the Borel sets of R™ satisfying:

(1) v, has total mass X(w),

(2) vo(K(w)) = X(w).
We shall call v the random measure of the construction J. Throughout this section
o is the number defined in Theorem 1.1.

First, we define the random functional F on C.(R™) = {f € C(R™)|f has
compact support}: for f € C.(R™),

(3.1) F(f)= lim > f(so)ig,

oc€ENn
where s, € J, when J, # O.

THEOREM 3.1. Suppose ®(0) > 1. For almost all w and for all f € C.(R™),
F,(f) s well defined and is a positive linear functional of norm X (w).

PROOF. For each 0 € N*, we define a random variable X, by

(32) X, = lim Sa;nv
n—oo

where

(3.3) Son= ) H ox{nle)-
nENn t=1

For eacth ¢ € N*, X, exists almost surely and has the same distribution as
X/(diam(J))*. Further for each n € N, {X,:0 € N"} is an independnet fam-
ily and, as a family, independent of #,. We note

(3.4) X= ) 18X,
oc€EN™

The set ' = {w € Q| Vo € N*, X, (w) exists and limy,_, o SUpyenn I4(w) = 0}
has probability one. Suppose f € C.(R™). For convenience, if p,q € N then let

€p,q(w) denote
Y flso@)iew) = Y flso(w

oc€eNP oc€eNe
Temporarily fix k € N and suppose p,q > k. Then

(3.5)
> l«?( > f(sowm) H JARIEEDS) fsa*,,)H *[nlt])|

ocENk neENp—k nENe—k

“€p,g

IA

Z s l sup |f(soxn) = f(80)|Soip—k + £ (50)] |Seip—k — Soiq—kl
oceNFk neENP-k

+ sup |f(sa*'q) - f(30)|Sa;q—k:|

nENI—k

IA

Z Ig[diam(f(J5))(Soip—k + Seig—k) + [|flloo|Soip—k — Sosq—kll-

ocENk
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Thus,
hm L Epg (w) <2 Z 1 (w)diam(f (Jy (w))) Xo(w)
(3.6) oENFE
<2 seul\;;,c diam(f(J5(w))) X (w)

if we (V. But, if w e (¥, sup,en+ diam(f(J,(w))) — 0 as k — oo. Thus,

(3.7) hm Epqw)=0 fwel.
P.a—

Obviously, F,, is linear positive and for any f € C.(R™) so that J C f 1(1), we
have F,(f) = limp o0 ) penn I&(w) = K(w). Thus, ||F || = X(w). We let v,
denote the Borel measure on R™ so that Fu(f) = Jgm f(z) dvy(z).

THEOREM 3.2. Suppose ®(0) > 1. If A is a compact subset of R™, then

(3.8) v(A) = nllyngo Z X, a.s.
oceN™
JoNA£D
In fact,
(3.9) Z I2Xs | v(A) asn — o0 a.s.
J:r??;:@

PROOF. Fix w € (V' and k € N. Let € > 0. Since ) N I&(w)Xo(w) is finite,
there is a finite set M C N* such that 35, pr 13(w)Xa(w) < €. Let f be a
continuous map of R™ into (0, 1] such that f=(1) = Aand J, C f~1(0) ifc € M
and J, N A = . Now

/ fdv, = hm Z f(so(w

UGN"

:nl-l—»rgo Z Z f SU*T] o'*'r;( )

oc€eNk neEN”— k

(3.10) <lm > Y e,

seNF nENn—k
Jo (WYNAZ£D

+ lim >, Yo il

O'ENk\M neNn k

Jo(w)NA=Q
Note
B B )= B
So,

v,(A4) < Z lo(W)Xo(w) +€

oceNFk
Jo (w)NA#D
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Or,
(3.11) vo(A) < Y (W)X ().
oceNF
Jo (W) NAAD
Since, for any o € N*, 12X, =" |12, X;un, we have
(3.12) Yo BwXew) > Y 3(w)Xa(w)
cENF ceNFk+L
Jo (W)NAAD Jo (@)NAAD

Let po(A) = limy Y, enn ang, (w)2o le (W) Xo(w). Suppose B is a compact subset
of R™ disjoint from A; then there is a k € N so that if 0 € N¥, then J, meets at
most one of A and B. Thus, u.(A) + pw(B) < X(w). Further,

