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Abstract. Ulam conjectured that for cach given law of redistribution of energy, D, there corresponds a
limiting distribution, C{D), the “collision transform’ of the given law such that if X is an initial distribution
of energy, then the distributions of the iterates of X under redistribution, converge to C( ). We give examples
of this behaviour and prove that Ulam's conjecture is correct in case all moments of X exists.

Several years ago, Stan Ulam with his usual insight proposed a problem which has a

simple physical interpretation and, at the same time, is amenable to computer simu-
lations. The problem has evolved and it, together with some variants, forms a part of
a manuscript of problems which Mauidin and Ulam were preparing for publication.

The problem may be stated as follows:

Consider a vast number of particles and iet us redistribute the energy of these particles
as follows. First, pair the particles at random. Second, for each pair, redistribute the
total energy of the pair between these particles according to some given fixed probability
law of redistribution. Is it true that under iteration the distributions of energy converge
to some distribution which is independent of the initial distribution of energy (but, of
course, is' dependent upon the law of redistribution)?

Ulam believed that the answer is ‘yes' and called the final limiting distribution the
‘collision transformation’. We will give one of several possible interpretations of this
problem, and demonstrate that he was essentially correct. We will also indicate some
of the unsolved problems.

DEFINITION. A redistribution of energy law is a distribuﬁon function ) which is

~ supported on [0, 1], symmetric about 3 and has second moment less than %.

The assumption that D is symmetric about £ means that the particles are indistin-
guishable, For any symmetric distribution on [0, 1] the second moment is <2 and it
is 1 if and only if D assigns probability 1 to 0 and to 1. In our model, this would

* In memory of Stan Ulam.
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correspond to always giving one of the particles all of the energy — one of the particles
always disappears. We rule out this possibility.

If X is a random variable giving the original distribution of energy, then the new
distribution of energy will be distributed as the random variable 7X = U - (X, + X,),
where U, X, and X, form an independent family of random variables, I/ has distribution
D and X, and X;, are both distributed as X. We will assume that X > 0 and that the total
energy has been normalized, ie., E(X) = 1.

Ulam’s problem concerns the behaviour of the iterates 7, T2(X), ... .

Consider the following simple example: Whenever the particles are paired, the total
energy is shared equally. Each particle receives one-half of the total energy. Intuitively,
it should be true that under iteration all the particies will be at the same energy level.
Under our interpretation, in this case, we have D is point mass at 4. Thus, the new
distribution of energy will be the distribution of 77X =1(X, +X,). Since
T°(X) = (X + -+ + X5.)/2% it follows from the strong law of large numbers that
T"(x}-> 1 a.s. Thus, Ulam’s conjecture is true and C(D), the collision transformation,
is point mass at 1.

Let ug = 1, 4, = £, u,, s, ... be the moments of D.

THEOREM. Let X be an initial distribution of energy with finite moments w,,. The T"X
converges in distribution to the distribution C(D), which is the unique distribution with
MOMENLS Gy, @y, Ga, ... given recursively by:

g =1, a,=1, andfornz1,

u”‘*“ = n—i—l
am»z:“““”'"“""’“l“““ Z ( , )ajan+lmj' (1)

1‘-“.22":M+lj”l J

In particular, C(D).is. the unique. fixed distribution.among.all the. distributions with finite

moments of all orders.
Proof. Let my = 1, my = 1, m,, m,, ... be the moments of X. Let 7%(x) be the nth
moment of 7#(X). We have

Tin) = E[(U- (X, + X,))'] = EUME[X, + X,)'],

or
T'n)=u, ¥ (’f)mjm,,_j. . . 2)
i=0\Jf
Of course,
i
T“1) =1 and T%2) = QuY¥my+ ¥ (2, forallk.
. fa== 3
Since

O0<u, <3, Jim T2} = ay = Qu,)/1 = 2u, .

