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INTRODUCTION

The purpose of this paper is threefold. Our first purpose is to exposit a
major concept from descriptive set theory, inductive definability, and to
present some of the major results concerning inductive operators. The
classical version of this theory is carried out in the first two sections and the
effective version in the fifth section.

Our second purpose is to demonstrate a powerful unity of viewpoint
provided by inductive definitions. This is shown by deriving several well-
known results from this viewpoint which had been previously proved by
diverse methods. This point is demonstrated in the first section by deriving
several well-known examples of analytic {(and coanalytic) sets which are not
Borel sets; in the third and fourth sections by the proofs of some “faithful
extension™ and reflection theorems. Again, this point is demonstrated in the
fifth section in the presentation of several results from effective descriptive
set theory. '

Our third purpose is to present some new results. Our first new result is
given in the third section where it is shown (Theorem 3.3} that several
classical *“definability” results may be unified with the use of inductive
definitions. New results are given in Theorems 4.1 and 4.2 where we
demonstrate a definability and reflection principle with respect to conditional
probability distributions. In the fifth section, we present new proofs of
several known results and give a new characterization of p(x), the least
ordinal not recursive in x.
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56 ' CENZER AND MAULDIN

In the sixth section, we present some mMOfe new results. These concern
uniformizations of coanalytic sets and the relatively new concept of
parametrizations of coanalytic sets. We demonstrate the fact that if C is a
coanalytic subset of the product of two Polish spaces and.each X-section of
C is large, then C has 2% Borel uniformizations and a particularly nice
parametrization, a parametrization which is measurable with respect to the
o-algebra generated by the analytic sets. The proofs of these theorems are
made possible through the employment of the results presented earlier in this

paper concerning inductive operators and some recent work of the second
author.

1. INDUCTIVE DEFINABILITY

Let X be some fixed set. An inductive operator I" over X' is a map from the
power set 2% to 2¥ such that K< I (K) for all K< X: in this paper most of
the operators considered are monotone, that is, for any KeMc X,
I(K)< r(M). We shall identify a subset K of X with its characteristic
function, so K(x)=1 if x€ K and K(x) =0 if x € K. ‘

Let A< X be given. The operator [’ constructs from A a transfinite
sequence {I™(4): a € On} as follows:

r')=A4,
retYd)y=rae4)) for all ordinals a, (LD
r*d)={) {r@4)a<4a} forlimit ordinals 1.

The set C inductively defined from 4 by I' is CUI; Ay=U) (Ir(4).
a € On); C is called the closure of I on 4. For some ordinal a < card(X)”,
r*+t'\(A)=rI4)=CI{I; A); the least such ordinal is |I; 4], the closure
ordinal of I on 4. Also, |I'] means |I'; @| and CI(I') means Ci(I'; &@). The
operator I is said to inductively define the set CYTI).

A subset X of X is said to be a fixed point of I' if I'(K) =K. The following
fact is often useful.

Tueorem 1.1. If I' is @ monotone inductive operator over a sel X and
AC X, then CI(I'; A) is the intersection of the family of fixed points of T
which include A.

Proof. Let C=Cl(I;4)=U) {[*(4):a € On) and let D= {K: K24
and I(K) =K. Since C24 and y=cC b= C

Let K24 and I'(K)=K. Then K2I(4)=4 and it can be seen by
transfinite induction on a € On, that K27I7(4) for all a € On, since if
r*(4)< K, then **'A)=r(r4) s rK)=K. |

We now present some examples of monotone definitions.
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ExampLES 1.2, Let (G, -) be a group and let " be defined by
IK)=KU {a 'b:a,bEK}.

Then of course, for any subset A of G, CI(I'; 4)= {4), the subgroup of G
generated by A and |I'; 4| can vary from O to w. It will follow from our

‘results below that if G is a Polish group and A an analytic subset of .G, then

{4) is also analytic.

EXAMPLE 1.3. Let ¥ be a set and let X=2". For #'c X, define the
following operators.

@)= {Y-K:KEF),
Z{(%") = {countable unions {J K, with each K, in 7"},
and. .
II(¥") = {countable intersections () K, with each X, in #"}.

These are all monotone operators.
Suppose now that Y is a topological space with family 7 of open sets and
let @ be the family of Borel subsets of Y, that is, the smallest family

“including 7 and closed under complementation and countable unions. A

number of schemes for generating the Borel sets from 7 have been given: see,
for example, [17]. However, the Borel sets may also be given as the closure
on 7 of the monotone operator 4 defined by

AF )= Z(F)VE(X).

In case every open set is an F, set we have A(r)={U: U is open or
closed}, 4%(r) =t U F, and 4%(r) = F, U G;. Of course, Cl(4; 1) = 2.

Depending on the space Y, this operator 4 has |4; 7| between 0 and w,. In
fact, no matter what family, 7, of subsets of ¥ one starts with, Cl{4; 7) is the
Borel family generated by 1. Recently, Miller [19] has shown that it is
consistent that for each o < w,, there be a family 7 of subsets of the reals
such that |4;7}=a.

Now let X be a Polish space—that is, a topological space such that there
is a metric which generates the same topology under which the space is
separable and complete. The interval I = [0, 1] and the space J of irrationals
in 7 (not with the usual metric though) are typical Polish spaces. A subset A
of X is analytic (or X}), if there is a Borel subset B of X X J such that 4 =
7,(B)= {x: Ay € J){(x, y) € B}; a subset C of X is coanalytic (CA or I1}), if
X — A is analytic, In fact, an arbitrary uncountable Polish space can be used
here in place of J. The Souslin—Kleene theorem states that a set is Borel if
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and only if it is both E! and I} (that is, A}). Of course, there are I} sets
which are not Borel {some examples are given below).

The primary topic in this section concerns the families of Borel, analytic,
and coanalytic operators over a Polish space X. Roughly speaking, an
operator " is Borel (open, analytic, etc.) if I'(K) is always Borel (open,
analytic, etc.) relative to K and is defined uniformiy on 2%

An operator 4 over a Polish space X is said to be Borel (or A}) if it is
defined in one of the following ways:

(a) 4(K)=8, where B is a fixed Borel subset of &3

(b) AK)=J1""K), where [ is a fixed Borel map from
Xto X,

() 4K)=X—-K; : (1.4)
(d) A(K)=4,(d,K)),  whered, and 4, are previously
defined Borel operators; '

() AK)=U (4 (K)in€N} where the 4,, are previouély
defined Borel operators for n € N = {0, 1, 2,... b

Thus, 2 map from 2% into 2¥ is a Borel operator if and only if it is in the
smallest family which contains the operators described in parts a, b, and ¢
and which is closed with respect to the operations, described in parts d and e.
The operators of parts a and b are monotone, but not inductive and the
operator of part ¢ is neither monotone nor inductive.

An operator I over the Polish space X is analytic or I! (resp. coanalytic
or T!) if there is a Polish space ¥ and a Borel operator 4 over X X Y such
that for all x and X: ' '

x € [(K)IFF  (Ap)(x y) € 4K X Y),
(resp.) (Vy)(x, ) EAK X Y)

Of course, both classes are closed under countable unions and inter-
sections; every Borel operator is both E; and n;. :

We hope to convince the reader that the classes of inductive and
particularly monotone inductive operators in these families have an
interesting and useful theory. The main tools of this theory are given in the
following theorem. Parts of this theorem will be proved in this section and
parts will be proved in Section 2. We will interject some examples and

application of this theorem along the way.

(1.5)

Theorem 1.6 (Inductive definability). Let X be a Polish space.

(a) If 4 is a Borel operalor over X, then 4° is also a Borel operator
for each a < w, and A(B) is a Borel subset of X, if B is.



RidvFeane

EIETIP OIS RN

INDUCTIVE DEFINABILITY 59

{b} If the monotone operator I' and the set A are both analytic (resp.
coanalytic), then for each countable ordinal a, I'*(4) is analytic (resp.
coanalytic).

(c) If the monotone operator I' and the set A are both coanalytic, then
CI(I'; A} is coanalytic.

(d) For any coanalytic subset C of X, there is a monotone Borel
operator A over X X J and a real r € J such that C = {x: (x, r}& Cl(I')}.

(e) If I' is a coanalytic monotone operator with closure C, on the
coanalytic subset P of X, then for any analytic subset A of X with A < C
there is a countable ordinal a such that A < I'*(P).

(f) If the inductive operator I' is either (1) Borel or (2) monotone and
either analytic or coanalytic, then |\I'l € w,.

Let us remark that there is a useful and natural method of associating an
inductive operator with any given operator. Given @: 2* —+ 2%, define I' by

I(K)=K U PK).

Clearly, I' is inductive and if @ is respectively Borel, analytic or coanalytic,
then so is I. If & is monotone, then I' is monotone inductive and it can be
shown by transfinite induction that I" and & will then produce the same sets
inductively from ¢: @°{¢) = I'*(¢), for all ordinals a.

One proves Theorem 1.6a by noting that the family of all operators which
satisfy Theorem 1.6a contains the operators described in (1.4) parts a, b, and
¢ and is closed under the operations described in part d and e.

Before progeeding further with the proof of Theorem 1.6, we give some
examples of inductive definitions and some applications of Theorem 1.6.

As our next example, we will give a Borel monotone inductive definition
of a (actually coanalytic) subset C of J X J which is universal for the Borel
subsets of J. This means that {C,:x € J} is precisely the family of Borel
subsets of J, where C, = {y: (x, y) € C}. Of course, C cannot be Borel itself
by a simple diagonal argument: C is coanalytic by Theorem 1.6(c). Such a
set was first constructed by Sierpinski [26].