(3.13) Vo (A) + Vu(B) < poo(A) + v (B) < pu(4) + po(B) < X(w).
Find compact sets By C Bs C B3 C .-+ C A° so that v(B,) 1T v(A°). We see
(3.14) X(w) = vo(A) + v (A°) < pu(4) +vu(A°) < X(w),

Le., pw(A) =ve(A). Q.E.D.
THEOREM 3.3. Suppose ®(0) > 1. Almost surely v(K) = X.
PROOF. Since K = (n_; Uyenn Jo is a nested intersection,

- v(K) nlgr;()u(U J)

ocEN™

Temporarily fix n and let A; € A C A3 C --- be an increasing sequence of finite
subsets of N™ such that | JA; = N™. According to Theorem 3.2, we have, for each

t,
— 3 a
V( U Jv> =lm > 5
JnNIo#£D
for some oc€eA;

Thus,

>V<UJ0)>ZI"‘X - Y I8X,=X. QED.

THEOREM 3.4. If E(X) >0, then Pw(K) >0 | K # &) = 1.

PROOF. By hypothesis, E(X) > 0 and so P(X > 0) = § > 0. Recall that
for each 0 € N, X,, exists a.s. and has the same distribution as X/(diam J)*.
Further, for each n € N, {X,, | ¢ € N"} is an independent family and, as a family,
also independent of %,. We note again

(3.15) X=)Y i2X,.

oc€EN™
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As in the proof of Theorem 1.2 we consider two cases:

o0 o0
A P(ET3<OO> =1 and B: P(ZT,?zoo) > 0.
n=1 n=1
Case A. We will establish that for each n and g,
(3.16) P(X >0and Sp, >q) <(1—6)P(So,n > q).
Since P(}.2° , T? < oo) = 1, the random index set D, = {0 € N™ | I, > 0} is

n=1

finite. Let F' be a finite subset of N™. Using (3.15) we see
P(X=0and F=D,)=P(X,=0for o € F and F = D,,)
=(1-8)*FP(Dn =F),
due to independence. Now, inequality (3.16) follows by summing over finite F' such

that #F > ¢ and using (1 — 8)#F < (1 -6)%.
From (3.16), we calculate

(317)  P(X>0)>P(X>0and Sop >q) > [1— (1-8))P(So,n > q)-

Noting P(So» > q) — P(S = 00) as n — o0, and letting n — oo in (3.17), and
then letting ¢ — oo, we find

(3.18) P(X >0) > P(S = o).

But a.s. “f S = 0, then there is some n € N so that Sp,, = 0; ie., X =
Y oenn loXo =07, Thus,

(3.19) “f X >0, then S =00” as.
Combining (3.18), (3.19), Theorems 1.2 and 1.3, we find
“K # @ if and only if X > 0 if and only if ¥(K) > 0" as.

Case B. Suppose P(Y o2, T? = oo) > 0. As in the proof of Theorem 1.2,
with probability one, “if S = oo, then there is some 0 € N¥ such that J, #
@ and Y o0 T2,, = oo”. But, since {Xoun}or; is an independent family with
common distribution, the distribution of X/(diam J)*, and since this family is
independent of 7,41, we have with probability one “if J, # & and Sy T,(,’m =
00, then there is some k£ € N such that T,?*k = 1and X, > 0, ie, X =
Yvenin 12 Xo 2 12 Xnuk = 13T Xy > 0. Thus, we may conclude with the
following statement: Almost surely “if S = oo, then X >0". Q.E.D.

The next theorem is a probabilistic mixing of the deterministic methods of Rogers

and Taylor [16] and Moran [15].

THEOREM 3.5. Suppose the construction J is such that there exists 6 > 0 so
that with probability one, if Ti(w) > 0, then Ti(w) > 6. If ®(0) > 1, then, for
almost all w, for all B < o and for all Borel E C R™, if 3 — m(E) < oo, then
v,(E)=0.