From (2}, we find
T Yn+ 1 =u,,, [2T"(n + 1)+ i (n+ I)T"(j)T"(n +1 —j)]. (3)
J=1 J
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Thus,

[}w s ‘}T’” i+ 1)

L

= =T Nun+ 1) - T n+ D] + i (}H I)T"(J')T“(H +1-7. (4)

J

i=t

We wish to show by recursion that lim,, . , T%(n) = a,, forn = 0, 1, 2, .... This is true
for n < 2 and i it is so for all j < m, then, according to (1) and (4), this limit will hoid
for n + 1, provided im, _, . d, = 0, where d, = T** '(n + 1) — T*(n + 1).

From (3), we find

AR def ATk ; fe—1¢ Nk — 1 ;
de =2, dy o+ Y [(T“DTMn+ 1= - T (PT* e+ 1Y

J (5)

i=t

Set

g, =

> (n ; 1) T*()TH(n + 1= j) = T* M NT Y+ 1 - ] ©)

=1\ J

J
By our induction hypothesis lim,_, . e, = 0. Also,

dy < 2ty y 1y + e | 0
and by recursion .

oy SQu,  Ydy+ Quy Yty + Quy e+ e, (8)

Since u, , ; < U, < 3, the first term on the r.h.s. of (8) goes to 0 as k— co. The sum of
the other terms can be shown to converge to 0 by splitting it into two parts and using
the facts e, — 0 and Z(2u,,, ;)* < c0.
Thus, forn=0,1,2,...
3 k
kllﬂig THm) =a, . 9
Next, we claim

}oi (g, )" '™ < oo, (10)

Mo
Then, according to Carleman’s theorem [1], there is a unique distribution function,
C(D), on [0, + oo] having nth moment a,. Also, T%(X) converges in distribution to
C(Dy[2].
To demonstrate (10}, set 4 =u,/(1 —2u,) < 0. Since u,,, <u,, we have
y J1—2u,, <4, forn=123,...8eth, =1L andfornz1l,

bn-i»l = E bjbn+1wj' (11)

Fo=
We claim that for all n = 0,

Gyt A1+ Dby, (12)
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Clearly, (12) is true #f » =0, 1, or 2. If {12) holds for all k <, then (12) follows
for n + | via substitution into (1). '
We need the upper estimates: For all nz 1,

b, < nt (13)
If (13) holds for all k < n, then, from (11)

by 3tk 1 - wuvzﬁff) (14)

Je=t
But,

Sf)sr

Thas, (13) follows and we have for all n,

a, <A . ‘ (15)
According to Stirling’s formula,

AT M € A" Qe e~ 3 MO _ (16}
Or,

. - e \1/2 (i)lfzn g~ 112n? ("?;;:{175;) < [Anml(n!)2}m 1an (17
But, ¢, ~ 1/n. Thus, Ze¢, = + oo and (10) foliows. [

EXAMPLE. Let D be the uniform distribution on [0, 1]. It is easy to check that for each
u, a,, = n! Therefore, the collision trdnsformanon in this caseis the standard exponential
distribution.

We note that studying this iteration from the viewpoint of characteristic functions,
we have

(Te)(x)= j. ¢*(x) dD() (18)
G

where ¢ is the characteristic function of X and T'¢ is the characteristic function of TX.
Thus, for our last example, one can check that the characteristic function, ¢ which is
the solution of

¢m:j&wm (19)

is ¢p(x) = (1 ~ ix)~*, the characteristic function of the exponential distribution.
We also note that our first simple example is the only case when the final limiting
distribution is bounded. '

THEOREM. If D is not point mass at 3, then C(D)} is unbounded.
Proof. If X has distribution C(D), then T'(X) has distribution C(D). Choosec > 1 5 such
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that P(IJ > ¢)> 0 and set y = (2¢ — 1). Suppose P(X > M) > 0. Then
P(TX > M + My)
=P(U- (X, + X;)> M+ My)
= P(U > c)P(X, + X, > M{L + y)fe)
= P(U = c)P(X > M(1 + y2c))
=PU>c)PX>M)>0. O

What happens to the distributions of 77X in case all the moments of X do not exist?

Is the distribution C(D) given in the main theorem the only distribution of energy
which is fixed under T'?

Under what coaditions on D, is it true that C(D) has a density? We do know that
if C(D) has a density, then D is continuous at 1.
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