Our definition of the set C depends on the fact that the Borel subsets of J
can be generated from the open sets by taking countable unions afid coun-
table intersections, but not complements—-call the sets generated in this way
the positive Borel sets. The family of positive Borel subsets of a given
topological space X is always included in the family of Borel sets and will be
the entire family if it is closed under complementation. This will be the case

“in any metric space X, by the following argument: Any positive Borel set B

is either open or the countable union or intersection of previously generated
sets {B,:n € N|.If B is open, then X — B={) {M,: n € N}, where M, = {x:
the distance from x to X — B is less than 1/n}; each M, is open, so X — B is
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positive Borel. If B={B, or (B, then X—B8= NX-—18, or
U (X — B,); by induction, each X — B, is positive Borel so, again X — B is
positive Borel.

The space J of irrationals is of course a metric space, but it is also
homeomorphic to the product N¥ of countably many countable discrete
spaces; henceforth J will refer to this product space. For wu=
w(0), u(1),..) €J and i € N, let m,(u) = (u(p), u(p}), w(p})...), where p, is
the ih prime number. The function which takes u to (mo{u), 7,{u),...) maps J
onto J¥. Now -the topology of J has a subbase consisting of the sets
V(m, n) = {u: u(m)=n} for fixed m and n in N. The Borel sets are generated
from these by countable union and intersection.

Each Borel set receives an index (in fact, infinitely many) in the following
manner: V{m,n) gets any u with u(0)=0, u(l)=m and u(2)=n. If
B=1{) {4,:i€ N} (tesp. () 4,), and for each i, u, is a code for 4,, then B
gets as an index any u# with u(0)=1 (resp. u(0)=2) and, for each i, -
(1) = u;. It can be checked that (1) each Borel set has continuumly many
indices, (2) no sequence’is an index for two distinct Borel sets and (3) there
are continuumly many sequences which are not indices for any Borel set.

Let C be the set of pairs (u, v) such that v belongs to the Borel set with
index u. C is clearly universal for the Borel subsets of J. Now C is the
closure of the monotone Borel inductive operator 4, defined by:

(u,vyek

' OR u(0) = 0 AND v(u(1)) = u(2) _
(4, v) € A(K) IFF _ (1.7
OR u(0)= 1 AND (@i)(z{u), v) €K

OR u(0) = 2 AND (¥i)(r,(u), v) € K.

It follows from Theorem 1.6(c) that C is in fact a coanalytic subset of
J % J. Note that, for @ > w, 4% is universal for the Borel sets of class <a.

We  next give some examples of E} and Il operators and some
applications of Theorem 1.6(b, ¢, e).

Recall the operatar I” over the group G which has on 4 the closure {A),
the subgroup of G generated by 4. If G is a Polish group (that is, a Polish
space with continuous multiplication map from GX G to G making G a
group), then I' is a E] monotone inductive operator. Since INAlSw, it
follows from Theorem 1.6(b) that whenever 4 is analytic, {(4) = Cl(I; 4) is
also an analytic subset of G.

The closure operator on a topological space with metric d is defined by

(M) = M = {x: (Yk)(3y € M) d(x, y) < I/k}

is a ! monotone and inductive operator. We will indicate that I' is .
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Similar arguments can be given for the other examples in this paper. Let
¥ = X" and let 4 be the Borel operator over X X Y defined by

4)= () B S,

k=1

where B, = {(x, (3,)): d(x, %) < 1/k} and f,(x, (#)) = (Ps» (¥,))- Notice

that

xENK)3(y,) (B (r)ELKXY)

Thus, I“ is L!.
. The (Cantorchndixson) derived set operator, defined by

={x:xEM— {xmm

is also E|. However, it is not inductive, since M’ € M rather than M € M'.
The dual operator ¥ defined by

Y(K)=X — (X — K)

will be mductlve, monotone and ﬂ'

Now let 4 be a fixed analytic subset of a Polish space X, and apply ¥ to
the T} set X—A. It is easily seen that, for. each countable ordinal g,
X — ‘I"‘(Xm—A) is the ath derived set of 4 and that X — CI(¥; X — 4} is the
largest subset of 4 which is dense-in-itself. It follows from Theorem 1.6(c)
that the largest dense-in-itself subset of an analytic set is also analytic.

For an analytic subset A of a product space X X Y, a similar I} monotone
operator can be defined with I} closure C so that, for each x€ X, Y~ C_is
the largest dense-in-itself subset of A4,. This leads to our first definability
result. Recall that a set is said to be scattered if it includes no non—empty
dense-in-itself subset.

- Tueorem 1.8 (Luzin [§]). Let A be an analytic subset of the product
X XY of Polish spaces. Then D = {x € X: A, is scatiered} is a coanalytic
subset of X.

Proof. Let I" be the monotone, inductive, I} operator described above

‘with  closure C, ie, TK)=U {{x}x¥K,): x€X}. Thus,

C=Cl{I; (X X Y)—A). So, by Theorem 1.6(c), C is HI}. Now,

A, isscattered IFFC, =Y
IFF (Yy)(x, y) E C.

Since Cis I}, DisalsoI1}. B
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A generalized version of this result will be given in Section 3.

As an application of the boundedness principle in Theorem 1.6 (part e), we
give the following related theorem (proved by second author in Pacific J.
Math. 74 (1978), 169-177).

THEOREM 1.9. Let X and Y be Polish spaces and A an analytic subset of
X X Y. If A, is scattered for each x in X, then there is an ordinal a,a < w,,
such that the ath derived set of A, is empty, for all x in X.

Proof. Using the notation from proof of Theorem 1.8, we have C, =Y,
for each x in X. So C, the closure of I, is X X Y. Since C is a Borel set, it
follows from Theorem 1.6e that there is a countable ordinal a such that
XX Y=C< e This means that the ath derived set of each section is
empty. B : '

The next examples require some definitions.
Let S be the set {J {N*: k€ N} be the set of all finite sequences of non-
negative integers with the usual Brouwer—Kleene ordering:

- 5 = (Mg oy My ;) < (Rgpeeey My _y) =t IFF
[scxtendst(sDt)OR(aj)(ms—*na& c&my_ =ny ,&m,<n,)l

Note that (S, <) is isomorphic to the set of dyadic rationals g, 0 Lg<l,
with the wusual ordering reversed; (m,,..,m,) corresponds to
(2™ 4 (27" mM) o - (27T Mmooy and the empty sequence &
corresponds to 0. For any s={my,.,m,_,) and any i€EN, let s*i=
(Mg youey My _y» i). For any u € J and n € N, let u|n = (u(0),..., u(n — 1)); also,
write s S u for (3n) (s=u|n).

For R S, let x, € 2° be defined by x,{(s) =1 IFF s € R. The coanalytlc
set W< 2% is defined by:

W = {x,: R is well-ordered]

(1.10)
= {X: V(Joy Y1) EW[x(¥,) =00R y, 2 ¥, ]

For x, in W, let o(x,) be the order type of R. For p€ S and R S, let
R p=|s€R: s<p); for x€2® and s€S, x| p(s)=1 IFF x(s)=
L& s <p.

W can be defined by the following simple closed operator:

x € 4(K) IFFxe K
OR (¥s) x(s)=0 ' (L.11)
OR(Vp)x| pEK.
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In fact, for each ordinal a,

A4° = {x: 6(x) < a}.

*

Thus W = Ci(4), |A| = w,, and by Theorem 1.6(c), W is coanalyt:c
Closely related is the set W¥, defined by:

W = {x: (Vu)(@n) x(u ] n)=0}. (1.12)
Now x in 25 is said to be regular if, whenever s 1, x(s) > x(t).

’* LemMA 1.13.  For regular x, x € W IFF x € W*

Proof. The direction (=) is immediate, even for x not regular; since
) u}0>ull> - isa descending chain. For the other direction, suppose that

. $gD> 8§ > - 18 a descending chain with each x(s;)=1 and let u = lim(s,).
' This limit exists even if x is not regular, but if x is regular thcn each
x(uln)=1 §

A subset A of a space X is said to be reducible to a subset B of a space Y
provided there is a continuous map f of X into ¥ so that A = ~Y(B).
W* is an example of a set which is reducible to the closure of a Borel
monotone inductive operator. Define the operator 4 on 25X S by:
x€A(K) IFF(x,q)€K
OR g ¢ x (1.14)
- OR (¥i)(x,g*) EK.

It is easily seen that, for all x and ¢:

; (x,q)ECI(4) IFF (Vu)lgcu—(Bn)xu|n)=0},  (L15)
: so that x € W* if and only if (x, @) € Cl(4).
j Another such example, due to Luzin {15}, is the set D < J, defined by:
D= {x:—@p)¥m) x(y(m) cx(yin+1)), (L16)

where [ cc j means i is less than j and divides j.
D is reducible to the closure of the Borel monotone inductive operator 4
on J X N, defined by: '

(x,n) € 4(K) IFF (x,n) €K
OR (Vi) 1{n o x(i)) (1.17)
OR (Yj> D(x,n- j)EK.
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It is easily seen that (x,n)& Cl(d4) if and only if there is a y such that
n o x((0)) and, for each i, x(y(i)) is less than and divides x(y(i + 1)). Thus
D = {x: (x, 1) € Cl(4)}. '

It is easy to conmstruct a continuous map ¢: 2%+ J such that W* =
¢~ (D). Leét sg,8,.., enumerate S.and let p,, p;,.., enumerate the prime
numbers, both without repetition. For §=(mg,...m,_,) let f(s)=

Phme . g BT hmp SO that st if and only if
f(s)| £(1). Define the map ¢ by
x)(n) = p, if x(s,) =0
¢(x)(m)=p (54) (L18)

=f(s,)  if x(s,)=1

We next consider the definition of an analytic set by means of a sieve. The
~reader is referred to Kuratowski and Mostowski [14] for historical
background, o ' o g
Let X be a Potish space. For our purposes, a sieve is a map L from § into
the space of closed subsets of X such that if s & ¢, then L(s) 2 L(#). (A more |
general definition is possible but reduces to this situation {5, p. 21).) For
each x in X, let J,(x) = {g: x € L(g)}; each of these sets is a regular subset of
S. The analytic set A(L) defined by the sieve is

A(L) = {x: (Qu)(Vn) x € L(u]n)}. (1.19) .
The coanalytic set C(L) defined by L is X — A(L), that is,

C{L)= {x: (Vu)(3n) x & L{u| n)}

(1.20)
= {x: I,(x) is well-ordered by <}- :

The second equality is of course a consequence of Lemma 1.12,

For example, let L(g) = {x: 0 € g x(0) = 1} define a sieve on the space
25, Then C(L) is the set W* defined in (1.12). . _

For a second example, for each g={My,m_)ES; let
L{(tgun my_)) = X EL: (Vi< k= DF) x()=Q+mg)- s @+ m}
Then C(L) is the set D defined in (1.16).