PROOF. Since for any v > 0, 6™ - > 2, T < 32, T < 1 as., we have
S T <1/6™ as. It follows that

(3.20) E ((i Tg) ) < (1/6™)t < oo.
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Consequently, by Theorem 2.1, E(X*) < oo for all ¢t € (0,00). Fix k > 0, and
B < «; then for any t > 0,
. B(l )X
P(IeX, > kif) < ik—t]——)
and, by independence,

_ B@PHE(XY
diam(J)tkt

which implies
E(S(a—p)t.n) E(X?)

> PigX, > ki) <

(3.21) o diam(J)>tkt
_ O((a— Bt)"E(X")
kt diam(J)et
Choose tg such that ®((a — 8)tg) < 1. Thus,
Y P(3c eN" 312X, > kif)
(3.22) =0

< Z a ,3 to) nE(XtO)

kto diam(J)ato

< 00.

Thus by the Borel-Cantelli lemma, P(3N 5 Vn > N, if 0 € N, then I$X, <
ki8) = 1. Fix w so that v, is defined and for which there is N(w) € N so that if
o € N", n> N(w), then I12(w)X,(w) < kl8(w). For each z € K(w) and p € N, let
Azp = {0 € N¥|z € J,(w),lo(w) = diam(Ja(w)) < 277 and diam(Jy)|o-1(w)) >
277},

Suppose E is a compact subset of R™ with 3 — m(E) < co. Suppose Ly, L, ...
is a cover of E by closed m-spheres so that diam(L;) < ¢/2 for each %, where
¢ = 1 Amin{ls(w) > Ol € NN@}. For each i, there exists a p; € N so that
2-1-Pi < diam(L;) < 27P¢. For each 1, consider D; = J{Aq¢p;|z € LiINENK (w)}.
Now, D; is an antichain in the lattice N* with the natural partial order: o < iff
3¢ 50 * € = 1. Thus, the set {J,(w):0 € D;} is a nonoverlapping collection. For
any y € Li, Uyep, Jo € B(y,2' 7). By the definition of Agp,, if 0 € Ag p;, then
diam(J,(w)) > 6277, implying

6-27P ™
AInt J, (w)) > [ o J)} A(Int J).

Let N; denote the cardinality of D;; then

§.27P ™
N; [W] A(int(J)) < > Mint J,(w))

oc€D;
< M(B(y,2'77)) = 277™\(B(0,2)),
ie.,

diam(J)1™ A(B(0,2)) _
(3.23) N; < [ > ] NGy =M <




RANDOM CONSTRUCTIONS 339

For any o € D;, 19(w) X, (w) < kI8 < k[2 pi]8 < 28k diam(L;)?, implying,

(3.24) > ) < 28kM diam(L;)®.
oc€D;

For each 1, let n(z) denote max{|o|: o € D;}. Then

(3.25) Vo(ENL) < ). Bw)Xe(w) < Y 12w Xo(w
ceN™(®) o€D;
ENL;NJ,#2

by Theorem 3.2 and the fact I%(w)Xo(w) = D opo g &n(w )Xa*,;(w). Combining

(3.24) and (3.25) we find v, (E) < 2°kM Y, dlam(L )2.  Therefore, v,(E) <
28kMB—-m(E) - 0ask —0. Q.E.D.

THEOREM 3.6. Suppose ®(0) > 1. Then P(K has Hausdorff dim > a|K #
J)=1.

PROOF. For each n € N, we define an auxiliary construction J,, = {Jp,0|0 €
N*} by
Jo = Jo, if Lok 2 (l/n)l[o|k—1] fork=1,...,|o|,
me &, otherwise,
and Tn;a = l[l/n,oo)(Ta) . Ta

Now,

(326) (I)n(lg) =FE (i l[l/n,oo) (To)TcE) T Q(ﬁ),
p=1

by the monotone convergence theorem. Thus, there is some Ny € N so that for all
n > No, ®,(0) > 1.
Let Kn(w) = MpZ; Usene Jnso(w). Obviously,

(3.27) Kp(w) € Kny1(w) € K(w)

for all n. (For later use, note Sp;yk = Y gent .0-)

For each n, let 4, = P(K, is empty) and let 79 = P(K is empty). For each
n,p € N, let Cpyp denote P(302, TR, = p), and Co;p denote P(3-02, TY = p).
By a well-known formula (see [1]):

o0
(3.28) Y= CpVl.
g=0

(This formula is correct even if P(}_ T = oo) > 0.)