The fundamental result, due to Sierpinski {27}, is that any coanalytic
subset of a Polish space can be given by a sieve in the above manner. Thus
the set W of well-ordering of S can be thought of as a “universal” coanalytic
set in the following sense.

ProposiTioN 1.21. If C is a Y1} subset of a Polish space X, then there is
a Borel map w: X 25 such that C =y~ '(W).

Proof. Just let y(x)(s)=1IFF x€ L(s). §
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If X is the space J of irrationals, then the sets L(g) can be taken to be
clopen and the map w can be taken to be continuous. As a consequence of
(1.13) and (1.18), the sets W* and D are also “universal” ! sets.

Now for any sieve L, the set C(L) can be written as the union of the &,
Borel sets

C® = {x: I,(x) is a well-ordering of type <a}, C(122)

for @ < w,. The important Boundedness Principle of Lusin and Sierpinski
states that if B is a X! subset of X and B € C(L), then B is included in some
ce.

The expression of C(L) as the increasing union of the Borel sets C* is
similar in form to an inductive definition of C(L), but does not in general
correspond to any inductive definition. (For example, whenever C°® = C*!
for.some a < @,). In the remainder of this section, we give a Borel monotone
inductive definition for the coanalytic set C(L), proving Theorem 1.6(d), and
established a general “Boundedness Principles” for such inductive
definitions. - *

-Given a sieve L, define the inductive Borel monotone opérator 4, over
X XS as follows (Compare with 1.14.)

(xqyEA4(K) TFF(@)(x,9)€EK
OR (i) x & L{q) | (1.23)
OR (i) (Vi)(x, g * N E K.
It is easily seen that, for all x and g¢:
(x.q)ECi4,)  IFF (Vu)lgcu—@n)x&L|n)], (1.24)
50 that
x€CL) IFF(x0)€ Ci{4,). (1.25)

Theorem 1.6(d) follows from these considerations, since any T} set can be
given by a sieve L and therefore by the corresponding monotonc Borel
operator 4 over X X S and since § can be embedded in J.

If (x,9) €A4'=d4Y @), then x €& L{g). So, (Vi)x& L(g*1i) and (Vi)
(x, g % i) € 4'. It can be seen by induction on a that

(6, ) € 4% = (Vi) (x, g ¥ ) E 4. (1.26)

" It should be noted that the levels of the inductive definition of the set C(L)
using the operator 4, do not correspond exactly to the levels C°. For each
countable ordinal a, let B® = {x:(x, 0) € 47}. For x& C and g € I,(x), let
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{g|, be the image of ¢ under the natural isomorphism of the well-ordered set
I,(x) with an ordinal. It can be seen by induction on | g}, that, for any x and
g, (x, ) € 419+ 1, It follows that, for each countable ordinal a, C* € B Itis-
not true in general that B* < C°. '

On the other hand, there is a Borel monotone operator I" over X X § such
that for each ordinal a

C*={x:(x,0) €I
The operator I is defined as follows

xpelK)~ ()(xg €K OR
(i)x € L(g)and Vs[(sEL(g) Vs <g)= (x5 E K.

It can be seen by transfinite induction that (@) = {(x, ¢): 6({,(x) T ¢) < a}.
The Boundedness Principle of Lusin and Sierpinski can now be obtained as a
corollary of Theorem 1.6(g) as follows.

Let A be an analytic subset of X. If 4 < C(L), then 4 X {0} <CIT. By
Theorem 1.6(¢) there is some a < w, so that 4 X {0} €/°* which means
AcCo

2. PROOF OF THE INDUCTIVE DEFINABILITY THEOREM

Parts (a) and (d) of Theorem 1.6 were proven in Section 1. In this section,
the remainder of the theorem is demonstrated.

The key fact is that, for any Borel operator 4 over a Polish space X and
any fixed x € X and K < X, the determination of 4(K) at the point x depends
on only countably much information about K. More precisely:

LemMMa 2.1. (a) If 4 is a Borel operator over the Polish space X, then
for any x € X and K S X, there are countable sets US K and VS X—K
such that, for any set M with US M and V < X — M, x € A(K) if and only if
x € A(M). :

(b) If I is a £} monotone operator over X, then for any x € X and
Kc X, x € [(K) if and only if (for some countable U< K) x € I'(U).

(c) If I is a 11} monotone operator over X, then for any x € X and
KS X, x € I'(K) if and only if (for all countable V=X —~Kyx€I'(X — V).

Proof. Part (a) can be seen by induction on the class of Borel operators.
We now prove part (b); the proof of (c) is similar. Let the X! monotone
operator I" be given by x € I'(K) IFF (3y)(x, y) € 4(K X ), where 4 is
Borel. Let x and K be given with x €& I'(K); choose y so that (x, )€
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AKX Y) By part (a), there exist - countable . USK XY"' and
Vo (X —K)X Y such that whenever M2 U and (X X Y)—M2V, then
(x, Y)E AM). Let T=proj(U); T is a countable subset of K. Now
TXY2Uand (X -T)X Y2V, so that (x, y) € 4(T X'Y) and, therefore,
x € I(T). This proves the direction (=) of part (b). The other direction of (b)
follows from the monotonicity of I. §

This lemma has several applications. ‘

First of all, let I" be an inductive Borel operator. Let K =I"*'{¢) and
suppose that x € I'(K); let U and V be given by part (a) of Lemma 2.1. Since
U is countable, it is included in some countable level of K. Let a be the least
countable ordinal such that Uc I®(¢) and let M=TI°(¢); of course,
Vo X —Kc<X— M. It follows that x € I'(M) =I*(¢) < K. Thus [I'| < w,
as claimed. The argument when I is X| and monotone is similar. This
establishes two-thirds of Theorem 1.6(f). The proof for Il} monotone
operators will be given later.

The second application of Lemma 2.1 is the following.

PROPOSITION 2.2. The family of I} (resp. I1}) subsets of a Polish space
is closed under X! (resp. Y1,} monotone operators.

Proof. Let Y be the Polish space X™. If I'is ] monotone, let MSX X Y
be {{x, (¥,)): X € ({5, ¥1»-1)}- Let 4 be a Borel operator over X X Z so
that x€IK)e3z{x,z2)EAK XZ). Then M=m;,(B), where
B={(x, (y,), 2): (x,2) € A({Yg» ¥1 -} X Z)}. It can be checked that B is a
Borel set for each Borel operator 4. Thus, M is I} and for any(_ﬁ)ﬁA cX,
I4) = {x: (3)](x, ¥) € M & (¥Yn) (y, € A)]}, so that I'(4) is also E}.

If I'is THL, let M be {(x, Y, Vs ): X € DX — { Pos Y1 })}- Then M is TL
and for any MC& X, I'(C)= {x: (V»)[x, ¥)EM OR (@n)(y,€ C}]}, so
that I(C) is also 11}. B

Part (b) of Theorem 1.6 is of course an immediate corollary of this
proposition. ‘

The third application of Lemma 2.1 involves the family of fixed points of
an operator. 4 set K is said to be a fixed point of the operator I' if I'(K) = K.
Now let I' be a fixed I} monotone operator on a Polish space X. Our goal is
to show that the closure of I is coanalytic, which will yield part (c) of
Theorem 1.6.

LEMMa 2.3. CH{IN = () {K: K is a co-countable fixed point of T'}.
Proof. Let C=ClI) and suppose x& C. We will construct a co-

‘countable fixed point K with x¢& K. By Lemma2.1(c), there is a co-

countable B, 2 C such that x & I'(B,). If I'(B,) = B,, then we are finished; if
not, let 4, V... enumerate I(B,)—B,. Since B,2C=I(C), each
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. & I'(C). As above, for each i there is a co-countable D; 2 C such that
y, €I(D). Let B,=B,N{){D;:i€N}; then B, is co-countable, By =
‘B, 2C and each y; € I'(B,), that is, [(B,) < B,. Continuing in this manner, -
we obtain a descending sequence {B,: n € N} of co-countable sets such that,
for all n, C<I(B,;,,)S B, and x& B,. Finally, let K= {B,;nENY};
then x& K, K is co-countable, and I'(K)S (N {I(B,,:: neNjc
() {B,:nEN}=K, so K is a fixed point. 1§

Now let YmX” as above and let M C Y be

(Gor yom i T — [yain ENYEX — {3ain ENDY

o (2.4)
_ = {{(Vos Yis) (Vn)y,,GEF(X-—w{y,,:_rzEN})}.
Then M is E! and it is clear from Lemma 2.3 that, for any x,
x€CUT)  IFE(Yy)y € M- (¥n)(p,# %)} " (2.5)

This completes the proof of Theorem 1.6(c) in case A =@ by demonstrating
that CI(I') is a I set. To complete the proof of (c), let A be a I} subset of Y
and define a coanalytic monotone operator @ by setting P(K) = I'(4 W K).
Since ®2(@) = I"*(4), for all a > 0, CI([;4) = CI(®). Thus, Ci{I; 4) is .
Recall the derived set operator from Section 1. The implication of
Lemma 2.3 is that the largest dense-in-itself subset of any set K is the union
of the family of countable subsets of X which are dense-in-themselves.
Finally, we demonstrate the Boundedness Principle: for inductive
definitions, Theorem 1.6(¢). The. proof of this Principle requires some
discussion of the notion of a pre-well-ordering associated with an inductive
operator I" over the space X: '

xl.=(leastg) x € I, if x € CYN), '
| x| = (least @) .( ) 2.6)
= 00, otherwise.

This induces a pre-well-ordering on X. :
Suppose now that I' inductively defines a subset of X and 4 induétively

defines a subset of Y. Define
Rt y)  IFF|x| <|ply & x€ I o
S(x,y)  IFF|x|; <|yls & x € CKI). -

It was discovered by Kunen that a simultaneous inductive definition can
be given for R and S using the following identities: (See Moschovakis |20,
p-27}]) | | , |

R{x, y) IFF x€ I'({x': S(x', y}i %

- (2.8)
S(x, y) = IFF y € A({y': —R(x, y')}). -
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Suppose further that X and Y are Polish spaces, that I’ is TI; monotone
and 4 is A! monotone. In view of our remark following Theorem 1.6, we can
assume that I and 4 are also inductive. Keeping (2.8) in mind, define a i
monotone operator 4 over {0, 1} X X X Y by:

0, x, y) € A(K) IFF x € I'({x': (1, %', y) EK});
(1x, ) EAKK)  IFF y&4({y': 0x, y')€K}))

Now, for any x and y, R(x, y) il and only if (0, x, y) € Cl(A4) and S(x, p) if
and only if (1,x »)€ Cl(4), so that both R and S are M. This is a
generalization of a result of Lusin and Sierpinski. (See [13})

Now suppose 4 is I} in X, 4 € CI(J), and let a=sup{|x|p+ 1: xE 4}.
Then

2.9)

yEA*  IFF (3x)(x € 4 & ~S(x, »))s (2.10)

so that 4 is also analytic. But if 4 is the inductive definition given in (1.10)
of the set W, it follows that a is countable. Since 4 & 1'%, this completes the
proof of part (¢) of Theorem 1.6, when P = (.

Given an arbitrary coanalytic subset P of X, define a coanalytic monotone
operator @ by @(K)=I(PUK). Then @ is I1} monotone inductive and it
can be shown that @%(¢)=I=(P), for all a> 0. Now if 4 is an analytic
subset of X and 4 € CI(I; P), then A c CI(®), which implies by the above
that 4 « @ for some a < w,. Thus, A « I'*(P) as desired.

Now for any x in Ci{(I'), {x} is an analytic subset of CI{I’ ) and is therefore
included in some countable level. It follows that, for any 1! monotone
operator I, |I'| € w,. Together with the first application of Lemma 2.1
above, this completes the proof of the final part of the Inductive Definability
Theorem.

The following is an immediate consequence of Theorem 1.6

CoroLLARY 2.11. If I' is a A} monotone inductive operator, then CW{I")
is Borel if and only if {I'| < w,; i I' is N} and monotone, then I < w, if
CY(I) is Borel.

In particular, a coanalytic set C is Borel if and only if its “sieve” inductive
definition (1.16) closes at a countable level. Also, this gives an &lternate
proof of the fact that the set W defined in (1.9) is not Borel.

3. THe FAITHFUL EXTENSION PRINCIPLE

In this section, we consider the application of the Inductive Definability
Theorem to the “faithful extension” problem of [5]. This is in preparation for
some new results of this type which are demonstrated in Section 4.
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Let Y be a Polish space and P a property of subsets of Y, P is said to be
monotone decreasing  if K<M and P(M) imply P(K) and monotone
increasing if K< M and P(K) imply P(M). For example, the property of
being countable is monotone decreasing; the property of being dense in Y is
monotone increasing. P is monotone increasing if and only if the dual
property P*, defined by P*(K) IFF P(Y — K) is monotone decreasing; P is
monotone decreasing IFF P* is monotone increasing.

An obviously equivalent formulation can be given in terms of monotone
operators: £ is monotone increasing if and only if there is a monotone
operator @ such that, for any K, P(K) IFF 8(K)=1Y; P is monotone
decreasing if and only if there is a monotone (but not inductive) operator 4
such that P(K) IFF A(K) = @&. If the operator 6(4) is I, I1}, etc., then the
property P is said to be E! (I}, etc.) monotone increasing or decreasing.
Notice that if P is I1} monotone increasing and given by the operator d, then
P* is £! monotone decreasing and is given by the dual operator 6*, defined
by 6%(K)= ¥ —6(Y — K), and conversely. ‘ '

The following is an immediate corollary of Lemma 2.1.

ProrosiTioN 3.1. If the property P is I} monotone decreasing, then, for
any K, P(K) IFF (for every countable M < K) P(M); if P is I1; monotone
increasing, then P(K) IFF ( Jor every co-countable M 2 K) P(M).

The property of being scattered is I] monotone decreasing; the operator 4
is defined by A(K)=the largest subset of k which is dense-in-itself. The
property of being nowhere dense is also I monotone decreasing; the
operator A4 is defined by 4(K)="the interior of the closure of k. Other
examples are the properties of being totally bounded and of being well-
ordered (given a Borel linear ordering of the space Y).

These properties were studied in [5], where they were defined by the
following alternate characterization.

PROPOSITION 3.2. A property P is L} monotone decreasing if and only if
there is some 1 subset V (the test set) of YV such that, for any K S Y, P(K)
IFF KV V.

Proof. (—) Let the test set ¥ be {(yg, ¥1se): P{y,in € N})} and apply
Proposition 3.1. («) Define a E} monotone operator by A4(K ) = the union of
the sets {y,:n €N} such that (Yo, ¥,») € V: it can be checked that
AR)=@ ifand only K¥c V. §

For example, K is finite if and only if K¥C V= {{(Jgs Y1 0): { ¥y HE N}
is finite} = {(Jg, ¥y or)s Gr)(Ym)(3k < 0}y, = pil; here Vis actually an F,
subset of Y™, _ ‘

We now present the two basic results concerning monotone properties.
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The first is a generalization of Theorem 1.8 and second is & generalization of
Theorem 1.9.

TreoREM 3.3 (Definability). Let A be an analytic subset of the product
X X Y of Polish spaces and let P be a L{ monotone decreasing property of
subsets of Y. Then D=|{x€X: P(4,)} is a coanalytic subset of X.
Equivalently, if C is a coanalytic subset of X XY and P is a Il monotone
increasing property, then {x € X: P(C,)} is coanalytic.

Proof. Let @ be a I1) monotone operator such that P(K) IFF @(K)=Y
and let 4 be a Borel monotone operator over X X Y X § such that (x, y) € C
IFF (x, », 0) € Cl{4) as in (1.23). Define the TI; monotone operator I over
(XX YXS)UX by: . , -

FK) = A(K N (XX Y X S)U bx: O({y: (5, 5 0)EKD =Y} (3.4)
Thén; for each ordinal a,
o= 440U fx: P(Ly: (3 3, 0) €4°D) (3.5)
so that |
CI(r) = CA) U D. T 36)

Now CI(I") is coanalytic by Theorem 1.6(c); since D = Cl(I) M X, it follows
that D is also coanalytic.

THEOREM 3.4 (Faithful extension/reflection). Let 4 be an analpic
subset of the product X X Y of Polish spaces and let P be a X! monotone
decreasing property of subsets of Y such that P(A,) for all x in X, Then there
is a Borel B2 A such that P(B,) for all x in X. (Equivalently, let C be a
coanalytic subset of X X ¥ and let P be TI} monotone increasing property
such that P(C,) for all x. Then there is a Borel B < C such that P(B,) for all
x in X.

Proof. Let C, P, ©, A and I be as above in the proof of Theorem 3.3 and
assume that P(C,) for all x in X. Then the corresponding set D=
{x: P(C,)} =X, so by (3.6), X < CI{). By Theorem 1.6(¢), there is a coun-
table ordinal a such that X < I°. This implies, by (3.5) that for all x
P({y: {x, y,0) € 4°}). Now let

B={{x, y): (x, », 0) € 4°}. (3.8)

It is clear that the set B has the desired properties. H



72 : CENZER AND MAULDIN
4. MEASURE AND CATEGORY

In this section, we obtain results analogous to Theorem 3.3 and 3.4 for the.
properties of “largeness” in the sense of measure and category, which are
monotone. but not in general II;. For example, all co-countable subsets of
[=1{0, 1] have Lebesgue measure I, so this property cannot be not by II,
monotone by our previous results. Let us fix the setting and make some
definitions.

Let X and Y be Polish spaces. There are two versions of largeness
connected with the geometric notion of category; that of being non-meager
and of being co-meager. Recall that a subset X of Y is said to be of the first
category, or meager, if it is the union of countably many nowhere dense sets
K is co-meager if ¥ — K is meager.

A subset of ¥ can also be said to be large provided there is a probability
measure defined on the Borel subsets of Y which gives this set positive
measure or measure 1. We shall deal with a more general notion than being
large with respect to one fixed measure. We shall allow the measure to vary
in a measurable fashion.

A conditional probability distribution on XX Y is a map g from
X X Z(Y), where £(Y) is the family of Borel subsets of ¥ such that for each
x in X, g, =p(x,-) is a countably additive measure on #(Y) such that
4 (Y)=1 and, for any fixed Borel subset B of Y, the function (-, B} is Borel
measurable (equivalently, {(x, r): u,(B)=u(x,B)>r} is a Borel subset of
X X I). For each.x, the measure u, has a unique extension to the family of

~measurable sets, where u _-measurable is taken in the usual Caratheodory
sense. In what follows, we shall also use g,(E) to denote the measure of a g,-
measurable set E under this extension. _

Fix a conditional probability distribution 4 on X X Y. The following
theorems are proved in this section.

THEOREM 4.1 (Definability). If C is a coanalytic subset of X X Y then
the followmg sels are also coanalytic:
(a) () pxC)>ricX X,
(b) {x: X,is non-meager},
(c) {x:C, is co-meager}.

THEOREM 4.2 (Reflection). If C is a coanalytic subset of X X Y such
that each section C,, respectively,

(a) has the property that p(x,C,) > r (for some fixed r),
(b) is non-meager, |
(c) is co-meager,
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then there is a Borel subset B of C such that each section B, respectively,

(a) has the property that u(x, B} > r,
{b) is non-meager,
{c) is co-meager.