Set ¢p(z) = —z + Y02 Cp;qa?. Clearly, 1y is defined on [0, 1] for each p. Also,
for p > Ng or p = 0, 7, is the unique root of 9, in [0, 1) (see [1, p. 4]). Moreover, 1,
is strictly convex for p > Ny and 1)y is either strictly convex or linear with negative
slope. By (3.27), vp > Yp+1 > 7o for p € N. Thus, o = limp_. ¥, exists and
Yoo = Yo Now Cpq — Coyq as p — o0 if ¢ < 0o. Easily, {¢n}32; converges
uniformly to %o on [0,vn,]. Thus, 0 = ¥n(Vn) = Yo(Yeo), i-€., Y0(Yoo) = 0. This
implies Yoo = Yo Or
(3.29) lim P(Kn(w) = @) = P(K(w) = 2).

n—0o0
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Now (3.29) together with (3.27) imply:
(3.30) For almost all w, “K(w) # & iff for some n > N, K,(w) # @".

For each n, let o, be the “a” for the construction J,,. Note that since Tni <1,
for all 7 and 8 > 0,

(3.31) dors Z -
k=1
Since T,k ¢ (0,1/n), we have according to (1.5)
(3.32) (1/n)™ Z Ok < ZT <1

Thus, for each n, ®,(0) < n™. So, for all n > Ny, ®, is finite valued, continuous,
strictly decreasing, and ®,(a,) = 1. Also, ®, < ®,,; < ® for each n. Thus,
an < apt1 < afor all n > Ny. This implies o, = lim, o0 o, < . But,

oo
1=0y(an) > Oy(ax) = E <Z T;wl[l/n»oo)(Tp)> T ®(eco)
p=1
as n — 0o. Therefore, 1 > ®(aoo) which implies oo > o ice., @ = oo.
We derive from (3.31) and (3.32)

o effg))oe

Thus, by Theorem 2.1, {Sn;q, k}5>; is an Ly-bounded martingale. This implies
E(Xn) = E(Snian,0) = (A(J))* > 0.

For each n > Ny, J,, satisfies the hypothesis of Theorem 3.5. Suppose 3 < «
and K(w) # &. Then almost surely there exists an n > Ny so that a,, > B and
Kn(w) # @. By definition of vy, and Theorem 3.4, vy (K (w)) = V.o (Kn(w)) =
Xn(w) > 0. Thus, by Theorem 3.5, almost surely 3 — m(K(w)) = co. We can
conclude that if 8 < a, then almost surely —m(K(w)) = oo if K(w) # &. Q.E.D.

In what has preceded, we have required of our construction only a “stochastic
ratio self-similarity”. In order to ask a question of interest, we will now introduce
a version of a construction being “stochastically geometrically self-similar”.

We let G denote the set of geometric similarity maps with domain J. In other
words,

G ={f:J = R"|3A € (0,00) so that for all 7,y € J, ||f(2) - f(y)ll = Mz — yl},

where || - || is the Euclidean norm in R™. Also, let J, be the o-algebra of subsets
of 1 generated by {J,||o| < p}.

Note 3.7. Suppose 0 € N?, P(J, # &) > 0 and F,:(Q x J — R™ satisfies:

(1) F, is Jp X B(J)-measurable.

(2) Fo(w,J) = Jp(w), if J5(w) # D for almost all w.

() F, €G as. )
Define Jo = {Jo;nIn € N*} by Jo;n(w) = [Fo(w, )] (Joun(w)). Then given J, #
O, we have J o 18 a construction (in fact 75, is equal in distribution to 75). We
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say a construction J is stochastically geometrically self-similar if for each o € N*
with P(J, # &) > 0, there is a F, satisfying (1)-(3) of Note 3.7 so that J, given
7o # @ is distributed the same as J, i.e., if B is a Borel subset of [2/]N", then
P(J, € B|J, # @ and %,) = P(J € B). All the examples given in §4 have this
property.

Question 3.8. Suppose J is a stochastically geometrically self-similar construction
indexed by an n-ary {1,...,n}*, n < oo, and P(T; > 0; ¢ = 1,...,n) = 1 and
P(J;NJx #D if (1 # 7)) = 0. Then is it true for almost all w that

0<a—m(Kw))?

For the deterministic case, this was proved by Moran [15]. At least we know the
following facts in this case. Let a = E(a — m(K)). Since our construction is
geometrically self-similar, for |o| = k, we have

a = E(a—m(K,)|Jk and J, # D).
Also, since for these constructions J, # & a.s., we have
a = E(a—m(K,)|Jk).

We now claim
aX

* =) G

To see this, note
a—m(K)= Z a—-m(KNJ,) = Z a—m(K,),
o€{l,...,n}k oe{l,...,n}k

where K, is the set obtained by pruning the tree to start at o with J,. For
o€ {l,...,n}* let F, be a random geometric self-similarity map,

— ______1____ o, )1
a=mKW) = g UE{IZW 20— m(Fy(w,) (Ko (w)).

This implies

1 o ~

E(a—m(K)|Jk) = Tam(T)e Z I2E[a — m(K,)|Jk]
oe{l,...,n}k
a
~ @

Now, letting k£ — oo, we find

aX

o - m(K) = [diam(J)]e"

Using Theorem 2.1, it is easy to see {Su )}, is a L2-bounded martingale and
E(X) > 0. Thus, by Theorem 3.4, we see X > 0 a.s., so either o — m(K) > 0 a.s.
or a —m(K)=0as.
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4. Examples.

EXAMPLE 4.1. Let us note that the following simple deterministic process shows
that X (w) may not yield o —m(K (w)). Set Jp = [0,1], Jo = [§,2] and J; = [3, ].
Given J, = [a, b], set

Jowo =[a+(b—a)/8,a+3(b—a)/8
and
Jox1 =[a+5(b—a)/8,a+7(b—a)/8).
The Hausdorff dimension of the final Cantor set is o = % In this construction
X(w) =1 as., whereas it can be shown that 1 — m(K(w)) = \/g

EXAMPLE 4.2. We return to the example described in the introduction of a
random Cantor subset of [0,1]. It follows from Theorem 1.1 that the Hausdorff
dimension of such a set in this construction is the number « such that

1,1
1=E(T1°‘+T§‘):2/ / %+ (1+y)*dydz.
0 Jz

In this case a = (v/17 — 3)/2.

EXAMPLE 4.3. Another method of constructing a Cantor subset of [0, 1] may be
described as follows.

Choose a number v from [0, 1] with respect to the uniform distribution, then
choose z from [0, u] with respect to the uniform distribution on [0, 4] and indepen-
dently choose a number y from [u, 1] with respect to the uniform distribution on
[u,1]. Set Jo = [0,2] and J; = [y, 1]. Continue this process by rescaling to each
interval already determined. Again, according to Theorem 1.1, with probability
one, we obtain a Cantor set with Hausdorff dimension o = /2 — 1, where

=<I)(a)=/01 [%/Ou adx+1% 1(l—y)"‘dy} du.

This example arose naturally in the course of our study of random homeomorphisms
of [0,1] [6]. In that paper, a measure P is constructed on H, the space of orientation
preserving homeomorphisms of [0, 1], which has the property (Theorem 4.16) of [8]
that if B is a Borel subset of [0, 1], then

() A(B) = /H Ah(B)) dP(h).

In particular, if B is the Cantor subset of [0, 1] constructed by repeatedly removing
the middle half interval, then A(B), the Lebesgue measure of B, is zero. Therefore,
according to (x) for P-a.e. h, A(h(B)) = 0. Example 4.3 shows that for P-a.e. h,
the Hausdorff dimension of the Cantor set h(B) is /2 — 1. The measure P was first
studied by Dubins and Freedman [5].