In each of these theorems, the condition “measure >r” can be replaced by
the condition “measure >r.” :

Let C now be a fixed coanalytic subset of X X Y and let 4 he the Borel
monotone inductive operator over X X Y X § with (x, y) € C if and only if
(x, »,0) € Cl{4) as defined in (1.23).

Let C(x,q)={y: (x, »,q) € Ci(4)} - and, for each a, let C*(x,q)=
{y:(x, y,q) €4} Thus, C'(x,q)={y:(xy)€L(g)}=XXT)~-L(g)
Clearly, C%(x,q) S C°(x,q), if f < a and C(x,q)=U C*(x,q). .

Now, for a>0, if (x,y,g)€d4°+!, then according to (1.23) either
(x, y,q) € 4%, in which case, according to (1.26), (Vi)(x, y,g * i) €4", or
(x, ¥) & L(g), in which case (Yi)(x, y) & L(g * i) and (Vi)(x, y,q * i) € 4% or
(Vi)(x, y, g * i) € 4°. Thus we have

LEMMA 4.3. For any ordinal a > 0, any x€ X and g€ §:

o

C=*(x,9)= [} C*(x,q*1).

i=0"

The plan for proving Theorem 4.1 is to start with the obvious definability
of C' and proceed inductively using Lemma 4.3 and standard properties of
measure and category. It will be very helpful if the intersection of Lemma 4.3
is decreasing, that is, for i < j,

Cox, g * 1} 2 C*(x, g * J)- (4.4)

This is not true in general; however, it is always possible to tonstruct
a similar inductive definition of C for which it is true. For example, define
the monotone, inductive, Borel operator 4, over X X ¥ X{J2., S, by
(s 7 (@) ees ) € 4o(K) & (%, 7, (1590)) € K 01 (Vi 0) [(x, ¥) € L(g))
or (%) ((x» », (g * /) € K)). Then (x, ) € C(L) = C IFF (x, y,(0)) € Cl(d,).
If one sets CF(X, (7). 4,)) = {12 (%2 ¥ (@150 4,)) € 45}, then

CotH(x, (g1 €2))

LWt ‘
= () [CE(x, (g, * Oseues 4, * Myeee, @ * Oensy g, % 1))

m=0
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This is a decreasing sequence. For simplicity, we assume that the sets
C°(x, g) described above satisfy condition (4.4).
Now given the sets C and C*(x, g) as described above, define

D= {(x,q,7): #1(C(x, g)) > 1} .
and, for each a,
D® = {(x, g, r) e (C*(x, g)) > r}. )
Since C, = C{x, 0) for all x, it suffices for Theorem 4.1(a) to prove that D
is T1}. o | -
Now D'=){D(g): g€S}, where D(g)=1{(5¢7): m{XXY)~
L(g)) > r}. Since each (XX Y)~L(g) is open and u is a conditional

measure, each D{g) is also Borel and therefore D' is Borel.
It follows from (4.3) and (4.4) that, for each a >0,

p(CEH e, g)) > r
if and only if
3 > V) pC(x, g + D) > 1,
so that |
(x, g, r) € D®* ' if and only if (3t > r)(¥i)(x, g * i, 1) € D*.
Of course, for lil‘;lit A, p(C*x, q)) > r if and only if
(Fa<d)  (@lC(x,q)) > 1)

" With this in mind, define a Borel monotone operator I over X X § X I by:
(x.q,r)ET(K)
if and only if |
@) (x.qr)ED’
or
(i) (3r > r)(vi) (x,g*i,)EK
It can be seen by induction on a that
I = D= {(x,q, 1): £,(C*(x, g)) > r} for all ordinals a. (4.5)
Thus, D = Ci{I).
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It follows that, for any x and r:
B, (C.) > rifand only if (x, 0, r) € Cu(r). (4.6)

Since CK{I") =D is coanalytic by Theorem 1.6(d), {(x, r):u,{C)>r}is
also coanalytic. '

Of course, u(C,)>r if and only if (Ve<n)ulC)>0 therefore
W, r)ip(C)2r) is also coanalytic. This completes the proof of
Theorem 4.1(a).

Now suppose that each section C, has measure > some fixed real r. Then,
by (4.6), the Borel set X X {0} X {r} is included in CI(I"). It follows from the
Boundedness Principle (Theorem 1.6(e)) that, for some countable a,
Xx{0}x {ricrl® By (45) w(Cx,0))>r for all "x€X. Let
B = {(x, y): y € C*(x,0)} = {{x, y): (x, »,0) € 4*}. B is a Borel subset of C
by Theorem 1.6(a). For each x€ X, B, = C=(x, 0), so that y.(B,) > r by the
choice of a.

If each u,(C,) > some fixed r, then for rational ¢ < r, each g (C,) > . By
the above, there are Borel sets B(f) < C with each u(B()) >t Let B=
U B(); it is clear that B is a Borel subset of C and that each g (B,) > r.
This completes the proof of Theorem 4.2(a). ‘

We now turn to the category portions of Theorems4.l and 4.2. The
following is obvious

{J {4,: i € N} is meager if and only if (Vi) 4, is meager. (4.7)

Let {G,},.., enumerate a basis of non-empty open balls for the space Y. The
following lemma is a consequence of the Baire category theorem and the fact
that in a Polish space all analytic and coanalytic sets have the property of
Baire.

Lemma 4.8. Let K be a coanalytic or analytic subset of the Polish space
Y. Then (a) K is co-meager if and only if (YmY(G,MK is non-meager); (b)
K is non-meager if and only if 3n)}(G,— K is meager).

If 5= (g, My My_y) let Ge=G M- O Gy, 8ls0, set Gyi=1Y. As
our basis notion of largeness in category, we take the property “G,NK is
non-meager.” :

As the inductive definition of a coanalytic set is based on countable inter-
sections and unions, we need to determine the largeness of (oA, and
UB., 4, in terms of the largeness of the sets 4,. One of these is trivial. We
assume the sets 4, have the property of Baire.

G,M (U A k) is non-meager (4.9)
x

if and only if (3k)[G,M 4, is non-meager|.
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Now G,N () 4)=N{G,MNA,) is non-meager if and only if @niG, —~
N (G, M A,) is meager], by 4.8(b). But '

6.~ (6.N4)=U G, — (G,N4)
so by 4.7, G, () A, is non-meager if and only if
| @AnVK)|G, — (G, M A,) is meager]
if and only if ‘
@AY = G,)U(G,NA4,)is co-meager}.
Now by 4.8(a), (Y — G,,)U (G, M A4,;) is co-meager if and only if
(vm){(G,, — G,) U (G,., N A4,) is non-meager].

Finally, we have

[+ #]
G, N () 4, is non-meager (4.10)

k=0
if and only if
@En)(VK)(Ym)[G,, — G, is non-meager or G, MA,in non-meager|.
Now let the sets C and C2(x, g) be as previously described. Define

D = {(x, g, 5): G,N C(x, g} is non-meager}

and
D® = {(x, g, s): G, M C%(x, g) is non-meager }.

As for the measure case, it will be shown that D is the closure of a monotone
Borel operator I” and is therefore a I} subset of X X S X §.

Recall that each C'(x,q) is open. Now, in a Polish space, an open set is
meager if and only if it is empty. Let 7 be a countable dense subset of Y.
Then, for any x and g, G,MNC'(x,q) is non-meager if and only if
(31 € TY|t € G,N C'(x,¢)]. Thus D' is an open subset of X X .S X §, where
S has the discrete topology. ..

It follows from 4.3 and 4.10 that, for each a > 0, G, C**}(x,q)) is non-
meager if and only if @n)(Vk)(¥Ym)|G,,— G, is non-meager or
Gyom M C%(x, g % k) isnonmeager}, so that (x, g, S)ye p**'if and only if

En)(Vk)YYm)|G,, — G, is non-meager or (x,q * k,s* m)€ D"}

v,
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Of course, for limit 4, G, M C*(x, ¢) is non-meager if and only if
| (3a < A)[G,M C*(x, g) is- non-meager }.
Now define the operator'l’ ‘over‘_X XSXS by: .
(x, g, 5) € I'(K)
if and ounly if

i) (x,gqs5)ED or ’ _ _
(i) (@En)(VkYYm)|G, — G, is non-meager of (x,g*xk,s*m)EK].

It can be seen by induction on a that | _
e =D"= {(x, g;s): G;NC*(x, q) is non-meager} - (4.11)

It follows that, for any x and s: S
Thus, D = CI(I') and by Theorem 1.6(d) is IT;.

G, M C, is non-meager if and only if {x, 0, s) € Cli(I"). (4.12)

Now C, is non-meager if and only if G, M C, is non-meager and C, is co-
meager if and only if (Vs) [G,NC, is non-meager |. Both of these relations
must therefore be coanalytic. This completes the proof of Theorem 4.1. |

Now suppose that each section C, is non-meager. Then, by (4.12), the
Borel set X X {0} X {0} is included in Ci(I'). Choose a countable ordinal a,
using Boundedness, such that X X {0} X {0} &1 and let B={(x, y):
(x, »,0) € 4%}. It is clear that B is a Borel subset of C each section of which
is non-meager.

ff each C, is co-meager, then X X {0} X S<CI(I). The rest of the
argument is the same. '

This completes the proof of Theorem 4.2. §

" Let us remark that it follows from Theorem 4.2 that if each section of a
coanalytic subset C of X X Y has measure r, for some fixed r > 0, then C
includes a Borel set B such that each section of B has measure r. Thus each
B, is the same size as C,. However, if we only assume that each C, has
positive measure, then there may not be a Borel set B & C so that for each x,
#(B,) =u,(C,) For example, let £ be a coanalytic non-Borel subset of [
and let C= (EXI)U((—E)X ]0,4]). Then C is a coanalytic subset of
IX I If B were a Borel set, B< C and for each x, A(B,)=4(C,), then
according to Theorem 4.1, {x: A(B,) =4} = I — E would be a Borel set. Here
A is Lebesgue measure. '
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5., EFFECTIVE DEFINABILITY

In this section we obtain effective versions of the results in Sections 1 and
2. These are applied to give a new characterization of the least ordinal p(x)
not recursive in x and several theofems, due to Sacks [22], Tanaka {29, 30]
and others, mostly concemning p(x).

We begin with a brief review of the field of effective descriptive set theory,
which is a blend of topology and logic first developed by Klieene [10] and
Addison {1}

The topological notions of open, closed, Borel and analytic sets have
effective analogues. The fundamental concept here is the recursive function,
which is the analogue of the continuous function.

A mapping f from a subset of N* X J' to N is said to be partial recursive
(p.r.)if it is defined in one of the following ways, where k, [, and n vary over
N, i < j, k<1, m= gy, m,_,) varies over N* and x = (xg ., X;_y) varies
over J'. (For any m, x, f, and g, f{(m,x) >~ g(m, x) means either f(m, x)=
g(m, x) or both are undefined).

(i) f(m,x)~0.

(i) Sflm,x)>=m,.
(i) Sf(m,x)~m;+ 1.
(v) fom,x) = x,(m)

(v) S(m,x) = glge(m, x),..., h,_,(m, x), x), where g, by s By
n are previously defined p.r. functions. (5.1)

(vi) SO, m,x)= g(m, x)
S(p+ L,m,x)=~ k(p,m, f(p, m, x),x), where g and h are
previously defined p.r. functions.

(least p)| g(p, m, x) =0 and (V1 < p) g(t, m, x) > 0]
(vii) f(m, x)=~ if such p exists;
undefined otherwise.

(Note that there are only countably many p.r. functions).

A p.r. map f from D < N¥ X J' to N is said to be recursive if D = NEx I

For a fixed real z, fis said to be p.r. in z if there is a p.r. map g such that
S(m, x)~ g(m, x, z) for all m and x.

A subset of N*xJ' is said to be recursive {in z) if its characteristic
function is p.r. (in z). :

Clauses (i) through (vi) generate the primitive recursive functions. For
example, if f(0,m)=0 and f(p+ 1, m)=f(p.m)+1 for all p, then f is
primitive recursive. Of course f is just the addition function.

Also primitive recursive are the coding functions #, defined by #(g) =1
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and #(Sqyey 5;) = 21103145 | ... pltSk (where p, is the kth prime), and the
set Seq = {#(s): s € S} ' :

Clause (vii) introduces partial functions. For example, let g(m, n) =m +n
for all m—then g is primitive recursive. Now let f'(n) = (least m) g(m, n} =0.
Then fis p.r. and has domain and range of {0}. Also partial recursive are the
* functions #; and [k, defined by [A(s)=k and nds)=s, when s=
#(Sgseees Sk_1)-

A real number x €J is a function from N to N; countably many are
recursive. In particular, for any

s =(5(0), s(1 )., sk — 1} € §,

the real (s(0), s(1),..., s(k — 1), 0,0, 0,...} is recursive. Thus the recursive real
numbers are dense in J. In fact, all algebraic numbers are recursive; the
standard transcendental numbers such as e and & are also recursive,

The. partial recursive functions can be enumerated effectively as
Jos fis S1en to satisfy the following.

THEOREM 5.2. The function f, defined by f(n, m, x}= f (m,x) is partial
recursive.

The reader is referred to Hinman [8] or Rogers {21} for further details.

Now a map ¢: J'—J is said to be recursive (in 2z} if the map f, defined by
f,(m, x) = g(x)(m) is recursive (in z). For example, let ¢: J* -+ J bé defined
by xo y=¢(x, y) = (x(0), y(0), x(1), y(1),...). Then

fomx, p)y=yk) if m=2k;
= x(k) if m=2k—1.
It can be checked that f, is recursive. Such functions as multiplication and

the “less than” relation can also be shown to be recursive. An example of a
non-recursive function is the map E: J X J — N, defined by

Ex,y)=1 if x=y;
=0 if x# .

The recursive functions are the effective analogue of the continuous
functions. .

Recall that a map ¢: J'—J is continuous if and only if whenever
¢{x)(m) == n there are finite sequences s; < x; such that for any y with each
$;< ¥iy #(p)m)=n. The following lemma is proved by straightforward
induction on the class of partial recursive functions.

LEMMA 5.3. Let [ be a partial recursive map from N*x J' into N such
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that f(m,x)=~n. Then there are s;,cx; such that for any ) e,
S(m,y) = n whenever each s;c y;. : ‘

It follows immediately that if ¢: J'~ J is recursive in some fixed z € J,
then ¢ is continuous. The converse is now demonstrated. For simplicity, let ¢
be a continuous map from J to J. Let A be the set of #(s * m » n) such that,
for any x, s c x implies ¢(x)(m) = n. Define z by: '

z(s* m) = #(0, n) i (s, mn)€E 4;
=#(1,0) if (Yn)(s,mn)é&A.

Now, let

[(x, n) m (least k) n;,(g(x * I-c'* m)) = 0.

In other words, f(x,-m) is least k so that the value ¢(x)(m) is determined by

(x(0), x(1),..., x(k — 1)).
Let

glx, m) = #(xf (x, m)) * m.
This codes the information needed by z to determine ¢(x){m). In fact,

 0x)m) = m,(z(glx, m)).
This establishes that ¢ is recursive in the real z which yields the following
proposition. : '
PROPOSITION 5.4. A function ¢: J'—J is continuous if and only if there
is some z € J such that ¢ is recursive in z. :

‘Recall that the basic open subsets of J are the intervals J [s]={u:s < u}
for s € S. Of course, the map ¥ is recursive, where

¥(s,u)=1 ifscu

== () otherwise.

Now any open set G is the countable union of these basic sets, so that, for
some real z:u € G if and only if (3p) ¥(z(p), u)= 1. A subset P of NexJ!
is said to be X9 (resp. IT%) in z provided there isan RS N k+1 s J' recursive
in .z such that, for all m and x:

P(m, x) if and only if (3p) R(p, m, x)
(resp. (Yp) R(p, m, x)).

paa.
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- PROPOSITION. 5.5." A subset' G of J' is open (resp. closed) if and only if
there is some z € J such that G is X% (resp 1%y in 2.

Proof This follows :mmedzately from Proposxt:on 5.4,

Similar comparisons can be made between. F, and ZJ sets and so forth.
More important here is the effective analogue of the analytic set. Recall that
any analytic subset A of J' can be defined by a Suslin scheme L of closed
sets so that 4 = {x: (Ju)(Vn)x € L(u|n)}. 4 is said to be £| in z provided
there is a subset R of N X J' recursive in z so that

= {x: (Qu)(Ym) R(u | m, x)}

A is I} in z provided J' — 4 is Z} in z, andzii in z provnded A is both /7] in
zand Z} in z »

PROPOSITION 5.6. A subset A of J' is analytic (resp. coanalytic, Borel) if
and only if there is some z € J such that A is X (resp. II}, 4}) in 2.

Remark. This correspondence can be extended throughout the projective
hierarchy. The reader is referred to Hinman {8] for further information on
effective descriptive set theory. ‘

We can similarly define the class of 4!, /1!, £ monotone operators over
N* x J'. Briefly, the Borel operators on N" X.J! can be assigned indices in the
manner of (1.7)—the operator 4 is 4}-in-z provided some index of 4 is
recursive in z. An analytic (coanalytic) operator defined as in (1.5) is Z1-in-z
({T}-in-z) if the corresponding operator 4 is.

ProposSITION 5.7. A monotone operator 4 over N* X J' is Borel (resp.
analync, coanalytic) if and only if there is some z € J such that 4 is 4, (resp.
L) in z. :

Remark. Theorem 3.2 directly implies the existence of universal
X1, 1%, 2}, [} and also universal open, closed, analytic and coanalytic sets.
This correspondence has given rise to the notation employed in descriptive
set theory. Thus, for example, analytic sets are said to be II} (or written in
boldface type) corresponding with the effective 17} (lightface).

As with the Borel sets, there will be a IT} operator which is universal for
the class of Borel operators. If 4, denotes the Borel operator over X with
index 7, then we have ®(K) = {(r, yY)EJ X X: y € 4 (K.)). There will also
be a universal IT)(Z}) operator for the class of coanalytic (analytic)
operators. These last two universal operators can be transformed into
monotone I7{(X}) operators which are universal for the class of monotone
coanalytic (analytic) operators, by applying Lemma 2.1. For example, let @
be a universal [T} operator, then let £2(K)=|{(r, y): for all countable
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ZcX—K,, yE® (X~Z)}. It can be checked that 2 is a monotone m
operator which is universa! for the monotone coanalytic operators.

There are only countably many I7} monotone operators; for each x € J, let
a(x) = sup{(least a)(x € I'*): T is I} monotone and x € CI(I')}. Thus each
a(x) is 2 countable ordinal. Those ordinals a for which some afx)=a are
called admissible. It is clear that they form a cofinal subset of w,. There are
numerous other characterizations of the admissible ordinals. Some of these
are given below,

LEMMA 5.8. For any x€J, a(x)=sup{(leasta)1€T"): I is bk
monotone in x and 1 € CH{I'}}. -

Proof. Recall that 1=(0,0,0,..). For any n€ N and u€J, let n¥u=
(n, u(0),u(1),..) and let u*=(u(1),u(2)..); for KcJ, let K{n)=
{x:n+ x€ K}. Now given JT} monotone 4 with x € re+t e define I, IT}
monotone in x, by

u€I(K)  ifandonlyif (u(0)=1and ut e N(K(1))or
(u=1and x* € K(1)).
It is clear that for f<a, IP=1%4" and that 1ere+?—re*!, Now
suppose we are given I, JI; monotone in X, such that 1 € I'**' — 1=, For
u, v €J recall that u o v = (u(0), v(0), u(1), p(1),..) for K J, let II(K)=
fu:uox €K} Let £2 be a universal monotone IT{ operator over JX.J

defined above. We nmay assume that I'=2,. Let F(K)=
Az o y: y € R2,(11,(K))}. Thus, :

xoyef(K) ifandonlyif y € I'I(K))

As in (1.25), x€C IFF (x,0)€CI(4). It can be assumed that Fis
monotone. Clearly xo 1 € ®*! — [=. Suppose, without loss of generality,
that x(0) =0 and define /7] monotone 4 by
u€A(K)  ifand only if («(0) = 1 and u* € F{K(0))) or
(0)=0and 0 * (u o I) EK). |
Then, for all §, 43(1)=I* and thus x€ I"**? — It
Of course the “1” in the statement of this theorem could be replaced by

any recursive real, natural number, or finite sequence. As a corollary to the
proof, each a(x) must be a limit ordinal. Another corollary is the following.