EXAMPLE 4.4. Choose z from [0,1] according to the uniform distribution and
then choose y from [z, 1] according to the uniform distribution on [z, 1]. Set Jo =
[0,2] and J; = [y, 1]. Continue this procedure by rescaling to each of the intervals
already obtained. With probability one, we obtain a Cantor set with Hausdorff
dimension «, where

— B(T® +T2) = /[a+———/(1— dy]dz

In this case a = (v/5 —1)/2.
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EXAMPLE 4.5. We give a construction to show that the final Cantor set may
have the same dimension as the dimension of Jz: Choose the positive integer n
with probability 27", Then partition the interval Jz = [0, 1] into 2747 intervals
of equal length, set J; = [2/27° 7, (2i + 1)/27"+"], i = 0,...,27 +*~1. Continue
this construction. We have

00 1 B 2, .
— -n n+n—
2(8) = :12 [WM] 2 .
n=

Thus, ®(8) = +o0 if # < 1 and ®(1) = 1.

EXAMPLE 4.6. We construct at random a Cantor subset of [0,1] x [0, 1] with
Hausdorff dimension 1. Choose four numbers 1, 2, u3, u4 independently from
[0,1]. Let 1 = min(u1, pu2), 2 = max(u1,p2), z3 = min(us,p4) and z4 =
max(us, ps). Let Jy = [0, s1] X [0, s1], where s1 = min(zy,23), let Jo = [1 —s5,1] X
[0, s2], where sy = min(z3,1 — 22). Let J3 be the largest square with one vertex
at (1,1) which lies in the rectangle [z2,1] X [z4,1]. Similarly, let J, be the largest
square with one vertex at (0, 1) which lies in the rectangle [0, z1] X [z4, 1]. Finally,
consider the rectangle [z1,z2] X [23,24] and its center ((z1 + 22)/2, (z3 + z4)/2).
Let Js be the largest square lying in this rectangle and having the same center.
Iterate this process. According to our results, with probability one the final object
is a Cantor subset of [0,1] x [0, 1] with Hausdorff dimension o where

1=0(a)= 5////[ | (1 A p2 A ps A pg)® dy dpg dps dpg.
0,1]4

One can check

1 pps pus pu2
1=%(a)=5 [4!/ / / / uw$ dus duo dus dug |
o Jo Jo Jo

1=9%(a) =5!/(a+1)(a+2)(a+3)(a+4).

or

Obviously, a = 1.

EXAMPLE 4.7 (SIERPINSKI UNIVERSAL CURVE). Set Jg = [0, 1]x[0, 1]. Choose
z1,%2,%3, and x4 from (%, %) independently and each according to the uniform
distribution. Set J; = [0, 1] [0, z1], Jo = [1—z2, 1] X[0, 2], J3 = [0, z3] X [1—23, 1]
and Jy = [1 — 24,1] X [1 — x4,1]. Since % < zy,3 < 3, we have 1 — (z1 + 22) <
min(zy,z2). Set J5 = [z1,1 — z2] X [0,1 — (z1 + x2)]. Thus, J5 is a square having
one side a subset of a side of J; and one side a subset of J;. Similarly, let Jg be
the square having one side in common with J;, one side in common with J3 and
one side on the Y-axis. J7 is a square similarly placed in relation to J2 and Jy,
and Jg is similarly placed in relation to J3 and Jys. Thus, the first stage in this
construction is analogous to the first stage in the construction of Sierpinski’s carpet
[17]. Of course, in Sierpifiski’s construction there is no random element, one simply
partitions the unit square into nine congruent subsquares and deletes the middle
square. Our construction is more like a Swiss flag:

J3 Js Js
Js | |J7
J1 Js Jo
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Now, one iterates this process. In order to see that the final set is a topological
Sierpinski curve, we use Whyburn’s topological characterization [18]. It is easily
seen that our final set is locally connected (since for each € > 0, it can be expressed
as the union of finitely many subcontinua of diameter < ¢) and its complement
with respect to S2, the two-sphere, is the union of countably many open disks
D1, Dy, D3, ... such that for each 7 and j, the boundary of D; is a simple closed
curve and if 1 # j, D; N D; = &. These properties characterize Sierpiriski’s curve.

According to Theorem 1.1, the Hausdorff dimension of the final Sierpifiski curve
is a, where

1/2 1/2 ,1/2
1:<I>(a)=24/ "‘dm+144/ / (1-(z+y)*dyde
1/3

24 [ 1 1 2 1
T a+1 2a+1_3a+1+ a+2 3a+1_6a+1 )

We know that ®(1) > 1 (7, p. 107 (actually ®(1) = I and ®(2) < 1). Numerical
studies show that o = 1.8947.

EXAMPLE 4.8. Set Jg = [0, 1] x [0,1] x [0,1]. Choose z;,1 = 1,2,...,8, indepen-
dently from the open interval (3, 2) and each according to the umform dlstrlbutlon
Let J; be a cube lying in J with edge length z;, with faces parallel to the coordinate
planes and with one vertex at (i1,%2,13), where ¢ = 14141 + 122 +1322. Let Jg be a
cube lying in J with edge length 1 — (z; + z2) having one face a subset of a face of
J1, one€ face a subset of a face of J3, and one edge on the z-axis. Continue placing
cubes in this manner, until there are a total of twenty cubes. Then iterate this
construction inside each of these twenty cubes. The first stage of this construction
is somewhat like the first stage in the construction of Menger’s universal curve [14,
p. 345]. (There is a sketch of this curve in the second edition between pp. 346
and 347.) Of course, in Menger’s construction, one partitions the unit cube into 27
congruent subcubes and then one deletes the center cube and the six other cubes
having a face in common with it. It is easy to see that the final set K is a locally
connected continuum and that every nonempty open subset of K contains Ks, the
complete graph on five vertices and also contains K3 3. Thus, our final object is
certainly nonplanar. If we knew K were one-dimensional, then we could use R. D.
Anderson’s result {2, Theorem XII] to conclude that K is a Menger curve, but we
have been unable to show this.

According to Theorem 1.1, the Hausdorff dimension of the final universal curve
is a, where

1/ 1/2 ,1/2
=<I>(a)=48/ T dz+432/ / (1-(z+vy)*dydz
1/3 1/3 J1
3

/3

481 1 1
“ a1 |24 " 3er T\ G2 3c~+1 T |

We have 2 > ®(2) > 1 and ®(3) < 1. Numerical studies show that a = 2.5968.
REMARK. Our Example 4.7, concerning Sierpiriski curves, is in accordance with
the category version. Mazurkiewicz showed that for almost all (in the sense of
category) continuous maps f of [0,1] into [0,1] x [0,1], the image f([0,1]) is a
Sierpinski curve [13]. On the other hand, our Example 4.9, concerning Menger
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curves, stands in contrast with the category version for almost all continuous maps
f of [0,1] into [0, 1]3, the image set is an arc [10].

EXAMPLE 4.9 (MENGER UNIVERSAL CURVE). Let Jy = [0,1] x [0,1] x [0, 1].
Choose z;,1 = 1,2,...,8, independently from the open inteval (0, %) with common
uniform distribution. Construct subcubes Ji,...,Jg as in Example 4.8. Let k(z; -
T2) be the least positive integer greater than 3(1 — z1 — x2)/(z1 A 2). Now, place
k(z1, z2) nonoverlapping subcubes of J with equal edge length, each with an edge
on the r-axis and forming a chain from J; to J2. Similarly, join each pair of
the original eight cubes which are adjacent. This completes the first stage in the
construction. Iterate this process in each of the subcubes obtained so far. As in
Example 4.8, it is easy to see that K is a locally connected continuum and every
nonempty open subset of K is nonplanar. To conclude that K is a Menger curve,
we first estimate the Hausdorff dimension of K. We have

1/2 1/2 p1/2 1—2 —2o\7?
@ :16/ A d +48/ / k(z1, <—1—2> dz1 dzo.
)] | 2P dz | ; (%1, 2) o) 21 dzo

In particular,

1/2 p1/2 (1 _ ..
8(2) <2+ / / (k72
3 (1:1,2)2)
V2 12 (
S ‘2‘ / / xl/\z2)(1—$1 —:Eg)d:l)l d(L‘2
3 3
- 2 1/2
< § (1—11 —:liz)dft1 dzo

1/2 ,1/2
+/ / 12(1 — 21 — x2) dzq dag
0 g

2 1/2 pz2
< —+32/ / :cl—a:f—mmld:cldmg.
3 0 0

So, ¥(2) < 4.

Since @ is finite valued, we have that dimy(K) = o < 2. This means that the
topological dimension of K is < 1 (9, p. 8]. Thus, with probability one, K has
dimension one and according to Anderson’s theorem, K is a Menger curve.
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