PROPOSITION 5.9. For any x, pE J, if x is 4} in y, then a{x) < a(y).

Thus, for any 4! real x, a(x) is the least admissible ordinal a{l). The
effective version of Theorem 1.3 can now be stated.
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THEOREM 5.10. (a) If 4 is @ monotone operator over J which is I} inz
and A< J is I} in z, then CI(I 4) is T} in z.

(b) For any C=J which is I} in z, there is a monotone operator A
over S X J which is A} in z such that

= {x: (x, 0) € Ci{4)};

(¢) If I' is a monotone operator over J which is I1} in z, then for any
subset A of C(I') which is Z| in z, A < =,

(d) I I' is a monotone operator over J which is 4} (resp 1)} in z, then
Jor each ordinal a < a(z) (resp. <a(z)), I'* is 41 (resp. H 1) in z.

. Progf. The proof is simply a reﬁnemem of that of Theorem 1.6. Some
remarks are necessary.

(a) CI(I’) is once again the intersection of all the co-countable fixed
points of [ if I'is [T} in z, this gives a II} in z definition for CI([).

(b) Suppose C= {x: (Yu){(3n) R(u|n, x) with R recursive in z. Then
C=C(L) where, for all x €J, I,(x) = {g: R(q, x)} and is recursive in x and
z. For any y € J, let p(y) be the supremum of the ordinals y for which there
is a well-ordering of § of length y which is recursive in y — p(y) is usually
called w{ by recursion theorists. (These recursive orderings were first studied
by Spector [28].) Recall the canonical 4} monotone inductive definition 4 of
C, given in (1.23):

(x, ¢) € (K} if and only if R(g, x)

(5.11)
cor {(Vi)(x,gxi)EK.

As in (1.25), xEC+w (x,0) € CI(A) If x€ C, then I,(x) is a well-ordering
of S recursive in z and x; it follows that (x,0)€ /%™ If | €C, then
(1,0) € P,

(c) Given z, 4 and I as described, let a be the least such that 4 < "
and define a monotone operator 4 which is 17! in z by

ued(K) ifand only if (4(0)=1 and u* € I(K(1))) or
(u=1 and 4 < K(1)).
Then 1€ 4°*' — 4% and therefore a < a(z).

(d) Fix z and let C be {n: f,(~, z) € W}, where W represents the set
of all well-orderings on N as described in (1.4). Of course, C is II! in z, but

not £ in z. Let the 4!-in-z monotone operator 4 over N have ciosure Casin
(1.11). Note that |4| < afz)) and |4]| < p(2).



84 CENZER AND MAULDIN

‘Now suppose that I' is any monotone operator IT' in z and that
1 75+ — % We will show that § < |4]. Recall from Section 1 the pre-
well-orderings R and S defined by . : :

R(x,y) ifandonlyif}x|,<|»|,and x€ Cl(I);

S(x,y)  ifand only if |x|. <|yls and x € CI(D).

Both R and S are T} in z and if B> |4], then, forany n€ N:’
neCld)  ifand only if —S(1,n). |

This provides a Z! —in—z definition of C, which is 2 contradiction; thus
B < {4} It follows that a(z) < | 4] < plz); thus |4] = al2).
Now suppose & < a(z); choose some n € 4°*! — 4%, Then '

re={x:x € CI(I'y and S(x, n)} .
and is therefore JT} in z o ’ s
e = {x: x € C(T') and @n)(n € CI(4) and S(x, n))
and is also ! in z. - _ | ‘ ' o
I_f I is actually 4], then the pre-well-orderings R’ .and 5, defined by
R'(x,y) . ifandonlyifix|, <|ylr and x € Ci(4),
S'(x,y)  ifandonlyif|x], <|ylrand y€ Ci(d)

are also JI! in z. Thus, given a < a(z) and neEA®* — 49,

re={y:=R'(% y))

and is therefore £ in z as well as T} in z.

We saw during the above that, for any z, a{z) € p(z). On the other hand,
let R be a well-ordering of a subset of N which is recursive in z and has
order type p. For n €N, let o(n) be the order type of R} n. Define a
monotone operator 4 over N which is 4} in z by

n € A(K) if and only if (Ym)|R(m, n)—» m € K}].
Then for any n, |n|, = o{n) so that [4]2>p. Thus a(z) > p(z).
PROPOSITION 5.12.  For all z €J, a(z)=p(z); that is, the supremum of

the ordinals a such that, for some IT, monotone I, z € "+ —re equals the
least ordinal which is not recursive’in z.
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Remark. Parts (c) and (d) of Theorem 5.10 were combined by A. Blass
and the first author in {3] to yield the following.

THEOREM 5.13. If the monotone inductive operator I is Ay in z, then
r*9 s the union of the 4'-in-z subsets of CI(I') and is also the union of the
Elin-z subsets of CI(I"). (Thus any other I with the same closure must
agree with I' at level a(z).)

The remainder of this section is devoted to some effective theorems
concerning measure and category.

Suppose that g is a countably additive probability measure on J. Then
{(s, q): u(J{s]) =g} is a countable subset of § XJ and is therefore Borel. If
this set is actually 4} in z, then g is said to be 4] in z. For example,
Lebesgue measure is 4}, We now present some simple refinements of
Theorems 4.{(a) and 4.2(a). )

PROPOSITION 5.14. If C < J is IT} (resp. 4}) in z and the measure p is 4,
in z, then {r: u(C) > r} is Hj (resp. 4;) in z.

Proof. Suppose that C = {x: (Yu)(3n)R(u|n, x), where R is recursive in
z, and that 4 is defined from R as in {(1.23). As in the proof of

Theorem 4.1(a), we can define a monotone operator 4, in z such that for any
a,q and r,

(g nnere if and only if
Jzf({x: (x,q)€d*)>r.
It follows that g(C) > r if and only if {0, r) € CI(I'); thus

(5.14)

{r:u(C)>r}is I} in z

that is, 4(C) is 1T}-in-z, as defined by Tanaka {29]. B

Now A= {(0,r):u(C)<r} is a Xi-in-z subset of CI(/"). By Theorem
5.10(c), there is some a < a(z) such that 4 < I'",

Let B = |x: (0, x) € 4*}; by choice, u(B) = u(C); by Theorem 5. 10(d),
is 4} in z. ‘This completes the proof of the following refinement of
Theorem 4.2(a).

THEOREM 5.15. If C<J is II} in z and the measure u is 4} in z, then
there is a A}-in-z subset B of C with u(B) = p{C).

Now suppose that an inductive definition I” which is /T}-in-z is given with
Cl(I = C, a subset of J. Of course, C is II}-in-z, so by Theorem 5.15, there
is some B<C such that B is 4} in z and p(B)=u(C). Now by
Theorem 5.10(c), B < I'*"¥. Thus u{C) = u(**").
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THEOREM 5.16. If the monotone inductive operator I' is I1} in z and the
measure y is 4) in z, then u(CY(I)) = p(I'*'*").

Now if a{x) > a(z), then there is some I7} monotone operator I" such that
x € CHI}~r=®, For each fixed I, it follows from Theorem 5.16 that
u(C{I"y—'I*®) =0, But there are only countably many such operators I".
This proves the following.

THEOREM 5.17. If the probability measure p is 4, in z, then
p(ixalx)a@)) =1 .

Note that the ordinal e(1) is the least admissible ordinal. Since Lebesgue
measure is 4} (in 1), we have the following theorem of Sacks [22].

CoroLLaRY 5.18.  {x:a(x)=a(l)} has Lebesgue measure 1.

Another corollary of 5.17 follows directly from Proposition 5.6.

THEOREM 5.19. If p is a Borel probability measure, then for some coun-
table ordinal a, u({x:a(x}< a})=1..

It should be noted that results 15, 16, 17, and 18 are essentially due to
Sacks [22] and Tanaka [30]. The analoguous results for category are due to
Hinman |7] and Thomason [31]. They are proved as were the above. We
consolidate them into the following.

THEOREM 5.20. (a) If C < J is IT} in z, then there is a 4\-in-z subset B
of C with the same category as C; (b) |/ the monotone inductive operator I' is
IT\-in-z, then I'*'* has the same category as CI(I'); (¢) {x: a(x) = a(1)} is co-
meager.

6. UNIFORMIZATIONS AND PARAMETRIZATIONS

Throughout this section, X and Y will be uncountable Polish spaces and C
will be a coanalytic subset of X X Y.

A uniformization of a subset E of X X Y is a subset F of E such that
E,#@ if and only if F, consists of exactly one point. The
Kondo-Addison-Novikov theorem |[11] asserts that C has a coanalytic
uniformization. We sha!l show that if each section of C is large, then C has
2% disjoint Borel uniformizations. We shall also show that C has a univer-
sally (absolutely) measurable parametrization.

A parametrization of C is a one-to-one map, g of X X Y onto C such that
for each x, g(x,-) maps Y onto C,. Such a parametrization is said to be
universally measurable provided that both g and g~' are measurable with
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respect to the g-algebra of ali universally measurable sets. This o-algebra is
generated as follows. For each finite measure g defined on the Borel subsets
of X X Y, let # () consist of all the subsets of X X Y which are measurable
in Caratheodory’s sense with respect to the outer measure generated by n.
The intersection of all the families .#(u) forms the family of universally
measurable- sets. :

In [6], the authors show that if 4 is an analytic subset of X X Y such that
for each x, A, is uncountable, then A has an S(X X Y) measurable
parametrization. By S(X X Y) is meant the smallest o-algebra of subsets of
X X Y containing the open sets which is also closed under operation A.
These sets are the “C sets” introduced by Selivanowski [24]. It is well
known that S(X X ¥) is a proper subfamily of 43(X X )= PCAX X Y}
CPCA(X X Y) [12] and that S(X X Y) is a proper subfamily of the univer-
sally measurable sets. Qur parametrization theorem for the coanalytic side is
slightly better. We show that if each C, is large, then C has a LA (X X Y)
measurable parametrization, where B/ (X X Y) is the ¢-algebra of subsets
of X X Y generated by the analytic sets. Of course, P (X X Y)is a proper
subfamily of S{X X Y). We do not know whether C has a LA (X XY)
measurable parametrization if it is only assumed that each C, contains a
perfect subset. Let us note that it is not necessarily true that such a set C
contains a Borel set each section of which is uncountable. We also do not
know whether every analytic subset 4 of X X ¥ such that each A, is uncoun-
table has a .25 (X X Y) measurable parametrization.

TueoreM 6.1. Assume that Y is dense-in-itself and for each x, C, is not
meager. Then C has 2% disjoint Borel uniformizations and C has a
P4 (X X Y) measurable parametrization.

Proof. According to Theorem 4.2, C includes a Borel set B such that
each B, is not meager in Y. According to a theorem proved in [18], there is
a Borel parametrization k of X X Y onto B. Also, according to a theorem
proved in {18}, it follows that B, and therefore C, has 2% disjoint Borel
uniformizations.

The proof is completed by a Schrider—Bernstein type argument?as used by
the authors in {6]. Let §y=C — B and Ty = (X X ¥}~ C. Thus,

XX Y=BUS,UT,
mToUSou(TiUS;)U"' U(T“USN)U"‘ UD,
where T, = k"(T,), Su= k"(S;) and D = 2., k(B). Also,

C=BUS,
= S,U(T,US)U - U(T,US)U - UD.
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Set H=DWUZ,S, and G= {1, T, and define
glz)=z, if z€H;
=k(z), if z€E€G.

It can be easily checked that g is a one-to-one map of X X Y onto C and that
for each x, g(x, -) is a one-to-one map of ¥ onto C,.
If U is an open subset of X X Y, then

g '(U)y=g ' WUNH)U g (UNG)
= (UNH)UkUNG).

Since k is a Borel isomorphism, the sets S, T,, H and G are in the family
B (XXY). Also, k™'(M) is in P (XXY) if and only if M is.
Thus, g '(U) is in Lo (XXY) Similarly, (g ) (W)= g)=
gUNH)U glUNG)=UNH)UKUNG), so g~' is also ZF(XXY)
measurable. - :

Let us note that the methods of Theorem 6.1 may be used to generalize a
result of Sarabadhikari, who shows in [23] that if B is a Borel setin X X Y
such that each B, is not meager, then B has a Bore! uniformization. (It is not
assumed that Y is dense-in-itself.) Clearly, from what has been said here, this
same result holds when B is only assumed to be coanalytic. '

We now turn to another method of stating that a set is “large.”

THEOREM 6.2. Let pt be a conditional probability distribution on X X Y
such that for each x, j, is nonatomic and p(x, C,) > 0. Then C has 2®
disjoint Borel uniformizations and C has a B (X XY) measurable
parametrization.

Proof. According to Theorem 4.2, there is a Borel set B lying in C such
that for each x, u(x, B,) > 0. According to a theorem proven in [18], there is
a Borel parametrization of B. The remainder on the proof is the same as the
proof of the preceding theorem. &

Let us note that the methods of Theorem 6.2 may be used to generalize a
result of Blackwell and Ryli-Nardzewski, who show in [2] that if g is a
conditional distribution on X X Y and B is a Borel subset of X X Y such that
for each x, u(x,B,) >0, then B has a Borel uniformization. Clearly, the
same result holds when B is only assumed to be coanalytic.

The two theorems presented in this section led to the following problem.

ProBLEM. Assume that for each x, C, contains a nonempty perfect set.
Does C have a @+ (X X Y) measurable parametrization? What about an
S{X X Y} measurable or universally measurable parametrization?
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We do know one line of attack for a positive solution to this problem
which fails. If one could show that C contains a Borel set each section of
which is uncountable, then it would follow from the resuits of [6], that C has
an S(X X Y) measurable parametrization. Consider, however, the following
example.

ExaMPLE 6.3. Let D be a coanalytic subset of J such that there is some
sieve sifting D for which every constituent of D with respect to this sieve is
uncountable {13}]. Now, let

C={{x, y)EJ X D:0o(y) > wi},

where o(y) is the order type of the constituent to which y belongs. Clearly C
is coanalytic and each C, contains a perfect set.

Let us assume that there is a Borel set B lying in C such that for each x,
B, is uncountable. This implies that there is a countable ordinal y such that
B < C,, where

C,={(x, ») € D:o(y) < v}

But there is some x such that y < wj. For this x, B, must be empty, which
is a contradiction.

R EFERENCES

1. J. W. ApDison, Analogies in the Borel, Lusin and Kleene h:erarchms,! 11, Bull. Amer.
Math. Soc. 61 (1955), 75, 171172,

2. D. Brackweib aNp C. RyLi-Narpzewski, Non-existence of everywhere proper
conditional distributions, Ann. Math. Statist. 34 (1963), 223-225.

3. A. Brass anp D. Cenzer, Cores of IT} sets of reals, J. Symbolic Logic 39 (1974),
649654,

4. D. CEeNzER, Monotone inductive definitions over the continuum, J. Symbolic Legic 41
(1976), 188-198.

5. D, CenzerR AND R. D. MauLDiN, Faithful extensions of analytic sets to Borel sets,
Houston J. Math. 6 {1980}, 19-29. £

6. D. Cenzer aND R. D. MAULDIN, Measurable parametrizations, Trans. Amer. Math. Soc.
245 (1979), 399-408.

7. P. G. Hinman, Some applications of forcing to hierarchy problems in arithmetic, Z.
Math. Logtk Grundlagen Math. 15 (1969), 341352

8. P. G. Hinman, “Recursion-Theoretic Hierarchies,” Springer-Veriag, Berlin/New York,
1977,

9. A. S. KrcHris, Measure and category in effective descriptive set theory, 4nn. Math.
Logic 5 (1973), 337-384.

10. S. C. KLEENE, Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc.
79 (1955), 405-423.

11. M. Konpo, Sur l'uniformisation des complementaries analytigues et les ensembies
projectifs de las seconde classe, Japan J. Math. 15 (1938), 197-220.



50

12,
13.
14,
15.
16.
17.

18,
19.

20.
21
22
23
24,
25.
26,
27.
28.
29,
30.

3L

32,

CENZER AND MAULDIN

K. KuNnucus, Sur un théoréme d'existence dans la théorie des ensembles projectifs, Fund.
Math. 29 (1937), 167-181.

K. KuraTowskt, *Topology,” Yol 1, Academic Press, New York, 1966.

K. KURATOWSKI AND A. MosTOowskl, “Set Theory,” North-Holland, Amsterdam, 1968.
N. Lustn, Sur les ensembles analytiques, Fund. Math. 18(1927), 1-95.

N. Lustn, “Legons sur les ensembles analytiques et leurs applications,” Paris, 1930.

R. D. MAuULDIN, Baire functions, Borel sets, and ordinary function systems, Advances in
Math. 12 (1974), 418-450.

R. D. MAuLDIN, Borel parametrizations, Trans. Amer. Math. Soc. 250 (1979), 223-234,
A. W. MILLER, “Some Problems in Set Theory and Model Theory,” Dissertation,
University of California, Berkeley, 1978,

Y. N. MoscHovakis, “Elementary Induction on Abstract Structures,” North-Holland,
Amsterdam, 1975,

H. RoGErs, “Theory of Recursive Functions - and Effective Computability,”
McGraw—Hill, New York, 1967,

G. SAacks, Measure-theoretic uniformity in recursion theory and set theory, Trans. Amer.
Math, Soc. 142 (1969), 381-420.

H. SARBADHIKARI, “Some Uniformization Results,” Tech. Report Matthtat, Indian
Statistical Institute, 5 June 1975; Fund. Math. 97 (1977), 209-214.

E. SeLivaNowsk!, Sur une classe d'ensemble définis par une infinite dénombrable de
conditions, C. R. Acad. Sci. Paris 30 May 1927.

E. SELIVANOWSKI, Sur les propriétés des constituantes des ensembles analytiques, Fund.
Math. 21 (1933}, 20-28. ‘

W. SI1ErPINSKI, Sur un ensemble analyuque plan, universal pour les cnsembies
measurables (B), Fund. Math. 12 (1928), 75-71.

W. SIERPINSKI, Les ensembles projectifs et analytiques, Memor. Sci. Math. 112 (1950)
C. SPECTOR, Recursive well-orderings, J. Symbolic Logic 20 (1955), 151-163.

H. TANAKA, Some results in the effective descriptive set theory, Publ. Res. Inst. Math.
Sci. Ser.A 3 (1967}, F1-52.

H. TANAKA, Notes on measure and category in recursion theory, Ann. Japan Assoc.
Philos. Sci. 3 {1970}, 231-241.

5. K. ''HOMASON, The forcing method and the upper semi-lattice of hyperdegrees, Trans.
Amer. Math. Soc. 129 (1967), 38-57.

E. WeSLEY, Extensions of the measurable choice theorem by means of lorcing, Jsrael J.

Math. 14 (1973), 104114,

Printed by the St. Catherine Press Ltd., Tempelhof 37, Bruges, Belgium

e i e < A rin o stiman e

e -/




